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Power Optimization for Network Localization

Yuan Shen, Student Member, IEEE, Wenhan Dai, Student Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Reliable and accurate localization of mobile objects
is essential for many applications in wireless networks. In range-
based localization, the position of the object can be inferred using
the distance measurements from wireless signals exchanged with
active objects or reflected by passive ones. Power allocation for
ranging signals is important since it affects not only network life-
time and throughput but also localization accuracy. In this paper,
we establish a unifying optimization framework for power alloca-
tion in both active and passive localization networks. In partic-
ular, we first determine the functional properties of the localiza-
tion accuracy metric, which enable us to transform the power al-
location problems into second-order cone programs (SOCPs). We
then propose the robust counterparts of the problems in the pres-
ence of parameter uncertainty and develop asymptotically optimal
and efficient near-optimal SOCP-based algorithms. OQur simula-
tion results validate the efficiency and robustness of the proposed
algorithms.

Index Terms—Localization, radar network, resource allocation,
robust optimization, second-order cone program (SOCP), wireless
network.

I. INTRODUCTION

ETWORK LOCALIZATION of active and passive ob-
jects is essential for many location-based applications in
commercial, military, and social sectors [1]-[8]. Contemporary
localization techniques can be classified into two main cate-
gories, i.e., range-based and range-free techniques. The former
locate the object using distance/angle measurements [1]-[4],
and the latter using connectivity or fingerprint informa-
tion [9]-[12]. Compared to range-free ones, range-based
techniques are more suited and hence widely employed for
high-accuracy localization despite the hardware complexity.
Active or passive localization refers to the range-based tech-
niques that utilize distance/angle measurements from wireless
signals exchanged with active objects or reflected by passive
ones, respectively. Two corresponding examples are wireless
network localization (WNL) [1]-[4] and radar network local-
ization (RNL) [5]-[8] (see Fig. 1).
Wireless networks have been employed for active localiza-
tion since they are capable of providing accurate position in-
formation in GPS-challenged environments [1]-[4], [13]-[18].

Manuscript received November 23, 2012; revised June 14, 2013; accepted
July 17, 2013; approved by IEEE/ACM TRANSACTIONS ON NETWORKING Ed-
itor Y. Liu. This research was supported in part by the Air Force Office of Sci-
entific Research under Grant FA9550-12-0287, the Office of Naval Research
under Grant N00014-11-1-0397, and the MIT Institute for Soldier Nanotech-
nologies.

The authors are with the Laboratory for Information and Decision Systems
(LIDS), Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: shenyuan@mit.edu; whdai@mit.edu; moewin@mit.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2013.2278984

Anchor

Agent

(a) Wireless Network Localization

(b) Radar Network Localization

Fig. 1. Network deployments for WNL and RNL: (a) wireless network with
four anchors and two agents; (b) radar network with two transmit and three
receive antennas.

Locating a mobile node (agent) in such networks can be ac-
complished by using the range measurements between the agent
and nodes at known positions (anchors). The ranges can be
estimated from the time of arrival (TOA) or received signal
strength (RSS) of the signals transmitted from the anchors to
the agent [19]-[24]. Localization accuracy in wireless networks
is determined by the network topology and the accuracy of the
range measurements, where the latter depends on the signal
bandwidth, channel condition, and transmit power [19]. Hence,
power allocation in WNL is important not only for the conven-
tionally recognized lifetime and throughput [25] but also for
agent localization accuracy.

Radar networks have been studied for passive localization
since they can enhance target detection and localization capa-
bility by exploiting the spatial diversity of target’s radar cross
section (RCS) [5]-[7], [26]-[31].! The target can be located
using the TOA range measurements from the transmit to receive
antennas via the reflection of the target. Localization accuracy in
radar networks depends on the network topology, signal band-
width, target RCS, and transmit power [6]. Hence, power allo-
cation and management in RNL is crucial not only for low-prob-
ability-of-intercept (LPI) capability [32] but also for target lo-
calization accuracy.

The main task of power allocation for network localization
is to achieve the optimal tradeoffs between localization accu-
racy and energy consumption. Such a task is commonly ac-
complished using optimization methods, which have played a
significant role in maximizing communication and networking
performance under limited resources [33]-[39]. One can formu-
late the power allocation problem for network localization by
constraining either the localization error or total transmit power
and minimizing the other. Solving these problems requires the
knowledge of network parameters, which in practice are subject
to uncertainty. Ignoring such uncertainty will lead to suboptimal
or even infeasible solutions [39]-[42]. Hence, two fundamental

IThe positions of antennas in radar networks can vary from collocated to
widely separated.

1063-6692 © 2013 IEEE



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

questions related to power allocation in network localization are
the following:

1) how to minimize the total transmit power while satisfying
the localization requirement;

2) how to guarantee the localization requirement in the pres-
ence of parameter uncertainty.
Answers to these questions will provide insights into the essence
of network localization and enable the design of robust network
algorithms.

Several formulations have been proposed for power alloca-
tion in different localization scenarios using the performance
metrics based on the information inequality [6], [43]-[45]. For
WNL, the optimal power allocation solution was determined
in closed forms for specific network topologies [43] and was
obtained by a semidefinite program (SDP) for general network
topologies [44]. For RNL, a suboptimal power allocation algo-
rithm was developed via a relaxation technique [6]. Most studies
assume perfect knowledge of the network parameters with the
exception of [44], in which a robust formulation was proposed
to cope with small parameter uncertainty and a suboptimal so-
lution was obtained through relaxation. However, the perfor-
mance loss from the relaxation was not quantified since the op-
timal solution of the robust formulation remains unknown.

In this paper, we investigate the optimal power allocation
problem for reliable and accurate network localization, aiming
to minimize the total transmit power for a given localization re-
quirement. Our work also encompasses robust counterparts to
cope with the parameter uncertainty. The main contributions of
this paper are as follows.

*  We establish a unifying optimization framework for power
allocation in both active and passive localization networks
through WNL and RNL examples.

* We determine the functional properties of the localization
accuracy metric and transform the power allocation prob-
lems into second-order cone programs (SOCPs).

* We propose a robust power allocation formulation that
guarantees the localization requirement in the presence of
parameter uncertainty over large ranges.

* We develop asymptotically optimal and efficient near-op-
timal SOCP-based algorithms for the robust formulation,
and characterize the convergence rate of the asymptotic al-
gorithms to the optimal solution.

The rest of the paper is organized as follows. In Section II,
we introduce the system models and formulate the power allo-
cation problems. In Section III, we present the properties of the
localization accuracy metric and show that the power allocation
problems can be transformed into SOCPs. In Section 1V, we
present robust formulations for the case with parameter uncer-
tainty and develop asymptotically optimal and efficient near-op-
timal algorithms. In Section V, we give some comments and
discussions on the results. Finally, the performance of the pro-
posed algorithms is evaluated by simulations in Section VI, and
conclusions are drawn in Section VIIL.

Notation: ST denotes the set of n X n positive-semidefi-
nite matrices; matrices A > B denotes that A — B is positive
semidefinite; vectors x >~ y denotes that all elements of x — y
are nonnegative; 1,, € R™ denotes a column vector with all 1’s,
0,, € R™ denotes a column vector with all 0’s, and I,, € R**™
denotes an identity matrix, where the subscript # will be omitted
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if clear in the context; vector u(¢) := [cos ¢  sin ¢]T; matrix
J.(¢) == u(¢p)u($)’; and we define the functions

o(8) =[cosdn cosdy - cos]T

s(¢) :=[sin¢gy sin¢o sin ¢, |1
where ¢ = [¢1 ¢2 (bn ]T~

II. PROBLEM FORMULATION

In this section, we introduce the system models, present the
performance metric, and formulate the power allocation prob-
lems for WNL and RNL.

A. System Models

We first introduce the system models for WNL and RNL.

Wireless Network Localization: Consider 2-D wireless local-
ization using a location-aware network with &V, anchors and V,,
agents [see Fig. 1(a)]. The sets of anchors and agents are denoted
by Ny, and N, respectively. The position of node & is denoted
by px € R? for k € M, UN,, and the angle and distance from
nodes k to j are denoted by ¢; and dy;, respectively. The an-
chors are the nodes with known positions, whereas the agents
are mobile nodes aiming to infer their positions based on the
TOA range measurements from the anchors [19].2

The equivalent lowpass waveform received at agent &£ from
anchor j is modeled as [19]

P
Y st = i) + 2 (1)
jen, %kj

ri(t) = (1)

where z; is the transmit power of anchor j measured at 1 m
away from the transmitter, # is the amplitude loss exponent,
{55(8)};cn;, 1s @ set of the orthonormal transmit waveforms,’
ay,; and 7y, are the amplitude gain and propagation delay, re-
spectively, and zy;(£) represents the observation noise, modeled
as additive white complex Gaussian processes. The relationship
between the delay and agent’s position is

1
Thj = ;Hpk - pjll

where ¢ is the propagation speed of the signal.

The agents’ positions {ps } , are inferred using the mea-
surements {7 (%)} - Since the channel parameters are also
unknown, the complete set of unknown deterministic parame-
ters is given by 8 = {px, akj}ke"\/‘“jej\[b.

Radar Network Localization: Consider 2-D target localiza-
tion using a radar network with Ny transmit and N, receive
antennas [see Fig. 1(b)]. The sets of transmit and receiver an-
tennas are denoted by V; and A, respectively. The position of
antenna k is known and denoted by px. € R? for k € NV, UN;,
and the position of the target is denoted by pg € R?.# The angle

2Note that one-way TOA-based ranging requires network synchronization,
but round-trip TOA-based ranging and RSS-based ranging can circumvent the
synchronization requirement. We consider synchronous networks and the broad-
cast mode for anchor transmission in this paper, and the results can be extended
to asynchronous networks.

3The orthogonality can be obtained through medium access control and/or
waveform design. When only approximate orthogonality is obtained in practice,
the methods developed in the paper can still serve as a general design principle
and yield near-optimal power allocation solution.

4We consider single-target localization for notational brevity, and the pro-
posed methods are applicable to multitarget cases. Note that one needs to deal
with the target association problem in multitarget cases.
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from antenna % to the target is given by ¢ for k € A, or p
for k € N, and the corresponding distance is given by dy,. The
radar network aims to locate the target based on the TOA range
measurements from the transmit to receive antennas via the re-
flection of the target [5].

The equivalent lowpass waveform received at antenna & from
the transmit antennas is modeled as [5]

r(t) = ) %akﬁj(t = Tkj) + 2k (1) ()

JEM,

where z; is the transmit power of antenna j, {s;(¢)} ;. », isaset
of the orthonormal transmit waveforms, and «,; and 7, are the
amplitude gain and propagation delay.> Then the relationship
between the delay and target’s position is

1
Thi = (Ilpe = poll + llp; — poll) -

The target’s position py is estimated using the measurements
{r%(*)}xenr, by noncoherent processing. Since channel param-
eters are also unknown, the complete set of unknown determin-
istic parameters is given by 8 = {Po, akj}enr jen; -

B. Performance Metric

We now present the performance metric for localization accu-
racy as a function of the power allocation vector (PAV) denoted
by

X:[,’I}l T2 .’L',L]T
where n = Ny, for WNL and n = N, for RNL. For conciseness,
we only present the notions for WNL, as they are applicable to
RNL analogously.

Localization accuracy can be quantified by the mean squared
error (MSE) of the position estimator. Let py be an unbiased
position estimator for agent £ in WNL, then the MSE matrix of
P satisfies

E. {(Px — pr)(Pr — Px) (Pr; x)

where J.(pg;x) is the equivalent Fisher information matrix
(EFIM)® for p; [19]. Consequently, the MSE of the position
estimate IE.{||px — p«||?} is bounded below by the squared
position error bound (SPEB), defined as [19]

P(pi;x) = tr {Je‘l(pk;x)} 3)

and hence we adopt the SPEB as the performance metric for
WNL. More discussion on the SPEB is given in Section V-C.
We next present the EFIMs for WNL and RNL.

Proposition 1: The EFIM for the position of agent £ in WNL

based on (1) is given by’
Z mjgk:j -

Je(piix) =
JEN,

(¢rs) “

5The amplitude gain integrates the effect of the phase offsets between the
transmit and receive antennas as well as that of the point scatters of the extended
target [S].

%The EFIM for a subset of parameters reduces the dimension of the original
Fisher information matrix (FIM), while retaining all the necessary information
to derive the information inequality for these parameters [19].

7Although the derivation in [19] is based on the received wideband wave-

forms, the structure of the EFIM is observed for general range-based localiza-
tion systems [21]-[23].

where the equivalent ranging coefficient (ERC) {x; = Cij/ d,i‘j,
in which the ranging coefficient (RC) ¢x; > 0 is determined by
the channel parameters, signal bandwidth, and noise power.
Proof: Refer to [19] for the detailed derivation. O
Proposition 2: The EFIM for the position of the target in
RNL based on (2) is given by

(Poix) = D> D @il Tu(dny) )
JEN REN,
where ¢; = (¥ + ©;)/2 and the ERC
A ok —
§kj = dzﬁfl?ﬁ cos 5 (6)

in which the RC (; > 0 is determined by the channel parame-
ters, signal bandwidth, and noise power.

Proof: Similar to the derivation in [6], the EFIM based on
(2) can be derived as

Je(pOQX) = Z dgd

JEN: 77

>

keN,

d2 LUy uy; (7

where ug; = u(9x)+u(y;). It can be shown using the property
of the trigonometric functions that

ug; = 2cos (LA ; 99;') -u (41/% _; SDj) 8)

and by substituting (8) into (7), we obtain (5). O

Remark 1: The propositions show that the EFIMs for WNL
and RNL have a canonical form as a weighted sum of rank-one
matrices J,(¢x;). These matrices in (4) and (5) respectively
characterize the network topology of the anchors and agent for
WNL and that of the transmit/receive antennas and target for
RNL.

Remark 2: Note that specific transmission technology and
waveform model are considered in Section II-A to derive the
EFIMs. However, the analytical methods and algorithms devel-
oped in this paper are applicable to network localization using
general transmission technologies and waveform models, which
only affect the RCs but not the structure of the EFIMs. For in-
stance, the waveform model (2) for RNL assumes that the back-
ground clutters are removed and the Doppler shifts are corrected
for simplicity; nevertheless, such a simplification does not affect
the structure of the EFIM.

C. Power Allocation Formulation

We now formulate the power allocation problems for WNL
and RNL, aiming to achieve the optimal tradeoffs between lo-
calization accuracy and energy consumption. In particular, we
minimize the total transmit power subject to a given localization
requirement for the agents or the target, shown as follows.3

The power allocation problem for WNL can be formulated as

7 min 1Tx
{x}
S.t. P(pk;x) < ok, vk e N,
a(x) <0, l=12,....L (9

8The proposed methods are applicable to many other formulations as shown
in Section V-B.
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where g, denotes the localization requirement for agent k& and
{c1(-)} denotes linear constraints on the PAV x, e.g., the indi-
vidual power constraints for anchors 0 < X < Xyyux.

Similarly, the power allocation problem for RNL can be for-
mulated as

p: min 1Tx
{x}
S.t. P(p();x) S 0
a(x) <0, I=12,...,L (10)

where ¢ denotes the localization requirement for the target.
Remark 3: Note that the EFIMs (4) and (5), corresponding
to the SPEBs P(py; x) and P(po; x), have a similar expression
as a function of x. This leads to a similar structure between the
localization requirement constraints (9) and (10), and hence . 7
and .~p. Therefore, we can develop optimal power allocation
algorithms for the two scenarios under a unifying framework.

III. SPEB PROPERTIES AND SOCP FORMULATION

In this section, we first explore the properties of the SPEB,
and then show that the power allocation problems can be trans-
formed into SOCPs.

A. SPEB Properties

The following lemma describes the convexity property of the
SPEB given in (3) as a function of the PAV and the low rank
property of the topology matrix.

Lemma 1: The SPEB of the agent or the target is a convex
function of x > 0. Moreover, the SPEB of agent & for WNL
can be written as

4 - 1TRkX

PPriX)= w575 o =
(pk : ) XTR;FAkRk-X

(11)
where the ERC matrix Ry, = diag{&k1,&z2, ..., &, } and the
topology matrix Ay is a symmetric matrix of rank{Az} < 3,
given by

Ap =117 — c(2¢;)c(2¢;) " — s(2¢,)s(2¢,)" (12)

in which ¢, = [dr1 o é1n, |T; the SPEB of the
target for RNL can be written as
4-1TRx
Plooix) = TRTARx

where the ERC matrix R = [RT RT R} ]" with
R = diag{&k1.&r2, .., kn, } and the topology matrix A is
a symmetric matrix of rank{A} < 3, given by

A=11" — c(2¢)c(2¢)T — s(2¢)s(2¢)"

in which ¢ = [47 @I --- 4L 17 with ¢, =
[Pr1 Pr2 drn, |t
Proof: See Appendix A. O

Remark 4: The lemma first shows that the SPEB is a convex
function in x, implying that each localization requirement in (9)
and (10) is a convex constraint on x. Thus, the power allocation
problems .~ and . p are convex programs. Second, the lemma
also shows the low rank (at most three) property of the topology
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matrix A; and A. The convexity and low rank properties can be
exploited to develop efficient power allocation algorithms.

B. Optimal Power Allocation

We now show that the constraint (9) can be converted to a
second-order cone (SOC) form using the SPEB properties given
in Lemma 1. Consequently, the power allocation formulation
.7 is equivalent to an SOCP. For conciseness, we denote ¢;, =
¢(2¢,) and s;, = s(2¢,,) in the following.

Proposition 3: The problem .74 is equivalent to the SOCP

30CP  min 1Tx
{=}
S.t. ||AkRkX+bk|| < lTRkX—lezl,
VkeN, (13)
a(x) <0, [=1,2,...,L

where Ay = [cr s 0]Yandb, =[0 0 29,;1]T.
Proof: Lety = Ryx. Using (11) and (12) in Lemma 1, we
can rewrite P(px;X) < gk as

- 2 2 2
4ot 1Ty < (1Ty)" — (epy)” — (say) -
By completing the square, we have
2 2 _ 2 _ _
(c;fy) + (sgy) +40,7 < (1Ty) — 49, 1Ty + 40,7

which is equivalent to (13) since 1Ty — 2@,;1 > 0. O

Remark 5: This SOCP formulation is more favorable than the
SDP formulation proposed in [44] since SOCP is a subclass of
SDP and has more efficient solvers than SDP [46]. Moreover,
as later shown in Section IV, the SOC form of the localization
requirement given in (13) enables better relaxation than the SDP
formulation.

Note that a similar SOCP formulation for RNL can be ob-
tained since the problem . p has a similar structure as . 74 . We
omit the details for brevity.

C. Discussion

The constraints (13) in .~ iocp are determined by the net-

work parameters, including the internode angles, distances, and
RCs. However, perfect knowledge of these parameters is usu-
ally not available; especially, the angles and distances depend
on the agents’ positions, which are to be determined. One ap-
proach is to use estimated values of the parameters in the power
allocation algorithms.? Since these estimated values are subject
to uncertainty, directly using them in the algorithms often fails
to yield reliable or even feasible solutions. Hence, we will next
develop robust methods to cope with the parameter uncertainty.

IV. ROBUST POWER ALLOCATION ALGORITHMS

In this section, we first introduce the uncertainty models
for network parameters and formulate robust power allocation
problems. We then develop an asymptotically optimal algo-
rithm with a proven convergence rate and efficient near-optimal
algorithms using relaxation methods.

9The RC estimates can be obtained from channel estimation subsystems, and
the angle and distance estimates can be obtained from agents’ prior position
knowledge. The prior position knowledge is available, for example, in applica-
tions such as navigation and high-accuracy localization.
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Fig. 2. Illustration of the uncertainty model for WNL: {.A{"”} iez, isafinite

cover of the uncertainty region .4, for agent k, and each Aif') is a circle with
radius A centered at p.

A. Uncertainty Models

Based on the robust optimization framework [39]-[41], we
consider set-based uncertainty models for the network parame-
ters in WNL and RNL.

Wireless Network Localization: Consider the unknown posi-
tion of agent k in an area .4y, and the goal of robust power al-
location is to guarantee the localization requirement for agent &
at all posmons in such an area. ‘

Let {A Z)} _ beafinite cover of Ay, i.e., Ar C Ujex, .A,(:) ,
where A isa cucle with center p( " and radius A, and 7 is
the 1ndex set of the circles (see Fig. 2). Then, for any agent’s
position py. € A,(:) , the actual network parameters can be rep-
resented in the linear sets

bis € [0 = 0. ) + ol | = B
dije [d) A, dD+A] and Gye [0 a9

where (/;( 2@ are the nominal values of the topology pa-

rameters evaluated atp,, @ gé,g J> = arcsin(A/d)] i) ) is the angular
uncertainty, and the last set characterizes the uncertalnty of the
RC to anchor j. According to Proposition 1, the latter two trans-

late the uncertainty set for £, as
0] i
& € [g(,‘? & ] =) (15)

=(i —(4 i 23
where £ = /() +2)" and 1) =Ci0 /(df) ~ 2)" 10
summary, for the agent’s position px € Ay, the actual network
parameters lie in the set

{Dhis Ehitren, jens, € U H

i€L, keEN, ,JEN,

) and

B x . (16)

Radar Network Loca{ization: Similar to WNL, for unknown
target position pg € A, the actual network parameters can be
represented in the linear sets

v [30— 40, 0+ 9] =B8]
oy [60 o0 0+ ] =
dy € [dgi)_A,dg‘)+Ai| and (i; € [QIE??Z;;,)}

10We assume that there is a minimum distance between anchors and agents
so that the radius A < d,,; forallk € A, and j € A,.

where @)LE ) , 99,2 ) ,and cig’) are the nominal values of the topology

parameters evaluated at f)éi) , 1/)( ) = arcsin(A/ dy) } and gby) =
arcsin(A/ dAg-z)) are the angular uncertainty, and the last set char-
acterizes the uncertainty of the RC from antennas % to j via the
target. According to Proposition 2, we have the uncertainty sets
for ¢y; and &; as

b € [0 -0, 0 + o) | = BY) an
iy (@) i
&€ [0, 8] ] =cf) (18)

where ¢k1 = (1/)( Dy A(l /2, ggl(jj = (1/7),5,'0 + Lﬁgi))/Z, and the
upper and lower bounds for £, are given respectively by

¢ 2
;= — ——— —| min cos gb]
@Y+ A (A A Le@i{}

-G
_('i) — 4ij) |:
(@)= 7 - 2)7

max cos (/)]
d)E’D(Z)

in which D7) = [( —¢")/2-9{.). (4 — ") /2461
In summary, for the target’s position pg € .4, the actual network
parameters lie in the set

{’1/%:<Pj7fkj}k€/\r“]—@\rt € U H

€L kEN, JEN,

B, x B x ¢,

Remark 6: Note that the parameter uncertainty models for
WNL and RNL can be converted to a common form, i.e., (14)
and (17) for ¢;, and (15) and (18) for &;. Thus, we can de-
velop robust formulations for the two scenarios under a unifying
framework.

B. Robust Formulation

We now propose the robust counterparts of . 4 and . ~’p that
guarantee the localization requirement in the presence of param-
eter uncertainty. The worst-case SPEB for WNL due to param-
eter uncertainty (16) is!!

Pr{pPr; X) := max sz) (Pr;X)
1€Ly, )

where Pg) (pr; x) is the worst-case SPEB in Ag) , given by

max

Py (pi;x) = . ol
{(rz')kj :5%)65&) XC,(C?

P(pr;x).

Hence, to guarantee the localization performance in the worst
case, we introduce a new constraint Pg(p;x) < o and for-
mulate the robust power allocation problem for WNL as

a-p : min 1Tx

{x}

st PY (prsx) < on,
Cl(X) S 07

Yk €N, i €T) (19)

where the localization requirement (19) is equivalent to
Pr(pr;x) < of fork € N,.

1Note that P(ps; x) also depends on ¢, and £, although we omit them
for notational convenience.
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Similarly, we can obtain the worst-case SPEB for RNL as

Pr(po; x) := max Py’ (po; X)
1€Ly

where

Pg)(P();X) =

max

P(po;x)
{(wn%ﬁj,&,)EB( 2 ><B<” ><C( )}

and formulate the robust power allocation problem .»p_g by
introducing the constraint Pg(po;x) < o. In the following we
will focus on . 74-g, and the analysis equally applies to . »p_g.
We next convert (19) into an expression amenable for ef-
ficient optimization. Since the SPEB is a monotonically de-
. .. . e A (i) .
creasing function in ¢, the maximization over {; € Cp; is

achieved at {x; = & (kl,) Thus, by Lemma 1, we can obtain

1TR(7>

{ohEB”} <1TR(‘) ) _ H[Ck Sk TR() H
‘ (20)
where E,(:) = diag{¢ i‘l) 3 ](g N ,(\‘i }. Unfortunately, the re-
maining maximization over {¢;} does not permit an explicit
expression due to the intricate function.
To address the angular uncertainty, We propose sequen-
tial lower and upper bounds for P )(pk, x), both of

which lead to efficient optimization programs. We denote
M={0,1,...,M — 1} where M € Z and

P (prix) =

1 @ i
B(x):= 1Py (prix)  1"R{x.

Proposition 4: For any given PAV x such that 73}(:) (Pr;x) <
oc, if M > my/B(x), then P (py; x) is bounded below and
above, respectively, by

; 4-1"R{x

P (prix) = max — @1

me (1TE;(:>X> _ (hg )nTR( i) )

ax 4. 1TR(’)x
meM T @) (T g (9 z
<]— Ek X) (gk m Ek X)
(2)

where hg: e i € RV with the jth elements given by

[h,ii?)mL = . ‘Iiliz(( ) Cos (2(;3 — P+ e)

[gl(‘ 1"L‘ - m [hl(“)m}j

in which #,,, = (2m + 1) - #/M form € M.
Proof: See Appendix B. O
The proposed expressions parametrized by M constitute a se-
quence of lower and upper bounds for the worst-case SPEB. We
can substitute the worst-case SPEB in the localization require-
ment (19) by the lower and upper t bounds leading to the robust

7)\1 (Pr;x) = (22)

relaxation problems .~ A[ g and .~ 4 r» respectively.

C. Asymptotically Optimal Algorithm

We first show that both the robust relaxation problems .~ “‘f R
M
7 y-r can be transformed into SOCPs, and then derive

and .
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the convergence rates of their solutions to that of the original
problem . 74-g. "
Proposition 5: The problem ., _, is equivalent to the SOCP

—M

5 . : T
A ap i min 17x

{x}
s.t. HA(7 R( )x—i—ka §1TE§:)X

k,m==

_291:1
YmeM,keN, 1€y
a(x)<0,  1=1,2,...,L

where A = [gl(:) 0]t

hom andby = [0 20,17
the problem 7 A[ R‘ is also equivalent to an SOCP by letting
A( ) [h( D 0] in the above constraints.

Proof F or the upg)er bound case, we use the relaxed local-

. Similarly,

ization requirement 73” (pr; x) < gk, which can be converted
to the M SOC forms

by mR Ym € M
by using (22). The case for . /%R can be shown similarly. [

Remark 7: Although both relaxation formulations can be
solved by SOCPs, .~ A[R is more desirable for implementation
since it guarantees the localization requirement.

The next proposition proves that the gap between the lower
and upper bounds for the worst-case SPEB, i.e., (21) and (22),
converges to zero as M — oc.

Proposition 6: For any given PAV x > 0 such that

PO(prix) < oo, if M > 7\/B(X), then Py (piiX) <
(1+ Olg )ll)pf\l)(pk x), where

“) (B(x) — 1)

C<) _blIl (
1 — sin? (xl) (x)

kM T

Moreover, C]g v 1s monotonically decreasing with M and

C(’i)
Jim M’“fg =72 (B(x)-1). (23)
Proof: See Appendix C. O

Remark 8: This proposition implies that the gap between the
lower and upper bounds goes to zero at the rate of O(M —2).

Using this result, we can show that both the solutions of ._//'j:_R

and _/KI_R converge to that of the original problem at the rate

of O(M~2) as follows.
Proposmon 7: Letx® X

of . /A-R, - 7s_p» and . AL | respectively. Then

T and x™ be the optimal solutions

0 S 1Tiﬂf o 1TX* S Cj\/[ . 1TX*

0<1Tx* —1TxM < ¢y, - 1Tx*

where Cy; = maXyen, MaXier, C,?%V_, converges to zero at the
rate of O(M ~2). '
Proof: See Appendix D. O
Remark 9: Since the solutions of the proposed relaxation
problems converge to that of the original problem at the rate of
O(M~2), the optimal solution of .74-r can be approximated

by that of .7{;_R with a small value of M. For example, our
simulation results show that its performance loss is less than
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2% when M > 16. On the other hand, note that the number of
SOC constraints of the relaxation problems increases linearly
with M, resulting in the increase in computational complexity
at O(M?/2) [47]. This gives an important guideline on the per-
formance versus complexity tradeoff for the robust power allo-
cation algorithms in practice.

While the proposed SOCP-based algorithms are asymp-
totically optimal, we next develop efficient near-optimal
algorithms, which involve only a few SOC constraints, for
power allocation in dynamic networks with limited computa-
tional capability.

D. Efficient Algorithms

We next propose a relaxation method to address the angular
uncertainty involved in the worst-case SPEB, leading to effi-
cient SOCP-based algorithms. For notational convenience, we
omit the superscript (7) in this section.

Since only the denominator in (20) is a function of ¢y;, we
derive an upper bound for Pg (p; x) by finding a lower bound
for the denominator. Denote the vectors ck = c(2¢k) and §, =

s(26,,), where ¢, = [¢k1 P2 $rn, |Ts and 8, €y €
R™> with jth elements given respectively by

2 sin(?qgkj + €)sine

[ékb = max
le|<¢rs

[€x], = max 2(:08(2(/3H + €)sine|.
lel<én;

Proposition §: Let

4-1TR,
Pu(piix) = max_ == ; (24
ST Fr
where Agfl’e’) = [(éx +e181) (8r +ec2¢r) O]T. Then,
Pr(pw; x) < Pulpr;x), provided that Py (pg; x) > 0.
Proof: See Appendix E. ]

Since Py (ps; x) is an upper bound for the worst-case SPEB,
we can relax the constraint (19) in . 74-r by

0 < Pe(pr;x) < o1
which can be converted to the set of four SOC constraints

HA,§“=”)Ekx+ka <1TRux—20;!, el en=+1 (25)

where b, = [0 0 20" ]T. Hence, by replacing each con-
straint (19) in .%,_g with the four constraints (25), we obtain
an efficient SOCP . " SOCP as a relaxation for the robust power
allocation problem.

Remark 10: Comparing (25) of .~ SOCP to (13) of . /*SOCP
one can observe that the proposed robust relaxation retains the
SOC form as its nonrobust counterpart. Furthermore, when the
parameter uncertainty vanishes, s, ¢ — 0, and thus .~ ZOF%P
reduces to .~ SOCP as (25) reduces to (13).

Similar to the WNL case, we can derive an upper bound for
the worst-case SPEB in the form of (24) and formulate a corre-
sponding robust relaxation problem for the RNL case. Specifi-
cally for RNL, since the N, Ny angles {¢s; Pee AL JEN. in(5) are
generated only by the N, + Ny angles {#/, goj}kev en,» We
can obtain a tighter bound by addressing the angular uncertainty

in the transmit and receive antennas separately. In other words,
we start from the uncertainty set (¢x, ©;) € By i x Bs_; instead
of (f)kj c Bkj.

Denote the matrix Ry = ;:1 R,, where
R, = diag{¢, |.&, - ’ékN',}; the  vector
p=[¢1 ¢ ¢n, |T; the vectors

N,
¢ =Ry’ Zﬂzc(m i)
5§ =R ZR (@ +il)
s =Ry YN RIS, andc = Ry'- Y0 R &, where
Sk, ¢ € R with jth elements given respectively by
8], = max ‘2 sin(z/?k +¢; +e€)sine
le|<(yr+@;)/2
[¢k]; = max ‘2 cos(ty, + B, + €)sinel.

el <(n+@5)/2

Proposition 9: Let

4 1TRyx
P ; i
U(pU,X) 611312 11 (1TR X _ HA(Q,‘Q)REX”

where A(®12) = [(&+e18) (8+e2¢) 0]T. Then,
Pr{po; x) < Pu(po; x), provided that Py (pa;x) > 0.
Proof: The proof follows a similar approach of
Proposition 8. (]
Remark 11: The upper bound Py(pg; x) for the worst-case
SPEB can be used as a relaxation for the robust power allocation
problem in RNL, leading to an efficient SOCP . /‘SOCP Such
a relaxation not only retains the SOC form but also naturally
reduces to its nonrobust counterpart when the parameter uncer-
tainty vanishes.

V. DISCUSSIONS

In this section, we provide discussions on several related is-
sues, including: 1) prior knowledge of the network parame-
ters; 2) broader applications of the SPEB properties; and 3) the
achievability of the SPEB.

A. Prior Knowledge

Since the prior knowledge of the network parameters, if avail-
able, can be exploited to improve the localization accuracy,!? we
next investigate the power allocation problem for WNL with
prior knowledge of the network parameters. The discussion is
also applicable to RNL.

The EFIM for the case with prior knowledge isa 2 X 2 matrix

given by [20]
Z Zj- J;,J

Je(Pr;x) = (26)
JEM,

Jo(pr)

where Jo(py) € S% is the FIM for the prior position knowledge
of agent k and J;; € S% is given by

ka = ]Er,e {fijr(¢kJ)}

12For example, prior position knowledge can be incorporated for localization
in tracking and navigation applications.

@7



This article has been accepted for inclusion in a future issue of thisjournal. Content is final as presented, with the exception of pagination.

in which the expectation is taken with respect to the agent &’s
prior position knowledge, the prior channel knowledge between
agent k and anchor j, and the observation noise.

The SPEB P(py;x) for the case with prior knowledge can
be obtained from the EFIM (26). By employing such SPEB,
we can formulate the power allocation problem and its robust
counterpart, denoted by .4 and . #A_r, in the analogous way
as .7x and .7A-r, respectively. _

Proposition 10: The problems .4 and .A_g can be trans-
formed into SOCPs.

Proof: See Appendix F. O

Remark 12: The proposition shows that the power allocation
problems .4 and .-y for the case with prior knowledge can
also be transformed into SOCPs. Moreover, these problems re-
duceto .74 and .»5_r when the prior knowledge vanishes since
Jo(pr) = 0 in (26) and the expectation in (27) is only with re-
spect to r.

Since the prior position knowledge Jo(p) = 0 provides ad-
ditional information to the EFIM compared to the case without
such knowledge, less transmit power is required to achieve the
same localization requirement. In particular, if tr{J, ' (ps)} <
o forall k € NV, then all the agents have met their localization
requirement and the anchors do not need to transmit ranging sig-
nals until tr{J 5! (px)} > o for some k (e.g., due to the agent
movement).

B. Applications of SPEB Properties

Lemma 1 shows two important properties of the SPEB, based
on which we transformed the power allocation formulations
.74 and .7p into SOCPs in Section III-B. Such properties also
permit efficient algorithms for other power allocation problems
in network localization as discussed in the following.

First, the methods developed in this paper are applicable to
other formulations of the power allocation problems. For in-
stance, minimizing the maximum localization error of the agents
for a given power constraint can be formulated as

oy "
st 1Tx < Piot
Plpex)<p ', VEEAN,
a(x) <0, [=1.2,...,L

where P, denotes the total power constraint. Following the
derivation in Proposition 3, one can see that P(ps;x) < ot
can be converted to an SOC form in x and p, and thus the
above problem is equivalent to an SOCP. Moreover, a similar
SOCP formulation can be obtained if the objective is to mini-
mize the total localization errors of the agents for a given power
constraint.

Second, we can show by the SPEB properties that the op-
timal localization performance can be achieved by activating
only three anchors for the single-agent case with no individual
power constraints [45]. The same claim also applies to RNL, i.e.,
only three transmit antennas need to be activated for optimal
target localization. This finding for the single-agent case pro-
vides important insights into the power allocation problem for
network localization: only a few anchors or transmit antennas
need to be activated for the optimal localization performance.
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C. Achievability of SPEB

The SPEB is based on the information inequality and hence
characterizes the lower bound for the mean squared position
errors, which is asymptotically achievable by the maximum
likelihood estimators in high signal-to-noise ratio (SNR)
regimes (over 10 ~15 dB) [5], [24], [48].13 Wireless networks
and radar networks for high-accuracy localization need to
operate in such regimes, which can be realized for example by
repeated transmissions, coded sequences, or spread spectrum.
Hence, the SPEB can be used as the performance metric for the
design and analysis of power allocation for a broad range of
high-accuracy localization applications. Although the perfor-
mance measure SPEB is less meaningful in low-SNR regimes,
the methods and results based on the SPEB can serve as a
design guideline for localization power optimization.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
power allocation algorithms. For WNL, we consider a 2-D net-
work where the anchors and agents are randomly distributed
in a region of size D x D. Without loss of generality, the lo-
calization requirement for the agents is normalized to g =
1, Vk € Na. The RCs {Guj}bie . jens are modeled as inde-
pendent Rayleigh random variables (RVs) with mean .14 We
compare the normalized required total transmit power Piox =
ti¢ /D - 1Tx to meet the localization requirement by different
algorithms. Similarly for RNL, the antennas and the target are
randomly distributed in a region of size D x D). The localiza-
tion requirement for the target is normalized to ¢ = 1. The
RCs {Crj}ren jen, are modeled as independent Rayleigh RVs
with mean p. We also compare the normalized required total
transmit power Py, = poc/D* - 1Tx.15

A. Wireless Network Localization

We first compare the performance of SOCP-based,
SDP-based, and uniform power allocation algorithms for
WNL with perfect network parameters. The required total
transmit power as a function of the number of anchors and
agents is shown in Fig. 3. First, for a given number of agents,
the required power decreases with the number of anchors as
shown in Fig. 3(a) since more degrees of freedom are available
for power allocation. On the other hand, for a given number
of anchors, the required power increases with the number
of agents as shown in Fig. 3(b) since more constraints are
imposed for the localization requirement of additional agents.
Second, the SOCP- and SDP-based algorithms yield identical
solutions as they both achieve the global optimum, significantly
outperforming the uniform allocation algorithm, e.g., reducing
the required power by more than 40%. Third, the concavity
of the curves in Fig. 3(b) implies that less incremental power
is required for additional agents as the number of agents in-
creases. This agrees with the intuition because due to anchor
broadcasting, each new agent can utilize the transmit power

13Although tighter bounds, such as Ziv-Zakai bound, apply to a wider range
of SNRs [24], [49], [50], the tractability of those bounds are limited.

14For simplicity, we illustrate the performance of power allocation algorithms
using Rayleigh distributions for RCs. Similar observations can be made with
other distributions for RCs.

I5Note that the power loss for WNL and RNL is proportional to dff and
d77 &3, which scale as D@ and D9, respectively.
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Fig. 3. Total transmit power as a function of the number of (a) anchors and (b)
agents: (a) networks with 1, 2, 4, and 8 agents; (b) networks with 4, 6, 9, and
12 anchors.

intended for the existing agents, and thus less additional power
is needed to meet its localization requirement.

We next consider the case with network parameter uncer-
tainty and compare the solutions of the asymptotically optimal
algorithms to the optimal solution for a network with eight an-
chors and one/two agents. We denote ¢ = 2A/D as the nor-
malized uncertainty set size (NUSS), where the true position of
each agent can be anywhere in the circle centered at its nom-
inal position with radius A. Thus, the maximum uncertainty
in dy; is €D /2 and in ¢y; is arcsin(eD/2dy;). The required
total transmit power as a function of the NUSS and param-
eter M is shown in Fig. 4. First, the required power increases
with the NUSS as shown in Fig. 4(a). This is because a larger
NUSS translates to a larger range of possible network parame-
ters and consequently a larger worst-case SPEB, thus requiring
more transmit power to guarantee the localization requirement.
Second, Fig. 4(b) depicts the convergence behaviors of ._//*:X_R
and ;/‘AM_R as a function of M for the NUSS equal to 0.15. In
particular, the solutions of both problems approach the optimal
solution as M increases, which agrees with Proposition 7. For
example, when N, =1, the gaps between the solutions of
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—»— Optimum

- o
I o0
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Total transmit power
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-
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=
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(b)

Fig. 4. Total transmit power based on asymptotically optimal algorithms as a
function of the (a) NUSS and (b) parameter A for networks with eight anchors
and one/two agents: (a) M = 4,8,16; (b) NUSS = 0.15.

_7:\([_R and the optimal solution are about 30%, 5%, and 2% for
M = 4,8, and 16, respectively.

We then evaluate the performance of the proposed efficient
SOCP-based algorithm for a network with eight anchors and
one/two agents. Fig. 5 shows the required total transmit power
and the worst-case SPEB as a function of the NUSS. First, all
the algorithms require more power when the NUSS increases, as
shown in Fig. 5(a). Second, the SOCP-based algorithm outper-
forms the SDP-based algorithm developed in [44], e.g., the gaps
between their solutions and the optimal solution are 15% and
33%, respectively, for the NUSS equal to 0.15.16 Third, the gap
between the solution of the SOCP-based algorithm and the op-
timal solution increases with the NUSS and vanishes when the
NUSS is zero. This performance loss is expected since larger
uncertainty requires more conservative relaxation. Fourth, as
shown in Fig. 5(b), the worst-case SPEB by the nonrobust al-
gorithm increases with the NUSS, significantly violating the lo-
calization requirement. This manifests the necessity of robust

16The advantage of the SOCP-based algorithm comes from the fact that it
copes with the angular uncertainty altogether, while the SDP-based one copes
with such uncertainty individually (cf. (33) in Appendix E and [44, Eq. (7)]).
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Fig. 5. (a) Total transmit power and (b) worst-case SPEB (b) as a function of
the NUSS: (a) networks with eight anchors and one/two agents; (b) a network
with eight anchors and one agent.

formulations to guarantee the localization requirement in the
presence of parameter uncertainty.

B. Radar Network Localization

We next compare the performance of the SOCP-based, SDP-
based, and uniform power allocation algorithms for RNL with
perfect network parameters. The required total transmit power
as a function of the number of transmit and receive antennas is
shown in Fig. 6. First, for a given number of receive antennas,
the required power decreases with the number of transmit an-
tennas since more degrees of freedom are available for power
allocation. On the other hand, for a given number of transmit
antennas, the required power decreases with the number of re-
ceive antennas since more independent copies of signals are
received. Second, the SOCP- and SDP-based algorithms yield
identical solutions, significantly outperforming the uniform al-
location when there are more than one transmit antenna, e.g., re-
ducing the required power by 30% when there are four transmit
antennas. Third, the performance improvement of the SOCP-
based algorithm over the uniform allocation increases with the
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Fig. 6. Total transmit power as a function of the number of transmit antennas:
networks with 1, 2, 4, and 8 receive antennas.

number of transmit antennas. In particular, there is no improve-
ment for the case with one transmit antenna (i.e., the three curves
overlap), while the SOCP-based algorithm reduces over 70%
of the power when there are eight transmit antennas. Fourth,
for a given number of transmit antennas, the required power re-
duction by the SOCP-based algorithm does not depend on the
number of receive antennas, e.g., the reduction is 15%, 35%, and
50% for 2, 4, and 8 transmit antennas, respectively, regardless
of the number of receive antennas. This implies that different
numbers of receive antennas provide the same gain from inde-
pendent signals for optimal and uniform power allocation.

We finally compare the solution of the proposed efficient
SOCP-based algorithm to the optimal solution for a network
with 6 X 2,6 x 6, and 6 X 10 transmit-receive antenna pairs.
Fig. 7 shows the required total transmit power as a function of
the NUSS, from which we can make similar observations as
those for the WNL case. First, all the algorithms require more
power when the NUSS increases, as shown in Fig. 7. Second,
the SOCP-based algorithm outperforms the SDP-based algo-
rithm, e.g., the gaps between their solutions and the optimal
solution are 12% and 35%, respectively, for the NUSS equal to
0.15. Third, the gap between the solution of the SOCP-based
algorithm to the optimal solution increases with the NUSS and
vanishes when the NUSS is zero.

VII. CONCLUSION

In this paper, we established a unifying optimization frame-
work for power allocation in both active and passive localiza-
tion networks. We first determined two functional properties,
i.e., convexity and low rank, of the SPEB. Based on these prop-
erties, we showed that the power allocation problems can be
transformed into SOCPs, which are amenable for efficient opti-
mization. Moreover, we proposed a robust formulation to tackle
the uncertainty in network parameters, and then developed both
asymptotically optimal and efficient near-optimal algorithms.
These algorithms retain the SOCP form and naturally reduce
to their nonrobust counterparts when the uncertainty vanishes.
Our simulation results showed that the proposed power alloca-
tion algorithms significantly outperform the uniform allocation
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Fig. 7. Total transmit power as a function of the NUSS: networks with 6 x 2,
6 x 6,and 6 x 10 transmit-receive antennas.

algorithm. The results also manifested the necessity of the ro-
bust formulation to guarantee the localization requirement in
the presence of parameter uncertainty. The performance com-
parison of the asymptotically optimal and efficient near-optimal
algorithms provides important insights into robust algorithm de-
sign under the performance versus complexity tradeoffs.

APPENDIX A
PROOF OF LEMMA 1

Proof: Note that P(py;x) = tr{J,1(px;x)} is a nonin-
creasing convex function of J.(px:x) € S [35] and Jo(py; x)
is a linear function of x > 0. By the convexity property of
the composition functions, we can conclude that the SPEB is
a convex function of x > 0.

We next show that the topology matrix A can be written as
(12). Based on (3) and (4), we can derive the SPEB of agent &
as (11), where the elements of A can be written as

[Ak] =25in?(Ppi — drs)
(a)

=1 — cos(2¢k;) cos(2¢;) — sin(2¢; ) sin(2¢y;)

where (a) follows from the sum and difference formulas of the
trigonometric functions. After some rearrangement, we can ob-
tain the expression (12) for A;. We omit the proof for the RNL
case since it can be derived in a similar way. ]

APPENDIX B
PROOF OF PROPOSITION 4

We first present the following lemma for the proof of
Proposition 4.
Lemma 2 (Finite Projection Bound): For any y > O, , let

S(y) := maxXg, gy | 2 jens, ¥50(26%;)]], then

0 < max {h@Ty} < S(y) < max {g,(€ )rIY}

meE. k T meM

Proof: Note that for a giveny > 0
9) - > yu(20;)
JEM,

>c05(2¢ Cep;— 19) (28)

= max max
9€10.27) {4, €507}

(&)
= max

j max
#€[0,27) P
JENM,

lexi <26y

where (a) follows from ¢;; = (/;](37) + €x;/2 in which |eg;| <
2(735"]) according to (14).

For the lower bound, since {¢,,, : m € M} C [0,27), the
maximum over ¥} € [0,2x) in (28) can be bounded below by
the maximum over ¥ € {9, : m € M}, and thus

S(y) > Z Y; max  cos (2(;5 + €xj — ﬂm)

jenn lensl<2al)

— s h(i) } )
1InnEd,/\}§l { k,my

max
meM

For the upper bound, let ¥ and {¢;} be the optimal angles
that achieve the maximum in (28), and let n* € M such that
#* € [V — /M, U= + w/M). Then, by the definition of

S(y), we have
Sy(@) = > yyu (208 +¢i; )
and multiplying both sides by u™(#,,+) leads to

JEM,
S(y)cos(9* — By,
)

= Z Y; COS (2(;5 + € k7

JEN,

(a)

< Z y; max  cos (2‘751” + € — 19,,7;)
JEN, en1<20 07

= hé)T y < IIlEdA}El {h,(:)gy}

m

where (a) follows from |e} j| < 2q~5,(f}) . On the other hand, since
9 — . : A

T
S(y) cos(9* — e ) > S (—)
(y) cos(” — ) > S(y) cos -
which in combination with the above leads to

(4T }
IS < (e -
5(v) < max {&( 1y

Finally, note that

Z 54),:3’ ZJ7 Z max

meM JjEN, me M{'F‘1‘<29’7

> Z Yy Z Cos (2‘75@‘ — ﬂm) =0

7 M, meM

}oos (2¢ S — §m>

which implies that max,, e a4 {hg ),I }>0. O

We next give the proof of the proposition.
Proof: Lety = R{”x. First, by the definition of S(y), the
worst-case SPEB in (20) can be rewritten as

4-1Ty

0 oy — _
PR (pk’:« ) (1Ty)2 — S(y)?

29
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(&)

k,m>

Then, by the definition of h'"

b we have that

and g

os{ Y. ()T }:‘{(i)T}
cos (57) - mss {0y} = mage (W
()
< S(y) 2 1%y - /1= 1/B(x)
(30)
where (a) is due to Lemma 2 and (b) follows from (29) and the

definition of B(x).
Note also that when M > 7/ B(x), we have

cos (;}) > V1 - n2/M? > /T 1/B(x).

Hence, (30) implies that

Iy} < < 1 vy . /1-1/B
max {gk mY S sz /B(x)
<1ly.

Therefore, by Lemma 2, the denominator of (29) can be

bounded as
2
T N2 T
0< @y’ - ((ma {s0v} )
< (17y)" - 5(y)?

2
< 7y = (g {00} )

which leads to the claim of the proposition. O
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Proof: Lety = E,(f)x. To prove the inequality, it is suffi-
cient to show that ¥m € M

4-1Ty
(s00y)" ™
which is equivalent to
(i) (gkl)"?yy (B )
Cpar 2

(1Ty)" - (g;(f,)TIy)Z

) 4-1%y

( +C;E )\1 (1Ty) (hg ),I )

(1Ty)* —

(€2))

2
Since by, = cos(r/M)g, and (h[,y)" < S(y)? =

(1Ty)?(1 — 1/B(x)), the right-hand side (RHS) of (31) can be
bounded above as

(s27y)" - (hmy)? st () ()

(1Ty)2 (g,(%)my) cos? (&) (1Ty ) (h](‘ )m )
sin® (%) [1—1/B(x)]
1/B(x) — sin® (&)

where the denominators are always positive when M >
7/ B(x), as proven in (30). This leads to the inequality (31).
Moreover, it is straightforward to verify that C’k % 1s mono-
tonically decreasing with M to zero at the rate of O(M %) as
shown in (23). O
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APPENDIX D
PROOF OF PROPOSITION 7
(1)

Proof: Since ,Pj\f(pk7 x) < P(i)(Pk;X) < ﬁM (Pr; %),
the feasible sets satisfy

ﬂ { 73 (qu )<0k}

kEN, GET),

2 ﬂ {X PO (prix) < Qk}
kEN, €T,
> N {x:PReux <o)
kEN, €Ty
and consequently the optimal solutions satisfy 1Tx¥ <
1Tx* < 1T%™ . Hence, we have

0<1TxM —1Tx* < 1T — 1TxM.

(32)
Note that
. ) M
=) ay @ Pas(pr;x™)
P (pr; (1 + C 2 M DL E )
a (P ( v)x™) L4 Coy
< PM (P x™) < ok

where (a) is due to the power scaling property of the SPEB and
(b) follows from Proposition 6. Thus, (1 4+ Cys)x™ is in the

. —M
feasible set of .7, _g, i.e.,

(14 Cy)xM € ﬂ

kEN, G€T

{X : ff{}(?k% x) < Qk-} .

On the other hand, since X is the optimal solution of . /* A R
we have 1T < < (14 CM)lT_U Therefore, the RHS of (32)
is bounded above as

1 T EJ\/[

_ 1T§JW S CJ\[ i 1T§Al S CAN[ B 1TX*.

The case for the lower bound can be shown similarly, since
1Tx* _ 1T§IW S 1T§]\/I _ ]_TKAI. O

APPENDIX E
PROOF OF PROPOSITION 8

Proof: Let y = R, x. We next derive an upper bound for
(cf y)2 + (s} y) over {¢r; € By;} in (20), which leads to the
upper bound (24) for the worst-case SPEB.
Since y > 0, we have

4 \T

max L —¢&

{m,_/egk‘j}i( k %) y‘

@) {l Hii)g 1 Z Yj -(Cos(2<f5kj + 2¢1,) — COS(%M))‘
€SPy =

(b) A | '

< Z Yj | rr‘l?s c08(2dnj +2e;) — cos(2hn;)| =5y

JEN, | <onj

where (a) follows from ¢y; = (/;k:j + €y in which |eg;| < (/;kj
according to (14) and (b) follows from the triangular inequality.
Thus, applying the triangular inequality again gives

A T
max max Cr. — Cp
{br;€Br;} {@;jEBz:J}K k k) y|
|éE.V\ +55y

<
§{max {| (Cr + e18;) y|}
€1
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Similarly, we can obtain

(ons B syl < {eaminy s+ e2e) Ty}

Combining the above two, we have

max {(ng)Q + (sgy)2}

{¢6i€BLs}
R . 2 R . 2
g{ IT}thil}{[(Ck +elsk,)Ty] + [(sk,—i—egck)Ty] } (33)
which leads to the upper bound (24). O

APPENDIX F
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Proof: By eigenvalue decomposition, the FIM Jo(py) €
S%r and the EFIM J; € S%r can be written, respectively, as

Jo(pi) = V3. (00) + D305 + 7/2)
Jij = 5;5?-11-((251”) + f,g.).]r(gbk‘/, +7/2)
where !, 1, €1

/2, (%kj, (/jk,j + 7 /2 are the angles of corresponding eigenvec-
tors. Then, the SPEB can be written as

£ ,53-) > 0 are the eigenvalues and ¥, V1 +

4-1TR.%

P(prix) = - = 2
lc(26) s(2,) )" Ra]|

(1TRux)”

where
x=[xT xT 1 1]T
S =[dm - duw,
G 47)2 - v, £ /2 O Ot /2]”
R =g {60, 68 62 652 ).

Therefore, P(pi;x) < pi can be converted to an SOC form
after some algebra. The robust case can be proved in an analo-
gous way. O
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