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Proportional Fair Coding for Wireless Mesh Networks
Karumbu Premkumar, Member, IEEE, Xiaomin Chen, and Douglas J. Leith, Senior Member, IEEE

Abstract—We consider multihop wireless networks carrying
unicast flows for multiple users. Each flow has a specified delay
deadline, and the lossy wireless links are modeled as binary
symmetric channels (BSCs). Since transmission time, also called
airtime, on the links is shared among flows, increasing the airtime
for one flow comes at the cost of reducing the airtime available to
other flows sharing the same link. We derive the joint allocation
of flow airtimes and coding rates that achieves the proportionally
fair throughput allocation. This utility optimization problem is
nonconvex, and one of the technical contributions of this paper
is to show that the proportional fair utility optimization can nev-
ertheless be decomposed into a sequence of convex optimization
problems. The solution to this sequence of convex problems is the
unique solution to the original nonconvex optimization. Surpris-
ingly, this solution can be written in an explicit form that yields
considerable insight into the nature of the proportional fair joint
airtime/coding rate allocation. To our knowledge, this is the first
time that the utility fair joint allocation of airtime/coding rate has
been analyzed, and also one of the first times that utility fairness
with delay deadlines has been considered.

Index Terms—Binary symmetric channels, code rate selection,
cross-layer optimization, network utility maximization, optimal
packet size, resource allocation, scheduling.

I. INTRODUCTION

I N THIS paper, we consider wireless mesh networks with
lossy links and flow delay deadlines. Packets that are de-

coded after a delay deadline are treated as losses. We derive the
joint allocation of flow airtimes and coding rates that achieves
the proportionally fair throughput allocation. To our knowledge,
this is the first time that the utility fair joint allocation of air-
time/coding rate has been analyzed, and also one of the first
times that utility fairness with delay deadlines has been consid-
ered (also, see [1] and [2]).
In the special cases where all links in a network are loss-free

or all flow delay deadlines are infinite, we show that the pro-
portionally fair utility optimization decomposes into decoupled
airtime and coding rate allocation tasks. That is, a layered ap-
proach that separates MAC scheduling and packet coding rate
selection is optimal. This corresponds to the current practice,
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Fig. 1. Single-cell wireless LAN with three flows. The central node repre-
sents the access point (AP), and the other nodes represent the wireless stations.
(a) Topology. (b) Optimum utility versus classical utility.

and these tasks can be solved separately using a wealth of clas-
sical techniques.
However, we show that no such decomposition occurs when

one ormore links are lossy or one ormore flows have finite delay
deadlines. Instead, in such cases, it is necessary to jointly opti-
mize the flow airtimes and coding rates. Furthermore, we show
that the resulting allocation of airtime and coding rates is qual-
itatively different from classical results. For example, consider
a single-hop wireless network carrying three flows; see Fig. 1.
Flow is a delay-sensitive flow (e.g., video), while flows
and are delay-insensitive flows (e.g., TCP data). Transmis-
sions are scheduled in a TDMA manner, and the delay dead-
line for flow is one schedule period, while the delay dead-
line for flows and is infinite. The channel symbol error
rate is for all flows, and flows use MDS codes for error
correction. The proportionally fair airtime and coding rate allo-
cation that we show in this paper [see (21) and (22)] results in
the allocation of 41% of the airtime for flow , while flow
and flow each receive 29.5%. Observe that the proportion-
ally fair allocation assigns unequal airtimes to the flows, which
is a notable departure from the usual equal-airtime property of
the proportional fair allocation when selection of delay dead-
lines and coding rate are not included, e.g., see [3]. The optimal
coding rate is 0.62 for flow and 0.97 for flows and .
The coding rate for flow is much lower than for flows
and since a smaller block size must be used by flow (and
more redundant symbols for error recovery) in order to respect
the delay deadline. Due to the delay deadline, these optimal
coding rates yield nonzero loss rates. For flow , the packet
loss rate at the receiver, after decoding, is 20%, whereas flows

and are loss-free. This highlights an important feature of
the joint airtime and coding rate utility optimization. Namely,
that it allows the throughput/loss/delay tradeoff among flows
sharing network resources to be performed in a principled, fair



manner. Without consideration of coding rate, the tradeoff be-
tween throughput and loss cannot be fully understood or op-
timally managed. Without consideration of airtime, the con-
tention between flows for shared network resources cannot be
fully captured.
Proportional fairness can be formulated as a utility maxi-

mization task, with the utility being the sum of log flow rates.
Fig. 1(b) compares the optimal network utility to that obtained
with a classical type of approach where all flows are allocated
equal airtime and the coding rates are chosen based on the
channel error probabilities alone (this corresponds to ignoring
the delay deadline of flow ). It can be seen that the optimal
approach that we present in this paper potentially offers signif-
icant performance benefits over classical methods.
We note that one of the reasons why the joint selection of

airtime/coding rate has not been previously studied is that the
proportional fair utility optimization is nonconvex, and hence,
powerful tools from convex optimization cannot be applied di-
rectly. Also, the study of the throughput performance by jointly
considering the coding and theMAC has not been performed be-
fore. One of the technical contributions of this paper is to show
that the proportional fair utility optimization can nevertheless
be decomposed into a sequence of convex optimization prob-
lems. The solution to this sequence of convex problems is the
unique solution to the original nonconvex optimization. More-
over, this solution can be written in an explicit form thereby
yielding considerable insight into the nature of the proportional
fair airtime/coding rate allocation.
Our analysis encompasses both hop-by-hop FEC and end-

to-end FEC and hybrid combinations of these. For example,
hop-by-hop FEC can be accommodated by partitioning an end-
to-end route into segments and applying our results to each seg-
ment individually (a segment here might consist of a single hop
or, more generally, several hops). Our analysis is also relevant
to the use of corrupted frames as an information channel. Re-
cent measurement studies find that the number of erroneous bits
in corrupted frames is often rather small, and so these frames
potentially provide a useful information channel (e.g., [4] sug-
gests potential capacity gains of 100%might be achieved in this
way). In this case, there already exists hop-by-hop FEC at the
PHY/MAC layer, and the end-to-end FEC is concatenated with
this. Since the hop-by-hop PHY/MAC FEC is typically strongly
constrained by the link hardware (e.g., it cannot exploit recent
improvements in code efficiency nor take account of flow-level
requirements), the addition of coding above the link layer can
yield extra performance.
The rest of the paper is organized as follows. The related

literature on utility optimal resource allocation is discussed in
Section II. Section III defines the network model; in particular,
we describe the mesh network architecture, the traffic model,
and the channel model. We also discuss the transmission sched-
uling model, decoding delay deadline, and the network con-
straints. In Section IV, we obtain a measure for the end-to-end
packet decoding error and describe the throughput of the net-
work. In Section V, we formulate a network utility maximiza-
tion problem subject to constraints on the transmission schedule
lengths and discuss the optimization framework. In Section VI,
we discuss two special cases of networks, delay-insensitive and

loss-free networks, and show that the tasks of obtaining optimal
airtimes and coding rates decouple in these special cases. We
discuss the optimal airtime/coding solution with some examples
in Section VII. Finally, we conclude in Section VIII. The proofs
of lemmas and theorems are provided in the Appendix.

II. RELATED WORK

We consider a multihop Network Utility Maximization
(NUM) problem with deadline constraints and with a practical
model [4] for the PHY layer. By means of channel coding, we
try to recover a packet from the channel errors. Having a low
coding rate helps in recovering the packets, but at the cost of
a small fraction of payload and at the cost of the transmission
airtime of other flows. Thus, we consider the problem of
resource allocation that answers the following question: how
to allocate throughput across competing flows with each flow
seeing different channel conditions and respecting the delay
deadline.
The problem of NUM has been studied in various contexts,

with NUM as a network layering tool introduced in [5].
Much of the work on NUM is concerned with the flow

scheduling and throughput allocation that achieves the network
stability region. This work focuses on throughput and largely
ignores delay constraints. Resource allocation problems from
the viewpoint of network control and stability is studied by
Georgiadis et al. in [6]. Network flow scheduling problems
are studied in a utility optimal framework by Shakkottai and
Srikant in [7]. In all these works and the references therein, the
emphasis is on the MAC layers and above. In [6], an energy
optimal scheduling problem is studied in which the PHYsical
layer is also considered.
Some recent work explicitly includes delay constraints in

the utility optimization. In [1], Li and Eryilmaz studied the
problem of end-to-end delay constrained scheduling in mul-
tihop networks. They propose algorithms based on Lyapunov
drift minimization and pricing, and show that by dynamically
selecting service disciplines, the proposed algorithms signif-
icantly outperform existing throughput-optimal scheduling
algorithms. In [2], Jaramillo and Srikant studied a resource
allocation problem in ad hoc networks with elastic and inelastic
traffic with deadlines for packet reception, and obtained joint
congestion control and scheduling algorithm that maximizes a
network utility. In [2], the focus is on congestion control and
scheduling, with the PHYsical layer considered to be error-free.
A short, preliminary version of the work in the current paper

was presented in [8].

III. NETWORK MODEL

A. Cellular Mesh Architecture

We consider networks consisting of a set of cells,
, which define the “interference domains”

in the network. We allow intracell interference (i.e., transmis-
sions by nodes within the same cell interfere), but assume that
there is no intercell interference. This captures, for example,
common network architectures where nodes within a given cell



Fig. 2. Wireless mesh network with four cells. Cells , , , and use orthog-
onal channels , , , and , respectively. Nodes 3, 5, and 6 are
bridge nodes. The bridge node 3 (resp. 5 and 6) is provided a time slice of each
of the channels and (resp. and for node 5, and ,

, and for node 6). Three flows , and are considered. In this
example, , , and .

use the same radio channel while neighboring cells use orthog-
onal radio channels. Within each cell, any two nodes are within
the decoding range of each other and, hence, can communi-
cate with each other. The cells are interconnected using mul-
tiradio bridging nodes to create a multihop wireless network. A
multiradio bridging node connecting the set of cells

can be thought of as a set of single radio
nodes, one in each cell, interconnected by a high-speed, loss-
free wired backplane. See, for example, Fig. 2.

B. Unicast Flows

Data are transmitted across this multihop network as
a set , of unicast flows. The
route of each flow is given by a sequence of cells

, where the source node
and the destination node . We

assume loop-free flows (i.e., no two cells in are the same).

C. Binary Symmetric Channels

We associate a binary random variable with the th
bit transmitted by flow in cell . indicates that the
bit is received correctly, and indicates that the bit
is received incorrectly, i.e., the bit is “flipped.” We assume that

are independent and identically distributed
(i.i.d.), and . That is, we have
a binary symmetric channel (BSC) with crossover probability

. A transmitted bit may be “flipped” multiple times as it
travels along the route of flow and is received incorrectly at
the flow destination only if there is an odd number of such flips.
The end-to-end crossover probability along the route of flow
is therefore given by

Note that we can accommodate transmission of symbols from
any -ary alphabet (i.e., not just transmission of binary
symbols) by associating channel uses of the BSC for every
transmitted symbol. The symbol error probability (for any
) is then given by .
In this channel model, the channel processes across time are

independent copies of the BSCs. In practice, this can be realized
by means of an interleaver of sufficient depth (after the channel
encoder), which randomly shuffles the encoded symbols subject
to the delay deadline, combinedwith a de-interleaver (before the
channel decoder) at the receiver. This interleaving and de-inter-
leaving randomly mixes any channel fades, which can then be
modeled as independent channel processes across time.

D. Flow Transmission Scheduling
A scheduler assigns a time slice of duration s

to each flow that flows through cell , subject to the con-
straint that where is the period of the
schedule in cell in seconds. We consider a periodic scheduling
strategy in which, in each cell , service is given to the flows
in a round-robin fashion, and that each flow in cell gets a
time slice of seconds in every schedule. We define time-slot
corresponding to flow in cell as the time slice in each
schedule length that serves the flow .

E. Flow Decoding Delay Deadline
At the source node for flow , we assume that sym-

bols arrive in each schedule length , which allows us to
simplify the analysis by ignoring queueing. Information sym-
bols are formed into blocks of symbols, where

is the number of time-slots that the block may
span. Each block of information symbols is encoded into
a block of coded symbols, where symbols,
with coding rate . Here, is the number of encoded
symbols transmitted in one slot, i.e., the transmitted packet size.
The code employed for encoding is discussed in Section IV.
The quantity is a user or operator supplied quality of service
parameter. It specifies the decoding delay deadline for flow ,
since after the flow destination has collected at most suc-
cessive coded packets, it must attempt to decode the encoded
information symbols. Note that also captures the encoding
delay for nonsystematic codes—while systematic and convolu-
tional codes incur no encoding delay at the transmitter, nonsys-
tematic codes require the transmitter to wait for symbols to
be received before producing the first coded symbol.
The end-to-end delay deadline is given by the following: For

the first chunk, the delay is , and for each of the re-
maining chunks, the delay is (recall that is
the destination cell of flow ). Thus, the end-to-end delay dead-
line is

In the case of equal 's, the end-to-end delay deadline is

where we recall that is the number of links of flow .



F. Network Constraints on Coding Rate

For flow in cell , let be the rate of transmission in sym-
bols/second, which is determined by the modulation and spec-
tral bandwidth used for signal transmission and the within-cell
FEC used. Each cell along the route of flow allo-
cates an airtime of at least in order to transmit the packets
of flow . Let be the set of flows
that are routed through cell . We recall that the transmissions
in any cell are scheduled in a TDMA fashion, and hence, the
total time required for transmitting packets for all flows in cell
is given by . Since, for cell , the transmission

schedule interval is units of time, the encoded packet size
must satisfy the schedulability constraint

Note that since we provide sufficient transmit time at each cell
along route to allow coded symbols to be transmitted in
every scheduled time-slot , , there is no queueing at
the cells along the route of a flow.

IV. PACKET ERROR PROBABILITY

Each transmitted symbol of flow reaches the destination
node erroneously with probability . Hence, to help protect
against errors when recovering the information symbols, we en-
code information symbols at the source nodes using a block
code (we note here that a convolutional code with zero-padding
is also a block code). An block code has the following
properties. The encoder takes a sequence of information sym-
bols as input and generates a sequence of coded sym-
bols as output. The decoder takes a sequence of coded sym-
bols as input and outputs a sequence of information symbols.
These information symbols will be error-free provided no more
than of the coded symbols are corrupted. The Singleton
bound [9] tells us that , with equality for max-
imum-distance separable (MDS) codes. Thus, anMDS code can
correct up to

(1)

errors. Examples for MDS codes include Reed–Solomon
codes [9] and MDS-convolutional codes [10]. In [10], the
authors show the existence of MDS-convolutional codes for
any code rate. Hereafter, we will make use of (1), and so
confine consideration to MDS codes. However, the analysis
can be readily extended to other types of code provided a
corresponding bound on is available.
Consider a coded block of flow and let

index the symbols in the block. Let
be a binary random variable that equals 0 when the

th coded symbol is received correctly and that equals 1
when it is received corrupted. , and

. From (1), the probability of the block
being decoded incorrectly is given by

The symbol errors are i.i.d.
Bernoulli random variables, and so the is a
binomial random variable. Hence, the probability of a decoding
error can be computed exactly. However, the exact expression is
combinatorial in nature and is not tractable for further analysis.
We therefore proceed by obtaining upper and lower bounds on
the error probability and show that the bounds are the same up
to a prefactor, and that the prefactor decreases as the block size

increases. Hence, we pose the NUM based on the upper
bound on the error probability. Also, we relax the constraints

and and allow them to take positive real
values, i.e., and .

A. Upper and Lower Bounds

Lemma 1: (Upper Bound). The end-to-end probability of
a decoding error for flow satisfies

(2)

where , is the coding rate,
is the Chernoff-bound parameter, and the function

is called the rate function in large deviations
theory.

Proof: See Appendix A.
Lemma 2: (Lower Bound). The end-to-end probability of

a decoding error for flow satisfies

(3)

where

and , is the Bernoulli distribution with pa-
rameter , and is the entropy of probability mass func-
tion (pmf) .

Proof: See Appendix B.

B. Tightness of Bounds

It can be verified that

Since is a free parameter, we can select the value that
maximizes and so provides the tightest upper
bound. It can be verified (e.g., by inspection of the second
derivative) that is concave in , and so the
KKT conditions are necessary and sufficient for an optimum.
The KKT condition here is

which is solved by



provided . Substituting for

where is the information divergence between the pmfs
and . Thus, by Lemmas 1 and 2 , the probability of a

decoding error satisfies

It can be seen that the upper and lower bounds are the same to
within prefactor , and the gap between these bounds decreases
exponentially as the block size increases.

V. NETWORK UTILITY OPTIMIZATION

We are interested in the fair allocation of flow airtimes and
coding rates among flows in the network. Other things being
equal, we expect that decreasing the coding rate (i.e., in-
creasing the number of redundant symbols trans-
mitted) for flow will decrease the error probability , and so
increases the flow throughput. However, decreasing the coding
rate increases the coded packet size , and so increases the
airtime used by flow . Since the network capacity is limited
and shared by other flows, this generally decreases the airtime
available to other flows, and so decreases their throughout. Sim-
ilarly, increasing the packet size of flow increases its
throughput, but at the cost of increased airtime and a reduction
in the throughput of other flows. We formulate this tradeoff as
a utility fair optimization problem. In particular, we focus on
the proportional fair allocation since it is of wide interest and,
as we will see, is tractable, despite the nonconvex nature of the
optimization.
We consider a network utility function that is a func-

tion of the average network throughput. We recall that the ar-
rival processes of symbols is such that for each flow , sym-
bols arrive every seconds, and hence, there is no queueing
(i.e., there is no dynamics in the rate of transmission). However,
the network throughput is stochastic due to the error process
induced by the channel. Extending our work to include sto-
chastic arrivals would be important and interesting. However,
a queueing analysis with coupled queues seems likely to be
intractable, so one possible strategy is to change to use of a
fluid-like framework, although this would require a change in
the definition of delay deadline used.
The utility fair optimization problem is to obtain optimum

, , and for a given set of parameters
and , which is given by

(4)

subject to (5)

(6)
(7)
(8)

with the vector of Chernoff parameters,
the vector of flow packet sizes, and

the vector of flow coding rates (where we recall that
). Equation (5) enforces the network capacity (or the

flow schedulability) constraints, (6) the positivity constraint on
the Chernoff parameters, and the constraints (7) and (8) are in-
troduced for technical reasons that will be discussed in more
detail shortly (see Section V-C).
For proportional fairness, we select the sum of the log of the

flow throughputs as our network utility . For flow , the ex-
pected throughput is symbols in every time in-
terval of duration (we recall that is the destination
cell of flow ), which is the same as symbols every
time interval of duration , where is the information
packet size and the packet decoding error probability. As the
exact expression of is intractable, we use the upper bound for
, which is . Thus, the objective function is given by

The optimization problem yields the proportional fair flow
coding rates and coded packet size . Since the PHY trans-
mission rates are known parameters, the coded packet size
is proportional to the airtime used by a flow (i.e., the airtime is
given by ).

A. Nonconvexity

The objective function is separable in
for each flow . However, it can be readily

verified that is not jointly concave in
, and so the optimization is nonconvex. Hence,

the network utility maximization problem defined in (4)–(8) is
not in the standard convex optimization framework.

B. Reformulation as Sequential Optimizations

We proceed by making the following key observation.
Lemma 3: For convex sets and , and for a function

that is concave in and in , but not jointly
in , the solution to the joint optimization problem

(9)

is unique and is the same as the solution to

(10)

if is a concave function of , where for each ,
.

Proof: See Appendix C.



This lemma establishes conditions under which we can trans-
form a nonconvex optimization into a sequence of convex op-
timizations. Roughly speaking, we proceed by optimizing over
each variable in turn and substituting the optimal variable value
that is found back into the objective function. This creates a se-
quence of objective functions. Provided each member of this
sequence is concave in the variable being optimized (but not
necessary jointly concave in all variables), the solution to the
sequence of convex optimizations coincides with the solution
to the original nonconvex optimization. Evidently, the condi-
tion that concavity holds for every objective function in this se-
quence is extremely strong. Remarkably, however, we show that
it is satisfied in our present network utility optimization.

C. Optimal

Taking a sequential optimization approach, we begin by first
solving the optimization

subject to
given packet sizes and coding rates .
The objective function is separable and concave in the s. The
partial derivative of with respect to is given by

(11)

Setting this derivative equal to zero, provided this is
solved by

(12)

Observe that in fact is a function only of and not both
and . The requirement for ensures that .

When , the derivative (11) is negative for all
. In this case, the optimum is zero, which yields an error
probability of one. Thus, for error recovery we require
, i.e., the coding rate , and for a nonempty

feasible region in the NUM problem formulation in (4)–(8), the
constraints on should satisfy the following:
and . We note that the capacity region for a BSC having
a crossover probability with an -ary signaling is

, and the coding rate lies in the capacity region.

D. Optimal

The next step in our sequential optimization approach is to
solve

subject to

That is, we substitute into the objective function for the optimal
found in Section V-C. Defining

It can be verified that is not jointly concave in
. To proceed, we therefore rewrite the objective in terms

of the log-transformed variables and .
Observe that the mapping from to is invertible, and sim-
ilarly the mapping from to . Since is a monotone in-
creasing function of (this can be verified by inspection of
the first derivative), the inverse mapping from to exists
and is one-to-one. With the obvious abuse of notation, we write
inverse map as . In terms of these log-transformed co-
ordinates, the objective function is . We note
that the problem defined in (4)–(8) is equivalent to the problem

subject to (13)

(14)

(15)
(16)

and hence, by Lemma 3, the solution to the log-transformed
problem is the same as that of the problem defined in (4)–(8).
We solve the maximization problem by convex optimization
method. We show that the objective function is jointly concave
in in the following lemma.
Lemma 4:

is jointly concave in and .
Proof: See Appendix D.

Hence, we have the following convex optimization problem:

(17)

subject to (18)

(19)
(20)

We solve the abovemaximization problem using the Lagrangian
relaxation approach. The Lagrangian function of the problem is



given by

where , , and are Lagrangian multipliers cor-
responding to the constraints given in (18)–(20). The channel
error probabilities 's are strictly positive, and the channel
coding rates are always assumed to be in the interior of the feasi-
bility region. Hence, the constraints for the channel coding rate
given in (19) and (20) are not active at the optimal point, and
the Lagrangian costs 's and 's are zero. Thus, the shadow
costs corresponding to these constraints will not appear in the
Lagrangian relaxation.
Since the optimization problem falls within convex optimiza-

tion framework, and the Slater condition is satisfied, strong du-
ality holds. Hence, the KKT conditions are necessary and suffi-
cient for optimality. Differentiating the Lagrangian with respect
to at , and setting equal to zero yields the KKT
condition

(21)

Similarly, the KKT condition for is

or

(22)

Combining (21) and (22) yields

(23)

Observe that the left-hand side (LHS) is a function of and
the right-hand side (RHS) is a function of . Thus, the choice
of packet size parameter and coding rate parameter are,
in general, coupled.

E. Distributed Algorithm for Solving Optimization
Given the values of the Lagrange multipliers , the solu-

tion to (23) specifies the optimal packet size and coding rate. To
complete the solution to the optimization, it therefore remains to
calculate the multipliers . These cannot be obtained in closed
form since their values reflect the network topology and details
of flow routing. However, they can be readily found in a dis-
tributed manner using a standard subgradient approach.

We proceed as follows. The dual problem for the primal
problem defined in (17) is given by

where the dual function is given by

(24)

From (24), for any

and in particular, the dual function is greater than that for
for some arbitrary , i.e.,

(25)

Thus, a subgradient of at any is given by the vector

and the projected subgradient descent update is

where is a sufficiently small stepsize, and
ensures that the Lagrange multiplier never goes

negative (see [11]).
The subgradient updates can carried out locally by each cell

since the update of only requires knowledge of the packet
sizes of flows traversing cell . Thus, at
the beginning of each iteration , the flow source nodes choose
their packet sizes as and the coding rates as

, and each cell computes its cost based on the packet
sizes (or equivalently the rates) of flows through it. The updated
costs along the route of each flow are then fed back to the source



nodes to compute the packet size and coding rate for the next
iteration.
Observe that the Lagrange multiplier can be interpreted as

the cost of transmitting traffic through cell . The amount of ser-
vice time that is available is given by .
When is positive and large, then the Lagrangian cost
decreases rapidly (because the dual function is convex),
and when is negative, then the Lagrangian cost increases
rapidly to make . We note that the increase or decrease
of between successive iterations is proportional to , the
amount of service time available. Thus, the subgradient proce-
dure provides a dynamic control scheme to balance the network
load.
The resulting distributed implementation of the joint airtime/

coding rate optimization is summarized in Algorithm 1.

Algorithm 1 Distributed Implementation of Joint
Airtime/Coding Rate Optimization.

Each cell runs:
loop
1.

end loop
The source for each flow runs:
loop
1. Measure , the aggregate cost of using

the cells along the route of flow . E.g., if each cell
updates the header of transmitted packets to reflect this
sum, it can then be echoed back to the source by the
flow destination.

2. Find the unique packet size and coding rate that
solve (23). Since there are only two variables, a simple
numerical search can be used.

end loop

VI. TWO SPECIAL CASES

A. Delay-Insensitive Networks

Suppose the delay deadline for all flows. For any
positive bounded , i.e., , the LHS of (22)
can be written as

(26)

Thus, the asymptotic optimal coding rate as the delay dead-
line requirement is the solution to

(27)

Since , it is sufficient to find the solution to

Note that

and hence (28)

Since this is the limiting solution and , one can use
for some arbitrarily small . Similarly, from

(21), the asymptotic optimal packet size as is

(29)

where the multipliers are obtained, as before, by subgradient
descent

(30)

Observe that the optimal coding rate that is given by
the solution of (28) is determined solely by the channel error rate

of flow . It is therefore completely independent of the other
network properties. In particular, it is independent of the packet
size used, of the other flows sharing the network, and of the
network topology. Conversely, observe that the optimal packet
size in (29) and (30) is dependent on the network topology
and flow routes, but is completely independent of the error rate

and coding rate . That is, in delay-insensitive networks,
the joint airtime/coding rate optimization task breaks into sep-
arate optimal airtime allocation and optimal coding rate allo-
cation tasks that are completely decoupled. Our optimization
therefore yields a MAC/PHY layering, whereby airtime alloca-
tion/transmission scheduling is handled by the MAC, whereas
coding rate selection is handled by the PHY, with no cross-
layer communication. It is important to note, however, that this
layering does not occur in networks where one or more flows
have finite delay deadlines; see Section VII for a more detailed
discussion.

B. Loss-Free Networks
Suppose the channel symbol error rate for all flows.

From (12), we observe that

(31)

and this yields for all flows. The objective function in
(17) degenerates to . We note that for
any , as , . Hence, the LHS of
(22) becomes

(32)



In the same way as in (28), this limit can be achieved by
(i.e., ). Similarly, the optimal packet size is

. This optimal packet size is identical to that for

delay-insensitive networks—see (29)—and it can be verified
that in fact it corresponds to the classical proportional fair rate
allocation for loss-free networks, as expected.

VII. EXAMPLES

A. Single Cell
We begin by considering network examples consisting of a

single cell carrying multiple flows. The network topology is il-
lustrated schematically in Fig. 1 and might correspond, for ex-
ample, to a WLAN.
1) Mix of Delay-Sensitive andDelay-Insensitive Flows: Sup-

pose the flows in the network belong to two classes, one of
which is delay-sensitive and has a delay-deadline , whereas
the other is delay-insensitive, i.e., has an infinite delay dead-
line. These classes might correspond, for example, to video and
data traffic. Fig. 3(a) plots the optimal airtime allocation as the
delay deadline is varied. In this example, there is a single
delay-sensitive flow and two delay-insensitive flows, and the
airtime allocation is shown for the delay-sensitive flow and for
one of the delay-insensitive flows (both receive the same air-
time allocation). As expected, it can be seen that the airtime al-
locations of the delay-sensitive and delay-insensitive flows ap-
proach each other as the delay deadline is increased. How-
ever, it is notable that they approach each other fairly slowly,
and when the delay deadline is low, the airtime allocated to the
delay-sensitive flow is almost 50% greater than that allocated
to a delay-insensitive flow. This behavior is qualitatively dif-
ferent from the classical proportional fair allocation neglecting
coding rate and delay deadlines, which would allocate equal air-
time to all flows. By taking coding rate and delay deadlines into
account, our approach allows the resource allocation to flows
with different quality-of-service requirements to be carried out
in a principled and fair manner.
Fig. 3(b) plots the optimal airtime allocation as the number
of delay-insensitive flows is varied. It can be seen that the

airtime allocated to each flow decreases as is increased, as
expected since the number of flows sharing the network is in-
creasing. Interestingly, observe that the airtime allocated to the
delay-sensitive flow is a roughly constant margin above that al-
located to the delay-insensitive flows. The delay-sensitive flow
is therefore “protected” from the delay-insensitive flows. How-
ever, in contrast to ad hoc approaches, this protection is carried
out in a principled and fair manner.
2) Mix of Near and Far Stations: Consider now a situation

where all flows have the same delay deadline , but where for
some flows the sources are located close to the destination, and
for other flows, the sources are further away. We therefore have
two classes of flows, one with a higher channel symbol error rate
than the other when both use the same PHY rate. Fig. 4(a) plots
the optimal airtime allocation for a flow in each class as the
channel error rate for one class is varied.When the channel error
rates for both classes are the same , it can be seen
that the airtime allocation is the same. As the channel error rate
decreases, the airtime allocated to flow 1 decreases. Conversely,

Fig. 3. Single WLAN with one delay-sensitive flow and delay-insensitive
flows. Delay-sensitive flow has delay deadline ; delay-insensitive flows have
infinite delay deadlines. Raw channel symbol error rate is for all flows;
PHY rate for all flows is 10 symbols per schedule period. Optimal airtimes
are given as a proportion of the schedule period. (a) Optimal airtime alloca-
tion versus delay deadline , . (b) Optimal airtime allocation versus .

.

as the channel error rate increases, the airtime allocated to flow 1
increases.
Fig.4(b)plots theoptimalairtimeallocationwhenflowsinboth

classes have the same channel error rate but different PHY rates,
i.e., where the PHYmodulation has been adjusted to equalize the
channel error rates.When the PHY rates are the same (
symbolsper scheduleperiod), theairtimeallocation is the same to
both classes. As the PHY rate is increased, the airtime allocation
for flow 1 decreases. Conversely, as the PHY rate is decreased,
the airtime allocation for flow 1 increases. Again, note that this is
qualitatively different from the classical proportional fair alloca-
tion neglecting coding rate and delay deadlines that would allo-
cate equal airtime to all flows.
3) Unequal Airtime: The basic observations in these exam-

ples apply more generally. In particular, as noted above, in a
loss-free, delay-insensitive single cell network, the proportional
fair allocation is to assign equal airtime to all flows ([3] and
Section VI-B). However, when delay deadlines are introduced
and/or links are lossy, we see an interesting phenomenon.
Lemma 5: The optimum rate allocation (or equivalently
) is not equivalent to an equal airtime allocation.
Proof: See Appendix E.

In particular, flows that see a better channel get less airtime
than flows that see a worse channel.



Fig. 4. Single WLANwith two delay-sensitive flows, both with delay deadline
. In (a), PHY rate for both flows is 10 symbols per schedule period, and

channel symbol error rate for flow 1 is varied. In (b), channel symbol error rate
for both flows is , and PHY rate for flow 1 is varied. (a) Optimal airtime
allocation versus channel symbol error rate for flow 1; symbol error rate for flow
2 is held fixed at . (b) Optimal airtime allocation versus PHY rate of flow
1; PHY rate for flow 2 is held fixed at 10 symbols/schedule.

Fig. 5. Linear Parking Lot network with cells and flows (onemultihop
flow and single-hop flows).

B. Multiple Cells
We now consider a mesh network consisting of cells car-

rying flows in the well-studied Parking Lot topology.
The network topology is illustrated in Fig. 5. The flows in this
network can be assigned to two classes: Class 1 consists of the
-hop flow, and class 2 consists of the single-hop flows 2,

3, , . Each cell has the same schedule period, i.e.,
.

1) Impact of Number of Hops: Suppose that both classes
of flows use the same symbol transmission PHY rate and
experience the same loss rate in each cell. Then, the -hop
flow will experience a higher end-to-end symbol error rate than

Fig. 6. Ratio of airtime versus number of cells in Parking Lot topology of
Fig. 5. The -axis is the ratio of the airtime allocated to the -hop flow to that
allocated to a single hop flow; note that the airtime of the -hop flow is the sum
of allocated airtime in each cell along the flows route. Data are shown for three
different delay deadline requirements, as indicated in the legend. All flows have
the same PHY rate.

the single-hop flows, and the loss rate will increase with .
Fig. 6 plots the ratio of optimal airtime allocated to each class
of flow versus . Results are shown for three delay-deadline
requirements: Both classes of flow are delay-sensitive with
delay deadline ; class 1 is delay-sensitive

, while class 2 is delay-insensitive ; class
1 is delay-insensitive, while class 2 is delay-sensitive. It can
be seen that in the first case, where both classes have the same
delay deadline, the ratio of airtime is larger than 1. This is in
accordance with the previous observation that flows with poorer
channel conditions are allocated more airtime than flows with
better channel conditions. In the second case, where class 2 is
delay-insensitive , additional airtime is allocated
to class 1, the delay-sensitive flow, which also corresponds
with the single-cell analysis. In the third case, where class 1 is
delay-insensitive and class 2 is delay-sensitive,
it can be seen that class-2 flows are allocated slightly more
airtime that the class-1 flow. Interestingly, however, observe
that the airtime allocated to the class-1 flow is insensitive to the
number of hops. This contrasts with the behavior when the
class-1 flow is delay-sensitive.
2) Impact of Different Flow PHY Rates: Now consider a sit-

uation where the number of cells and all flows have
the same delay deadline . Flows 2 and 4 have
symbol error rate , and flows 1 and 3 have symbol error rate

. We classify the flows into three sets: Class 1 con-
sists of multihop flow 1, class 2 consists of single-hop flows 2
and 4, and class 3 consists of single-hop flow 3. Let denote
the PHY rate used used by class-1 and class-2 flows, and
denote the PHY rate used by the class-3 flow. Fig. 7 plots the
optimal coded packet size versus the ratio . We begin by
observing that when , all flows have the same PHY
rate, and it can be seen that flows in classes 2 and 3 are allo-
cated the same packet sizes (and so the same airtime). Hence,
although the flow in class 3 crosses a much more lossy link than
the flows in class 2, the optimal allocation ensures that all of the
single-hop flows have the same airtime. The multihop flow in
class 1 is allocated a smaller packet size (and so less airtime)



Fig. 7. Coded packet size versus ratio of PHY rates for Parking Lot
topology of Fig. 5 with cells. Class 1 consists of multihop flow 1, class 2
consists of single-hop flows 2 and 4, and class 3 consists of single-hop flow 3.
Class-1 and 2 flows use PHY rate bit/s; the class-3 flow uses a PHY rate of

bit/s. All flows have delay deadline .

than the single-hop flows. It can also be seen that varying the
PHY rate for the single-hop flow in class 3 does not affect the
optimal coded packet sizes of flows in classes 1 and 2, and hence
the airtime of class-1 and class-2 flows remains the same as
is varied. The coded packet size of the class-3 flow increases
linearly with , and so the airtime of the class-4 flow re-
mains invariant as well.

VIII. CONCLUSION
In this paper, we posed a utility fair problem that yields the

optimum airtime and the coding rate across flows in a capacity
constrained multihop network with delay deadlines. We showed
that the problem is highly nonconvex. Nevertheless, we demon-
strate that the global network utility optimization problem can
be solved. We obtained the optimum airtime/packet size and
channel coding rate and analyzed its properties. A key result is
that in the presence of channel errors, even in a single cell case,
the proportional fair allocations of airtime across flows are dif-
ferent (which, in the loss-free channel, is the same). We also
analyzed some simple networks based on the utility optimum
framework we proposed. To the best of our knowledge, this is
the first work on cross-layer optimization that studies optimum
coding across flows that are competing for network resources
and have delay-deadline constraints.

APPENDIX A
PROOF OF LEMMA 1

From the definition of

In the derivation above, in step , we applied Markov's in-
equality, and in step , we applied the independence of the
random variables .

APPENDIX B
PROOF OF LEMMA 2

From the definition of

The binomial coefficients can be bounded as follows:

Hence



Note that is the Bernoulli distribution with parameter ,
is the entropy of probability mass function (pmf) , and
is the information divergence between the pmfs and

.
APPENDIX C

PROOF OF LEMMA 3
For any , the function is concave in . Hence,

for each , there exists a uniquemaximum ,which is given
by

If is a concave function of , then there exists a
unique maximizer, which is denoted by , i.e.,

We show that is an optimum solution to (9). Since
is the maximizer of , we have for any

or

For any given , is the maximizer of over
all , i.e.,

and hence, for all

We note that maps into , and hence,
. Hence, is a global maximizer.

APPENDIX D
PROOF OF LEMMA 4

Consider the optimization problem

s.t.

We show that the objective function is jointly (strictly) con-
cave in . The objective function is separable in ,
and we show that is convex, and
is concave.
Since, for , is a monotone function of ,

and is a monotone function of , it is clear that is invert-
ible. Note that

Define . If ,
then is (strictly) convex. Note that

, which implies
is increasing with , and hence, for ,

.
Define . consider the function

Similarly

Also

Similarly, one can show that . Define
. If , then is (strictly)

convex. Note that
. Therefore, .

APPENDIX E
PROOF OF LEMMA 5

From (21), it is clear that even for a single cell, because of the
nonzero second term in the LHS, the airtime of flow given by

is not the same for all the flows .
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