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FAST CLOUD: Pushing the Envelope on Delay
Performance of Cloud Storage with Coding
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Abstract—Our paper presents solutions that can significantly
improve the delay performance of putting and retrieving data
in and out of cloud storage. We first focus on measuring the
delay performance of a very popular cloud storage service
Amazon S3. We establish that there is significant randomness
in service times for reading and writing small and medium size
objects when assigned distinct keys. We further demonstrate that
using erasure coding, parallel connections to storage cloud and
limited chunking (i.e., dividing the object into a few smaller
objects) together pushes the envelope on service time distributions
significantly (e.g., 76%, 80%, and 85% reductions in mean,
90th, and 99th percentiles for 2 Mbyte files) at the expense of
additional storage (e.g., 1.75×). However, chunking and erasure
coding increase the load and hence the queuing delays while
reducing the supportable rate region in number of requests per
second per node. Thus, in the second part of our paper we focus
on analyzing the delay performance when chunking, FEC, and
parallel connections are used together. Based on this analysis, we
develop load adaptive algorithms that can pick the best coderate
on a per request basis by using off-line computed queue backlog
thresholds. The solutions work with homogeneous services with
fixed object sizes, chunk sizes, operation type (e.g., read or write)
as well as heterogeneous services with mixture of object sizes,
chunk sizes, and operation types. We also present a simple greedy
solution that opportunistically uses idle connections andpicks
the erasure coding rate accordingly on the fly. Both backlog and
greedy solutions support the full rate region and provide best
mean delay performance when compared to the best fixed coding
rate policy. Our evaluations show that backlog based solutions
achieve better delay performance at higher percentile values than
the greedy solution.

Index Terms—FEC, Cloud storage, Queueing, Delay

I. I NTRODUCTION

Public clouds have been utilized by web services and
Internet applications widespread. They provide high degree of
availability, scalability, and data durability. Yet, there exists
significant skew in network bound I/O performance neces-
sitating solutions that provide robustness in a cost effective
manner [1], [2]. In this paper, we focus on the cloud storage
and present solutions that can provide much better delay
performance for putting files into the cloud storage as well
as for retrieving them back on demand. In particular, we base
our analysis on Amazon S3 service as one of the most popular
cloud storage services.

A typical cloud storage stores and retrieves objects via their
unique keys. Each object is replicated several times withinthe

Accepted for publication in IEEE/ACM Transactions on Networking on
October 30th, 2013.

G. Liang and U.C. Kozat are with DOCOMO Innovations Inc.,
Palo Alto, California USA. G. Liang is the contact author. E-mail:
gliang@docomoinnovations.com

Fig. 1. System Model

cloud and sometimes also further protected by erasure codesto
more efficiently use the storage capacity while attaining very
high durability guarantees [3]. Storage provider also monitors
the load on each storage node and employs dynamic load
balancing to prevent hot storage nodes that might observe high
loads or slow nodes that have excessively high response times.
Although mainly used for repairing data in unavailable storage
nodes, some cloud providers also access coded blocks in
parallel to uncoded blocks when uncoded blocks are stored in
slow nodes [3]. Despite all these mechanisms, still evaluations
of large scale systems indicate that there is a high degree
of randomness in delay performance [1]. Thus, the services
that require better delay performance must deploy their own
solutions such as sending multiple requests (in parallel or
sequentially), chunking large objects into smaller ones and
read/write each chunk in parallel, replicate the same object
using multiple distinct keys, etc.

To this end, we conducted our own measurements on
Amazon S3 for various object sizes to model its delay dis-
tribution. Our measurement results confirm that the delay
spread is significant even when object sizes are in the order of
megabytes. Moreover, our study indicates that when the server
accessing the storage cloud is not the bottleneck (in terms of
CPU and network access speed), we can substantially improve
the distribution of read/write delays. To achieve these gains,
one has to consider not only chunking and parallel access to
each chunk, but also erasure coding. In fact without erasure
coding, more chunking starts hurting the performance at lower
percentile values. The gains when forward error correction
(FEC) is employed are significant in the average delay perfor-
mance and they are much better at higher percentile delays.

Nonetheless, server accessing the storage cloud has limited
CPU and network access speed limiting the number of con-
current connections to the storage cloud without going into
a processor sharing mode. With limited system capacity, one
has to consider the load and its impact on queueing delays
to quantify the total delay. Unfortunately, FEC and chunking
create redundant load multiplying the arrival rate into the
system. Unless mean service rate is improved at the same rate,
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the maximum rate at which end users can be served is reduced.
Our observations over Amazon S3 indicate that indeed lower
code rates reduce the supportable rate region inducing queue
instability earlier than higher code rates. Thus, it is imperative
to design a load adaptive strategy for changing FEC rates on
the fly to keep total average delays at the minimum level while
remaining in the achievable rate region of the uncoded system.

To have meaningful solutions, one needs to analyze the
queuing delay for the system. As one of the main contributions
of the paper, we analyze the average delay performance of a
system that incorporates chunking, FEC and multiple servers.
This system model is much harder than an M/G/k queue,
which itself have only crude approximations, as the service
times of servers become interdependent due to the use of
erasure coding. To make this point more clear, consider the
case where an object is divided into two parts and a third
part is generated by bit-wise XOR. If three servers are idle,
then each part can be accessed in parallel. As soon as any
two server complete their jobs, the third server can preempt
its current job as erasure coding renders the completion of this
job irrelevant. Except for a very recent work [4] that targets
to solve a much simpler yet still hard case, to the best of our
knowledge queuing analysis for such a system model is quite
an uncharted area. Our analyses provide a good approximation
for capacity and mean delay for homogeneous traffic with one
operation type (e.g., all reads) and file size as well as for
heterogeneous traffic with mixture of traffic types (e.g., both
read and write requests with varying chunking and file sizes).

As another major contribution, we develop three load adap-
tive FEC schemes that change the coding rate on the fly.
Using the analysis results, we can actually identify under
what load regimes which fixed FEC strategy provides the best
average delay performance leading to simple backlog threshold
based adaptive algorithms. We present two schemes BAFEC
(for single type of requests, i.e., homogeneous traffic) and
MBAFEC (for multiple types of requests, i.e., heterogeneous
traffic) that adapt FEC rates based on the queue backlog.
Via simulations using real service time traces from Amazon
S3, we show that both schemes are able to beat the delay
performance of any fixed FEC rate policy while achieving
the rate region of the uncoded strategy. Since both BAFEC
and MBAFEC require a priori knowledge and put constraints
on service time distribution of cloud storage to compute the
optimal thresholds, we also propose a greedy strategy that
opportunistically determines FEC rates based on the number
of idle servers at the time of request arrivals. Trace driven
simulations demonstrate that the greedy strategy performson
a par with the queue backlog based strategies in terms of
total mean delay. Nonetheless, the greedy method performs
significantly worse in some cases at very high percentile values
(e.g., at 99.9th percentile).

The remaining sections are organized as follows. In Sec-
tion III, we explain our system model in more details. In
Section IV, we present our measurement results over Amazon
EC2 and S3. In Section V, we study the single-class scenario
and develop a FEC rate adaptive scheme BAFEC based on
the analysis, and evaluate its performance through trace-
driven simulations. In Section VI, we generalize the analysis

to multi-class scenario and develop a multi-class FEC rate
adaptive scheme MBAFEC. In Section II, we cover the related
literature. Finally, we conclude the paper in Section VII.

II. RELATED WORK

FEC in connection with multiple paths and/or multiple
servers is a well investigated topic in the literature [5], [6],
[7], [8]. However, there is very little attention devoted to
the queueing delays. FEC in the context of network coding
or coded scheduling has also been a popular topic from the
perspectives of throughput (or network utility) maximization
and throughput vs. service delay trade-offs [9], [10], [11],
[12]. Although some incorporate queuing delay analysis, the
treatment is largely for broadcast wireless channels with quite
different system characteristics and constraints. FEC hasalso
been extensively studied in the context of distributed storage
from the points of high durability and availability while
attaining high storage efficiency [13], [14], [15], [16].

Two papers [4], [17] concurrent to ours conducted theoreti-
cal study of cloud storage systems using FEC in a similar fash-
ion as we do in this paper. Both papers rely on the assumption
of exponential task delays, which hardly captures the reality.
Therefore, some of their theoretical results are over optimistic
and cannot be applied in practice. For example, authors of
[17] proved that using larger code lengths always improves
delay without reducing system capacity, contradicting with
simulation results using real-world measurements presented in
this paper.

Another set of works that is closely related to our work
looks directly into the delay performance of storage clouds
[1], [18]. The measurements results and interim conclusions in
[1] on Amazon S3 motivated our work. The paper presents the
throughput-delay tradeoffs in service times as object sizes vary.
They establish the skewness and long tails. They recommend
to cancel long pending jobs and send a fresh request instead.
Although the suggestion would work well for long tails,
this would not lead to much delay improvement below 99th
percentile. [18] on the other hand focuses more closely on the
throughput-service delay tradeoff and devise a data batching
scheme. Based on the observed congestion, authors increase
or reduce the batching size. Thus, at high congestion, a larger
batch size is used to improve the throughput while at low
congestion a smaller batch size is adopted to reduce the delay.
The chunk size in our work is similar to the batch size
considered in [18] and it remains as a future work how to
combine these complementary ideas.

III. SYSTEM MODEL

A. Basic Architecture and Functionality

The basic system architecture captures how web services
today utilize public or private storage clouds. The architecture
consists of proxy servers in the front end and a key-value store
(referred to as cloud storage) in the backend.

Proxy servers have two main responsibilities: (1) Present
a rich service layer that operates on top of the raw cloud
storage services/interfaces. (2) Optimize the user perceived
performance. Client requests arrive at any of the proxy servers.
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When client wants to upload a file, proxy server divides the file
into one or more chunks. Each chunk is stored as an individual
object with a unique key in the key-value store. When the
entire file is written successfully, the job is completed and
a response is sent back to the client. When client wants
to download a file, proxy server checks which chunks need
to be fetched from the storage cloud. Proxy generates read
requests for these chunks and after receiving the complete set
of chunks, the job is completed and the file is streamed back
to the client. The solutions we present are deployed on the
proxy server side transparent to the cloud storage.

Cloud storage has two main purposes: (1) Provide data
storage with high durability and availability. (2) Provideon
demand scaling of storage needs. Cloud storage does not inter-
pret the objects it stores, but rather treats them as byte strings
with a well-defined length. For high durability and availability,
typical cloud systems replicate each object several times in
different physical locations and may use FEC internally. From
proxy servers’ perspective, cloud storage is a black box whose
internal techniques are unknown. Proxy servers only know the
response times for each query (e.g., putting, getting, copying,
deleting objects) it sends to the cloud storage.

B. Adding FEC Support in Multi-threaded Proxies

In our design, we employ maximum distance separable
(MDS) codes [19]. Suppose a file is divided intok equal
size chunks (with padding). An (n,k) MDS code (e.g., Reed-
Soloman codes) can expand thesek original chunks inton ≥ k
coded chunks such that anyk chunks out ofn are sufficient to
efficiently restore thek original chunks (hence the file itself).

MDS codes can help reducing the read delays as follows.
Suppose proxy node have already segmented the requested
file into k chunks, expanded intonmax chunks using an
(nmax, k) MDS code, and written each chunk as a separate
object using a unique key into the storage cloud. When the
file is to be read, proxy schedulesn read tasks for distinct
chunks usingn threads (not necessarily distinct ones) such
that k ≤ n ≤ nmax. Earliestk successful responses from the
storage cloud would then be sufficient to complete the read op-
eration ask chunks can be decoded to the original file chunks
without requiring the remaining chunks (thus the read tasks
for those chunks can be canceled). Notice that we implicitly
assumed parallel independent task handling. If the tasks cannot
be served in parallel or have strong correlation in their service
latencies, FEC would impede the delay performance due to
the extra load and processing overheads it generates.

Write operations are supported in a similar vein. Proxy can
divide the file intok chunks of equal size and encode them
into n coded chunks. The proxy then createsn write tasks, one
for each coded chunk. It schedules the tasks usingn threads.
As soon as anyk of then uploading tasks complete, sufficient
data has been stored on the cloud storage system. Thus,
upon receivingk successful responses from the storage cloud,
the proxy sends aspeculativesuccess response to the client,
without waiting for the remainingn − k task to finish. Such
speculative execution is a commonly practiced optimization
technique to reduce client perceived delay in many computer

systems such as databases and replicated state machines [20],
etc. Depending on the subsequent read profile on the same file,
the proxy can (1) continue serving the remaining tasks till all n
tasks finish, or (2) change them to low priority jobs that willbe
served only when system utilization is low, or (3) cancel them
preemptively. The proxy can even (4) run a demon program
in the background that generates allnmax coded chunks from
the already uploaded chunks when the system is not busy.

We assume that subsequent read requests for an object
that has been just written happens at time scales greater
than the time necessary to commit allnmax chunks. For
the analysis in the later sections as well as for the proposed
algorithms, this assumption is not a real limitation. In thecase
of performance results, the workloads that does not conform
with this assumption would have a limited transient impact that
will disappear when steady state performance is considered.
Furthermore, in practice, such workloads are better handled
by caching the most recently written objects in the proxies.

C. Queueing Model with Multiple Threads and Coding

Due to shared resources, the level of parallelism achievable
by using multiple threads is limited: the system can only sup-
port a finite number of simultaneously active threads without
significantly degrading the performance of each individual
active thread. Thus, we denote the maximum number of
simultaneously active threads allowed in our system asL.
Under this constraint, we assume that the performance of each
individual active thread is independent of the total numberof
active threads during the span of its life time.

Accordingly, we model our proxy system by the queueing
system shown in Fig. 1. There are two FIFO (first-in-first-
out) queues in the system: onerequest queuethat buffers all
incoming requests that have not started yet, and onetask queue
that holds all waiting tasks of requests being served.L threads
are attached to the task queue. Whenever a thread becomes
idle, it immediately starts serving the head-of-line (HoL)task
in the task queue. The scheduler monitors the state of the
queues and the threads, and decides what code rate should
be used for each request in the request queue. The scheduler
instructs the dispatcher to remove the HoL request from the
request queue only if there is at least one idle thread. The
dispatcher then creates the tasks for this request according to
the code rate chosen by the scheduler, and injects them into the
task queue. The idle threads immediately start serving (some
of) the newly injected tasks. At the time when a request is
completed, if some of its tasks are waiting, the waiting tasks
are removed from the task queue. For a completed request, if
some of its tasks are still being served, they are canceled and
the threads serving them become idle.

Depending on the criteria according to which the HoL
request of the request queue should be admitted into the
task queue, scheduling policies can be classified into the two
categories below. Here, we assume that the scheduler has
decided to serve the HoL request with an(n, k) code.

• Blocking: The HoL request is admitted into the task
queue if and only if there are at leastn idle threads.

• Non-blocking: The HoL request is admitted into the task
queue if and only if there is at least 1 idle thread.
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Blocking policies are not work conserving, thus waste sys-
tem capacity for keeping threads idle unnecessarily. However,
it has a nice structure that facilitates tractable queue analysis
and provides good approximation for non-blocking policies.

D. Multiple Classes of Requests

In general, applications receive requests for both reading
and writing for files of various sizes. From our measurement
results (next section), it can be seen that the distributions
of service times of tasks of different operation types and/or
different chunk sizes differ significantly. Also, requestsfor
different applications may have different delay targets (for
example, video streaming has different delay requirements
than uploading a document). As a result, it would be preferable
to use different chunk sizes for different requests to accommo-
date different delay requirements. It is then natural to group
requests that have the same operation type, similar file sizes
and similar delay requirements into oneclassand consider a
composition ofm ≥ 1 classes of requests. Details of modeling
multiple classes of requests will be presented in Section IV-B.
The following discussion of this paper will concentrate on
queue management and adaptation of the amount of redundant
read/write operations, based on the assumption that classes
are given and the corresponding file/chunk sizes are prede-
termined. Determining the choices of these parameters as
functions of different delay requirements remains part of our
future work.

E. Definition of Delays

Consider a time period[0, T ]. We denote the set of requests
arrived during this period byI = {1, 2, 3, · · · , r, · · · , NT },
wherer denotes ther-th arrived request andNT is the total
requests during the period. For each requestr, denoteT r

A as
the time when it arrives into the system. Given that requestr
is served with an(n, k) code, we index the correspondingn
tasks from 1 ton, according to the time they start being served,
and denoteT r,1

S ≤ T r,2
S ≤ · · · ≤ T r,n

S as their starting times.
Also denoteT r,j

F as the completion time of taskj of request
r. Note that the tasks are only ordered by their starting times
but not the completion times. So it is possible thatT r,j

F >

T r,l
F even if j < l. The starting time of a requestr, denoted

as T r
S , is defined as the time it gets admitted into the task

queue, i.e., the starting time of its first task. SoT r
S = T r,1

S .
Its finish/completion time, denoted asT r

F , should be the time
whenk of its tasks have finished. LetT r,1:n

F ≤ T r,2:n
F ≤ · · · ≤

T r,n:n
F be the sorted permutation of the finish times of request

r’s tasks. ThenT r
F = T r,k:n

F .
The queueing delayfor requestr is the length of time that

it spends waiting in the request queue, denoted byDr
q = T r

S−
T r
A. Theservice delayfor requestr is the time it spends in the

system getting served, denoted byDr
s = T r

F − T r
S . We also

denote thetask delayfor taskj of requestr by Dr,j = T r,j
F −

T r,j
S unless the task is canceled When the task is canceled

(becausek other tasks for the same request have completed),
Dr,j = T r

F − T r,j
S .

IV. M EASUREMENTRESULTS AND DELAY MODEL

A. Measurement Results

To model the distributions of service times (Dr,j) of indi-
vidual tasks, we run measurements over Amazon EC2 and S3.
EC2 instance served as our proxy node in the system model.
We instantiated an extra large EC2 instance with high I/O
capability in the same availability region as the S3 bucket that
stores our objects. We run experiments within North California
as well as Tokyo regions. We benchmarked single thread
vs. multiple thread environments to measure the impact of
thread contention. For the machine type we used we were
able to run 16 threads in parallel with almost linear gain
in system throughput and observed almost identical delay
distribution as single-thread. This means that for up to 16
parallel threads the bottleneck is neither in the capacity of the
EC2 instance nor in the network. We conducted experiments
on different week days in March, April, June, and July 2012
with various packet sizes 128Byte, 1KB, 0.5MB, 1MB, 2MB,
and 3MB using 16 threads in parallel while saturating each
thread. Each experiment lasted around 24 hours. We alternated
between different packet sizes to capture similar time of day
characteristics across packet sizes. For the same reasons,we
also alternated between write and read jobs by first creating
a batch of write jobs using distinct keys, then creating a
batch of read jobs for these distinct keys once all the writes
are completed successfully. Due to lack of space, we only
show a limited set of results although the cross-correlation
properties and cumulative distribution functions exhibitsimilar
properties. We briefly present a representative subset of our
main findings.

Fig. 2 plots the complementary cumulative distribution
function (CCDF) ofDr,j for read and write tasks of 1MB
chunks. Note that we only measure the time spent in any
thread and there are no queuing delays. Read tasks for small
to medium object sizes experience lower mean and median
delays than the write tasks, yet at higher percentile delays(in
this plot beyond 80th percentile) reads observe higher delays.
Although not shown, as object size gets smaller the crossover
point moves towards higher delay percentiles.

We also observe negligible correlation between the service
times of subsequent tasks: the Pearson’s correlation coefficient
between thet-th and(t+ τ)-th tasks is always≤ 0.05 for all
τ 6= 0. This observation is critical as FEC techniques would
be too costly and with little benefit if there were a strong
correlation. The observation holds for all the packet sizeswe
experimented with as well as for the write tasks. Based on
these results, for further analysis, we will treat task service
times as independent and identically distributed (i.i.d.).

To show the impact of using different codes on the service
times (i.e.,Dr

s as opposed toDr,j), we plot the case for
2MB files with codes ranging from(1, 1) to (7, 4) in Fig. 3.
Codes(1, 1), (2, 2), (4, 4) do not employ FEC, but instead use
different chunk sizes.(2, 1) code provides 23%, 32%, and 56%
reduction in mean, 90th percentile, and 99th percentile delays
over (1, 1) using 2× more storage. Using smaller chunk sizes
with FEC improves delays at the same or less storage cost.
E.g., (3,2) code provides 50%, 55%, and 69% reductions in
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Fig. 3. CCDF of service times for reading 2MB file

mean, 90th percentile, and 99th percentile delays over(1, 1)
using 1.5× storage, (5,4) code gives more than 60% reductions
in the same percentiles using only 1.25× storage, and (7,4)
code improves delays by 76%, 80%, and 85% at the expense
of 1.75× storage. Using smaller chunk sizes without FEC
improves mean delay performance, but at higher percentiles
the benefits deteriorate. This is expected as uncoded chunking
requires completion of all tasks and small chunk sizes also
have a long tail. The chances of catching the tail increases
as the number of chunks increases. FEC greatly mitigates this
all or nothing behavior. The gains in service delayDs is only
half of the story as chunking and FEC both adversely affect
the achievable rate region as examined in later sections.

B. Model of Task Delays

From Fig. 2, it can be observed that for both read and
write tasks, despite the delay floors observed at very low
percentiles, up to 99th percentile and even beyond that, the
CCDF is roughly a constant term (which probably results from
unavoidable overheads in any storage system such as network-
ing delay, protocol-processing, lock acquisitions, transaction
log commits, etc.) plus a linearly decaying term in log scale
(which is a signature for distributions having an exponential
tail). So we decide to model the task delays as i.i.d. random
variables in the form of∆+Dexp, where∆ is a non-negative
constant (corresponding to the constant term in CCDF), and
Dexp is an exponentially distributed random variable with
some mean1/µ (corresponding to the linear term in CCDF).
For mean delay analysis, our simulations later will show that
this approximation works reasonably well.

We assume there arem ≥ 1 classes of requests. Requests

Fig. 4. Multi-phase queueing model. A blue server indicatesa request is being
served at the corresponding phase and the corresponding pipe is occupied. The
numbers at the bottom of each phase are the number of busy servers and the
service rate of each server of that phase.

of each class have identical file size and all are divided into
chunks of identical size. Under this assumption, service times
of all chunks of the same class follow the same distribution and
each classi can be characterized by a three-tuple(ki,∆i, µi),
where∆i and µi specifies the delay distribution of class-i
chunks. Throughout this paper, we assumeki’s (and accord-
ingly chunk sizes) are determined a priori and(∆i, µi) are
given. Our focus will be on the adaptation/choice ofni’s.

V. SINGLE-CLASS (HOMOGENEOUS) ARRIVALS

In this section, we study the scenario when there is only one
class of request, i.e.,m = 1. Since there is only one class, we
will drop the subscripti within this section.

We first investigate the delay and throughput tradeoff with
fixed FEC, i.e., a fixed(n, k) code is used for all requests,
for both blocking and non-blocking schemes. Due to the
interdependent nature of task delays while employing FEC, the
queueing model for these policies is much more complicated
than M/G/k queue, which itself has only crude approximations
for delays. We are not able to provide exact analysis at this
time. However, we develop reasonable approximations for both
capacity and delay of these policies. Based on these approx-
imation results, we develop a backlog-based adaptive FEC
scheduler BAFEC, which achieves the best delay performance
against fixed FEC schemes for all supportable arrival rates.

A. Queueing Model for Blocking Policies with Fixed FEC

Given our assumption that task delay is in the form of∆+
Dexp, it can be considered that after started being served by
a thread, a task experiences two phases of services: first a
fixed-time service for∆, then followed by an exponential-
time service with mean1/µ. Recall that in blocking policies,
all tasks of a requesti start at the same time, i.e.,T r

S =
T r,1
S = · · ·T r,n

S . Then the service received by each request
can be modeled ink + 1 phases. The first is a fixed-delay
phase of length∆, while all n tasks are in their fixed-time
service phase. The second is an exponential phase with mean
1/nµ, while all n tasks are receiving exponential-time service
and one task finishes by the end; Similarly, the third is an
exponential phase with mean1/(n−1)µ, while the remaining
n−1 tasks are receiving exponential-time service and one more
task finishes by the end;· · · ; the (k + 1)-th is an exponential
phase with mean1/(n−k+1)µ, while the lastn−k+1 tasks
receiving exponential-time service and thek-th task finishes
by the end (hence the whole request finishes and the remaining
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tasks are canceled). We will say a request is in phase∆ or
phasej (n− k + 1 ≤ j ≤ n) depending on the number of its
remaining tasks and the phase these tasks are in. Now we can
model a blocking policy with the queueing system depicted
in Fig. 4. The FIFO request queue is followed by a set of
parallel pipes of servers. Each pipe consistsk + 1 servers
that represents thek + 1 phases a request experiences during
service: the first server has fixed service time∆ consumingn
active threads, the second has exponential service time with
mean1/nµ consumingn active threads, ..., the(k+1)-th has
exponential service time with mean1/(n−k+1)µ consuming
n−k+1 active threads. At any time, a pipe can be “occupied”
by at most one request, i.e., at most one of its servers can be
active. There are⌈L/(n− k+1)⌉ pipes in total1 so that there
will always be at least one unoccupied pipe as long as there are
≥ n idle threads, no matter which requests these threads were
serving previously. DenoteS∆(t) andSj(t) (n− k+1 ≤ j ≤
n) as the number of requests being served in the corresponding
phases at timet. Then the number of active threads att is
nS∆(t) +

∑n
j=n−k+1 jSj(t). According to the definition of

a blocking policy, all unoccupied pipes will beblocked for
admission if< n threads are idle. Whenever

nS∆(t) +

n
∑

j=n−k+1

jSj(t) ≤ L− n,

the unoccupied threads will be unblocked and the HoL request
in the request queue will be admitted into one of them.

B. Capacity of Blocking Policies

Let S∆ and Sj denote the time average ofS∆ and Sj.
Assuming the queueing system is stabilized at arrival rate
λ and noticing that arrival rate to each phase equals toλ
when the system is stable, we have the following flow-balance
equations from Little’s law:

S∆ = λ∆ and Sj =
λ

jµ
, ∀n− k + 1 ≤ j ≤ n.

As a result, the expected number of simultaneously active
threads at arrival rateλ is

nS∆ +

n
∑

j=n−k+1

jSj = λ(n∆+ k/µ).

Since there are at mostL parallel active threads allowed, we
have the following constraint on supportable arrival rates:

λ(n∆+ k/µ) ≤ L. (1)

For the study of capacity, defined as the maximum support-
able arrival rateλ of the system, it suffices to consider the
case when the system is always backlogged. When always-
backlogged, whenever there are at leastn idle threads, the
HoL request will be admitted into one pipe. So the number of
active threads is kept≥ L−n+1. Then we have the following

1⌈L/(n − k + 1)⌉ is the maximum number of requests that can be
served simultaneously by a blocking policy since every request being served
consumes at leastn− k + 1 active threads.

upper and lower bounds onCb(n, k), the capacity of blocking
policies using a fixed(n, k) code:

L− n+ 1

n∆+ k/µ
≤ Cb(n, k) ≤

L

n∆+ k/µ
. (2)

While more accurate approximation is possible, we use the
mean of the two bounds as our estimation forCb:

C̃b(n, k) =
L− (n− 1)/2

n∆+ k/µ
.

From the above discussion, we can see the capacity with
fixed FEC is roughly proportional to the inverse of

u(n) = n∆+ k/µ.

In fact, from our delay model, one can easily verify that
E[
∑n

j=1 D
r,j] = n∆ +

∑n
j=n−k+1

j
jµ = u(n) (note that the

slowestn−k threads are canceled by the timek threads finish).
In other words,u(n) is the expected sum of the amount of
time used byn threads in serving one request. For this reason,
we callu(n) the expected per-request system usage for using
(n, k) FEC code, orusagefor short. The first term is linear
in n and represents the constant per-thread cost∆ we pay for
having more parallelism. As we can see from Eq.2 (especially
upper bound), if∆ is large compared with1/µ, the capacity
is significantly reduced when a low rate FEC code (largen)
is used and the queueing delay will quickly explode even at
low arrival rate with respect to the capacity with no coding
Cb(k, k). We are going to investigate the delay issue in more
detail in the rest of this section.

C. Delays of Blocking Policies

According to our model for task delay, the expected service
delay of a blocking policy isDs(n, k) = ∆+

∑n
j=n−k+1

1
jµ .

For queueing delay, we approximate the request queue and
dispatcher by a virtual single-server queue. The virtual server’s
service time for requestr is determined byT r+1

S −T r
S, i.e., the

inter-starting time of the requestsr andr + 1 in our original
system. So from the request queue’s point of view, the virtual
server behaves exactly as the dispatcher, and the virtual queue
has the same queueing delay as our original system.

In general, the service times of different requests in the
virtual system are not necessarily independent. In fact, the
service time also depends on the arrival process. So the exact
analysis of the queueing delay is very complicated. We notice
that at low utilization, a request will most likely find enough
idle threads to start being served immediately upon arrival,
as if arriving at an empty M/G/1 queue. On the other hand,
when utilization is higher, the system is mostly backlogged
and the inter-starting times are weakly correlated becausethey
are determined by the rate at which busy threads become
idle. Based on these observations, we use an M/G/1 queue
to approximate the behavior of the request queue, wherein the
service times follow an Erlang distribution with parameters n
and mean1/C̃b.

To understand the choice of Erlang distribution, consider the
case when∆ = 0, n = k. Suppose the system is backlogged
and allL threads are busy immediately afterT r

S . ThenT r+1
S

is the time when the earliestn out of L threads become idle.
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∆
∆+1/µ

Blocking, L = 16 Blocking, L = 64
n = 3 n = 6 n = 3 n = 6

0.2 1.0 – 11.4 2.0 – 20.6 0.3 – 6.1 0.5 – 8.6
0.4 1.0 – 13.4 0.8 – 7.9 0.3 – 7.8 0.5 – 9.5
0.6 1.2 – 15.5 1.9 – 63.2 0.3 – 9.6 0.6 – 11.7
0.8 1.3 – 18.0 1.0 – 339.3 0.4 – 11.6 0.6 – 10.5

∆
∆+1/µ

Non-blocking,L = 16 Non-blocking,L = 64
n = 3 n = 6 n = 3 n = 6

0.2 0.9 – 11.1 1.8 – 8.5 0.3 – 7.4 0.5 – 8.4
0.4 1.0 – 13.1 1.9 – 11.0 0.3 – 8.2 0.5 – 9.5
0.6 1.1 – 15.0 2.0 – 16.8 0.3 – 9.0 0.5 – 10.4
0.8 1.2 – 16.4 2.1 – 29.2 0.3 – 10.0 0.6 – 11.0

TABLE I
RANGE OF ERRORS: |Dsim − D̃|/D̃ × 100%

Since∆ = 0, all task delays are exponential. Then the inter-
starting time is the sum ofn exponential random variables,
whose means are1/(L)µ, · · · , 1/(L − n + 1)µ. This is very
similar to an Erlang distribution with parametern and mean
∑n−1

j=0 1/(L − j)µ, which is the sum ofn i.i.d. exponential

random variables with mean
∑n−1

j=0
1/(L−j)µ

n . When L/n is
sufficiently large, the inter-starting time distribution converges
to the Erlang distribution. When∆ > 0 and n > k, this
approximation can be quite crude. But we believe it is good
enough as a guideline for policy design. Moreover, it also
provides a simple closed-form approximation of the queueing
delay, which is used in design of our adaptive FEC scheduler.
Given an Erlang random variableX with parametern and
mean1/C̃b, its second momentE[X2] = (1+1/n)/C̃2

b . Then
queueing delay of the aforementioned M/G/1 queue (using the
Pollaczek-Khinchin formula) is

D̃b
q(n, k, λ) =

λE[X2]

2(1− λE[X ])
=

λ(n+ 1)

2nC̃b(n, k)(C̃b(n, k)− λ)
.

D. Approximations for Non-Blocking Policies with Fixed FEC

The only difference between blocking and non-blocking
policies is that non-blocking policy starts a task whenevera
thread becomes available, while blocking policy waits until n
threads become available. This difference is subtle yet it makes
non-blocking policies much harder than blocking policies for
exact analysis. In this section, we derive approximations of
the capacity and delays of non-blocking policies.

Notice that, when there areL busy threads, the rate at
which any single thread becomes available is in the order of
O(L/(∆+1/µ)), which is much higher than the rate at which
one particular busy thread becomes idle whenL is large. As a
result, it is highly likely that, in a non-blocking policy, all tasks
of a request will get started before any one of them finishes,
and the gap between the first and last starting times of tasks
are much smaller than the individual task delay. As a result,
for largeL, a non-blocking policy behaves very similarly to
a blocking policy that uses the same FEC code. Hence, the
capacity of a non-blocking policy can be approximated by the
capacity of a blocking one. Further notice that, when always
backlogged, non-blocking policies always keep allL threads
busy. So we approximate the capacity of non-blocking policy
with the upper bound for blocking:

C̃nb(n, k) = L/(n∆+ k/µ). (3)

Then we again use Pollaczek-Khinchin formula to estimate the
queueing delay of non-blocking policỹDnb

q , by replacingC̃b

with C̃nb in the previous formulation for̃Db
q, and useDs =

∆+
∑n

j=n−k+1
1
jµ as an approximation of the service delay.

By doing this,E[X ] = u(n)/L for non-blocking.

We compare the approximated delay of blocking and non-
blocking policiesD̃b = Ds + D̃b

q and D̃nb = Ds + D̃nb
q

against the average delay from simulations using task delays
in the form of∆+Dexp (denoted asDb

sim andDnb
sim). Table

I shows the range of estimation errors fork = 3, n = 3, 6
andL = 16, 64, while arrival rate varies from0.1C̃x to 0.9C̃x

(x = b or nb). For each setting, the lower end of estimation
error is observed at low to medium arrival rates while larger
error is observed for arrival rates near the estimated capacity.
This is mainly due to the high sensitivity of̃D in C̃ when
λ→ C̃ (because of thẽC−λ term in the denominator), so even
a small discrepancy betweeñC and the actual capacity will be
significantly magnified in delay at arrival rate close to capacity.
As we can see, the approximations are quite reasonable, except
for the cases whenL = 16, n = 6 and ∆

∆+1/µ = 0.6, 0.8. This
is because Erlang distribution is not a good approximation for
the inter-starting times when∆ andn are large compared to
1/µ andL, respectively. We also observe that approximation
for non-blocking policy is generally better than the one for
blocking policy. This is because the Erlang distribution isa
much better approximation for the inter-starting times of non-
blocking schemes since the number of busy threads remains
fixed (equals toL) when the system is backlogged.

We further compare the approximation against trace-driven
simulations. Fig. 5 plotsD̃nb and the average delay from
simulations for reading 3MB files with fixed FEC schemes
with k = 3, n = 3, 4, 5, 6 andL = 16, using traces for read
operations we collected in March 2012 and chunk sizes of
1MB. For computation ofC̃nb, we first filter out the worst
0.1% task delays in the trace, then we set1/µ and∆+ 1/µ
as the standard deviation and the mean of the remaining task
delays, respectively. We emphasize that although we use the
filtered task delays to obtain estimations of∆ and 1/µ, all
unfiltered task delays are used in the simulations. As we can
see, our approximation matches the simulation results very
well, which justifies our∆ + Dexp model for task delays.
The simulation results also suggest that the capacity of non-
blocking policies with fixed FEC is a decreasing function of
n, which is consistent with our approximation of̃Cnb from
Eq.3. We also plot the delay for the simple no chunking
solution (using(1, 1) code), as well as simple2× replication
solution (using(2, 1) code) using traces for chunk size 3MB
collected in the same time period. Despite providing a larger
capacity, the simple no chunking solution has very bad delay
performance. Even for very low arrival rates, the delay is over
300 ms, while just chunking without FEC (n = 3) improves
the delay to about 200 ms with zero storage overhead and
using a(4, 3) code with 1/3 storage overhead improves the
delay to less than 150 ms. Moreover, the simple replication
of unchunked objects not only fails in improving the delay
but also significantly reduces the capacity. This is because
read/write operations for large object has a large constant
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overhead∆ and a relatively small delay spread1/µ according
to our measurement results. So there is not enough diversity
to gain from parallelism. This again justifies our motivation
for using chunking with FEC for delay sensitive applications.
With the same amount of storage overhead, using a(6, 3) code
delivers roughly3× improvement in delay.

E. BAFEC– Backlog-based Adaptive FEC Scheduler

In this section, we present BAFEC– a backlog-based adap-
tive FEC scheme that achieves the best delay achievable by
any fixed FEC scheme withk ≤ n ≤ nmax, i.e.,

min
k≤n≤nmax

(

Ds(n, k) + D̃q(n, k, λ)
)

,

for all supportable arrival rates. The following discussion
applies to both blocking and non-blocking policies, so we drop
the superscript in the delay terms. Assumingk is fixed, our
estimation of the expected total delay is a function ofn andλ:
D̃(n, λ) = Ds(n)+D̃q(n, λ). For everyn = k, · · · , nmax−1,
we compute the solutionλn such that

D̃(n, λn) = D̃(n+ 1, λn). (4)

In the example of Fig. 5 we showλ3 to λ5, which are the
intersection of the red dashed lines. According to our previous
analysis, it only requires solving a quadratic equation ofλ and
only the smaller solution is meaningful. Due to limitation of
space, we would not include the details.λn is the crossover
point for the delay performance of a(n, k) code and a(n +
1, k) code: ifλ < λn, then a(n+1, k) code gives smaller total
delay than a(n, k) code does; and ifλ > λn, a (n, k) code
will give smaller total delay. Using Little’s law, we compute
the corresponding crossover backlog sizeQn = λnD̃q(n, λn).
It is easy to show thatQn is a decreasing function ofn, then
we can use{Qn}’s as thresholds to adapt the FEC code length
based on the backlog size. The adaptive scheme is described
formally as follows:

BAFEC (Backlog-based Adaptive FEC)
Do the following for every requestr

1: Q← backlog size upon arrival of requestr.
2: Find n such thatQ ∈ [Qn, Qn−1), or Q ∈ [Qn,∞) for

n = k, or Q ∈ [0, Qn) for n = nmax.
3: Serve requestr with an(n, k) code when it becomes HoL.
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Under our delay model, for a givenk, n = k provides the
largest capacity region. Then BAFEC is in fact throughput-
optimal, i.e., it supports any arrival process supportableby
some(n, k) code whenk ≤ n ≤ nmax, because it always sets
n = k if the queue exceeds a finite thresholdQn.

F. Performance Evaluation

We conduct trace-driven simulations for performance eval-
uation. Due to lack of space, we only show results for non-
blocking versions, withk = 3, nmax = 6 and L = 16,
using traces we collected in March 2012 and chunk size 1MB.
Results for other settings of parameters and blocking versions
are similar. We also develop a simpleGreedyheuristic scheme.
Unlike BAFEC, Greedy does not require any knowledge of the
distribution of task delays, yet it achieves competitive mean
delay performance. In Greedy, the code used to serve request
r is determined by the number of idle threads upon its arrival:
if there arel ≥ k idle threads, use a(min(l, nmax), k) code;
otherwise use a(k, k) code, i.e., no coding.

Fig. 6 plots the average delays of fixed FEC schemes
with n = 3, 4, 5, 6, as well as the delays of Greedy and
BAFEC. As we can see, Greedy and BAFEC have almost
identical performance in terms of average delay. Both adaptive
schemes succeed in (roughly) achieving our goal of obtaining
the lower envelop of the delay performance of the set of
fixed FEC schemes. At lower utilization, they deliver over3×
lower delay compared no chunking and simple2× replication
(n = 1, 2; k = 1), and 2× lower delay compared to naive
chunking (n = k = 3).



9

We plot the average and 99.9% delays of Greedy and
BAFEC, normalized by the best delays obtained from fixed
FEC schemes, in Fig. 7. At very low and high arrival rates,
these two adaptive schemes perform almost the same as the
optimal fixed FEC scheme. This is because (1) with low arrival
rates, there are no backlog most of the time and both schemes
behave like a fixed FEC scheme withn = nmax; and (2) with
high arrival rates, the system is always backlogged and both
schemes behave like a fixed FEC scheme withn = k. In the
intermediate region, BAFEC still traces the best performance
of fixed FEC schemes very well, as it is almost identical to
the best fixed FEC scheme in mean delay, and it stays within
1.5× of the optimal 99.9% delay. On the other hand, while
Greedy also achieves almost optimal mean delay performance,
it performs much worse for high percentile delays. For low to
medium arrival rates, Greedy is consistently above2× and can
even go beyond3.5× of the optimal 99.9% delays.

VI. M ULTIPLE-CLASS (HETEROGENEOUS) ARRIVALS

In this section, the scenario with multiple classes of requests
(m > 1) is studied. As the multi-class problem is even more
complicated than the single-class one, we again based our
analysis on the approximations of queueing and service delays.
Our analysis shows that the delay-optimal combination of code
lengths (ni’s) has a well-defined structure that is helpful for
designing practical rate adaptation schemes:

• There is an one-to-one mapping between the optimal code
lengths and the corresponding expected total queue length
(all classes combined), irrespective of the arrival rates;

• The optimal code length of any class is a decreasing
function of the expected total queue length.

These analysis results suggest that (1) expected queue length is
a good indicator of the optimal code lengths and (2) adaptation
of each class can be done separately. Based on these in-
sights, we develop a Multi-class Backlog-based Adaptive FEC
(MBAFEC) scheme. In MBAFEC, each classi is associated
with a set of thresholds computed using Eq.4 as in BAFEC,
assuming the single-class scenario with only class-i requests;
and code adaptation within each class is performed in the same
way as in BAFEC.

A. Fixed FEC Code Analysis

We assume that arrivals of each classi follows a Poisson
process with rateλi > 0, independent of other classes. So
the combined arrivals consist a Poisson process at rateλ =
∑m

i=1 λi. The following notations and terminologies will be
used for the subsequent discussion.

• The (column) rate vector Λ̂ = [λ1; · · · ;λm] and the
composition vector̂α = [α1; · · · ;αm] = Λ̂/λ. Note that
0 < αi = λi/λ ≤ 1 and

∑m
i=1 αi = 1.

• The code vectorN̂ = [n1; · · · ;nm], given thatni is the
code length chosen for class-i requests.

• Theusage vector̂U(N̂) = [u1(n1); · · · ;um(nm)], where
ui(ni) = ni∆i+ki/µi is the per-request usage of class-i
requests. When it is clear from context, we will omit the
function inputs (̂N andni).

We can easily generalize the multi-phase queueing model
introduced in the previous section (Fig. 4) to incorporate
multiple classes of requests. There is still one FIFO request
queue, but instead of only one type of pipes, we construct a
set of pipes for every class, with the number of servers in each
pipe and their service rates specified by the delay parameters
of the class. A class-i request is admitted into a pipe for class
i only if there are≥ ni idle threads. According to Little’s law,
we obtain flow-balance equations in the same vein as Section
V-B. Similar to Eq.1, for a given code vector̂N , a supportable
rate vectorΛ̂ must satisfy

m
∑

i=1

λi(ni∆i + ki/µi) = Λ̂T Û(N̂) = λα̂T Û(N̂) ≤ L

for system stability. Starting from this point, we only con-
sider non-blocking (work conserving) policies. Similar tothe
single-class scenario, where with Eq.3 the capacity regionis
approximated by{λ : λ(n∆+k/µ) ≤ L}, we approximate the
multi-class capacity regionwith respect toN̂ by the convex
set

C(N̂) = {Λ̂ : Λ̂T Û(N̂) ≤ L},

and the capacity for a given composition of requestsα̂ is

Cα̂(N̂) = L/α̂T Û(N̂).

Obviously, the capacity region is maximized when there is no
coding, i.e.,N̂ = K̂ , [k1; · · · ; km]. We callC(K̂) the full
capacity region.

Similar to our previous discussion for the single-class
scenario, we use a M/G/1 queue approximation to model the
request queue and use Pollaczek-Khinchin formula to estimate
the queueing delay. For a given composition vectorα̂, the
service time of this M/G/1 queue is modeled by some random
variableX whose mean is

E[X ] = 1/Cα̂(N̂) = α̂T Û/L,

as per similar reason for non-blocking schemes in single-class
scenario. In terms of the second moment, one possibility is
to generalize the Erlang approximation for single-class and
considerX to be a mixture of different Erlang random vari-
able: with probabilityαi, it follows Erlang distribution with
parameterni. While this is doable, it leads to a complicated
expression and we believe it will only provide marginal extra
insight for the purpose of scheduler design. For this reason, we
make a simple and rough assumption thatE[X2] = βE2[X ]
for some constantβ > 0 independent ofα̂ and N̂ . Then
the queueing delay is approximated by Pollaczek-Khinchin
formula

λE[X2]

2(1− λE[X ])
=

βλE2[X ]

2(1− λE[X ])
=

βλ(α̂T Û)2

2L(L− λα̂T Û)
,

and the expected total queue length (counting all classes) is

Q(N̂ , Λ̂) = λ
βλ(α̂T Û)2

2L(L− λα̂T Û)
=

β(Λ̂T Û)2

2L(L− Λ̂T Û)
.

We also approximate the service delay of each classi by
Ds,i(ni) = ∆i+

∑ki−1
j=0

1
(ni−j)µi

. Noticing that requests of all
classes have the same expected queueing delay, we formulate
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the following optimization problem of finding the best fixed
FEC scheme that minimizes the average delay

min
N̂

m
∑

i=1

αiDi =
βλ(α̂T Û)2

2L(L− λα̂T Û)
+

m
∑

i=1

αiDs,i(ni) (5)

s.t. λα̂T Û(N̂) ≤ L andni ≥ ki − 1 ∀ i = 1, · · · ,m

Worth pointing out is that we are only interested in the
structure of optimal solution and will make use of it for our
scheduler design rather than the accurate expression of the
solution. For the following discussion, we will relax the integer
requirement forni’s and allowni to be any value> ki − 1.

It is easy to verify that whenαi > 0 ∀i the objective of
the optimization problem Eq.5 is strictly convex in̂N . As a
result, we can denotêN∗(Λ̂) as the unique optimal solution
for rate vector̂Λ. Also letH(N̂) = {Λ̂|N̂ = N̂∗(Λ̂)}. In other
words,H(N̂) is the union of all rate vectors for whicĥN is
the optimal choice of code lengths. In the caseN̂ is not the
optimal for any rate vector,H(N̂) = {}. We say a code vector
N̂ is goodif and only if H(N̂) 6= {}. Theorem 1 below is the
main result of our analysis.

Theorem 1: Any good code vectorN̂ should have the
structure

si
∆iµi

=
sj

∆jµj
∀ i, j, (6)

wheresi =
∑ki−1

j=0
1

(ni−j)2 . For any such good code vector̂N ,

H(N̂) is the part of the hyperplane defined byΛ̂T Û(N̂) =
const(N̂) within the positive orthant (λi > 0 ∀i), where
const(N̂) is solely determined bŷN . As a result, while using
the optimalN̂ at ratesΛ̂ ∈ H(N̂), the corresponding queue
length is a function of onlyN̂ :

Q(N̂ , Λ̂)|Λ̂∈H(N̂) = Qopt(N̂) =
βconst(N̂)2

2L(L− const(N̂))
.

Proof: See Appendix.
For any pair of good code vectorŝN 6= N̂ ′, define ordering

“≺” such thatN̂ ≺ N̂ ′ if any only if ni < n′
i ∀i. Similar for

“≻”. Also, for two sets of rate vectorsH(N̂) andH(N̂ ′), we
say thatH(N̂) ≺ H(N̂ ′) if and only if H(N̂) is completely
contained in the convex hull defined byH(N̂ ′) and the origin.

Corollary 1: The set of all good code vectors is totally
ordered with respect to≺. Moreover, the corresponding rate
vectorH(N̂) and queue lengthQopt(N̂) are both decreasing
functions ofN̂ . In other words,

∀N̂ ≻ N̂ ′, H(N̂) ≺ H(N̂ ′) and Qopt(N̂) < Qopt(N̂
′).

Proof: See Appendix.
An intuitive interpretation of Theorem 1 and Corollary 1

is as follows: The full capacity regionC(K̂) is “sliced” into
layers as hyperplanesH(N̂)’s. One single (fractional) code
vector is optimal for all rates within each layer. When the
optimal code vector is used, it produces identical expected
queue length throughout the whole layer. The layer furthest
away from the origin (heavy workload) corresponds to the
largest expected queue length. Since the arrival rates are so
close to full capacity, any redundancy is detrimental hence
no coding should be used. As we move to layers closer to
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kwrite = 3. Left: nread. Right: nwrite.
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Fig. 9. Best combination of code lengths and queue length,kread = 3 and
kwrite = 2. Left: nread. Right: nwrite.

the origin (light workload), the corresponding expected queue
length reduces and we can afford to increase the amount of
redundancy by using coding.

Remember that Theorem 1 and Corollary 1 are derived
based on non-integer relaxation of code lengths, as well as
approximations of the queueing and service delay especially
the assumption thatE[X2] = βE2[X ]. To verify the valid-
ity of these results in reality, we perform simulations with
m = 2 classes of requests, literally read and write, with
kread = kwrite = 3, nread, nwrite ∈ {3, 4, 5, 6} andL = 16,
using traces we collected in March 2012 and chunk size 1MB.
We run simulations for at different rate vectors(λread, λwrite)
with λread and λwrite varying from 0.05× to 1× of Cread

and Cwrite respectively, whereCread = L/kread(∆read +
1/µread) andCwrite = L/kwrite(∆write + 1/µwrite) are the
maximum arrival rates of read and write request the system
can support. At each rate vector, we run simulations for all
4 × 4 possible combinations of(nread, nwrite), and find the
combination that produces the minimum total delay, and record
the corresponding average queue length.

We plot the simulation results in Fig. 8. The x and y axis are
the arrival rates of read (λread) and write (λwrite) requests,
respectively. The full capacity region is the lower-left half
below the diagonal dark red colored line. Beyond this line
(top-right) the queue is unstable. Each block in these figures
represents one rate vector and the colors of a block represent
the combination ofnread (left) andnwrite (right) that results in
the smallest total delay among the simulations. Lightest color
represents code length of 6 and the darkest represents 3. We
also plot contours of queue length levels as colored curves in
which points on the same contour/curve have the same average
queue length (blue meaning small and orange meaning large).
As we can see, except for a small number of blocks, the
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rate region is generally divided into 4 layers. Starting from
6 coded blocks in the layer closest to the origin, the number
of coded blocks decreases as moving away from the original
and eventually becomes 3 in the outmost layer. The small
number of blocks of exception near the boundaries are due to
the integer constraint on code lengths as well as randomness
in our simulations. Moreover, both the boundaries of these
layers and the contours of queue lengths are roughly straight
lines, and the boundaries of layers in general are aligned with
the contours of queue lengths at the corresponding arrival
rates (some are not shown in the figures). This validates our
predictions from Theorem 1 and Corollary 1 that (1)H(N̂) is
a hyperplane (which is a line in the 2-dimension space); (2)
Qopt(N̂) is constant withinH(N̂); and (3) BothH(N̂) and
Qopt(N̂) are decreasing functions of̂N . Another observation
is that as arrival rates increase,nwrite drops earlier thannread

does. This is because, according to our trace, while read and
write of 1MB chunks have similar mean task delay (both
around 140 ms),∆write is much larger than∆read (114 ms vs.
61 ms), and as we discuss before in Section V, the queueing
delay starts to dominate at lower utilization with larger∆.

It appears in Fig. 8 that all contours of queue length are
roughly parallel to the boundary of the full capacity region
(the diagonal dark red line), which may suggest the illusionof
H(N̂) being parallel to full the capacity boundary. We would
point out that this is just a coincidence. In Fig. 9 we plot the
results forkread = 3, kwrite = 2, andnwrite ∈ {2, 3, 4, 5}.
It is clear in this case that the contours are not parallel to the
full capacity boundary, especially for low arrival rates.

B. MBAFEC– Multi-class Backlog-based Adaptive FEC

An important implication of Corollary 1 is that there is a
one to one mapping fromQopt to the corresponding good
code vectorN̂ , since the set of good code vectors is totally
ordered andQopt is an strictly decreasing function of the good
code vectors. Roughly speaking, the largerQopt is, the smaller
(good) code vector should be. This suggests that generalizing
the single-class scheduler BAFEC to accommodate multiple
classes of requests is plausible.

A natural and intuitive way of generalizing BAFEC is to
first enumerate the set of good code vectors using the structure
of good code vectors provided by Eq.6, then sort these code
vectors and solve for the corresponding backlog thresholds
for every pair of consecutive code vectors as we did for the
single-class scheduler BAFEC. At last, depending on which
range between the thresholds the backlog size falls into, we
pick the correspondinĝN . However, this approach is not quite
feasible when the number of classesm is large, mainly due
to the integer requirement for̂N . Notice that Eq.6 can be
converted into a polynomial equation ofni and nj , each
of degree2ki and 2kj respectively. A straightforward way
of finding the set of good codes is to first pick the code
length for a certain class, sayn1 without loss of general-
ity, to be an integer under consideration, then solve Eq.6
numerically for the corresponding code lengths of the other
classes. However, the solutions obtained by doing this are not
necessarily integers. In fact, they will most likely be non-
integers unless the values of∆i, µi, ki’s happen to pair up

perfectly. So for every such fractional solution of̂N (except
for n1), we need to decide which of⌊ni⌋ and ⌈ni⌉ to pick,
for all i 6= 1. There is no obvious way to solve this other
than enumerating all2m−1 potential solutions, computing the
expected delays and picking the best one. So the computational
complexity is exponential inm for each integer value of
n1. Such exponential complexity may be affordable for static
algorithms which assume statistics of task delays (∆ andµ) to
be fixed. But in reality delay statistics of cloud storage systems
vary over time and need to be updated regularly in order to
harvest the best performance. More importantly, stale delay
statistics can be dangerous because if they are too optimistic
compared to reality then the scheduling algorithm will tend
to allocate more tasks per request than it should, which will
result in large backlog and queueing delay. In such cases, the
exponential complexity is forbiddingly expensive.

In fact, the exponential complexity of computing the back-
log thresholds can be avoided. The key is to observe thatQopt

is also a decreasing function of each individualni and there
is also a one to one mapping fromQopt to ni, assuming the
other classes are using the corresponding optimal code lengths.
So instead of adaptinĝN as a whole, adaptation can be done
for eachni separately. So instead of computing one set of
∑m

i=1(n
max
i −ki) backlog thresholds across which a transition

in the code vectorN̂ occurs, we compute one smaller set
of nmax

i − ki thresholds for each classi individually across
which a transition in onlyni occurs. Herenmax

i denotes the
maximum number of tasks allowed for a class-i request. These
two approaches should produce the same set of thresholds but
the separated approach avoids the combinatorial problem of
enumerating the set of good code vectors at the first place.
Denoting{Qi,ki

, · · · , Qi,nmax
i
} as the set of thresholds com-

puted for classi, the pseudo-code for the MBAFEC scheduler
we develop using the separate approach is as follows:

MBAFEC (Multi-class Backlog-based Adaptive FEC)
Do the following for every requestr

1: Q← backlog size upon arrival of requestr.
2: i← class that the requestr belongs to.
3: Find n such thatQ ∈ [0, Qi,n) for n = nmax

i , or Q ∈
[Qi,n, Qi,n−1), or Q ∈ [Qi,n,∞) for n = ki.

4: Serve requesti with an(n, ki) code when it becomes HoL.

To compute the set of thresholds for each class, recall that
Qopt(N̂) stays fixed for all̂Λ ∈ H(N̂) according to Theorem
1. So it suffices to consider rate vectors along a certain
direction specified by a fix composition vector̂α and find
the crossover backlog sizes along that direction. In particular,
for classi, we consider the direction along thei-th axis. In
other words, we consider the class-i-only arrival case with
αi = 1 andαj = 0 ∀j 6= i. In the example of Fig. 8, this
is equivalent to finding the intersections for the boundaries of
layers with the x axis (read-only arrival) in the left plot for
the thresholds of read requests, and finding the intersections
with the y axis (write-only arrival) for write requests. Further,
noticing that MBAFEC behaves identically to BAFEC when
arrivals are single-class, these intersections with thei-th axis
can be computed using Eq.4, with parameters∆i, µi, ki, just
as we do for BAFEC in the previous section.
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(c) Read Heavy – Write Delay (normalized)
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(d) Balanced – Average Delay
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(f) Balanced – Write Delay (normalized)
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Fig. 10. Delay performance from simulations

C. Performance Evaluation of MBAFEC

For performance evaluation, we perform simulations with
m = 2 classes of requests, literally read and write, with
kread = kwrite = 3, nread, nwrite ∈ {3, 4, 5, 6} andL = 16,
using traces we collected in March 2012 and chunk size 1MB.
We simulated three scenarios: read heavy (αread = 0.9),
balanced (αread = 0.5), and write heavy (αread = 0.1).
We also extended Greedy to accommodate multiple classes:
each class-i request uses(min(l, nmax

i ), ki) or (ki, ki) code,
depending on the number of idle threadsl upon arrival.

Fig. 10 illustrates the delay performance for MBAFEC and
Greedy. We also run simulations with fixed FEC scheme with
all 16 combinations of code lengths at every arrival rate of
each scenario and use the best average delays (αreadDread,Y +
αwriteDwrite,Y with Y = mean and 99.9%.Dread,Y and
Dwrite,Y represent the mean and 99.9% delay for read and
write requests), the best delays (mean and 99.9%) for read
requests, and the best delay (mean and 99.9%) for write
requests as baselines. We want to point out here that the
combinations of code lengths that result in the best average
delay, read delay, and write delay are not necessarily the
same. We observe in our simulations that the combination that
results in best read delay usually uses a large code length for

read requests and the minimum code length for write requests
nwrite = kwrite, which results in high write delay. It is the
opposite observation for codes that produce the best write
delay. The combination that produces the best average delay
is usually in between. So in these figures, we are comparing 6
delay metrics of one adaptive scheme MBAFEC (or Greedy)
against multiple fixed FEC schemes, each of which excels in
one particular delay metric.

In the left column of Fig. 10 we plot the average de-
lays. Similar to the results for the single class case, both
MBAFEC and Greedy perform well and achieves roughly the
same average mean delays as the best fixed FEC schemes
throughout the full capacity region. MBAFEC also achieves
the lower envelop of fixed FEC schemes in terms of average
99.9% delay and outperforms Greedy. More interesting are
the middle and right columns, in which we plot the read
and write delays of MBAFEC and Greedy, normalized by
the best corresponding delays with fixed FEC. MBAFEC and
Greedy perform similarly in terms of mean delays and both
stay within 1.5× of the best mean delays with fixed FEC.
Remember this comparison is made against the fixed FEC
scheme that produces the best mean read or write delay,
which is different from the one that produces the best average
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delay. These two adaptive schemes perform quite differently
in terms of 99.9% delays. For 99.9% write delay, MBAFEC
and Greedy are similar and stay within1.5× of the best fixed
FEC for most arrival rates in all three scenarios. On the other
hand, MBAFEC constantly outperforms Greedy significantly
in terms of 99.9% read delays in all three scenarios. MBAFEC
stays within 1.5×, 1.8× and 2.4× of the best delay from
fixed FEC in read heavy, balanced and write heavy scenarios
respectively, while Greedy can perform as bad as2.9×, 3.7×
and 4.2× in each scenario. There are two reasons for such
difference of performance in read and write requests. Firstly,
in our trace read operations have a much larger delay spread
than write operations have. As a result, read requests benefit
significantly by reducing service delay from parallelism with
appropriately chosen code length, while write requests cannot
benefit much due to its smaller delay spread. More importantly,
Greedy is “class-oblivious” and it does not make use of the
difference in delay statistics of different classes of requests in
deciding the code length for each class.

To better understand how MBAFEC and Greedy behave
differently, we plot the code composition (the fractions of
requests served by different code lengths) of read and write
requests using MBAFEC and Greedy from 10% to 100%
utilization levels. Fig. 11 shows the code compositions forthe
balanced arrival scenario (plots for read/write heavy scenarios
are similar). At each utilization level, the four bars represent
the code compositions of read requests with MBAFEC, write
requests with MBAFEC, read requests with Greedy, and write
requests with Greedy, from left to right. For each bar, the col-
ors represent the fraction of requests served with code length
3, 4, 5 and 6, from bottom to top. Generally speaking, both
schemes behave as expected: at low utilization, both schemes
mostly use code length 6 since service delay dominates; as
utilization increases, both become less aggressive and increase
the fraction of requests served by smaller code lengths; at
very high utilization, both reduce to no coding for both read
and write requests (nread = kread andnwrite = kwrite). The
major difference we observe between MBAFEC and Greedy is
that the code compositions for read and write requests differs
significantly with MBAFEC except for at very low and very
high utilization levels, while they are almost identical with
Greedy at all utilization levels. Remember that in Greedy,
the code length used to serve a request is determined by the
number of idle threads upon arrival of the request and the
range of code lengths allowed to serve the request. Since
we assume Poisson arrivals, both read and write requests
should statistically observe the same distribution of number
of idle threads. Also because both read and write requests
have the same range of code lengths in our simulations, they
result in having the same code composition. If different types
of requests have different ranges of code lengths, the code
compositions will be slightly different for the edge cases (not
enough idle threads or too many idle threads). On the other
hand, MBAFEC treats read and write requests very differently,
given that read and write operations have very different delay
distributions. For read requests, since delay of read operations
has a small fixed component (∆read) and a large exponential
tail (µread), the overhead in queueing delay of parallelism is
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Fig. 11. Composition of code lengths. Each group is ordered as [MBAFEC
read, MBAFEC write, greedy read, greedy write].

much smaller than the benefit from service delay. So MBAFEC
is more aggressive in using large code lengths (nread > 3). For
write requests, since write operations has a large fixed delay
component, MBAFEC is more conservative. For medium to
high utilization levels, MBAFEC is even more conservative
than Greedy for write requests (MBAFEC serves fewer write
requests withnwrite ≥ 5 than Greedy does at 80% to 100%
utilization). We also observe that at all utilization level, Greedy
serves most requests with either the maximum or minimum
value ofn while MBAFEC serves a much larger fraction of
requests with medium values ofn. This all-or-nothing behavior
of Greedy is the main reason for its poor performance at high
percentile delays, since the service delay distribution ofsimple
chunking without coding (n = k > 1) is only slightly better
than doing nothing (n = k = 1).

VII. C ONCLUSION AND FUTURE DIRECTIONS

We presented novel solutions that combine parallel thread
scheduling and FEC for accessing data stored in public clouds
substantially faster in the sense of mean, 90th percentile,99th
and higher percentile latencies. The solutions can be applied
to other distributed data storage technologies that exhibit high
delay variations for object or block storage.

In the analysis of the problem, we admitted a mixed traffic
load with multiple classes of files read/write requests. But,
chunk and file sizes of each class were predetermined and
fixed. In general, better performance might be achieved if
chunk size is also adaptable. For example, smallerk could
extend the capacity region at high utilization, and largerk
may reduce service delay at low utilization. Extending the
adaptation schemes in this paper to incorporate adaptive chunk
sizing is the next step in our research plan.

In our work, we neglected the dollar amount cost of using
redundant requests, e.g., Amazon S3 charges 0.01$ per 1000
requests for PUT, COPY, POST, or LIST Requests and 0.01$
per 10,000 requests for GET and all other requests. For now,
by limiting the code rate and level of chunking, we put upper
bounds on these costs in our work. Since not all parts of data
are delay sensitive, such costs can be managed by applying
our techniques on a smaller fraction of the load (e.g., initial
segments of a video file). Extensions to capture the cloud
pricing in the problem formulation and devise scheduling
schemes accordingly are part of our ongoing work.
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APPENDIX

PROOFS OFTHEOREM 1 AND COROLLARY 1

Proof: First observe that the first term of the objective
approaches∞ asλα̂T Û → L and the second term approaches
∞ asni → ki− 1. Since both terms are lower bounded by 0,
it follows that the objective approaches∞ at the boundary of
the feasible region. Together with the fact that the objective is
a strictly convex function ofN̂ , it follows that for any given
feasibleΛ̂, the optimal solutionN̂∗(Λ̂) is strictly inside the
feasible region. Since the objective is differentiable, its partial
derivative equals0 only at N̂∗. In other words, if for somêN

∂D

∂ni
=

∂

∂α̂T Û

(

βλ(α̂T Û)2

2L(L− λα̂T Û)

)

∂α̂T Û

∂ni
+ αi

∂Ds,i

∂ni

=
βαi∆i

2L

(

L2

(L− λα̂T Û)2
− 1

)

−
αi

µi
si

equals to 0 for alli, thenN̂ = N̂∗(Λ̂). Heresi = −µi
∂Ds,i

∂ni
=

∑ki−1
j=0

1
(ni−j)2 . This condition is equivalent to

L2

(L − λα̂T Û)2
− 1 =

2L

β

si
∆iµi

∀i. (7)

Due to the uniqueness of the optimal solution, the other
direction is also true: for any given good code vectorN̂ , if Λ̂
satisfies Eq.7, then̂N = N̂∗(Λ̂) or equivalentlyΛ̂ ∈ H(N̂).

An important property of good code vectors implied by Eq.7
is that all good code vectors line up on the curve specified by

si
∆iµi

=
sj

∆jµj
∀ i, j. (8)

Given this, for any goodN̂ , denoteπ(N̂) = 2L
β

si
∆iµi

for any
i, when Eq.8 is satisfied. Then Eq.7 can be rewritten as

Λ̂T Û = L− L/

√

1 + π(N̂ ) , const(N̂). (9)

In other words,H(N̂) = {Λ̂|Λ̂T Û(N̂ ) = const(N̂)}.
It is obvious thatπ(N̂) is strictly decreasing ofni > ki−1,

for all i. So π() is invertible and for anya > b in the range
of π() we haveπ−1(a) ≺ π−1(b). This implies that the good
code vectors are totally ordered in decreasing order ofπ().

Consider any two good code vectorŝN ≻ N̂ ′. For any
Λ̂ ∈ H(N̂), Λ̂T Û(N̂) = const(N̂). Note that const(N̂)
is a strictly increasing function ofπ(N̂ ), so it is a strictly
decreasing function of̂N . Henceconst(N̂) < const(N̂ ′), and
we haveΛ̂T Û(N̂ ′) < Λ̂T Û(N̂) = const(N̂) < const(N̂ ′).
The first inequality is due to the fact that botĥΛ and Û are
> 0. Now we can conclude that anŷΛ ∈ H(N̂) is strictly
within the convex hull defined byH(N̂ ′) and the origin. So
H(N̂) ≺ H(N̂ ′).

It is easy to verify thatQopt(N̂) is an increasing function
of const(N̂). Sinceconst(N̂) is a decreasing function of̂N ,
Qopt(N̂) is a decreasing function of̂N .
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