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Abstract —Linking network flows is an important problem in intrusion
detection as well as anonymity. Passive traffic analysis can link flows
but requires long periods of observation to reduce errors. Active traffic
analysis, also known as flow watermarking, allows for better precision
and is more scalable. Previous flow watermarks introduce significant
delays to the traffic flow as a side effect of using a blind detection
scheme; this enables attacks that detect and remove the watermark,
while at the same time slowing down legitimate traffic. We propose the
first non-blind approach for flow watermarking, called RAINBOW, that
improves watermark invisibility by inserting delays hundreds of times
smaller than previous blind watermarks, hence reduces the watermark
interference on network flows. We derive and analyze the optimum
detectors for RAINBOW as well as the passive traffic analysis under
different traffic models by using hypothesis testing. Comparing the de-
tection performance of RAINBOW and the passive approach we observe
that both RAINBOW and passive traffic analysis perform similarly good
in the case of uncorrelated traffic, however, the RAINBOW detector
drastically outperforms the optimum passive detector in the case of
correlated network flows. This justifies the use of non-blind watermarks
over passive traffic analysis even though both approaches have similar
scalability constraints. We confirm our analysis by simulating the detec-
tors and testing them against large traces of real network flows.

Index Terms —Traffic analysis, flow watermarking, non-blind water-
marking, hypothesis testing.

1 INTRODUCTION

Internet attackers commonly relay their traffic through
a number of (usually compromised) hosts in order to
hide their identity. Detecting such hosts, called stepping
stones, is therefore an important problem in computer
security. The detection proceeds by finding correlated
flows entering and leaving the network. Traditional ap-
proaches have used patterns inherent in traffic flows,
such as packet timings, sizes, and counts, to link an
incoming flow to an outgoing one [1], [2], [3], [4], [5].
More recently, an active approach called watermarking
has been considered [6], [7]. In this approach, traffic
characteristics of an incoming flow are actively per-
turbed as they traverse some router to create a distinct
pattern, which can later be recognized in outgoing flows.
These techniques also have relevance to anonymous
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communication, as linking two flows can be used to
break anonymity, and both passive traffic analysis [8],
[9] and active watermarking [10], [11], [12] have been
studied in that domain as well.

The choice between passive and active techniques for
traffic analysis exhibits a tradeoff. Passive approaches
require observing relatively long-lived network flows,
and storing or transmitting large amounts of traffic char-
acteristics. Watermarking approaches are more efficient,
with shorter observation periods necessary. They are
also blind: rather than storing or communicating traffic
patterns, all the necessary information is embedded in
the flow itself. This, however, comes at a cost: to en-
sure robustness, the watermarks introduce large delays
(hundreds of milliseconds) to the flows, interfering with
the activity of benign users, and making them subject to
attacks [13], [14].

Motivated by this, we propose a new category for
network flow watermarks, the non-blind flow watermarks.
Non-blind watermarking lies in the middle of passive
techniques and (blind) watermarking techniques: similar
to passive techniques (and unlike blind watermarks),
non-blind watermarks will record traffic pattern of in-
coming flows and correlate them with outgoing flows.
On the other side, similar to blind watermarks (and
unlike passive techniques), non-blind watermarking aids
traffic analysis by applying some modifications to the
communication patterns of the intercepted flows. We
develop and prototype the first non-blind flow water-
mark, called RAINBOW. RAINBOW records the timing
pattern of incoming flows and correlate them with the
timing pattern of the outgoing flows. On each incoming
flow, RAINBOW also inserts a watermark by delaying
some packets, after recording the received timings. As
such a watermark is generated independently of the
flows, this will diminish the effect of natural similarities
between two unrelated flows, and allow a flow linking
decision to be made over a much shorter time period.
RAINBOW uses spread-spectrum techniques to make
the delays much smaller than previous work. RAINBOW
uses delays that are on the order of only a few millisec-
onds; this means that RAINBOW watermarks not only
do not interfere with traffic patterns of normal users,
they are also virtually invisible, since the delays are of
the same magnitude as natural network jitter. In [15] we
use different information theoretical tools to verify the
invisibility of RAINBOW, and demonstrate its high per-
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formance in linking network flows through a prototype
implementation over the PlanetLab [16] infrastructure.

In this paper, we thoroughly analyze the detection
performance of RAINBOW non-blind watermark, and
compare it with that of passive traffic analysis schemes.
By using hypothesis testing mechanisms from the detec-
tion and estimation theory [17], we find the optimum
detection schemes for RAINBOW as well as the optimum
passive detectors under different models for network
traffic. Modeling real-world network traffic is a compli-
cated problem as it depends on many different param-
eters; as a result, we only consider two extreme models
of the network traffic: (1) independent flows where each
flow is modeled as a Poisson process (traffic model A),
and, (2) completely correlated flows where all flows are
considered to have similar timing patterns (traffic model
B). We assume that any real-world traffic model lies in
the middle of these two extreme models. Our analysis
leads to the following important conclusions:

i) Non-blind watermarking always performs a better
detection than passive traffic analysis. This is an es-
sential result in motivating the use of non-blind wa-
termarks over passive traffic analysis, since both have
similar scalability constraints, i.e., both approaches have
O(n) communication overheads and O(n2) computation
overheads [15]. Not that this point is not necessary
(nor is always true) to motivate the use of traditional
(blind) watermarks over passive traffic analysis, since
blind watermarks provide much better scalability (i.e.,
O(1) communication overhead and O(n) computation
overhead [15] ).

ii) Our analysis shows that the performance advantage
of non-blind watermarking (over passive schemes) is
only marginal for uncorrelated network traffic, while it
is very significant for correlated network traffic. This
knowledge can be used to decide the best traffic anal-
ysis approach in various applications. We validate our
analysis through simulating the detection schemes on
real network traces. In particular, we show that for
highly correlated traffic, e.g., same webpage downloads,
passive traffic analysis performs very poorly while a
RAINBOW watermark is highly effective.

iii) We also show (through both analysis and exper-
iments) that the optimum watermark detector derived
for correlated traffic (namely SLCorr) also performs
very good for uncorrelated traffic (while the optimum
watermark detector for uncorrelated traffic does not
do well for correlated traffic). This allows one to use
SLCorr as the sole watermark detector regardless of the
type of traffic being observed. This is especially useful
in real-world applications where the observed traffic is
a mixture of different flow types.

Note that in this paper we do not discuss the per-
formance advantage of non-blind watermarks over tra-
ditional blind watermarks, as this has been justified in
[15].

The rest of this paper is organized as follows: we
review the problem of stepping stone detection and

existing schemes in Section 2. Our RAINBOW scheme is
presented in Section 3. In Section 4, we use hypothesis
testing to find and analyze the optimum likelihood ratio
detectors for passive and non-blind active (watermark)
approaches under different traffic models, and analyze
their false error rates. In Section 5, we validate the anal-
ysis results through simulation of the detection schemes
over real network traces. Finally, the paper is concluded
in Section 6.

2 BACKGROUND

In this section, we review the problem of detecting step-
ping stones and then review both the passive and active
approaches to the problem. We compare the advantages
and disadvantages of the two techniques, motivating our
approach.

2.1 Stepping Stone Detection

A stepping stone is a host that is used to relay traffic
through an enterprise network to another remote des-
tination. Stepping stones are used to disguise the true
origin of an attack. Detecting stepping stones can help
trace attacks back to their true source. Also, stepping
stones are often indicative of a compromised machine.
Thus detecting stepping stones is a useful part of enter-
prise security monitoring.

Generally, stepping stones are detected by noticing
that an outgoing flow from an enterprise matches an
incoming flow. Since the relayed connections are often
encrypted (using SSH [18], for example), only character-
istics such as packet sizes, counts, and timings are avail-
able for such detection. And even these are not perfectly
replicated from an incoming flow to an outgoing flow, as
they are changed by padding schemes, retransmissions,
and jitter. As a result, statistical methods are used to
detect correlations among the incoming and outgoing
flows. We next review the passive and active approaches.

2.2 Passive Traffic Analysis

In general, passive traffic analysis techniques operate by
recording characteristics of incoming streams and then
correlating them with outgoing ones. The right place to
do this is often at the border router of an enterprise, so
the overhead of this technique is the space used to store
the stream characteristics long enough to check against
correlated relayed streams, and the CPU time needed
to perform the correlations. In a complex enterprise
with many interconnected networks, a connection re-
layed through a stepping stone may enter and leave the
enterprise through different points; in such cases, there
is additional communications overhead for transmitting
traffic statistics between border routers.

The passive schemes have explored using various
characteristics for correlating streams. Zhang and Pax-
son [2] model interactive flows as on–off processes and
detect linked flows by matching up their on–off behavior.
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Wang et al. [4] focus on inter-packet delays, and consider
several different metrics for correlation. More recently,
He and Tong used packet counts for stepping stone
detection [19].

Donoho et al. were the first to consider intruder eva-
sion techniques [3]. They defined a maximum-tolerable-
delay (MTD) model of attacker evasion and suggested
wavelet methods to detect stepping stones while being
robust to adversarial action. Blum et al. used a Poisson
model of flows to create a technique with provable
upper bounds on false positive rates [5], given the MTD
model. However, for realistic settings, their techniques
require thousands of packets to be observed to achieve
reasonable rates of false errors.

2.3 Watermarks

To address some of the efficiency concerns of passive
traffic analysis, Wang et al. proposed the use of water-
marks [6]. In this scenario, a border router will modify
the traffic timings of the incoming flows to contain a
particular pattern—the watermark. If the same pattern is
present in an outgoing flow, a stepping stone is detected.

Watermarks improve upon passive traffic analysis in
two ways. First, by inserting a pattern that is uncorre-
lated with any other flows, they can improve the de-
tection efficiency, requiring smaller numbers of packets
to be observed (hundreds instead of thousands) and
providing lower false-positive rates (10−4 or lower, as
compared to 10−2 with passive watermarks). Second,
they can operate in a blind fashion: after an incoming
flow is watermarked, there is no need to record or com-
municate the flow characteristics, since the presence of a
watermark can be detected independently. The detection
is also potentially faster, as here is no need to compare
each outgoing flow to all the incoming flows within the
same time frame.

Watermarking techniques for network flows have been
based on existing techniques for multi-media water-
marking. For example, Wang et al. based their scheme on
QIM watermarks [20]. Two other watermark schemes [7],
[11] are based on patchwork watermarking [21], and
Yu et al. [12] developed one based on spread-spectrum
techniques [22]. Some of the schemes target anonymous
communication rather than stepping stones as the appli-
cation area (both involve the problem of linking flows),
but the techniques for both are comparable.

2.4 Watermark Properties

To motivate our design, we first propose some desirable
properties of network flow watermarks. First of all,
a watermark should be robust to modifications of the
traffic characteristics that will occur inside an enterprise
network, such as jitter. Watermarks should also be re-
silient to an adversary who actively tries to remove them
from the flow, a property we call active robustness. The
watermarks should also introduce little distortion, in that
they should not significantly impact the performance

of the flows. This is important because in a stepping-
stone scenario, most watermarked flows will be benign.
Finally, watermarks should be invisible even to attackers
who specifically try to test for their presence.

Looking at previous designs, all of them fail to be
invisible: the watermarks introduce large delays, on the
order of hundreds of milliseconds, on some packets,
which can be easily detected by an attacker [13]. In
fact, they cannot even be considered low-distortion, as
such large delays are easily noticeable and bothersome
to legitimate users. The watermarks are also not actively
robust, as demonstrated by recent attacks [13], [14].

We also observe that active robustness and invisibil-
ity are likely to be impossible to achieve at the same
time. This is because to be invisible, the watermark can
only introduce minute changes to the packet stream. In
particular, it cannot introduce jitter of more than a few
milliseconds, since otherwise it will be possible to tell
it apart from the natural network jitter. However, an
active attacker will be willing to introduce large delays to
the network; for example, the maximum tolerable delay
suggested in previous work is 500ms. As such, he will
be able to destroy any low-order effects that will be
introduced by the watermark.

Further, it is easy to imagine an attacker determined
to hide his tracks using even more drastic measures,
such as using dummy packets to generate a completely
independent Poisson process [5], which will render any
linking techniques ineffective. As such, we decided to
design a watermark scheme that is robust to normal
network interference, though not actively robust, and is
invisible. This will serve to detect stepping stones where
attackers are unwilling (or unable) to actively distort
their stream as it crosses a stepping stone. Further, as the
watermark will be invisible, attackers will not be able to
tell if they are being traced and thus will be less likely
to try to apply costly watermark countermeasures.

3 RAINBOW WATERMARK

We next present the design of a new watermark scheme
we call RAINBOW, for Robust And Invisible Non-Blind
Watermark. Our scheme is robust (to passive inter-
ference) and invisible. However, to achieve invisibility
while maintaining detection efficiency, we make the
scheme non-blind; that is, incoming flows timings are
recorded and compared with the timings of outgoing
flows. This allows us to make a robust watermark test
with even low-amplitude watermarks.

The RAINBOW watermark embedding process is
shown in Figure 1. Suppose that a flow with the packet
timing information {tui |i = 1, .., n + 1} enters border
router where it is to be watermarked (we use the su-
perscript u to denote an “unwatermarked” flow). Be-
fore embedding the watermark, the inter-packet delays
(IPDs) of the flow, τui = tui+1 − tui are recorded in an
IPD database, which is accessible by the watermark
detector. The watermark is subsequently embedded by
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Fig. 1. Model of RAINBOW network flow watermarking
system.

delaying the packets by an amount such that the IPD
of the ith watermarked packet is τwi = τui + wi. The
watermark components {wi}

n
i=1 take values ±a with

equal probability. The value a is chosen to be small
enough so that the artificial jitter caused by watermark
embedding is invisible to ordinary users and attackers1.

In order to apply watermark delays on the flow,
output packet ti is delayed by w0 +

∑i−1
j=1 wi, where

w0 is the initial delay applied to the first packet. This
results in τwi = τui + wi, as desired. Since we cannot
delay a packet for a negative amount of time, w0 must
be chosen large enough to prevent this from happening.
Since the sequence wi is generated from a random seed,
the watermarker can calculate all of the partial sums
∑i−1

j=1 wi in advance and adjust w0 accordingly. If a
particular random seed requires a very large initial delay
w0, a different seed can be chosen.

As the flow traverses the network, it accumulates extra
delays. Let di be the delay that the packet accumulates
by the time it reaches the watermark detector; i.e., the
packet is received at the detector at time tri = twi + di.
The IPD values at the detector are then:

τri = tri+1 − tri = τui + wi + δi (1)

where δi = di+1 − di is the jitter present in the network.
As mentioned before, the RAINBOW scheme is non-

blind and therefore the detector has access to the IPD
database where the unwatermarked flows are recorded.
Given an observed flow at the detector with IPDs τr

and a previously recorded flow τu, the detector must
decide whether the two flows are linked or not. In the
next section we derive the optimum datectors for the
RAINBOW watermaks according to the LRT ruls. We
also derive the optimum passive detectors, showing that
the RAINBOW watermark performs significantly better
than passive traffic analysis for correlated network flows.

4 DETECTION APPROACHES

RAINBOW is the first non-blind flow watermarking
scheme. Non-blind watermarking inherits similar scala-
bility issues from the passive traffic analysis. In this sec-
tion, we show how non-blind watermarking improves

1. Throughout this paper, by attacker we mean the attacker to the
watermarking scheme.

the traffic analysis performance as compared to the
traditional passive traffic analysis.

We derive optimum Likelihood Ratio Test (LRT) de-
tectors for the RAINBOW watermarking scheme for
different traffic models, and compare its detection per-
formance with those of optimum passive detectors. We
show that RAINBOW outperforms passive traffic analy-
sis for different traffic models; this confirms what we
expect intuitively from information theory, as a non-
blind watermark detector has access to more information
(the watermark and the IPDs), compared to a passive
detector which only has access to the IPDs. We also
show that the RAINBOW detector is reliable in different
models, while the optimum passive detector fails in
some scenarios.

As the extreme models, we perform our detection
analysis for two traffic models:

• traffic model A: independent flows with i.i.d. inter-
packet delays, and,

• traffic model B: completely-correlated flows.

As it is infeasible to evaluate the detection perfor-
mance for all different traffic models, we discuss the
detection performance for these two traffic models, and
consider any real-world network flow to lie between
these two extreme models. We show that an active
detector, i.e., RAINBOW, is reliable for different models,
while a passive detector fails for certain traffic models.

4.1 Detection primitives

We use hypothesis testing [17] to analyze the detection
performance of active and passive detectors. For an
active detector, we aim to distinguish between the two
following hypotheses:

• H0 (null hypothesis): the received flow with IPDs τ
r

is a new, unwatermarked flow, unlinked to the flow
with IPDs τ , and,

• H1: τ r is the result of a flow with original IPDs τ be-
ing watermarked and passed through the network.1

Also, for a passive detector we consider the following
hypothesis testing problem:

• H0 (null hypothesis): the received flow with IPDs τ
r

is a new flow, unlinked to τ (the IPDs of another
received flow), and,

• H1: τ r is the result of τ passing through the net-
work.

We find the optimum likelihood-ratio tests (LRT) of
these hypothesis testing problems. For any received flow
with τ

r IPDs, an LRT test evaluates a test metric for the
IPDs, T [τ r], and compares it with a detection threshold
η; if T [τ r] ≥ η, the received flow is said to be linked to
the one in the detector’s database (with IPDs of τ ). We

1. Note that there is another possibility, namely that τ
r is a water-

marked flow, but not corresponding to τ . However, we ignore this case
because errors in this scenario do not matter: if the flow is said to be
watermarked, then the detection algorithm is correct, and if it is said
to be unwatermarked, it will later be tested against the correct τ .
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Fig. 2. A comparison of observed jitter and a fitted
Laplace distribution.

can therefore express the false positive and false negative
rates of the detector as:

PFP = P (T [τ r|H0] ≥ η) (2)

PFN = P (T [τ r|H1] < η) (3)

4.2 Network jitter model

We will model network delays as i.i.d. exponential,
which implies that the jitter (difference of two delays)
is i.i.d. according to a zero-mean Laplace distribution
denoted by Lap(0, bδ), where 2b2δ is the variance of the
jitter. Of course, in a real network, delays will have some
correlation; we compare the probability density function
(PDF) of real observed jitter on a connection over Planet-
Lab [16] with a best-fit Laplace distribution in Figure 2.
We can see that the real PDF has greater support at 0, and
the Laplace distribution has a heavier tail. This means
that our analysis of error rates will be conservative, since
0 jitter will result in no error for our detection scheme.
We have also conducted similar experiments with the
same results on Tor anonymous network [23] to consider
the other application of watermarking.

4.3 Traffic model A: independent flows, i.i.d. IPDs

In this model, we assume that the candidate flows are
independent. Also, each flow has i.i.d. IPDs, i.e., the flow
is modeled with a Poisson process. This represents a
good model for non-interactive network flows.

4.3.1 Passive detection (PASSV scheme)
In this section, we find the optimum likelihood ratio
(LRT) passive detector for the traffic model A. Suppose
that the flow with IPDs τ is known to the detector.
Detector will need to check if it is correlated with some
received flow τ

∗, where τ and τ
∗ are independent. So,

in this case the hypothesis testing problem is:
{

H0 : τri = τ∗i + δ0i
H1 : τri = τi + δ1i

(4)

where δ0 and δ1 represent the network jitter. Based on
our measurements over the Planetlab we model the net-
work jitter with an i.i.d. Laplacian distribution Lap(0, b)
(see Section 4.2).

In order to find the optimum LRT detector, we first
need to find the PDF function of τri in different hy-
potheses, i.e., pi(·) for hypothesis Hi . As the model
A suggests, we model the IPDs τ∗ as i.i.d. exponential
distribution. So, in hypothesis H0 the received signal
τri is the summation of a Laplacian and an exponential
random variable; we use Lemma 3 in Appendix A to
find p0(·):

p0(τ
r
i ) =







λ
2(λb−1)e

−
τr
i
b + λ

1−λ2b2 e
−λτr

i yi ≥ 0

λ
2(λb+1)e

τr
i
b yi < 0

(5)

In the case of H1, since the τi is known to the detector,
we can model τri as a Laplacian distribution with mean
τi. So:

p1(τ
r
i ) =

1

2b
e−

|τr
i
−τi|

b (6)

Note that even though the real-world IPDs can never
be negative, the densities p0 and p1 return a non-zero
density for negative values of the IPDs. In fact, this is due
to the approximation we make in modeling the network
jitter as a two-sided Laplacian distribution, and its effect
is very small for ordinary network flows based on our
simulations [15].

Having the densities p0 and p1, we derive the optimum
detector based on the likelihood ratio test to be:

L(τ r) ≷H1

H0
eη (7)

where η is the LRT detection threshold and

L(τ r) =
∏

Li(τ
r
i ) (8)

Li(τ
r
i ) =

p1(τ
r
i )

p0(τri )
(9)

We define ηn = η/n as the normalized detection threshold.
A value of of ηn = 0 results in a MiniMax detector.

4.3.1.1 Detection performance: Let us consider the
case where the detector uses the PASSV detection scheme
in order to link a received flow with IPDs τ

r to a known
flow with IPDs τ , i.e., a registered flow. Considering the
assumptions made in the traffic model A, i.e., the IPDs
being i.i.d., we use Lemma 1 (part b) in Appendix A to
find the false positive (PFP ) and false negative (PFN )
error rates of the PASSV detector:

P τ

FP ≤

n
∏

i=1

e−(sηn−µ
τi
0,i

(s)) (10)

P τ

FN ≤

n
∏

i=1

e−((s−1)ηn−µ
τi
0,i

(s)) (11)

where 0 < s < 1 and:

µτi
0,i(s) = ln

∫

p1−s
0 (τri )p

s
1(τ

r
i )dτ

r
i (12)

The error probabilities of P τ

FN and P τ

FP correspond to
a fixed known IPDs sequence, τ . The overall false errors
are evaluated by averaging P τ

FP and P τ

FN with respect
to τ :
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PFP = Eτ {P
τ

FP } (13)

≤

n
∏

i=1

Eτi

{

e−(sηn−µ
τi
0,i

(s))
}

(14)

=

(
∫ ∞

0

e−(sηn−µ
τ1
0,1(s))λe−λτ1dτ1

)n

(15)

PFN = Eτ {P
τ

FN} (16)

≤
n
∏

i=1

Eτi

{

e−((s−1)ηn−µ
τi
0,i(s))

}

(17)

=

(
∫ ∞

0

e−((s−1)ηn−µ
τ1
0,1(s))λe−λτ1dτ1

)n

(18)

We can represent the upper bounds of these false
errors as:

PFP ≤ e−n·EFP (s,ηn) (19)

PFN ≤ e−n·EFN (s,ηn) (20)

where

EFP (s, ηn) = − ln

(
∫ ∞

0

e−(sηn−µ
τ1
0,1(s))λe−λτ1dτ1

)

(21)

EFN (s, ηn) = − ln

(
∫ ∞

0

e−((s−1)ηn−µ
τ1
0,1(s))λe−λτ1dτ1

)

(22)

(0 < s < 1)

For each detection threshold ηn, we find the tightest
exponent bounds E∗

FP (ηn) and E∗
FN (ηn) such that:

E∗
FP (ηn) = max

0<s<1
EFP (s, ηn) (23)

E∗
FN (ηn) = max

0<s<1
EFN (s, ηn) (24)

4.3.1.2 Analysis results: We use Mathematica 7.0 to
evaluate the false error exponents of (23) and (24). The
parameters used for the simulations are b = 10−2sec and
λ = 5pps, borrowed from [15]. Figure 3 plots the tightest
bounds for the error exponents of E∗

FP (ηn) and E∗
FN (ηn)

for different thresholds of ηn. Note that the optimum s
varies with the decision threshold. For ηn = 0 the false
positive and false negative errors are equal; we name this
error rate as the Cross-Over Error Rate (COER). For the
mentioned setting of the variables the COER exponent
of the PASSV detector is equal to 1.06396.

4.3.2 Active detection (ACTV scheme)
In this section, we find the optimum LRT detector for the
RAINBOW non-blind watermark for the traffic model A.
We have the following hypothesis testing problem:

{

H0 : τri = τ∗i + δi

H1 : τri = τi + wi + δi
(25)

where τi’s are the IPDs registered in the IPD database,
and τ∗i ’s are the IPDs of an independent flow. As before,
in order to find the optimum LRT detector we need to

find the distribution of τri in different hypotheses. Using
Lemma 3 in Appendix B we find the corresponding PDF
function under H0 as:

p0(τ
r
i ) =







λ
2(λb−1)e

−
τr
i
b + λ

1−λ2b2 e
−λτr

i τri ≥ 0

λ
2(λb+1)e

τr
i
b τri < 0

(26)

Since τi and wi are known to the detector, we find the
PDF in hypothesis H1 as the following:

p1(τ
r
i ) =

1

2b
e−

|τr
i
−τi−wi|

b (27)

So, the optimum detector based on the likelihood ratio
test is:

L(τ r) ≷H1

H0
eη (28)

where η is the LRT detection threshold and

L(τ r) =
∏

Li(τ
r
i ) (29)

Li(τ
r
i ) =

p1(τ
r
i )

p0(τri )
(30)

4.3.2.1 Detection performance: As before, consid-
ering the independence of the IPDs and also the water-
mark bits we use Lemma 1 (part b) in Appendix A to
find the error probabilities of the ACTV detector for a
given τ and w:

P τ ,w
FP ≤

n
∏

i=1

e−(sηn−µ
τi,wi
0,i

(s)) (31)

P τ ,w
FN ≤

n
∏

i=1

e−((s−1)ηn−µ
τi,wi
0,i

(s)) (32)

where 0 < s < 1, and:

µτi,wi

0,i (s) = ln

∫

p1−s
0 (τri )p

s
1(τ

r
i )dτ

r
i (33)

As P τ ,w
FN and P τ ,w

FP correspond to a fixed IPDs se-
quence τ and the watermark w, we evaluate the overall
false errors by averaging P τ ,w

FP and P τ ,w
FN with respect to

τ and w:

PFP = EwEτ {P
τ ,w
FP } (34)

≤

n
∏

i=1

Ewi
Eτi

{

e−(sηn−µτ,w

0,i
(s))
}

(35)

=

(

1

2

1
∑

w1=0

∫ ∞

0

e−(sηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)n

(36)

PFN = EwEτ {P
τ ,w
FN } (37)

≤

n
∏

i=1

Ewi
Eτi

{

e−((s−1)ηn−µτ,w

0,i
(s))
}

(38)

=

(

1

2

1
∑

w1=0

∫ ∞

0

e−((s−1)ηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)n

(39)
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The approximated upperbounds can be formulated as:

PFP ≤ e−n·EFP (s,ηn) (40)

PFN ≤ e−n·EFN (s,ηn) (41)

where

EFP (s, ηn) = − ln

(

1

2

1
∑

w1=0
∫ ∞

0

e−(sηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)

(42)

EFN (s, ηn) = − ln

(

1

2

1
∑

w1=0
∫ ∞

0

e−((s−1)ηn−µ
τ1,w1
0,1 (s))λe−λτ1dτ1

)

(43)

(0 < s < 1)

Finally, the tightest bounds for each ηn are found
by maximizing the error exponents with respect to the
parameter s:

E∗
FP (ηn) = max

0<s<1
EFP (s, ηn) (44)

E∗
FN (ηn) = max

0<s<1
EFN (s, ηn) (45)

4.3.2.2 Analysis results: Using Mathematica 7.0 we
evaluate the false error exponents of (44) and (45). As
before, we use the parameters b = 10−2sec, a = 10−2sec,
and λ = 5pps for the simulations. Figure 4 plots the
tightest bounds for the error esponents of E∗

FP (ηn) and
E∗

FN (ηn) for different thresholds of ηn. The COER expo-
nent occurs for ηn = 0 and is equal to 1.06828, which is
slightly better compared to that of the PASSV detector
evaluated before, i.e., 1.06396.

4.4 Traffic model B: correlated flows, correlated
IPDs
As the other extreme of traffic models we investigate
the traffic model with correlated IPDs. We consider the
case where all of the network flows have the same IPDs,
e.g., for any two flows with IPDs τ

∗ and τ we have that
τ∗i = τi = Ci for all i. In particular, this model captures
the behavior of a number of widely used traffic types,
including file transfers, browsing the same websites, etc.

4.4.1 Passive detection
In this model, a passive detection faces the following
hypothesis testing problem:

{

H0 : τri = τ∗i + δi

H1 : τri = τi + δi
(46)

where τ∗i = τi = Ci. The optimum LRT detector for this
problem is the random guessing:

L(τ r) = RND (47)

where RND is a uniform random variable. The detection
rule is:

L(τ r) ≷H1

H0
eη (48)

4.4.1.1 Detection performance: Since the detector
is based on random guessing, the false errors are as
followed:

PFP = p (49)

PFN = 1− p (50)

where 0 ≤ p ≤ 1 is determined by the choice of η.

4.4.2 Active detection (SLCorr scheme)

In this case, we have the following hypothesis testing
problem:

{

H0 : τri = τ∗i + δi

H1 : τri = τi + wi + δi
(51)

Since τ∗i = τi = Ci, this can be reduced to the
following hypothesis testing:

{

H0 : yi = δi

H1 : yi = wi + δi
(52)

where yi = τri − τi. The optimum LRT detector for this
problem can be found considering the distribution of yi
in different hypotheses:

pi0(yi) =
1

2b
e−

|yi|

b (53)

pi1(yi) =
1

2b
e−

|yi−wi|

b (54)

So, we can derive the LRT detection metric as:

Li(yi) =
pi1(yi)

pi0(yi)
(55)

which can be expressed as:

lnLi(yi) =
1

b
(|yi| − |yi − wi|) (56)

=
2

b
fSL

(

yi −
wi

2

)

.sgn(wi) (57)

fSL(·) is a soft-limiter with breakpoints at −a
2 and +a

2
(a is the watermark amplitude as defined before):

fSL(x) =











+a
2 x ≥ +a

2

x −a
2 < x < +a

2

−a
2 x ≤ −a

2

(58)

We can reformulate the optimum detection rule as:

D(y) ≷H1

H0
η (59)

where

D(y) =

n
∑

i=1

Di(yi) (60)

and

Di(yi) =
b

2
lnLi(yi)

= fSL
(

yi −
wi

2

)

.sgn(wi) (61)
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Fig. 3. Analytical error exponents E∗
FP (ηn) and E∗

FN (ηn)
of the PASSV detection scheme for different values of ηn
(traffic model A). (b = 10−2sec, λ = 5pps)
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Fig. 5. Block diagram of the SLCorr detection scheme.

We call this detector SLCorr, as it is composed of
a soft limiter followed by a correlation block. From a
communications point of view, the soft-limiter is useful
in reducing the signal detection noise in channels with a
Laplacian distributed noise. We will use this as the de-
tection scheme for the RAINBOW watermark, as would
be discussed later. Figure 5 shows the block diagram of
the SLCorr detector. SLCorr is a MiniMax detector for a
detection threshold of η = 0.

4.4.2.1 Detection performance: The SLCorr test
metric is given in (59) to (61). Let us define f i

0(·) and
f i
1(·) as the PDF of xi = yi −

wi

2 in hypothesis H0 and
H1, respectively. We have that:

f i
0(xi) =

1

2b
e−

|xi+
wi
2

|

b (62)

f i
1(xi) =

1

2b
e−

|xi−
wi
2

|

b (63)

Based on these, we can evaluate p0(·) and p1(·), namely
the PDF of Di(yi) under hypothesis H0 and H1, respec-
tively:

p0(Di) =











1
2e

−a
b Di = +a

2

1
2be

−
Di+

a
2

b −a
2 < Di <

a
2

1
2 Di = −a

2

(64)

p1(Di) =











1
2 Di = +a

2

1
2be

Di−
a
2

b −a
2 < Di <

a
2

1
2e

−a
b Di = −a

2

(65)

Considering that the distributions p0(Di) and p1(Di)
are i.i.d. with i we use the Chernof bound (part (c) of
Lemma 1 in Appendix A) to find the error probabilities
of the SLCorr detector:

PFP ≤ e−n(sηn−µ0(s)) (∀s > 0) (66)

µ0(s) = µDi|H0
(s)

PFN ≤ e−n(sηn−µ1(s)) (∀s < 0) (67)

µ1(s) = µDi|H1
(s)

where ηn = η/n is the normalized detection threshold.
We have that:

µ0(s) = µDi|H0
(s) = ln

∫ ∞

−∞

esxp0(x)dx

= ln

[

sb

2(sb− 1)
e−

a
b es

a
2 +

sb− 2

2(sb− 1)
e−sa

2

]

(68)

and,

µ1(s) = µDi|H1
(s) = ln

∫ ∞

−∞

esxp1(x)dx

= ln

[

sb

2(sb+ 1)
e−

a
b e−s a

2 +
sb+ 2

2(sb+ 1)
es

a
2

]

(69)

We can express the above PFP and PFN false errors
as:

PFP ≤ e−n·EFP (s,ηn) (70)

PFN ≤ e−n·EFN (s,ηn) (71)

where

EFP (s, ηn) = sηn − µ0(s) (s > 0) (72)

EFN (s, ηn) = sηn − µ0(s) (s < 0) (73)



9

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−3

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ηn

F
a
ls

e
E
rr

o
r

E
x
p
o
n
e
n
t

 

 

  E
FP

 E
FN

Fig. 6. Analytical error exponents E∗
FP (ηn) and E∗

FN (ηn)
of SLCorr for different values of ηn (traffic model B). (b =
10−2sec, a = 10−2sec)

Finally, the tightest bounds for each ηn are found
by maximizing error exponents with respect to the s
parameter:

E∗
FP (ηn) = max

s>0
EFP (s, ηn) (74)

E∗
FN (ηn) = max

s<0
EFN (s, ηn) (75)

4.4.2.2 Analysis results: We use Mathematica 7.0 to
evaluate the false error exponents of (74) and (75). The
parameters used for the simulations are b = 10−2sec and
a = 10−2sec. Figure 6 plots the tightest bounds for the
error exponents of E∗

FP (ηn) and E∗
FN (ηn) for different

thresholds of ηn. The COER exponent occurs for ηn = 0
and is equal to 0.0945.

4.5 Discussion

Above, we derived the optimum passive and active
detectors for the traffic analysis problem and evaluated
their performance by finding the Chernoff upperbounds
of their false error rates. In this section, we use the
asymptotic relative efficiency (ARE) as a tool to compare
their detection performances.

The asymptotic relative efficiency (ARE) is a measure
for comparing two discrete-time detection schemes. For
two discrete detection schemes S1 and S2 the ARE metric
is defined as ARES1,S2

= limn→∞ n2/n, where n is the
number of S1’s samples. The n2 parameter is the smallest
number of S2 samples that results in S2’s error rate to
be smaller than or equal to the error rate of S1 (with n
samples). An ARE metric of ARES1,S2

> 1 depicts that
S1 is asymptotically more efficient than S2. Chernoff [24]
finds the ARE metric of two detectors S1 and S2 using
their Chernoff error upperbounds as:

ARES1,S2
= E1/E2 (76)

where E1 and E2 are the error exponents of the Chernoff
upperbounds for S1 and S2 detectors, respectively.

Using the analysis results from Sections 4.3 and 4.4 we
can derive the ARE metric of the optimum passive and
active detectors for the two traffic models as:

AREPASSV,ACTV |A = 1.06396/1.06828≈ 0.996 (77)

ARERND,SLCorr|B = 0/0.0945 = 0 (78)

This asserts that the optimum active detector out-
performs the optimum passive detector in both traffic
models A and B (which is intuitively expected from
information theory). As an important observation, we
see that the active detector’s advantage is very small
for the traffic model A, however, the active detector
significantly outperforms the optimum passive detector
in traffic model B, i.e., the correlated traffic. In other
words, the active detector provides very good detection
performance for different traffic models, however, the
passive detection is very poor for the more correlated
network traffic. Later in this section, we sh

In the rest of this section we analyze the performance
of the SLCorr scheme under the traffic model A, showing
that even though SLCorr is not the optimum detector
for the traffic model A, however, it provides very good
detection performance under this model. Based on this,
we choose SLCorr as the sole detector for RAINBOW,
regardless of the behavior of the network flows. This
simplifies the watermark detection, as real-world traf-
fic are combinations of the models A and B, and the
detection can be performed regardless of the type of
the received traffic. We also analyze the performance
of PASSV and ACTV detectors under traffic model B,
showing their inefficiency in this model.

4.5.1 SLCorr Detection performance for traffic model A

The SLCorr scheme is the optimum active detector for
traffic model B, but not the traffic model A. In this
section we show that SLCorr achieves a good detection
performance even under traffic model A, allowing a
system designer to use it as the sole detection scheme
regardless of the type of the traffic. SLCorr faces the
following hypothesis testing under the traffic model A:

{

H0 : τri = τ∗i + δi

H1 : τri = τi + wi + δi
(79)

Considering SLCorr’s detection metric, given in (59)
to (61), one can rewrite the hypothesis testing problem
as:

{

H0 : yi = τ∗i + δi − τi

H1 : yi = wi + δi
(80)

where yi = τri − τi. Let us assume f0
i (·) and f1

i (·) as the
PDF functions of yi|H0 and yi|H1, respectively. We have
that:

yi|H1 ∼ Lap(wi, b) (81)

f1
i (yi) =

1

2b
e−

|yi−wi|

b (82)
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Also using Lemma2 in Appendix B:

δi ∼ Lap(0, b) (83)

(τ∗i − τi) ∼ Lap(0, 1/λ) (84)

f0
i (yi) =

bλ

2(1− b2λ2)

(

1

b
e−λ|yi| − λe−

1
b
|yi|

)

(85)

Now, let us define p0(·) and p1(·) as the PDF functions
of Di(yi) under hypotheses H0 and H1, respectively. We
derive p(·) as:

p0(Di) =























b2λ2

2(1−b2λ2)

(

1
b2λ2 e

−λa − e−
a
b

)

Di = +a
2

bλ
2(1−b2λ2)

(

1
b e

−λ(Di+a/2)

−λe−
1
b
(Di+a/2)

)

−a
2 < Di <

a
2

1
2 Di = −a

2
(86)

Also, using (82) we derive p1(·) as:

p1(Di) =











1
2 Di = +a

2

1
2be

Di−
a
2

b −a
2 < Di <

a
2

1
2e

−a
b Di = −a

2

(87)

Based on the p0(·) and p1(·) distributions and using the
Chernoff bounds for signal detection (part c of Lemma 1
in Appendix A) we find the error probabilities of the
detector to be:

PFP ≤ e−n(sηn−µ0(s)) (∀s > 0) (88)

µ0(s) = µDi|H0
(s)

PFN ≤ e−n(sηn−µ1(s)) (∀s < 0) (89)

µ1(s) = µDi|H1
(s)

where we have:

µ0(s) = µDi|H0
(s) = ln

∫ ∞

−∞

esxp0(x)dx (90)

= ln

[

b2λ2

2(1− b2λ2)

[

s

b2λ2(s− λ)
esa/2e−λa

+
sb

1− sb
esa/2e−a/b

+
−2λbs+ 2λ+ sb2λ2 − b2λ3 + s2b− s

(s− λ)(sb − 1)b2λ2
e−sa/2

]]

(91)

and,

µ1(s) = µDi|H1
(s) = ln

∫ ∞

−∞

esxp1(x)dx (92)

= ln

[

sb

2(sb+ 1)
e−

a
b
−s a

2 +
sb+ 2

2(sb+ 1)
es

a
2

]

(93)

As before, we can express the above PFP and PFN

false errors as:

PFP ≤ e−n·EFP (s,ηn) (94)

PFN ≤ e−n·EFN (s,ηn) (95)

where

EFP (s, ηn) = sηn − µ0(s) (s > 0) (96)

EFN (s, ηn) = sηn − µ0(s) (s < 0) (97)

Finally, the tightest bounds for each ηn are found
by maximizing the error exponents with respect to the
parameter s:

E∗
FP (ηn) = max

s>0
EFP (s, ηn) (98)

E∗
FN (ηn) = max

s<0
EFN (s, ηn) (99)

4.5.1.1 Analysis results: We use Mathematica 7.0 to
evaluate the false error exponents of (98) and (99). The
parameters used for the simulations are b = 10−2sec,
λ = 5pps and a = 10−2sec. Figure 7 plots the tightest
bounds for the error exponents of E∗

FP (ηn) and E∗
FN (ηn)

for different thresholds of ηn. The COER exponent occurs
for ηn = 9.6 × 104s which is equal to 0.0228. Also,
Figure 8 shows the COER exponent with respect to
different values of the watermark amplitude, a. As we
can see, increasing the watermark amplitude improves
the detection performance (but reduces the watermark
invisibility as discussed in [15]).

4.5.2 Detection performance of PASSV and ACTV
schemes for traffic model B

As derived before, the PASSV and ACTV schemes are
the optimum passive and active detectors for the traffic
model A. We show that PASSV and ACTV perform very
poor under the traffic model B, i.e., the correlated traffic.
This is unlike the SLCorr detector that works good for
both of the traffic models.

Under the traffic model B, the PASSV detector faces
the hypothesis testing problem of (46) with τ∗i = τi = Ci.
One can see that in this case the PASSV detection rule
described in Section 4.3.1 is exactly the same for both H0
and H1 hypotheses. This means that the false positive
error rate of PASSV scheme for correlated flows is equal
to its true positive rate, which makes the PASSV scheme
equivalent to a random guessing detector. Similarly, for
the traffic model B the ACTV scheme deals with the
hypothesis testing problem of (51) with τ∗i = τi = Ci.
Our analysis and simulations on Mathematica confirms
that the ACTV detection metric results in very close
values for the two hypothesis of H0 and H1, rendering
the ACTV detection scheme ineffective for network flows
in traffic model B (we skip the details due to the space
constraints).

5 SIMULATION RESULTS

In this section, we evaluate the performance of the
three detection schemes introduced before, i.e., SLCorr,
ACTV, and PASSV, through simulating them over real-
world traffic. We show that SLCorr outperforms the
other detectors dealing with real-world network flows,
due to the intrinsic correlations among the real-world
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Fig. 7. Analytical error exponents E∗
FP (ηn) and E∗

FN (ηn)
of SLCorr for different values of ηn (traffic model A). (b =
10−2sec, λ = 5pps, a = 10−2sec)
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Fig. 8. The COER error exponent of SLCorr in traffic model
A for different watermark amplitudes.

network flows. We use the CAIDA network traces gath-
ered January 2009 [25] for our simulations. For our sim-
ulations, we have implemented the detection schemes
in C++. From the CAIDA traces we extract three types
of network flows for our simulations: TCP ports of
443 (HTTPS), 25 (SMTP), and 22 (SSH). We only select
flows with rates lower than 30pps (this is because the
parameters of the optimum detectors depend on the rate
of the flows). In all of the simulations, the detectors use
the detection thresholds derived through analysis in the
previous sections, i.e., 0.001 for SLCorr, 0 for ACTV, and
0 for PASSV.

In the first set of our simulations, we evaluate the
false positive error rate of the three detection schemes
for network flows mentioned above. For each detection
scheme, we run the detection algorithm for 10000 differ-
ent pairs of network flows. In order to show the effect
of number of packets in the detection performance, we
run the experiments for four different values of the N
parameter, i.e., 25, 50, 100, and 200. Tables 1, 2, and 3
show the false positive rates of the experiments along
with some statistics on the detection metrics for three
TCP ports of 443, 25, and 22, respectively. Results show
that in most of the cases the SLCorr scheme results in
smaller false positive errors compared to the ACTV and
PASSV schemes. This is because the real network flows
are deviated from the Poisson model of the traffic, due
to the intrinsic dependencies among the packets of real
network flows. The SLCorr detector, on the other hand,
is the optimum detector for correlated network flows,
which also results in reasonable detection performance
for Poisson-modeled network flows. Comparing the re-
sults for the three different traffic types (Tables 1, 2,
and 3), we observe that the ACTV and PASSV schemes
perform the worst for the SSH traffic (TCP port 22);
we explain this by the fact that SSH flows are more
correlated compared to HTTPS and SMTP flows, as they
are based on the typing behaviors of the human entities.
Another general observation from the simulations is that

the detection performance improves as the number of
packets, N , increases.

In the second set of experiments, we run the simulated
detection schemes to measure the false negative error
rates. Again, we use the detection thresholds derived
through the analysis in previous sections. In each sim-
ulation of the SLCorr and ACTV schemes, the candi-
date network flow is watermarked using the RAINBOW
scheme (Section 3) and then a network delay is ran-
domly selected and applied to that flow from a large
pool of network delays measured over the Planetlab
infrastructure [16] (the average standard deviation of
the network delay is around 10ms). Likewise, for the
PASSV simulations the candidate network flow is de-
layed similarly to simulate the network interference. The
delayed flow is then correlated with the original flow
(non-delayed, and non-watermarked) using each of the
detection schemes. Tables 4, 5, and 6 show the false neg-
ative of the experiments for the three different detection
schemes, evaluated for three different TCP ports. For the
watermark detection schemes of SLCorr and ACTV the
experiments are repeated for four different values of the
watermark amplitude, i.e., a = 10ms, 15ms, 20ms, 30ms.
Also, all of the simulations are run for different values of
the watermark length, N . Results show that by choosing
reasonable parameters for the RAINBOW watermark,
the SLCorr and ACTV detection schemes result in very
small false negative rates, comparable to those of the pas-
sive detection. Again, we see that increasing N improves
the detection performance.

In the third set of experiments, we evaluate the false
positive error rate of the three detection schemes over
highly correlated network flows. More specifically, we
use flow traces corresponding to web browsing activi-
ties of human entities that target the same destination
websites at different times and from different network
locations2. Table 7 shows the false positive error rates

2. The traces are generated and provided to us by Xun Gong from
UIUC
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TABLE 1
False positive rate of different detection schemes for port

443 network flows. Each experiment is run for 10000
different pairs of flows.

N Scheme
Detection metric False

Min Avg Max Positive

25
SLCorr -0.005 -0.0031 0.00012 0.0068
ACTV -457.385 -37.8203 14.1698 0.0151
PASSV -245.249 -35.6167 2.8426 0.0054

50
SLCorr -0.005 -0.0039 0.0012 0.0002
ACTV -503.655 -36.8637 3.9970 0.0159
PASSV -567.917 -45.5303 2.8297 0.0009

100
SLCorr -0.005 -0.0042 -0.0004 0
ACTV -515.555 -33.2478 -2.2095 0
PASSV -555.857 -44.0783 2.9567 0.0023

200
SLCorr -0.005 -0.0042 -2.5E-5 0
ACTV -608.838 -33.5721 0.9735 0.0005
PASSV -559.164 -43.2514 2.9535 0.0018

TABLE 2
False positive rate of different detection schemes for port

25 network flows. Each experiment is run for 10000
different pairs of flows.

N Scheme
Detection metric False

Min Avg Max Positive

25
SLCorr -0.005 -0.0039 0.0018 0.0008
ACTV -461.182 -50.3404 6.1398 0.0003
PASSV -364.275 -49.6125 1.8952 0.003

50
SLCorr -0.005 -0.0042 0.0004 0
ACTV -359.413 -35.2567 -0.3314 0
PASSV -364.652 -53.7937 1.5171 0.0015

100
SLCorr -0.005 -0.0037 -0.0007 0
ACTV -352.581 -31.3738 0.0420 0.0001
PASSV -368.304 -55.4709 1.4271 0.0013

200
SLCorr -0.005 -0.0041 -0.0014 0
ACTV -190.366 -29.6399 -1.2917 0
PASSV -375.012 -56.3069 1.3936 0.0012

TABLE 3
False positive rate of different detection schemes for port

22 network flows. Each experiment is run for 10000
different pairs of flows.

N Scheme
Detection metric False

Min Avg Max Positive

25
SLCorr -0.005 -0.0029 0.0026 0.0024
ACTV -495.125 -18.3825 6.8506 0.0269
PASSV -88.1381 -8.7786 3.3239 0.1031

50
SLCorr -0.005 -0.0038 0.0011 0.0001
ACTV -628.45 -20.1249 4.5654 0.0144
PASSV -80.5081 -9.3516 3.3204 0.0879

100
SLCorr -0.005 -0.0037 0.0005 0
ACTV -522.241 -23.434 2.8119 0.0142
PASSV -101.337 -9.8241 3.3202 0.0861

200
SLCorr -0.005 -0.0039 1.67E-5 0
ACTV -487.594 -26.357 4.7264 0.0212
PASSV -104.547 -9.7138 3.3195 0.0896

TABLE 4
False negative rate of different detection schemes for port

443 network flows. Each experiment is run for 10000
different pairs of flows.

N Scheme
False Negative

10 ms 15 ms 20 ms 30 ms

25
SLCorr 0.039 0.005 0.0004 0.0003
ACTV 1E-04 1E-04 0 0.0004
PASSV 0.0002

50
SLCorr 0.0137 0.0004 0 0
ACTV 0 0 0 0
PASSV 0

100
SLCorr 0.0028 0 0 0
ACTV 0 0 0 0
PASSV 0

200
SLCorr 0.000977 0 0 0
ACTV 0 0 0 0
PASSV 0

TABLE 5
False negative rate of different detection schemes for port

25 network flows. Each experiment is run for 10000
different pairs of flows.

N Scheme
False Negative

10 ms 15 ms 20 ms 30 ms

25
SLCorr 0.0346 0.0035 0.0007 0
ACTV 0.0003 0.0002 0.0004 0.0002
PASSV 0.0001

50
SLCorr 0.0154 0.0005 0.0003 0
ACTV 0 0 0 0.0006
PASSV 0

100
SLCorr 0.002636 0 0 0
ACTV 0 0 0 0
PASSV 0

200
SLCorr 0 0 0 0
ACTV 0 0 0 0
PASSV 0

TABLE 6
False negative rate of different detection schemes for port

22 network flows. Each experiment is run for 10000
different pairs of flows.

N Scheme
False Negative

10 ms 15 ms 20 ms 30 ms

25
SLCorr 0.028879 0.001775 0 0
ACTV 0 0 0.00062 0.005727
PASSV 0.0002

50
SLCorr 0.009671 0 0 0
ACTV 0 0 0 0
PASSV 0

100
SLCorr 0 0 0 0
ACTV 0 0 0 0
PASSV 0

200
SLCorr 0 0 0 0
ACTV 0 0 0 0
PASSV 0
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for different detection schemes for different websites and
for different values of N (each simulation is averaged
over 100 runs). As can be seen, in most of the case, the
ACTV and PASSV detection schemes result in very high
false positive rates, while the SLCorr scheme results in
no false positive error in all of the cases. This confirms what
we expect intuitively: the PASSV and ACTV scheme are
optimum passive and active detection schemes for independent
network traffic models, but they perform poorly as the network
flows get more correlated. The SLCorr scheme, however, is
the optimum detection scheme for correlated network
flows, and it also performs good enough in the case of
independent network flows.

6 CONCLUSIONS

In this paper, we introduce the first non-blind active traf-
fic analysis scheme, RAINBOW. Using the tools from the
detection and estimation theory, we find the optimum
passive and (non-blind) active traffic analysis schemes
for different types of the network flows. We show that,
for different traffic models, the optimum active detectors
outperform the optimum passive detectors. This advan-
tage is more significant for the more correlated network
traffic, e.g., the web browsing traffic. Considering the
fact that both passive and non-blind active approaches
of traffic analysis are constrained by similar scalability
issues, this finding motivated the use of non-blind active
approaches over the passive approaches.

APPENDIX A
CHERNOFF BOUNDS

Lemma 1 (Chernoff bound for signal detection):
Consider the following binary hypothesis testing
for signal detection:

{

H0 : yi ∼ p0,i(yi) i = 1, ..., n

H1 : yi ∼ p1,i(yi) i = 1, ..., n
(100)

For this hypothesis testing consider a detection scheme
with rule:

T (y) ≷H1

H0
η

such that T (y) =
∑n

i=1 Ti(yi).
We are interested in finding the false positive rate

PFP = Pr{T (y) > η} and the false negative rate
PFN = Pr{T (y) < η} of this detector in different cases.
We have that:

a) General case:

PFP ≤ e−(ηs−µT
0 (s)) (s > 0) (101)

PFN ≤ e−(ηs−µT
1 (s)) (s < 0) (102)

where µT
k (s) is the cumulant generating function (CGF)

of T (·) under hypothesis Hk.
b) Independent Ti(·)’s: We have that:

µT
k (s) =

n
∑

i=1

µTi

k (s)

where k corresponds to hypothesis Hk. This results in
the error rates to be:

PFP ≤

n
∏

i=1

e−(sη/n−µ
Ti
0

(s))(∀s > 0) (103)

PFN ≤

n
∏

i=1

e−(sη/n−µ
Ti
1

(s))(∀s < 0) (104)

For Ti(yi) = ln[
p1,i(yi)
p0,i(yi)

], this reduces to

PFP ≤

n
∏

i=1

e−(sη/n−µ0,i(s)) (105)

PFN ≤

n
∏

i=1

e−n((s−1)η/n−µ0,i(s)) (106)

(0 < s < 1)

where:

µ0,i(s) = ln

∫

p1−s
0,i (y)ps1,i(y)dy (107)

c) i.i.d. Ti(·)’s: For any i and j we have that µTi

k (s) =

µ
Tj

k (s) = µT1

k (s), which reduces the false error rates to:

PFP ≤ e−n(sη/n−µ
T1
0

(s)) (∀s > 0) (108)

PFN ≤ e−n(sη/n−µ
T1
1

(s)) (∀s < 0) (109)

For Ti(yi) = ln[
p1,i(yi)
p0,i(yi)

], this reduces to

PFP ≤ e−n(sη/n−µ0(s)) (110)

PFN ≤ e−n((s−1)η/n−µ0(s)) (111)

(0 < s < 1)

where:

µ0(s) = ln

∫

p1−s
0,1 (y)ps1,1(y)dy (112)

APPENDIX B
SUMMATION OF RANDOM VARIABLES

Lemma 2 (Summation of two Laplacian random variables):
Suppose that we have two independent random
variables distributed according to Laplacian distribution
as X ∼ Lap(0, 1/α) and Y ∼ Lap(0, 1/β) where α 6= β.
The PDF function of the summation of these random
variables, Z = X + Y , is given by:

fZ(z) =
αβ

2(α2 − β2)

(

αe−β|z| − βe−α|z|
)

(113)

If α = β then:

fZ(z) =
α2

4

(

|z|+
1

α

)

e−α|z| (114)

Proof: Using the convolution of PDFs:

fZ(z) = (fX ∗ fY )(z)

Lemma 3 (Summation of Laplacian and Exponential r.v.s):
Suppose that X ∼ Exp(λ), and Y ∼ Lap(0, b). The
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TABLE 7
False positive error rate of different detection schemes for network flows generated by browsing the same websites.

Website
N=25 N=50 N=100

SLCorr ACTV PASSV SLCorr ACTV PASSV SLCorr ACTV PASSV
baidu.com 0 0.08 0.29 0 0.12 0.07 0 0.12 0.08

blogger.com 0 0.56 0.97 0 0.89 0.63 0 0.34 1
facebook.com 0 0.95 0.91 0 0.9 0.97 0 0.59 0.96

live.com 0 0.81 1 0 0.33 1 0 0.08 0.38
wikipedia.org 0 0.44 0.94 0 0.44 0.44 0 0.39 0.46

yahoo.co.jp 0 0.08 0.66 0 0.03 0.33 0 0 0.05
yahoo.com 0 1 1 0 0.02 1 0 0 0.23

yandex.com 0 0.11 0.89 0 0.02 0.08 0 0 0.02

random variable Z = X + Y has the following
distribution:

fZ(z) =

{

λ
2(λb−1)e

− z
b + λ

1−λ2b2 e
−λz z ≥ 0

λ
2(λb+1)e

z
b z < 0

(115)

Also, for a fixed integer m, the random variable T =
Z −m has the PDF:

fT (t) = fZ(t+m)

We abbreviate this as:

fEL(t,m, λ, b) = fT (t)

Proof: Using the convolution of PDFs:

fZ(z) = (fX ∗ fY )(z)
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