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Throughput of Rateless Codes over Broadcast
Erasure Channels
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Abstract—In this paper, we characterize the throughput of
a broadcast network with n receivers using rateless codes
with block size K. We assume that the underlying channel
is a Markov modulated erasure channel that is i.i.d. across
users, but can be correlated in time. We characterize the
system throughput asymptotically in n. Specifically, we
explicitly show how the throughput behaves for different
values of the coding block size K as a function of n, as
n → ∞. For finite values of K and n, under the more
restrictive assumption of Gilbert-Elliott channels, we are
able to provide a lower bound on the maximum achievable
throughput. Using simulations we show the tightness of the
bound with respect to system parameters n and K, and
find that its performance is significantly better than the
previously known lower bounds.

I. INTRODUCTION

In this work1, we study the throughput of a wireless
broadcast network with n receivers using rateless codes.
In this broadcast network, channels between the trans-
mitter and the receivers are modeled as packet erasure
channels where transmitted packets may either be erased
or successfully received. This model describes a situation
where packets may get lost or are not decodable at the
receiver due to a variety of factors such as channel fading,
interference or checksum errors. We assume that the
underlying channel is a Markov modulated packet erasure
channel that is i.i.d. across users, but can be correlated in
time. We let γ denote the steady state probability that a
packet is transmitted successfully on the erasure channel.

Instead of transmitting the broadcast data packet one
after another through feedback and retransmissions, we
investigate a class of coding schemes called rateless codes
(or fountain codes). In this coding scheme, K broadcast
packets are encoded together prior to transmission. K is
called the coding block size. A rateless encoder views
these K packets as K input symbols and can gener-
ate an arbitrary number of output symbols (which we
call coded packets) as needed until the coding block
is decoded. Although some coded packets may get lost
during the transmission, rateless decoder can guarantee
that any K(1 + ε) coded packets can recover the original
K packets with high probability, where ε is a positive
number that can be made arbitrarily small at the cost
of coding complexity. Examples of rateless erasure codes
include Raptor codes [2], LT Codes [3] and random
linear network codes [4], where the former two are more
efficient when K is very large and random linear network
code is more efficient when K is relatively small and

the field size of packets is large. The best encoding and
decoding complexity of rateless codes (e.g. Raptor codes)
increase linearly as the coding block size K increases.
Further, increasing the coding block size can result in
large delays and large receiver buffer size. Therefore, real
systems always have an upper bound on the value of K.

We consider broadcast traffic and a discrete time que-
ueing model, where the numbers of packet arrivals over
different time slots are independent and identically dis-
tributed and the packet length is a fixed value. We let
λ denote the packet arrival rate and assume that the
encoder waits until there are at least K packets in the
queue and then encodes the first K of them as a single
coding block. In this case, the largest arrival rate that
can be stabilized is equal to the average number of
packets that can be transmitted per slot, which we call
the throughput. Therefore, we only need to characterize
the throughput that can be achieved using rateless codes
under parameters K and n. As described in Figure 1,
the channel dynamics for the ith receiver is denoted by
a stochastic process {Xij}j∈N, where j is the index of
the time slot in which one packet can be transmitted
and Xij is the channel state of ith receiver during the
transmission of the jth packet. We capture a fairly general
correlation structure by letting the current channel state
be impacted by the channel states in previous l time slots,
where l can be any number. As the number of receivers
n approaches infinity, we show that the throughput is
nonzero only if the coding block size K increases at least
as fast as log n. In other words, if c , limn→∞

K
logn , the

asymptotic2 throughput is positive whenever c > 0. In
Theorem 1, by utilizing large deviation techniques, we
give an explicit expression for the asymptotic throughput,
which is a function of K, n, γ and the channel correlation
structure.

To study the non-asymptotic behavior of the system,
we make a more restrictive channel assumption that the
current channel state is impacted by only the channel
state in previous 1 time slot, which is the so called Gilbert-
Elliott channel model. In this case, for any finite K and
n, we find a lower bound on the throughput in terms
of the transmission time of a system with larger K and
n. As a special case when the channels are memoryless,
if K

logn is kept constant, this lower bound reveals that

1. The preliminary version of this paper has appeared in [1].
2. the asymptotic is with respect to increasing the number of re-

ceivers n

ar
X

iv
:1

20
7.

72
98

v1
  [

cs
.N

I]
  3

1 
Ju

l 2
01

2



2

Arrival with rate λ

K:
coding block size

n: number of receivers

{X1j} {X2j} {Xnj}

Fig. 1: Broadcast with discrete time queueing model

the throughput will follow a decreasing pattern as the
number of receivers n increases. By combining this result
with the characterization of the asymptotic throughput,
we are able to provide a lower bound on the maximum
achievable throughput for any finite values of K and n.
This lower bound captures the asymptotic throughput in
the sense that when n approaches infinity, it coincides
with the asymptotic throughput.

A. Related Work

Among the works that investigate the throughput over
erasure channels, [5], [6], [7] and [8] are the most
relevant to this work. In [7], the authors investigate the
asymptotic throughput as a function of n and K and
also show that the asymptotic throughput will be non-
zero only if K at least scales with log n. However, they
only consider the channel correlation model with l = 1
and use a completely different proof technique. Moreover,
no explicit expression on the asymptotic throughput is
provided. In [5] and [6], two lower bounds on the
maximum achievable rate λ are provided. However, their
bound does not converge to the asymptotic throughput
when n approaches infinity. Moreover, our bound is shown
to be better in a variety of simulation settings with finite
K and n, as will be showed in Section V. In [8], the
authors consider the case when instantaneous feedback is
provided from every user after the transmission of each
decoded packets, while we only assume that feedback is
provided after the entire coding block has been decoded.

B. Key Contributions

The main contributions of this work are summarized as
follows:
• We give an explicit expression for the asymptotic

throughput of the system when the number of re-
ceivers n approaches infinity for any values of K as
a function of n under the erasure channel with any
levels of correlation. (Theorem 1)

• Under the Gilbert-Elliott channel model (l = 1), for
any finite K and n, we find a lower bound on the
throughput in terms of the transmission time of a
system with larger K and n. As a special case, when
channels are memoryless (l = 0), this lower bound
reveals that when K grows with n in a way that the
ratio K

logn is kept constant, the throughput follows a
decreasing pattern as n increases. (Theorem 2)

• We provide an asymptotically tight lower bound on
the maximum achievable throughput for any values
of K and n under the Gilbert-Elliott channel model
(l = 1) and show that its performance is significantly
better than the previously known bounds in [5] and
[6]. (Theorem 3)

The rest of this paper is organized as follows. In
Section II we describe our model and assumptions. In
Section III we give the characterization of the asymptotic
throughput. In Section IV we provide a lower bound on
the maximum achievable throughput for any finite values
of K and n. In Section V we use simulations to verify our
theoretical results. Detailed proofs on all the theorems can
be found in Section VI. Finally, in Section VII, we conclude
the paper.

II. SYSTEM MODEL

We consider a broadcast channel with n receivers. Time
is slotted, and the numbers of broadcast packet arrivals
over different time slots are i.i.d. with finite variance. We
denote the expected number of packet arrivals per slot
as the packet arrival rate λ. The transmission starts when
there are more than K packets waiting in the incoming
queue intended for all the receivers. Instead of transmit-
ting these packets one after another using feedback and
retransmissions, we view each data packet as a symbol
and encode the first K of them into an arbitrary number
of coded symbols as needed using rateless code (For
example, Raptor Code [2] or random linear network code
[4]) until the coding block is decoded. These K packets
together form a single coding block with K being called
block size. During the transmission, the coded symbols
are transmitted one after another.

Each receiver sends an ACK feedback signal after it has
successfully decoded the K packets. In the following con-
text, the term packet and symbol are used interchangeably.

We model the broadcast channel as a slotted broadcast
packet erasure channel where one packet can be trans-
mitted per slot. The channel dynamics can be represented
by a stochastic process {Xij}1≤i≤n,j∈N, where Xij is the
state of channel between transmitter and the ith receiver
during the transmission of jth packet (we also call it the
jth time slot in the ith channel), which is given by

Xij =

 1 jth packet in the ith channel is
successfully received

0 otherwise
.

We assume that the dynamics of the channels for different
receivers are independent and identical. More precisely,
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for all 1 ≤ i ≤ n, {Xij}j≥1 are independent and identical
processes.

Since, in practice, the channel dynamics are often tem-
porarily correlated, we investigate the situation where the
current channel state distribution depends on the channel
states in the preceding l time slots. More specifically, for
Fim = {Xij}j≤m and fixed l, we define Him = {Xim, . . . ,
Xi(m−l+1)} for m ≥ l ≥ 1 with Him = {∅,Ω} for l = 0,
and assume that P[Xi(m+1) = 1|Fim] = P[Xi(m+1) =
1|Him] for all m ≥ l. To put it another way, when l ≥ 1,
the state

(
Xim, . . . , Xi(m−l+1)

)
, m ≥ l forms a Markov

chain. Denote by Π the transition matrix of the Markov
chain

{(
Xim, . . . , Xi(m−l+1)

)}
m≥l, where

Π = [π(s, u)]s,u∈{0,1}l ,

with π(s, u) being the one-step transition probability from
state s to state u. Throughout this paper, we assume that
Π is irreducible and aperiodic, which ensures that this
Markov chain is ergodic [9]. Therefore, for any initial
value Hl, the parameter γi is well defined and given by

γi = lim
m→∞

P[Xim = 1],

and, from the ergodic theorem [9] we know

P

[
lim
m→∞

∑m
j=1Xij

m
= γi

]
= 1.

Since {Xij}j≥1 for all 1 ≤ i ≤ n are i.i.d., we denote
γ = γi, for all 1 ≤ i ≤ n.

Using near optimal rateless codes, such as Raptor Codes
[2], LT Codes [3] and random linear network codes [4],
only slightly more than K coded symbols are needed to
decode the whole coding block. For simplicity, here we
assume that any combination of K coded symbols can
lead to a successful decoding of the K packets.

According to the above system model, we have the
following definitions:

Definition 1: The number of time slots (number of
transmitted coded symbols) needed for user i to success-
fully decode K packets is defined as

Ti(K) = min

{
m

∣∣∣∣ m∑
j=1

Xij ≥ K
}
.

Definition 2: The number of time slots (number of
transmitted coded symbols) needed to complete the trans-
mission of a single coding block to all the receivers is
defined as

T (n,K) = max {Ti(K), i = 1, 2, . . . , n} .

Definition 3 (Initial State): Since the current channel
state depends on the channel states in the previous l time-
slots, for each receiver i, by assuming that the system
starts at time slot 1, we define the initial state of receiver
i as

Ei =
[
Xi(−l+1), Xi(−l+2), . . . , Xi0

]
∈ {0, 1}l.

The initial state for all the receivers is then denoted as
E , [E1, E2, . . . , En].

Definition 4 (Throughput): For a system with an infi-
nite backlog of packets, we define throughput η(n,K)
as the long term average number of packets that can be
transmitted per slot. More precisely,

η(n,K) = K × lim
t→∞

R(t)

t
,

where R(t) is the number of successfully transmitted
coding blocks in t time slots. For any finite values of
K and n, it is easy to check that {Eh, Th(n,K)}h is a
finite-state ergodic Markov renewal process, where Eh
and Th(n,K) denote the initial state and the transmission
time of the hth coding block, respectively. Then, R(t) is the
total number of state transitions that occur in t time slots
of this Markov renewal process. Therefore, from [10] we
know that

η(n,K)
a.s.
=

K

E[T (n,K)]
=

K

E[E[T (n,K)|E ]]
, (1)

where the outer expectation in the last term denote the
expectation with respect to the steady state distribution
of the embedded Markov chain {Eh}h.

III. ASYMPTOTIC THROUGHPUT

Before presenting the main results, we need to intro-
duce some necessary definitions. First, define a mapping f
from the state space of the Markov chain {0, 1}l to {0, 1}
as

f
(
(Xim, . . . , Xi(m−l+1))

)
= Xim.

Then, given a real number θ, we define a matrix Πθ as

Πθ =

{ [
π(s, u)eθf(u)

]
s,u∈{0,1}l when l ≥ 1[

γeθ
]

when l = 0
.

Last, define a standard large deviation rate function
Λ(β,Π) as

Λ(β,Π) = sup
θ
{θβ − log ρ(Πθ)}, (2)

where ρ(Πθ) denotes the Perron-Frobenious eigenvalue
of Πθ (See Theorem 3.1.1 in [11]), which is the largest
eigenvalue of Πθ.

The asymptotic throughput for any values of K as a
function of n is characterized by the theorem below:

Theorem 1: Assume that K is a function of n and
the value of limn→∞

K
logn exists, which we denote by

c , limn→∞
K

logn , then we have

lim
n→∞

η(n,K) = sup

{
β

∣∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
. (3)

Proof: see Section VI-A.
From Theorem 1, we know that, if the coding block
size K is set to be a function of the network size n,
then we can characterize the asymptotic throughput when
n approaches infinity in an explicit form. Equation (3)
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implies that the asymptotic throughput is a function of
γ, limn→∞K/ log n and the channel correlation structure
indicated by Π.

By Theorem 1, the asymptotic throughput in the special
cases when K ∈ o(log n) and K ∈ ω(log n) are given in
the following corollary.

Corollary 1.1: Assume that K is a function of n. We
then have

1) if K ∈ o(log n), then3

lim
n→∞

η(n,K) = 0.

2) if K ∈ ω(log n), then

lim
n→∞

η(n,K) = γ.

Proof: 1) If K ∈ o(log n), then c = limn→∞
K

logn = 0
and we have{

β

∣∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
= {0} .

According to Theorem 1, we get

lim
n→∞

η(n,K) = sup{0} = 0.

2) If K ∈ ω(log n), then c = limn→∞
K

logn = ∞ and we
have {

β

∣∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
= [0, γ).

According to Theorem 1, we get

lim
n→∞

η(n,K) = sup[0, γ) = γ.

Corollary 1.1 says that the throughput will vanish to 0
as n becomes large, when K does not scale as fast as
log n. Whereas when K scales faster than log n (Or more
specifically, when K ∈ ω(log n)), throughput approaches
the capacity γ of the system in the limit. It should be
noted that Theorem 1, together with Corollary 1.1, are
a generalized version of Theorem 1 in [7], which only
consider the case when l = 1 and does not give an explicit
expression for the asymptotic throughput.

As a special case when the channels are memoryless
(l = 0), we can express Λ(β,Π) in a closed form, as shown
in the corollary below.

Corollary 1.2: Assume that K is function of n and the
channels are memoryless (l = 0), we have
if limn→∞

K
logn = c, where c is a positive constant, then

lim
n→∞

η(n,K) =

sup

{
β

∣∣∣∣ log
β

γ
+

1− β
β

log
1− β
1− γ ≥

1

c
, 0 ≤ β < γ

}
. (4)

Proof: When l = 0, Πθ = [γeθ] is a degenerate matrix
with a single entry and ρ(Πθ) = ρ(γeθ) = γeθ. Therefore
we have, according to Equation (2),

Λ(β,Π) = β log
β

γ
+ (1− β) log

1− β
1− γ .

IV. THROUGHPUT LOWER BOUND FOR FINITE K AND n

For all rateless coding schemes, the encoding and de-
coding complexity increases linearly in K, the size of
the coding block. Moreover, the value of K determines
the receiver buffer size. Therefore, in reality, the value
of K is often limited by the decoder buffer size or the
computational power of both sender and receiver. We then
have to consider the case when K is finite and need to
answer the following questions: For a given number of
receivers n, channel statistics, and a maximum available
coding block size K, what is maximum packet arrival rate
λ that can be supported by this system? For a specific
number of receivers and channel statistics, if we are given
a target packet arrival rate λ, how can we design the value
of K in the system such that the target arrival rate can
be supported?

In order to answer these questions, we make a more
restrictive channel assumption that the current channel
state is impacted by only the channel state in the previous
1 time slot. In other words, we have the Gilbert-Elliott
channel model. Under this model, for any receiver 1 ≤ i ≤
n, the channel states {Xij}j∈N evolve with j according to
a two state Markov chain as illustrated in Figure 2. Here,
p01 and p10 are the transition probabilities between state
0 and state 1, and system capacity γ = p01/(p10 + p01).
Based on this model, in the theorem below, we find a
lower bound on the throughput for any n and K in terms
of the expected transmission time of a system with larger
n and K.

0 1

p
01

p
10

p
011- p

101-

Fig. 2: Gilbert-Elliott Channel Model

Theorem 2: Under the Gilbert-Elliott channel model
(l = 1) as illustrated in Figure 2, for any n ∈ N K ∈ N
and α ∈ N, we have4

η(n,K) >
αK

E [T (nα, α(K +K0))|E = 1nα ]
,

where

K0 = min

{
m ≥ 0

∣∣∣∣∣
m∑
d=0

(1− p10)dp10 + p01 ≥ 1

}
.

Remark 2.1: Observe that K0 is independent of the
choice of n and K and is only a function of channel
dynamics. K0 = 0 if and only if p01 + p10 ≥ 1.

Proof: see Section VI-B.
When the channels are memoryless, the above theorem

reduces to a simpler form, as shown in the following
corollary.

3. We use standard notations: f(n) = o(g(n))

if limn→∞
f(n)
g(n)

= 0 and f(n) = ω(g(n)) if limn→∞
f(n)
g(n)

diverges

4. We denote an all-one vector with dimension m as 1m
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Corollary 2.1: When the channels are memoryless (l =
0), for any n ∈ N,K ∈ N and α ∈ N, we have

η(n,K) > η(nα, αK).

Remark 2.2: While Theorem 1 tells us that in order to
achieve nonzero throughput, we can double the coding
block size K for every quadratic increase of n, which
is to make K/ log n a fixed value, it does not tell us
anything about how the throughput will converge as n
approaches infinity. This corollary indicates that under the
memoryless channel assumption, if we adapt the coding
block size K with the increase of network size n in a way
that K/ log n is kept as a fixed value, then the throughput
will follow a decreasing pattern before it reaches the
asymptotic throughput.

Proof: The memoryless channels can be considered as
a special case of the Gilbert-Elliott channels when p10 =
1− γ, p01 = γ and K0 = 0, then by Theorem 2,

η(n,K) >
αK

E [T (nα, αK)|E = 1nα ]

=
αK

E[T (nα, αK)]
= η(nα, αK).

The last equation follows by noting that T (nα, αK) is
independent of initial state E when the channels are
memoryless.

By the help of the Theorem 1 and Theorem 2, we can
get a lower bound on the maximum stable throughput
that can be achieved for any finite values of coding block
size K and network size n, as shown in the theorem
below.

Theorem 3: For a broadcast network with n receivers,
and coding block size K, under the Gilbert-Elliott channel
model (l = 1), the throughput is lower bounded by

η(n,K) >
K

K +K0
R
(
K +K0

log n

)
,

and thus the system with packet arrival rate λ is stable if

λ ≤ K

K +K0
R
(
K +K0

log n

)
,

where

R (r) = sup

{
β

∣∣∣∣r ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
, and

K0 = min

{
m ≥ 0

∣∣∣∣∣
m∑
d=0

(1− p10)dp10 + p01 ≥ 1

}
.

Remark 3.1: As a special case, when the channels are
memoryless, we have p10 = 1 − γ and p01 = γ. It is easy
to obtain that K0 = 0. Therefore,

η(n,K)

> sup

{
β

∣∣∣∣ log
β

γ
+

1− β
β

log
1− β
1− γ ≥

log n

K
, 0 ≤ β < γ

}
,

and the system with packet arrival rate λ is stable if

λ ≤ sup

{
β

∣∣∣∣ log
β

γ
+

1− β
β

log
1− β
1− γ ≥

log n

K
, 0 ≤ β < γ

}
.

Proof: From Equation (9) in Lemma 1 we can see
that when K and n are finite, the transmission time of
a coding block T (n,K) is light-tail distributed, meaning
that it has finite variance. Then according to [12], using
Lyapunov method we know that the queue will be stable
if the traffic intensity of this queue, which is defined as
the packet arrival rate λ over the service rate, is less than
1. Therefore, the queue will be stable if the arrival rate λ
satisfies

λ < sup

{
µ

∣∣∣∣ µ

K/E[T (n,K)]
< 1

}
= η(n,K). (5)

By Theorem 2 we know that, for any integer values of α

η(n,K) >
αK

E [T (nα, α(K +K0))|E = 1nα ]
,

implying that

η(n,K)

> lim
α→∞

K

K +K0

α(K +K0)

E [T (nα, α(K +K0))|E = 1nα ]
. (6)

Since α(K +K0)/ log nα = (K +K0)/ log n for any value
of α, then by Equation (17) in the proof of Theorem 1,
we get

lim
α→∞

α(K +K0)

E [T (nα, α(K +K0))|E = 1nα ]

= sup

{
β

∣∣∣∣K +K0

log n
≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
=R

(
K +K0

log n

)
,

which, by combining Equation (5) and Equation (6),
completes the proof.

In order to compare this lower bound on the maximum
achievable rate with the existing bounds given in [5] and
[6], we restate Theorem 2 in [5] and Theorem 7 in [6]
as the following.

Theorem 4 (Theorem 2 in [5] and Theorem 7 in [6]):
In a broadcast network with n receivers, coding block
length K and packet arrive rate λ,

1) when the channels are memoryless (l = 0) with
erasure probability 1−γ and K > 16, the system is stable
if

λ <
(1− γ)K

K + (log n+ 0.78)
√
K + 2.61

.

2) For Gilbert-Elliott channels (l = 1) with state transi-
tion probability p10 and p01, when 1− p10 − p01 ≥ 0 and
K ≥ 21 log n− 4, the system is stable if

λ <
p01K

K + 2
√

(0.78K + 3.37) log n+ 2.61
.

For ease of notation let us denote the bounds given
in Theorem 4 as the CSE bound 1 and CSE bound 2
respectively using the initials of the authors’ last name.

Firstly we should note that the CSE bounds are only
valid when K and n satisfy certain conditions, while our
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bound is valid for any finite values of K and n. Secondly,
our bound converges to the asymptotic throughput in the
sense that as n approaches infinity while keeping K/ log n
as a constant c, our bound on the maximum achievable
rate will converge to the asymptotic throughput with
parameter c. Or more specifically,

lim
n→∞

K

K +K0
R
(
K +K0

log n

)
=R

(
lim
n→∞

K +K0

log n

)
= R (c) = lim

n→∞
η(n,K), (7)

which can be seen from Theorem 1 and Theorem 3.
However, the CSE bounds are not asymptotically tight.
When we keep the ratio K/ log n to be a constant c, as
n or K approaches infinity, CSE bound 1 even becomes
trivial (approach 0), which can be seen from the equation
below.

lim
K→∞

(1− γ)K

K + (log n+ 0.78)
√
K + 2.61

= lim
K→∞

(1− γ)

1 + (1/c+ 0.78/K)
√
K + 2.61/K

=0. (8)

Next, in Section V, we show that our bound outperforms
the CSE bounds under various simulation settings.

V. SIMULATION

In this Section, we conduct simulation experiments to
verify our main results.

A. Example 1
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Fig. 3: Illustration for example 1

This example verifies Theorem 1, Corollary 2.1, and
Theorem 3. We choose a memoryless channel with γ =
0.5. By keeping K/ log n as a constant 15/ log 2, we change
K from 5 to 300 and calculate the maximum achievable
rate, which is η(n,K), through simulations for each pair
of (K,n). Since the value of our bound is a function of
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Fig. 4: Illustration for example 2

the ratio K/ log n, in this case, it is a constant for all K
and is equal to the asymptotic throughput with parameter
15/ log 2. From Figure 3 we can see that as K approaches
infinity, the maximum achievable rate converges to our
lower bound (which is also the asymptotic throughput
in this case) in a decreasing manner, which validates
Theorem 1, Corollary 2.1 and Theorem 3.

In this case, we also plot the CSE lower bounds given
by Theorem 4. From the figure we can see that our
bounds outperforms the CSE lower bounds. CSE bound
1 gradually approaches zero as indicated by Equation (8)
while our bound is a constant value and asymptotically
tight as shown in Equation (7).

B. Example 2

In order to verify Theorem 3 under the Gilbert-Elliott
channel model, we choose the state transition probability
p10 = p01 = 0.4. It is easy to obtain that γ = 0.5 and
K0 = 1. By keeping K/ log n as a constant 5/ log 2 and
changing K from 5 to 100, we plot in Figure 4 both the
simulation result of the maximum achievable rate and our
lower bound shown in Theorem 2. Again, as we can see
from the figure, the lower bound becomes tighter as K
increases. Eventually the maximum achievable rate will
converge to the lower bound as shown in Equation (7).
However, neither of the CSE lower bounds is valid under
this system setting.

C. Example 3

In this example, we conduct three set of experiments
under the memoryless channel assumption with different
values of K as a function of n, and show that our
bound outperforms the CSE bound in all these simulation
settings.

In the first case, we set the coding block size K to be the
same as the network size n and change n from 5 to 300.
We plot the simulation result of the maximum achievable
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Fig. 5: Illustration for example 3

rate as well as our bound and the CSE bound in Figure 5a,
since in this case K scales faster than log n, the achievable
rate will approach system capacity γ as the network size
n grows.

In the second case, we assume that the number of
receivers is fixed to be 10 and we increase coding block
size K from 5 to 300. The simulations result, together with
the two bounds, are plotted in Figure 5b. In this case, the
achievable rate will also approach system capacity γ as n
increases.

In the final case, as shown in Figure 5c, we keep the
coding block size to be a constant 80 and increase the
number of receivers from 5 to 100. Since K does not
increase with log n at all, the achievable rate will vanish
to 0 as n grows.

From Figures 3, 5a, 5b and 5c, we can see that our
bound obtained by Theorem 3 is significantly better than
the lower bounds achieved in [5] and [6] in all these four
different cases.

VI. PROOFS

A. Proof of Theorem 1

In order to prove Theorem 1, we first need the following
lemmas (Lemma 1, Lemma 2 and Lemma 3).

Lemma 1: For any β ∈ (0, 1) and any values of E , we
have

P
[
T (n,K) >

k

β

∣∣∣K = k, E
]

=1−
(

1− e− kβΛ(β,Π)1(β<γ)+g(β,k,E)
)n

, (9)

where

g(β, k, E) ∈
{
o(k) as k →∞ if β < γ
o(1) as k →∞ if β > γ

.

Proof of Lemma 1: From definition (1) and (2), we
have, for any t,

{T (n,K) ≤ t, E} =

n⋂
i=1

{Ti(K) ≤ t, Ei} .

Therefore, we have

P[T (n,K) > t|K = k, E ]

=1− P[T (n,K) ≤ t|K = k, E ]

=1−
n∏
i=1

(1− P[Ti(K) > t|K = k, Ei]) . (10)

Let t = k
β , from definition 1 we can get, for any 1 ≤ i ≤ n,

P
[
Ti(K) >

k

β

∣∣∣K = k, Ei
]

=P

k/β∑
j=1

Xij < k

∣∣∣∣∣Ei


=P

[∑k/β
j=1Xij

k/β
< β

∣∣∣∣∣Ei
]
.

and

lim
k→∞

logP
[
Ti(K) > k

β

∣∣∣K = k, Ei
]

k/β
= −Λ(β,Π)1(β < γ),

(11)

with the last equation being a direct application of
Theorem 3.1.2 in [11] (Gärtner-Ellis Theorem for finite
state Markov chains). Notice that the right hand side of
Equation (11) is fixed for all possible values of i and Ei
as long as the values of β and Π are fixed. Then the proof
completes by combining (10) and (11).

Lemma 2: Assume k is a function of n and denote k :=
k(n), and define f(k, β, E) := e

k
βΛ(β,Π)1(β<γ)−g(β,k,E),

then we have

1) For a fixed β ∈ (0, 1), if limn→∞
n

f(k(n),β,E) = 0, then

lim
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

= 0. (12)

2) For a fixed β ∈ (0, 1), if limn→∞
n

f(k(n),β,E) = ∞,
then

lim
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

= 1. (13)
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Proof of Lemma 2: According to Lemma 1 and the
definition of f(k(n), β, E), we have

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

=1−
(

1− 1

f(k(n), β, E)

)n
=1−

[(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

.

Since the function
(
1− 1

x

)x
with domain (1,+∞) is

a bounded and strictly increasing function with region
(0, e−1) and the fact that f(k, β) > 1, we know that if
limn→∞

n
f(k(n),β,E) =∞, then

lim inf
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

=1− lim sup
n→∞

[(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

≥1− lim sup
n→∞

e−
n

f(k(n),β,E)

=1,

which, together with the fact that P
[
T (n,K) > k(n)

β

∣∣K =

k(n), E
]
≤ 1, yields Equation (13).

If limn→∞
n

f(k(n),β,E) = 0, then f(k(n), β, E) → ∞ as
n→∞, which results in

lim
n→∞

(
1− 1

f(k(n), β, E)

)f(k(n),β,E)

= e−1.

Then we can obtain

lim sup
n→∞

P
[
T (n,K) >

k(n)

β

∣∣∣K = k(n), E
]

=1− lim inf
n→∞

[(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

=1−

lim inf
n→∞

[
lim
n→∞

(
1− 1

f(k(n), β, E)

)f(k(n),β,E)
] n
f(k(n),β,E)

=1− 1 = 0,

which leads to Equation (12).
Lemma 3: Let {hn(x)} be a set of Lebesgue measur-

able functions defined on [0,∞) and hn(x) converges to
1(x < y) almost everywhere for some y > 0. If hn(x) is
a decreasing function of x and have the range [0, 1] for
any n ∈ N, then hn(x) converges globally in measure to
1(x < y).

Proof: Choose ε > 0. Since hn(x) converges to 1(x <
y) almost everywhere, for any δ > 0, we can find N ∈ N
such that for any n > N , we have

|hn (y − δ/2)− 1| < ε

|hn (y + δ/2)− 0| < ε.

Since 0 ≤ hn(x) ≤ 1 for any x ∈ [0,∞) and hn(x) is a
decreasing function of x, we know that, for any n > M ,

hn(x) > 1− ε ∀x < y − δ/2
hn(x) < ε ∀x > y + δ/2.

Therefore, for any n > N ,

ν ({|hn(x)− 1(x < y)| > ε})
<ν([y − δ/2, y]) + ν([y, y + δ/2]) = δ,

where ν is the Lebesgue measure. Since ε and δ are
arbitrarily chosen, from the above inequality we know
that hn(x) converges globally in measure to 1(x < y).

With Lemma 1,2 and 3 established, we now turn to the
proof of Theorem 1.

Proof of Theorem 1: Since K is assumed to be a
function of n, we denote this function as k(n). According
to definition 4 we have,

lim
n→∞

(η(n,K))
−1

= lim
n→∞

E

[
E
[
T (n,K)

∣∣E]
K

]
. (14)

Next, we obtain the value of limn→∞ E[T (n,K)|E ]/K and
show that it is independent of E . Note that

lim
n→∞

E
[
T (n,K)

K

∣∣∣E]
= lim
n→∞

∫ ∞
0

P [T (n,K) > s|K = k(n), E ]

k(n)
ds

= lim
n→∞

∫ ∞
0

P [T (n,K) > k(n)u|K = k(n), E ] du. (15)

According to the assumption that limn→∞ k(n)/ log(n) =
c, we have

lim
n→∞

n

e
k(n)
β Λ(β,Π)1(β<γ)−g(β,k,E)

=

{
0 c > β

Λ(β,Π)1(β<γ)

∞ c < β
Λ(β,Π)1(β<γ)

.

Since β
Λ(β,Π)1(β<γ) |β=0 = 0, limβ→γ−

β
Λ(β,Π)1(β<γ) = ∞

and β
Λ(β,Π)1(β<γ) is a monotone increasing function on

the domain (0, γ), the equation c = β
Λ(β,Π)1(β<γ) has only

one solution of β, which we denote as

βc = sup

{
β
∣∣∣c ≥ β

Λ(β,Π)
, 0 ≤ β < γ

}
.

Then, by Lemma 2, we get

lim
n→∞

P
[
T (n,K) > k(n)u

∣∣K = k(n), E
]

=

{
1 if u < 1

βc

0 if u > 1
βc

. (16)

We let hn(u) , P
[
T (n,K) > k(n)u

∣∣K = k(n), E
]
. Equa-

tion (16) implies that hn(u) converges to 1(u < 1/βc)
pointwisely. Since hn(u) is a decreasing function of u and
has the range [0, 1] for all n, by Lemma 3 we know that
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hn(u) globally converges in measure to 1(u < 1/βc). We
also know that the set of function {hn(u)} is uniformly
bounded. Then we can apply Vitali convergence theorem
to Equation (15) to exchange the limit and integral and
obtain

lim
n→∞

E
[
T (n,K)

K

∣∣∣E]
=

∫ ∞
0

lim
n→∞

P
[
T (n,K) > k(n)u

∣∣K = k(n), E
]
du =

1

βc
.

(17)

Note that the above result is independent of the choice of
the initial state E . Since the cardinality of the state space
of E is finite for a finite value of n, we can exchange
the limit and expectation in Equation (14), which, after
combining with the above equation, completes the proof.

B. Proof of Theorem 2.

Let us define two random variables T (0) and T (1) under
the Gilbert-Elliott channels as

T (0) = min
m

{
m

∣∣∣∣ m∑
j=1

X1j ≥ 1, X10 = 0

}
, (18)

T (1) = min
m

{
m

∣∣∣∣ m∑
j=1

X1j ≥ 1, X10 = 1

}
. (19)

In order to prove Theorem 2, we first need the following
lemma.

Lemma 4: Let
{
T

(1)
d

}
d∈N be i.i.d. random variables

with the same distribution as T (1), then we have

K0+1∑
d=1

T
(1)
d � T (0),

meaning that
∑K0

d=1 T
(1)
d is stochastically greater than or

equal to T (0), where

K0 = min

{
m ≥ 0

∣∣∣∣∣
m∑
d=0

(1− p10)dp10 + p01 ≥ 1

}
. (20)

Proof of Lemma 4: First observe that
∑∞
d=0(1 −

p10)dp10 = 1, which makes sure that K0 in Equation (20)
is well defined.

Then according to the definition of T (0) and T (1) in
Equations (18) and (19), we have, for any integer 1 ≤
t ≤ K0 + 1,

P

[
K0+1∑
d=1

T
(1)
d > t

]
= 1 ≥ P

[
T (0) > t

]
, (21)

and for any integer t > K0 + 1,

P

[
K0+1∑
d=1

T
(1)
d > t

]

≥
K0+1∑
d=1

P
[
T (1) > 1

]
P
[
T (1) = 1

]d−1

P
[
T (0) > t− d

]
≥
K0+1∑
d=1

P
[
T (1) > 1

]
P
[
T (1) = 1

]d−1

P
[
T (0) > t− 1

]
=

K0+1∑
d=1

p10(1− p10)d−1(1− p01)t−1

≥(1− p01)(1− p01)t−1 = (1− p01)t = P
[
T (0) > t

]
,

with the last inequality followed by the definition of
K0 in Equation (20). The above equation, together with
Equation (21), completes the proof.

With Lemma 4 established, we now turn to the proof
of Theorem 2.

Proof of Theorem 2: Under the Gilbert-Elliott channel
assumption as illustrated in Figure 2, let T (n,K, E) be
defined as T (n,K) with initial status E . Then according
to Definitions 1 and 2 and Equations (18) and (19) we
can express T (n,K, E) as

T (n,K, E) = max
1≤i≤n

{
T

(Ei)
i1 +

K∑
j=2

T
(1)
ij

}
,

where {T (0)
ij }i,j∈N are i.i.d. random variables with the

same distribution as T (0), and {T (1)
ij }i,j∈N are i.i.d. ran-

dom variables with the same distribution as T (1). Simi-
larly we can express T (nα, αK,1nα) and T (nα, αK,1nα)
as

T (n,K,1n) = max
1≤i≤n

{
K∑
j=1

T
(1)
ij

}
, (22)

T (nα, αK,1nα) = max
1≤i≤nα

{
αK∑
j=1

T
(1)
ij

}
. (23)

First, by Lemma 4 we know that, for any 1 ≤ i ≤ n and
any initial status E ,

K0+1∑
j=1

T
(1)
ij +

K+K0∑
j=K0+2

T
(1)
ij � T

(Ei)
i1 +

K∑
j=2

T
(1)
ij ,

implying that

max
1≤i≤n

{
K+K0∑
j=1

T
(1)
ij

}
� max

1≤i≤n

{
T

(Ei)
i1 +

K∑
j=2

T
(1)
ij

}
,

which yields

E[T (n,K +K0,1n)] ≥ E[T (n,K, E)]. (24)

Next, we will show that

E[T (nα, αK,1nα)] ≥ αE[T (n,K,1n)].
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Let us deonte

Sri =

rK∑
j=1+(r−1)K

T
(1)
ij .

Then we know that {Sri }i∈N,r∈N are i.i.d. random vari-
ables. Equation (22) and (23) can be rewritten as

T (n,K,1n) = max
1≤i≤n

S1
i (25)

T (nα, αK,1nα) = max
1≤i≤nα

α∑
r=1

Sri . (26)

Instead of viewing Equation (26) as a 1-dimensional
maximization over nα points, we can think of it as an α-
dimensional maximization over nα points where we can
choose a coordinate from 1 to n on each dimension and
therefore can further rewrite Equation (26) as

T (nα, αK,1nα) = max
1≤i1≤n

max
1≤i2≤n

. . . max
1≤iα≤n

α∑
r=1

Sr(i1,i2,...,iα),

(27)

where

Sr(i1,i2,...,iα) = Sr∑α
u=1 n

u−1(iu−1)+1

and iu can be viewed as the coordinate in the uth dimen-
sion.

Next, we use Equation (27) to build a lower bound on
the expection of T (nα, αK,1nα).

For fixed values of i2, i3, . . . , iα, let us find a i∗1 such
that

i∗1 (i2, . . . , iα) = arg max
1≤i1≤n

S1
(i1,i2,...,iα), (28)

which we denote as i∗1 for short. Then according
to Equation (27), we can find a lower bound for
E[T (nα, αK,1nα)] by choosing i1 = i∗1 (i2, . . . , iα) for all
possible values of i2, i3, . . . , iα, which is

E [T (nα, αK),1nα ]

=E

[
max

1≤i1≤n
max

1≤i2≤n
. . . max

1≤iα≤n

α∑
r=1

Sr(i1,i2,...,iα)

]
(a)

≥E

[
max

1≤i2≤n
. . . max

1≤iα≤n

α∑
r=1

Sr(i∗1 ,i2,...,iα)

]

=E

[
max

1≤i2≤n
. . . max

1≤iα≤n

(
α∑
r=2

Sr(i∗1 ,i2,...,iα) + S1
(i∗1 ,i2,...,iα)

)]
.

(29)

Since the choice of i∗1 is only sub-optimal, the inequality
(a) in Equation (29) should be strict inequality. No-
tice that according to Equation (28), for any values of
i2, i3, . . . , iα, we have

S1
(i∗1 ,i2,...,iα) = max

1≤i1≤n
S1

(i1,i2,...,iα),

which, combining Equation (25) and the fact that {Sri }
are i.i.d. random variables, yields

E
[
S1

(i∗1 ,i2,...,iα)

]
=E

[
max

1≤i1≤n
S1

(i1,i2,...,iα)

]
=E

[
max

1≤i≤n
S1
i

]
=E [T (n,K,1n)] . (30)

As a second step, for any values of i3, i4, . . . , iα, let us
define i∗2 as

i∗2(i∗1, i3, . . . , iα) = arg max
1≤i2≤n

S2
(i∗1 ,i2,...,iα).

Then similarly as Equation (29), by fixing i2 to be i∗2, we
can obtain

E
[
T (nα, αK,1nα)

]
> E

[
max

1≤i3≤n
. . . max

1≤iα≤n(
α∑
r=3

Sr(i∗1 ,i∗2 ,...,iα) + S1
(i∗1 ,i

∗
2 ,...,iα) + S2

(i∗1 ,i
∗
2 ,...,iα)

)]
.

Also, for any values of i3, i4 . . . , iα, we have

E
[
S2

(i∗1 ,i
∗
2 ,...,iα)

]
=E

[
max

1≤i2≤n
S1

(i∗1 ,i2,...,iα)

]
=E [T (n,K,1n)] . (31)

By defining i∗3, . . . , i
∗
α in a similar way

i∗u(i∗1, . . . , i
∗
u−1, iu+1, . . . , iα)

= arg max
1≤iu≤n

Su(i∗1 ,...,i∗u−1,iu,...,iα)

and iterating the above step, we can get

E
[
T (nα, αK,1nα)

]
>E

[
S1

(i∗1 ,i
∗
2 ,...,i

∗
α) + S2

(i∗1 ,i
∗
2 ,...,i

∗
α) + . . .+ Sα(i∗1 ,i∗2 ,...,i∗α)

]
(b)
=

α∑
r=1

E
[
Sr(i∗1 ,i∗2 ,...,i∗α)

]
(c)
=αE [T (n,K,1n)] . (32)

Equation (b) follows from the fact that
{Sr(i∗1 ,i∗2 ,...,i∗α)}1≤r≤α are independent random variables
and equation (c) follows from Equations (30), (31), and
iterative steps. By combining Equations (1), (24), and
(32), we have,

η(n,K) =
K

E[E[T (n,K, E)]]

≥ K

E[T (n,K +K0,1n)]

>
αK

E [T (nα, α(K +K0),1nα)]

=
K

K +K0

α(K +K0)

E [T (nα, α(K +K0),1nα)]
,

which completes the proof.
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VII. CONCLUSION

In this paper, we characterize the throughput of a
broadcast network using rateless codes. The broadcast
channels are modeled by Markov modulated packet era-
sure channels, where the packet can either be erased or
successfully received and for each receiver the current
channel state distribution depends on the channel states
in previous l packet transmissions.

We first characterize the asymptotic throughput of the
system when n approaches infinity for any values of
the coding block size K as a function of number of
receivers n in an explicit form. We show that as long as
K scales at least as fast as log n, we can achieve a non-
zero asymptotic throughput. Under the more restrictive
Gilbert-Elliott channel model (l = 1), we study the case
when K and n are finite. For any K and n, we find a lower
bound on the throughput in terms of the transmission
time of a system with larger K and n. As a special case
when channels are memoryless, this result shows that, by
keeping the ratio K/ log n to be a constant, the system
throughput will converge to the asymptotic throughput
in a decreasing manner as n grows. By the help of these
results, under the Gilbert-Elliott channel model, we are
able to give a lower bound on the maximum achievable
throughput (maximum achievable rate), which is a func-
tion of K, n and state transition probabilities p01 and p10.
In contrast to the state-of-the-art, we analytically show
that our bound is asymptotically tight when K/ log n is
fixed as n approaches infinity. Further, through numerical
evaluations, we show that our bound is significantly better
than existing results.
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