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Offering Supplementary Network Technologies:
Adoption Behavior and Offloading Benefits

Carlee Joe-Wong, Soumya Sen, and Sangtae Ha

Abstract—To alleviate the congestion caused by rapid growth in
demand for mobile data,wireless service providers (WSPs) have
begun encouraging users to offload some of their traffic onto
supplementary network technologies, e.g., offloading from 3G or
4G to WiFi or femtocells. With the growing popularity of such
offerings, a deeper understanding of the underlying economic
principles and their impact on technology adoption is necessary.
To this end, we develop a model for user adoption of a base
technology (e.g., 3G) and a bundle of the base plus a supple-
mentary technology (e.g., 3G + WiFi). Users individually make
their adoption decisions based on several factors, including the
technologies’ intrinsic qualities, negative congestion externalities
from other subscribers, and the flat access rates that aWSP
charges.We then show how these user-level decisions translate
into aggregate adoption dynamics and prove that these converge
to a unique equilibrium for a given set of exogenously determined
system parameters.We fully characterize these equilibria and
study adoption behaviors of interest to aWSP. We then derive
analytical expressions for the revenue-maximizing pricesand
optimal coverage factor for the supplementary technology and
examine someresulting non-intuitive user adoption behaviors.
Finally, we develop a mobile app to collectempirical 3G/WiFi
usage data and numerically investigate the profit-maximizing
adoption levels when aWSP accounts for its cost of deploying
the supplemental technology and savings from offloading traffic
onto this technology.

I. I NTRODUCTION

Successful technologies are often followed by other supple-
mental technologies, which when combined with the original
enhance its features and quality.In the context of networks,
one could think of 3G or 4G traffic being offloaded to WiFi
or femtocells respectively. Yet adoption of these supplemental
and base technologies depends not just on their access prices,
but also on the externalities that users of each technology
impose on others.For example, as more users adopt abase
technology like 3G or 4G, congestion on the network in-
creases, which can in turn reduce users’ utility from using
that technology.

The presence of negative network externalities affords net-
work operators an opportunity to improve services on their
base technology by offloading users onto a supplemental tech-
nology. Indeed,Wireless Service Providers (WSP)s are already
beginning to do so: for instance, in the United States, Verizon
has begun to offer femtocells in order to supplement its 4G
network capacity [1], while AT&T has deployed WiFi hotspots
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in New York to manage persistent 3G congestion [2]. In light
of rapid growth in the projected demand for mobile data [3],
WSPsare likely to continue using such supplemental networks
to curb network congestion [4]. Indeed, as mobile demand
keeps growing,WSPs are beginningto charge consumers for
access to these supplemental networks.For instance, Orange
offers a £2 bundle to some of their customers for access to
WiFi hotspots [5].Given these developments, there is a need
for economic models that can help determinehow to price
access to such base and supplementary technologies and the
implications of those pricing decisions.

Our work is inspired by two research areas: the study of
user technology adoption and that of network offloadingand
pricing. Though both areas have separately received consider-
able attention from economics and networking researchers,our
contribution lies in incorporating user-level adoption models
to study technology subscription dynamics and theconse-
quent revenue and costtradeoffsof offering a supplementary
technology. We seek to understand user adoption decisions
between a generic base technology and a bundled offering of
a base plus supplemental technology; users may adopt the base
technology, no technology, or the bundle of both technologies.
In particular, we explore the following example scenarios:

• Will increasing the coverage area of a supplemental
network always lead to more users adopting it?Suppose
that a WSP wishes to expand its supplemental network to
offload more traffic from the base technology, but cannot
change its pricing structure due to exogenous factors, e.g.,
the presence of a major competitor. We derive conditions
under which increased supplemental network coverage
will decreaseits adoption: at the new equilibrium, each
user offloads more traffic, which can increase overall
congestion on the supplemental network and induce some
users to drop the bundled service (Result 1). We show
that this decrease may occur even when the WSP offers
revenue-maximizing prices (Result 4).

• Can increasing the base technology’s access price reduce
its adoption?Consider a WSP trying to induce some users
to leave its base technology’s network by increasing the
access price. In some scenarios, this move can increase
the base technology’s adoption: increasing the price of
base and the base + supplementary bundle by the same
amount can lead some users dropping from their bundled
subscriptions to only the base technology (Result 2).

Given these adoption behaviors, we then consider a WSP’s
optimal operating point. In our framework, the WSP may
influence user adoption with three variables: the access prices
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of the two technologies, and the coverage area of the supple-
mentary technology (e.g., supplementary WiFi access may not
be available at all locations). We first consider a generic model
of WSP revenue and derive analytical expressions for the
revenue-maximizing prices and coverage of the supplemental
technology. We then focus on the scenario of offloading
traffic from base to supplementary technology, estimating the
offloading benefits and deployment costs with empirical usage
data. We consider the following questions:

• What is the optimal coverage area of a supplemental
network? Suppose that a WSP seeks to maximize its
revenue by optimizing the supplemental technology’s
coverage area and the base and bundle access prices. We
show that revenue is maximized with full supplemental
network coverage (i.e., available everywhere) (Prop. 4).

• Will users always adopt both the base and bundled
technologies at the revenue-maximizing prices?Suppose
that the WSP cannot expand its supplemental network
coverage, e.g., due to investment costs. We show that
the base and bundle offers will both have users unless
the supplementary network coverage area is sufficiently
small and the base technology experiences sufficiently
severe congestion externalities (Result 3).

• Will increasing the supplemental technology’s coverage
area always increase the total adoption of the base and
bundled technologies?Suppose that a WSP increases its
supplementary network coverage in an attempt to increase
its revenue. We derive necessary and sufficient conditions
under which the total adoption will decrease as this
coverage increases (Result 4).

• Will deployment costs affect the optimal coverage and
resulting adoption of the base plus supplementary bun-
dle? While increasing the deployment costs of the sup-
plementary technology decreases its optimal coverage
area, it also decreases the potential congestion on this
supplementary network. Consequently we find that the
adoption of the supplementary technology can increase
with its deployment costs, even when choosing profit-
maximizing prices and coverage area (Fig. 12).

To answer these questions, we develop an analytical frame-
work that incorporates individual users’ adoption decisions,
instead ofsimply considering the aggregate adoption dynam-
ics. Users have heterogeneous valuations of each technology’s
quality and account for the negative externalities of congestion
effects as a technology’s adoption increases. In lieu of model-
ing details specific to a given technology, we utilize a generic
externality model and investigate possible adoption behaviors;
we also show that our qualitative results hold for some more
specific externality models.We considera monopolistic WSP,
reflecting the near-monopolistic conditions in many wireless
Internet markets. For instance, in 2012 the dominant U.S.
carriers AT&T and Verizon reported near-negligible churn
rates [6], indicating that these providers essentially function
as monopolists for their respective customer bases.Instead
of considering competition between such WSP, we consider
different data plans that each WSP can offer. In Appendix D,
we show an extension to multiple competing WSPs.

In Section II, we compare our work to similar contributions
in the literature, focusing on network adoption and offloading
works. We then introduce and analyze our model in Section III,
and examine some interesting adoption outcomes in Section
IV. Finally, in Section V, we consider users’ equilibrium
adoption levels when aWSP maximizes its revenue and
profit. We conclude the paper in Section VI. Proofs of all
propositions, theorems and resultsare available in Appendix
A.

II. RELATED WORK

Our work relates to two topics in the literature: technology
adoption dynamics and the economics of offloading traffic to
supplemental networks (e.g., 3G/4G to WiFi/femtocells).

A. Technology Adoption

Many works in economics have studied technology adoption
in various contexts [7], [8]. Katz and Shapiro, for instance,
consider competing network technologies with positive exter-
nalities in a homogeneous user population [9], while Cabral
[10] presents a diffusion model for a single technology’s
adoption by users with heterogeneous network valuations.
Economides and Viard [11] provide a static analysis for the
adoption of two complementary technologies with positive
externalities and heterogeneity in user evaluations. In the
context of networks, Joseph et al. [12] study the adoption of
new network architectures, characterizing possible adoption
trajectories for a continuum of identical utility-maximizing
users.Jin et al. [13] andSen et. al. [14] model heterogeneous
users to study the dynamics of competition between two
generic network technologies with positive network external-
ities, considering in particular the effects of converters [14].

While our work follows these in modeling user hetero-
geneity, it differs in that (a) we explicitly model the negative
externality of network congestion, as opposed to the dominant
positive externality generally considered in technology adop-
tion models; (b) we consider a non-competitive scenario in
which the supplementary technology isbundled with the base
technology; and (c) we optimize the system decision variables
and investigate the resulting equilibrium adoption outcomes.

In another work related to ours, Ren, Park, and van der
Schaar consider market entry and spectrum sharing decisions
of femtocell providers [15]. We do not focus on the entrant-
incumbent interaction of two providers sharing a market;
instead, we model the adoption of a supplementary technology
offered by a monopolist provider and the resulting tradeoffs
between deployment costs and savings from offloading.

B. Traffic Offloading

Shetty, Parekh and Walrand analyze user adoption of split-
and common-spectrum 4G and femtocell networks to study
WSP revenue maximization [16]. They consider the utility
of heterogeneous users under both spectrum sharing schemes
and account for congestion effects with detailed throughput
models. However, [16] does not considerWSPcosts or savings
from offloading and relies on numerical studies due to the
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complexity of their throughput models. In our more generic
framework, we take the spectrum sharing scheme as an input
and consider the resulting adoption dynamics.

Other works have also studied traffic offloading, but without
developing an analytical model of user adoption decisions.For
instance, [17] considers the problem of offloading 3G trafficto
WiFi networks, focusing on the implications forWSPrevenue.
User adoption is here modeled using given demand functions,
which depend on the prices of 3G and WiFi. Offloading
onto femtocell networks is studied in [18], which considers
WSP revenue and social welfare under flat and usage-based
pricing of both open and closed femtocell networks. Our work
contributes to these efforts by providing a generic analytical
framework, complemented with data collected from real users,
to study the role of economic and technological decisions on
the possible outcomes of the adoption process.

III. T ECHNOLOGY ADOPTION MODEL

In this section, we introduce an analytic framework to
model the dynamics of user adoption based on the user’s
utility of subscribing to the base and supplemental tech-
nologies, denoted as Technologies 1 and 2, respectively. We
consider a monopolistWSP. Users may choose to adopt the
base technology (Technology 1), a bundle of the base and
supplemental technologies (Technologies (1+2)), or neither
technology; Technology 2 is never offered without Technology
1. This choice is governed by theutility that each of the above
options provides to the user, as derived in Section III-A. Users’
subscription choices evolve over time (e.g., weeks or months)
in response to changes in the network adoption and congestion
levels. To reflect the timescale of these choices, changes in
the adoption dynamics are based on users’ overall quality
of experience in using each network. In Section III-A, we
formulate these subscription dynamics, and inSection III-B,
we show that exactly one asymptotically stable equilibrium
exists for any given set of exogenous system parameters.

A. User Adoption Decisions

A user’s value or utility from subscribing to a particular
wireless technology depends on several factors, such as the
intrinsic quality of the technology (e.g., the user’s valuation
of the maximum throughput), the negative externality of con-
gestion (i.e., reduced throughput), and the access price charged
by the service provider. Following [14] and [16], we account
for these factors in defining the utility functions associated
with each technology adoption option. For the two options,
the base and the bundle (base plus supplementary) plans, the
respective utility functions are given by (1) and (2); the utility
of non-adoption is assumed to be zero.

U1(t) =θq1 + T1 (x1 + (1 − η)x1+2)− p (1)

U1+2(t) =(1 − η)
(

θq1 + T1 (x1 + (1 − η)x1+2)
)

+ η
(

θq2 + T2 (ηx1+2)
)

− (p+∆) . (2)

The above utility functions have three separate value com-
ponents, as we discuss here. All are normalized to monetary
units. The intrinsic qualities of Technologies 1 and 2 are

denoted byqi, i = 1, 2; we assume that the supplemental tech-
nology has a higher intrinsic quality than the base (q2 > q1).
For example, WiFi typically delivers much higher maximum
throughput than 3G. While the actual throughput, delay, etc.
at a given time can vary depending on the distance from a cell
tower, obstacles, etc.,recallthat users make adoption decisions
based on theoverall quality experienced over a subscription
period. The valuation of this intrinsic quality is weightedby a
random variableθ ∈ [0, 1] to account for user heterogeneity.1

The supplemental technology, Technology 2, can havea
limited coverage area (e.g., users are not always within range
of a hotspot or a femtocell) that determines the “coverage
factor” η, such thaton average,a fractionη of traffic from
adopters of the technology bundle is offloaded to Technology
2’s network. We assume that users are distributed uniformly
throughout the coverage area, so that at any given location,
the expected amount of traffic offloaded over time equalsη,
multiplied by the total traffic of the bundle adopters. Assuming
that the distribution of usage volume for these adopters is
independent of their valuation typesθ, the total usage of
the bundled adopters is then proportional to the number of
such adopters. Moreover, since users are distributed uniformly
throughout the coverage area, each user experiences the same
amount of congestion from others. As is generally the case
with supplementary technologies such as WiFi, we suppose
that adequate infrastructure (e.g., device antennas) and handoff
protocols are in place to allow users connectivity to the two
technologies with no cost of switching between them. Nearly
all mobile phones and tablets, for instance, can automatically
switch from cellular to WiFi networks.

Given the above assumptions, the average amount of traffic
on Technology 2 is proportional tothe fraction of users
adopting the technology bundle, multiplied byη. We letx1(t)
denote the fraction of users adopting only Technology 1 at
time t andx1+2(t) the fraction of users adopting the bundle.2

Thus, thevolume of trafficon Technology 2 isηx1+2(t). The
amount of traffic on Technology 1 from users adopting only
Technology 1 isx1(t), while theamount from bundle adopters
is (1 − η)x1+2(t). The total traffic volume on Technology 1
is thenx1(t) + (1 − η)x1+2(t). We use decreasing functions
T1

(

x1(t) + (1 − η)x1+2(t)
)

and T2

(

ηx1+2(t)
)

to represent
the negative externalityas a function of thenumber of users
for Technologies 1 and 2 respectively.3 We can interpret these
negative externalities as the decrease in user utility due to
lower throughput fromhigher usage volumes.

The wireless service provider prices the access for the two
options atp for the base technology andp + ∆ for the base
plus supplemental technology bundle (i.e.,∆ is the extra price

1The exact values of theqi parameters depend on the particular technology
being considered, while the distribution ofθ values can be estimated from
established techniques in marketing research, e.g., conjoint analysis [19].

2We note thatx1(t), x1+2(t), andx1(t) + x1+2(t) ∈ [0, 1].
3While users can also experience positive externalities, inthe context of

mobile data this positive externality is dominated by the content that users
can access. Since data plans, unlike in-network voice calls, rarely offer extra
benefits for communicating with other users on the same technology, the
positive externality can be modeled as a constant term encapsulated in the
similarly constant access price of the base technology. We suppose that plans
for voice calls or text messages are orthogonal to a user’s data plan.
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that a user pays for the bundled option). For ease of notation,
the time arguments ofx1(t) andx1+2(t) will be assumed from
here on to be implicit in the utility functions (1) and (2).

Given these functions, we can find the threshold value of
θ, θ(1,0), for which users will prefer to adopt Technology
1 (i.e., U1 > 0). Similarly, we can also find the value of
θ(1+2,1) for which Technology 1 users will prefer the bundle of
Technologies (1 + 2) (i.e.,U1+2 > U1 > 0). Eachθ threshold
is a (time-dependent) function ofx1 andx1+2. The threshold
θ(1,0) for preferring Technology 1 occurs whenU1 = 0, i.e.,

θ(1,0) =
p− T1(x1 + (1− η)x1+2)

q1
. (3)

The thresholdθ(1+2,1) for adopting Technology 2 in addition
to Technology 1 occurs whenU1+2 = U1 ≥ 0, i.e.,

θ(1+2,1)=
T2 (ηx1+2)− T1 (x1 + (1− η)x1+2)−

∆
η

q1 − q2
. (4)

Finally, we solve for the thresholdθ(1+2,0) above which users
will prefer to adopt both technologies, rather than have no
connectivity. This occurs whenU1+2 = 0, or

θ(1+2,0) =
−(1− η)T1 (x1 + (1− η)x1+2)− ηT2(ηx1+2)

(1 − η)q1 + ηq2

+
p+∆

(1− η)q1 + ηq2
. (5)

In the remainder of this paper, we follow existing literature
[13], [14], [15] by taking the throughput degradation functions
T1 and T2 to be linear, i.e.,Ti(x) = −γix, i = 1, 2 for
some positive constantsγi. In practice, linear functions will
only approximate the “true,” nonlinear throughput degradation
functions, e.g.,Ti(x) = −xα for α ∈ (0, 1). We use
this approximation to keep our approach generic rather than
technology-specific, as the exact algorithm for distributing
resources among multiple users varies by the type of technol-
ogy (i.e., 3G, 4G, WiFi, etc.) and sometimes the deployment
vendor. In Appendix B, we derive analytical bounds on the
approximation error for typical throughput functions and show
that qualitatively similar results are achieved with nonlinear
functions.With the linearT1 andT2, (3-5) become

θ(1,0) =
p+ γ1(x1 + (1− η)x1+2)

q1
. (6)

θ(1+2,1) =
−ηγ2x1+2 + γ1 (x1 + (1− η)x1+2)−

∆
η

q1 − q2
. (7)

θ(1+2,0) =
(1− η)γ1 (x1 + (1 − η)x1+2) + η2γ2x1+2

(1− η)q1 + ηq2

+
p+∆

(1− η)q1 + ηq2
. (8)

For given adoption levelsx1 and x1+2, the ordering of
these threshold values (6-8) determines whether a user of
type θ is willing to adopt a particular technology. Thus,
we can determine the fraction of usersH1

(

x1(t), x1+2(t)
)

andH1+2

(

x1(t), x1+2(t)
)

willing to adopt Technology 1 and
Technologies (1 + 2) respectively. In doing so, we recall that
θ ∈ [0, 1]; for instance, ifθ(1,0) < 0, all users receive positive

TABLE I
EXPRESSIONS FORH1 AND H1+2 IN DIFFERENT REGIONS OF(x1, x1+2).

Conditions onθ H1 H1+2

a
θ(1+2,0) < θ(1+2,1) < 0

0 1
θ(1+2,1) < θ(1+2,0) < 0

b θ(1,0) < 0 < θ(1+2,1) < 1 θ(1+2,1) 1− θ(1+2,1)

c 0 < θ(1,0) < θ(1+2,1) < 1 θ(1+2,1) − θ(1,0) 1− θ(1+2,1)

d 0 < θ(1,0) < 1 < θ(1+2,1) 1− θ(1,0) 0

e
0 < θ(1+2,0) < 1 < θ(1,0) 0 1− θ(1+2,0)
0 < θ(1+2,0) < θ(1,0) < 1

f θ(1,0) < 0 < 1 < θ(1+2,1) 1 0

g
1 < θ(1,0) < θ(1+2,0) 0 0
1 < θ(1+2,0) < θ(1,0)

utility from adopting Technology 1. We thus let[·][0,1] denote
the projection onto the[0, 1] interval.4

We first consider the caseθ(1,0) < θ(1+2,0), i.e., the
threshold for preferring the base technology to no adoption
is smaller than that of preferring both technologies to no
adoption. We show thatθ(1+2,1) > θ(1+2,0); thus, if a user
receives positive utility from Technology 1 and increases it
by adopting Technology 2 as well

(

θ(1,0) < θ(1+2,1) < θ
)

, she
cannot receive negative utility from adopting both technologies
(

θ(1,0) < θ(1+2,1) < θ < θ(1+2,0)

)

. The threshold orderings
must then satisfy the following:

Proposition 1: If θ(1,0) < θ(1+2,0), then θ(1+2,0) <
θ(1+2,1). If θ(1+2,0) < θ(1,0), thenθ(1+2,1) < θ(1+2,0).

Thus, ifθ(1,0) < θ(1+2,0), the fraction of usersH1 willing to
adopt Technology 1 equals the fraction for whomθ(1,0) < θ <
θ(1+2,1), and the fractionH1+2 willing to adopt Technologies
(1 + 2) equals those for whomθ(1+2,1) < θ. Assumingθ is
uniformly distributed between 0 and 1, we have

H1

(

x1, x1+2

)

=
[

θ(1+2,1)

]

[0,1]
−
[

θ(1,0)
]

[0,1]
,

H1+2

(

x1, x1+2

)

= 1−
[

θ(1+2,1)

]

[0,1]
. (9)

If the thresholds are reversed, i.e.,θ(1+2,0) < θ(1,0), then we
may use Prop. 1 to derive

H1

(

x1, x1+2

)

= 0, H1+2

(

x1, x1+2

)

= 1−
[

θ(1+2,0)

]

[0,1]
.

(10)
Following standard economic models, we assume a negligible
cost of switching between the adoption choices [14], [15].

By dividing the dynamical space into seven regions, we can
explicitly write out (9 - 10) as in Table I. Figure 1 visually
represents the adoption expressions in two regions, and Fig. 2
uses theθ threshold values (6 - 8) to map them to the adoption
levelsx1 andx1+2.5 The user dynamics are then

ẋ1(t) = ρ
(

H1

(

x1(t), x1+2(t)
)

− x1(t)
)

ẋ1+2(t) = ρ
(

H1+2

(

x1(t), x1+2(t)
)

− x1+2(t)
)

, (11)

whereρ ∈ (0, 1] expresses the hazard rate, or the probability
that a user who has not yet adopted a technology will do
so at timet. If ρ = 1, the fraction of users adopting each
technology equals the fraction willing to adopt, less those

4That is, [y][0,1] = y if y ∈ [0, 1], 0 if y < 0, and 1 if y > 1.
5A qualitatively similar figure with the same adjacent regions will be

obtained even for nonlinearT1 andT2.
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Fig. 1. Visualization ofθ andH values for regions c and e in Table I.
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Fig. 2. Visualization of Table I’s regions in terms of the adoption levels.

who have already done so.Given these dynamics, we now
derive the possible equilibrium points in each region, i.e.,
the values ofx1 and x1+2 for which H1

(

x1, x1+2

)

= x1

andH1+2

(

x1, x1+2

)

= x1+2 for the H expressions in Table
I. Tables II and III summarize the expressions for possible
equilibria in each region, along with constraints ensuring that
the equilibria lie in their corresponding regions.

B. Convergence and Stability

We now examine the stability of the equilibrium points in
Tables II and III:

Proposition 2: Assuming that an equilibrium point exists,
it is asymptotically stable.

We can use this result to show that for any set of exogenous
parameters values and initial adoption levels, the adoption
dynamics must converge to some stable equilibrium:

Proposition 3: With the adoption dynamics (11), no peri-
odic orbit can exist: for any initial valuesx1(0) andx1+2(0),
x1(t) andx1+2(t) converge to a stable equilibrium point.

While we assume that throughput degradation (T1 andT2)
is linear in the previous section, the proofs of Props. 2 and 3
depend respectively on only the Jacobian of the dynamics (11)
at given adoption levels(x1, x1+2). Since our only assumption
on the slopesγ1 and γ2 of the throughput degradationT1

and T2 is positivity, the Jacobian expressions at any given
adoption levels are not affected by nonlinear forms of the
Ti. Thus, if T1 and T2 are continuously differentiable and

strictly decreasing, both propositions still hold, i.e., for any
initial valuesx1(0) andx1+2(0), x1(t) andx1+2(t) converge
to a stable equilibrium point.

Moreover, only one such equilibrium point exists:

Theorem 1:For given values of the system parametersq1,
q2, η, γ1, γ2, p, and∆, the adoption levelsx1(t) andx1+2(t)
converge to a unique, asymptotically stable equilibrium that
does not depend on the initial valuesx1(0) andx1+2(0).

In the remainder of the paper, we usex1 andx1+2 to denote
the unique equilibrium adoption levels. While theoverall
adoption levelsx1 and x1+2 do not change at equilibrium,
individual users may change their adoption decisions.

IV. SELECTED ADOPTION BEHAVIORS

We now investigate the dependence of the equilibrium adop-
tion on prices and the coverage factor. Though the full equilib-
rium behaviors may be directly derived from Table II, in this
section we present some adoption outcomes and consequences
that are of importance to aWSP. Section IV-A highlights
conditions under which the total adoption can increase with
an increase inthe coverage factor, while Section IV-B derives
conditions under which adoption of the base technology can
increase with the base technology’s access price. InSection
IV-C, we show that similar behaviors occur when the user
heterogeneity variableθ is non-uniformly distributed. Similar
results are obtained with nonlinear throughput degradation
functionsT1 andT2, as shown in Appendix B.

Our first observation is that full adoption(x1 + x1+2 = 1)
can only be achieved with subsidies (p < 0, ∆ < 0 or both),
which may be seen by inspection of regions a, b, and f in Table
II. If some users’ technology valuationsθqi are sufficiently
close to zero due to a smallθ value, their utility functions (1)
and (2) will be negative unless the prices are negative (i.e.,
the WSP offers adoption subsidies). Since we assume thatθ
is uniformly distributed, these subsidies are necessary for full
adoption. In the remainder of this section, we consider only
scenarios without full adoption(x1 + x1+2 < 1).

A. Effect of the Coverage Factor

We first consider the adoption behavior for a range of
coverage factors(η), e.g., a WSP that increases its WiFi
coverage to offload more traffic from 3G, but cannot change
its access prices due to the presence of a competitor. Figure3a
shows the equilibrium adoption levels for a set of exogenous
system parameters.At very small values ofη (< 0.1), the
adoption levels lie in region d of Table II and users adopt
the bundle only if Technology 2 has sufficient coverage, i.e.,
η ≥ 0.1. At large values ofη (> 0.7), adoptionx1+2 of
the bundled technologies decreases withη, even though the
coverage area increases. We can explain this phenomenon
by noting thatas η increases, two effects are present. First,
each adopter of Technologies (1 + 2) can offload a larger
amount of traffic to Technology 2. The total amount of traffic
offloaded,ηx1+2, therefore increases, leading to more conges-
tion on Technology 2. Lower-end users then cease adopting
the bundled technologies (i.e., the user valuation thresholds
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TABLE II
EQUILIBRIUM POINTS (x1x1+2) OF THE DIFFERENT REGIONS INTABLE I.

(x1, x1+2) Region Constraints

a (0, 1)
p+∆ < −(1− η)2γ1 − η2γ2

∆ < η ((1 − η)γ1 − ηγ2)

b
(

η((1−η)γ1−ηγ2)−∆
η(q1−q2)−η2(γ1+γ2)

, ∆−ηγ1+η(q1−q2)
η(q1−q2)−η2(γ1+γ2)

) (η (γ1 + γ2)− q1 + q2) p+ γ1∆ < −ηγ1γ2 + (1− η)γ1 (q1 − q2)

η ((1 − η)γ1 − ηγ2) < ∆ < η (γ1 + q2 − q1)

c See Table III. See Table III.

d
(

q1−p
q1+γ1

, 0
)

−γ1 < p < q1, ∆+ ηγ1p
q1+γ1

> η
(

q2 − q1 + γ1q1
q1+γ1

)

e
(

0, (1−η)q1+ηq2−p−∆
(1−η)q1+ηq2+(1−η)2γ1+η2γ2

) −(1 − η)2γ1 − η2γ2 < p+∆ < (1 − η)q1 + ηq2

η (q2 − q1 − (1 − η)γ1 + ηγ2) p− (q1 + (1 − η)γ1)∆ > η2q1γ2 − η(1 − η)γ1q2

f (1, 0) p < −γ1, ∆ > η (q2 + γ1 − q1)

g (0, 0)
p > q1

p +∆ > (1− η)q1 + ηq2

TABLE III
EQUILIBRIUM POINTS (x1, x1+2) OF REGION C INTABLE I.

x1
−ηγ2q1+(1−η)γ1q2+p(ηγ2−(1−η)γ1+q2−q1)+∆(−(1−η)γ1−q1)/η

−γ1q2−ηγ1γ2+q1((1−η)γ1−ηγ2+q1−q2)

x1+2
−γ1q2+q1(q1−q2)+pγ1+∆(γ1+q1)/η

−γ1q2−ηγ1γ2+q1((1−η)γ1−ηγ2+q1−q2)

Constraints
p (ηγ2 − (1− η)γ1 + q2 − q1) + ∆(−(1− η)γ1 − q1) /η < ηγ2q1 − (1 − η)γ1q2

pγ1 +∆(γ1 + q1) /η < γ1q2 − q1 (q1 − q2)

p (ηγ2 + ηγ1 + q2 − q1) + ∆γ1 > −ηγ1γ2 + (1− η)γ1 (q1 − q2)
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(a) Adoption asη varies,x1 > 0 for η > 0.7.
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(b) Adoption asη varies,x1 = 0 for η > 0.1.

Fig. 3. As the supplemental technology’s coverage areaη increases, (a)x1+2 decreases for largeη, while (b) total adoption may also decrease. Parameter
values are (a)q1 = 200, q2 = 250, γ1 = 50, γ2 = 20, p = 40, ∆ = 10 and (b)q1 = 100, q2 = 300, γ1 = 50, γ2 = 100, p = 40, ∆ = 10.

θ(1+2,1) and θ(1+2,0) for adopting the bundle will increase)
and adopt only the base technology instead. Second, increasing
η allows more traffic to be offloaded from Technology 1 to
Technology 2, decreasing the congestion on Technology 1 and
inducing some non-adopters to begin adopting Technology 1:
the valuation thresholdθ(1,0) for adoption of Technology 1
decreases. Thus, though adoption of the bundled technologies
will decrease, adoption of Technology 1 will increase, and
the total adoptionx1 + x1+2 will also increase due to the
movement of non-adopters towards Technology 1.

Figure 3b shows an example in which the second effect is
not present, i.e., non-adopters still prefer to adoptneithertech-
nology. In this case, the increased congestion on Technology
2 induces some bundled adopters to adopt neither technology,
rather than adopting Technology 1

(

θ(1,0) > θ(1+2,0) > θ
)

.
Non-adopters still prefer to adopt neither technology, and
in fact no users adopt the base technology(x1 = 0). Thus,
x1 + x1+2 = x1+2 and the total adoption may decrease:

Result 1: Increasing the coverage factorη can cause the

total adoptionx1 + x1+2 to decrease.
Suppose that the coverage factorη increases fromη0 to

η1. Then the total adoption at the new equilibrium adoption
levels (for whichη = η1) is larger than the total adoption at
the former equilibrium (for whichη = η0) if and only if, for
any η ∈ [η0, η1], the equilibrium adoption outcome is such
that no users adopt the base technology(x1 = 0), some users
adopt the bundled technologies(x1+2 > 0), and

(1− η)2γ1q1 + (1− η2)γ1q2 + (p+∆) (q2 − q1 − 2(1− η)γ1)

+ ηγ2
(

(η − 2)q1 − ηq2 + 2 (p+∆)
)

< 0. (12)

We note that the left-hand side of (12) is decreasing inηγ2
for sufficiently small prices: Technology 2’s throughput degra-
dation coefficientγ2, multiplied byη, must be sufficiently high
for x1+2 to decrease asη increases. Withoutsuch aloss of
utility from congestion on Technology 2, users will continue to
adopt the bundled Technologies (1 + 2) for largeη. This effect,
however, may be outweighed by a large pricep + ∆ for the
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Fig. 4. As the base technology’s access pricep increases, the base
technology’s adoption may increase (parameters:q1 = 200, q2 = 225,
γ1 = 150, γ2 = 50, ∆ = 30, η = 0.5).

bundle,which increasesthe positive(p+∆) (q2 − q1) term.
If the Technology 2 has a much higher intrinsic quality, i.e.,
(q2 − q1) is large, users may adopt the bundled technologies
asη increases even if Technology 2 has alargeγ2.

Another interesting feature of Fig. 3b is therapid switch
from all users adopting the base technology to all users
adopting the bundled technologies whenη < 0.08. In this
example, the access price∆ of Technology 2 is relatively low,
as is its throughput degradation coefficientγ2 when compared
to q2. Thus, asη increases slightly, the utility of adopting
Technologies (1 + 2) increases quickly: the user need not pay
much more for Technology 2, which provides higher quality
service with relatively little throughput degradation. Many
users then adopt the supplemental technology in addition to
the base one. Asη grows further to 0.08, the utility of adopting
both technologies exceedsthat of adopting only the base
technology

(

θ(1+2,1) < θ(1,0)
)

, save for those users who adopt
neither technology due to low valuation levelsθ.

B. Effect of the Base Access Price

We next consider adoption behaviors for a fixed Technology
2 access price∆ and coverage factorη. For instance, theWSP
may increase the base technology’s access pricep in an attempt
to inducesomeusers to leave the network. However, we find
that in some cases, this approach can backfire: increasingp
may instead increase Technology 1’s adoptionx1. Figure 4
shows an example; we note that thoughx1 increasesfor p >
118, the total adoptionx1+x1+2 decreases. We then see that:

Result 2: Increasing the base pricep need not decrease the
base technology’s adoptionx1.

Suppose thatp increases fromp0 to p1. Then the base
technology’s equilibrium adoption whenp = p1 is larger than
that at whichp = p0 if and only if the equilibrium adoption
outcome for anyp ∈ [p0, p1] is such that some users adopt
Technology 1 and some adoptTechnologies 1 + 2 (i.e.,x1 > 0
andx1+2 > 0 as in region c), and

q2 − q1 < (1− η)γ1 − ηγ2. (13)

The quantity(1− η)γ1 on the right side of (13) represents
the throughput improvement on Technology 1 due to users
of Technologies (1 + 2) offloading traffic onto Technology 2,
while −ηγ2 represents the throughput degradation on Technol-
ogy 2 due to congestion.Thus, (13)indicates that Technology
1’s adoptionx1 increases withp if the quality differential

(q2 − q1) from adoption of Technology 2 is outweighed by
the marginal savings in throughput degradation from adopting
only Technology 1((1− η)γ1 − ηγ2). Users will then choose
to adopt Technology 1, rather than the bundled technologies:
the valuation thresholdθ(1+2,1) for adopting the bundled tech-
nologies will increase. This increase may be faster than that of
θ(1,0), i.e., more users will drop from the bundled technology
to Technology 1 than the users who cease adopting Technology
1, leading to a net increase inx1. As shown in Fig. 4, once
the number of users of Technologies (1 + 2) has gone to zero,
the dynamics transition from region c to region d and users no
longer switch from adopting Technologies (1 + 2) to adopting
Technology 1. The base technology’s adoptionx1 then begins
to decrease with Technology 1’s pricep. The threshold price at
which this transition occurs is that at whichx1+2 = 0 in region
c, i.e.,p(∆, η) = q2 + q1 (q2 − q1) /γ1 −∆(γ1 + q1) /(ηγ1).

C. Nonuniform Valuation Distributions

In Figs. 5 and 6, we show adoption behaviors for fixed
system parameters when the user valuationsθ are not uni-
formly distributed. We consider three different distributions
of θ, chosen as differentβ distributions, and investigate the
equilibrium adoption levels as the coverage factorη varies.

We first note that despite the nonuniform heterogeneity,
equilibria exist for each value ofη simulated. In fact, as in
Fig. 3a with a uniformly distributed variableθ, in Fig. 5a we
observe that as the coverage increases, adoptionx1+2 of the
bundled technologies decreases, while total adoptionx1+x1+2

increases. Our simulation in Fig. 5b even replicates Fig. 3b’s
rapid switch from predominant adoption of only Technology
1 (η < 0.04) to predominant adoption of only Technologies
(1 + 2). In Fig. 6, we present an example in whichx1 = 0
for η > 0.12; then as the adoption of Technologies (1 + 2)
decreases, so does the total adoption. This adoption behavior
is qualitatively comparable to that observed in Fig. 3b.

V. REVENUE AND PROFIT MAXIMIZATION

Having used our model to identify and characterize a range
of equilibrium adoption behaviors, we now use the insights
derived in Sections III and IV to analyze the implications
for WSP profit and revenue. We first consider the WSP’s
revenue in Section V-A, deriving the revenue-maximizing
prices and investigating the corresponding adoption behavior.
We then introduce two additional factors in Section V-B,
WSP savings from offloading traffic and the cost of deploying
the supplemental technology. We use empirical usage data to
estimate these costs and the resulting adoption behaviors.

A. Revenue Maximization

We first consider the behavior of Technologies (1 + 2)’s
equilibrium adoptionx1+2 as η varies and the WSP chooses
prices so as to maximize its revenuep (x1 + x1+2) +∆x1+2.
We use Tables II and III’s expressions for the equilibriumx1

and x1+2 to find the revenue-maximizing pricesp∗ and ∆∗

at each possible equilibrium (Table IV). To emphasize their
dependence on price, in the rest of this section the notation
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TABLE IV
REVENUE-MAXIMIZING PRICES ASSUMING EQUILIBRIUM ADOPTION LEVELS IN REGIONS A-G (CF. TABLES I-III).

p∗ ∆∗ Revenue

a < − (1− η) γ1 −(1− η)2γ1 − η2γ2 − p −(1− η)2γ1 − η2γ2

b∗
−ηγ1γ2+(1−

η

2
)(q1−q2)

η(γ1+γ2)−q1+q2

η(q2−q1)
2

η

4
(q1−q2)

2+(1−η)γ1(q1−q2)−ηγ1γ2
η(γ1+γ2)+q2−q1

c† q1
2

η(q2−q1)
2

q2
1
ηγ2+q2

2
ηγ1+q2

1
(q2−q1)+ηq1(q1−q2)

2

4(γ1q2+ηγ1γ2+q1(q2−q1+ηγ2−(1−η)γ1))

d q1
2

≥ η
(

q2 − q1 + γ1q1
2(q1+γ1)

)

q2
1

4(q1+γ1)

e (1−η)q1+ηq2
2

−∆ ≤ p
(

ηq2+η2γ2
q1+(1−η)γ1

− η
)

−
η2q1γ2−η(1−η)γ1q2

q1+(1−η)γ1

((1−η)q1+ηq2)
2

4((1−η)q1+ηq2+(1−η)2γ1+η2γ2)

f −γ1 ≥ η (q2 + γ1 − q1) −γ1

g > q1 ≥ η(q2 − q1) 0

∗If 2(1 − η)γ1 − 2ηγ2 > q2 − q1, the revenue-maximizing prices for region b are instead:p∗ =
(1−η)γ1(−γ1+q1−q2)

η(γ1+γ2)+q2−q1
,

∆∗ = (1− η)γ1 − ηγ2 , revenue =
−ηγ1γ2+((1−η)2γ1+η2γ2)(q1−q2)−η((1−η)γ1−ηγ2)

2

η(γ1+γ2)+q2−q1

†If ηγ2q1 ≤ (1− η)γ1q2, then at the optimal pricesx1 = 0 and the equilibrium lies in region e.
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(a) β distribution parameters(α, β) = (5, 2).
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(b) β distribution parameters(α, β) = (2, 2).
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(c) β distribution parameters(α, β) = (1, 3).

Fig. 5. Equilibrium adoption levels as the coverage factorη varies for differentβ distributions of the uservaluationsθ. System parameters are (a)q1 = 150,
q2 = 250, γ1 = 50, γ2 = 150, p = 50, ∆ = 40; (b) and (c)q1 = 200, q2 = 280, γ1 = 50, γ2 = 150, p = 50, ∆ = 5.

x∗

1 = x1

(

p∗,∆∗
)

and x∗

1+2 = x1+2

(

p∗,∆∗
)

denotes the
equilibrium adoption levels at the optimal pricesp∗ and∆∗.

We see from Table IV that the WSP earns non-positive
revenue if it maximizes its revenue at equilibria in regions
a, f, or g. In region g, there is no adoption, leading to zero
revenue. In regions a and f, the WSP observes full adoption,
and as observed in Section IV, it must therefore offernegative
pricesp and∆, leading to negative revenue. In region b, which
also has full adoption, the negative price of Technology 1 (p∗)
may be offset by a sufficiently positive pricep∗ + ∆∗ for
Technologies (1 + 2), so that the overall revenue is positive.
This (possibly) positive revenue, however, is exceeded by that
in other regions. We therefore focus on regions b–e. Using
Table IV, we can prove that revenue is greatest under partial
adoption of both technologies:

Proposition 4: WSP revenue is maximized with partial, but
not full, adoption (x∗

1 + x∗

1+2 < 1) and full coverage (η = 1).

If the WSP is not free to vary its coverage factor, then we
can also derive conditions under which no users adopt the base
technology at the revenue-maximizing prices:

Result 3: For any fixed η, some users adopt the base
technology at the revenue-maximizing prices if and only if

η
γ2
γ1

> (1− η)
q2
q1

. (14)

Thus, if (14) is not satisfied, the WSP can eliminate data plans
for only the base technology, and only offer bundled plans.

The condition in Result 3 can be interpreted as stating
that when the qualityq1 of Technology 1 is sufficiently high
and the marginal throughput degradationγ1 sufficiently low
relative to Technology 2, then for a large coverage factorη,
some users will adopt Technology 1 at the optimal prices.

Under these conditions, the adoptionx1+2

(

p∗,∆∗
)

of Tech-
nologies (1 + 2) will decrease asη increases, as shown in Fig.
7’s example.6 As in Fig. 3a, two effects are present. First,
the total volume of trafficηx∗

1+2 offloaded onto Technology 2
increases withη, increasing Technology 2’s adoption threshold
θ(1+2,1) and driving more users to adopt only Technology 1
instead of the bundle. Second, overall adoptionx1

(

p∗,∆∗
)

+
x1+2

(

p∗,∆∗
)

increases: the increase inη leads to more
traffic being offloaded from Technology 1 to Technology 2,
reducing congestion on Technology 1 and inducing low-end
non-adopters to adopt Technology 1. If this second effect isnot
present, then the overall adoption equals that of Technologies
1 + 2 and does not increase:

Result 4: Increasing the coverage factorη at the WSP’s

6We note that the overall adoption levels in Fig.7 are low when compared
with those of Fig.3. With different parameters (e.g.qi and γi values), the
overall adoption levels may change; we use the ones here to reflect current
smartphone penetration rates in the U.S. [20].
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Fig. 6. Equilibrium adoption levels as the coverage factorη increases,x1 = 0
for large η. User heterogeneityθ follows a β distribution with parameters
(α, β) = (1, 3). System parameters areq1 = 100, q2 = 300, γ1 = 50,
γ2 = 100, p = 40, ∆ = 10.
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Fig. 7. Adoption levels forη ∈ [0, 1] and revenue-maximizing prices
(q1 = 50, q2 = 100, γ1 = 50, γ2 = 100). As η increases, total adoption
x1

(

p∗,∆∗
)

+ x1+2
(

p∗,∆∗
)

increases, driven by the increase inx1.

revenue-maximizing prices can cause the total adoption
x1

(

p∗,∆∗
)

+ x1+2

(

p∗,∆∗
)

to decrease.
Suppose that the coverage factorη increases fromη0 to η1.

Then the total equilibrium adoption with revenue-maximizing
prices whenη = η1 will only be smaller than that whenη =
η0 if, for any η ∈ [η0, η1], the equilibrium adoption at the
revenue maximizing prices is such that no users adopt the
base technology(x∗

1 = 0), or equivalently, (14) does not hold.

We can further derive the exact adoption levelsx∗

1 andx∗

1+2

as a function ofη from the proof of Result 3. If (14) holds,
then the revenue-maximizing adoption levels occur in region c;
if not, then they occur in region e.From Tables II and IV, we
then find the equilibrium adoption levels as in Table V.We also
note thatWSP revenue increases withη. In fact, we observe
from Table IV (region c) that∆∗ = η (q2 − q1) /2 increases
with η; this increase in price offsets any decrease in adoption
for Technologies (1 + 2), increasing theWSPrevenue.

B. Optimizing Profit

In addition to its revenue,WSP profit includes its savings
from offloading, less the cost of deploying a supplemental
technology.7 Since these parameters depend on the market
conditions, we consider three scenarios: a small city;a large,
sparsely populated city; and a large, more densely populated
city. We refer to the latter two cities as the “sparse” and
“dense” cities. Wetake the base technology to be 3G and

7We assume that the deployment cost of the base technology is independent
of the adoption levels, e.g., an already-deployed 3G network.

the supplemental one to be WiFi, and collect empirical data
to estimate their costs and savings from offloading. We then
derive a mathematical model for the offloading savings and
deployment costs and show how these costs affect the optimal
coverage factor and adoption behaviors. We find that the
adoption behavior with fixed coverage factorη is qualitatively
similar to the behavior when only revenue is maximized.

1) Trial Data: To estimate 3G and WiFi cost parameters,
we gather 3G and WiFi usage data from 20 Android smart-
phones over six days. SinceWSPcost is driven by peak-hour
traffic, we focus on usage when the 3G network is most heavily
utilized [21]. Our goal is twofold: first, to estimate the fraction
of 3G traffic that occurs at this peak time; and second, to
estimate the probability of WiFi access at this time, given
the overall WiFi access probability. We can then estimate the
amount of traffic that will be offloaded to WiFi at the peak
time, given the WiFi adoptionlevel and coverage factor.

We implemented a simple data monitoring app and released
it to users in the United States. In each hour, we recorded
the volume of 3G and WiFi usage and WiFi base station
IDs. We find that the probability of WiFi access in the hour
of highest 3G usage is 82% of the overall probability of
WiFi access. On average, 55% of 3G traffic occurs in these
peak hours, corroborating existing findings that 3G data usage
exhibits severe peaks during the day [21]. Moreover, the
overall fraction of traffic on WiFi is fairly consistent across
all participants, with an average of 71% and variance of 9%.
This result helps validate our model’s assumption of a single
coverage factor affecting heterogeneous users’ utilitiesfrom
using the base and supplemental technologies.

2) Cost Model: We model the cost savings introduced by
user offloading as a linear function of the amount offloaded
during the peak hour, i.e., the marginal cost of peak traffic,
multiplied by the amount offloaded [21]. The amount offloaded
may be expressed asCWFηx1+2, whereCWFη is the probabil-
ity that abundleuser has access to WiFi in the hour of peak 3G
usage, multiplied by theper-userpeak 3G usage. Multiplying
by x1+2 then yields theamount of traffic offloaded, normalized
by the user population. The total savings from offloading is
then CWFηx1+2 multiplied by the marginal savings, which
we denote ascWFηx1+2. As described in Appendix C, we
estimatecWF using our trial datato derivecWF = 5.4, 10.6,
or 15.8 for the small, sparse, and dense cities respectively.

We next consider the cost of deploying the supplemental
technology. We assume that theWSP’s access point (AP)
deployment in each type of city is such that the throughput
degradation is the same function of thetraffic on Technology
2’s network (i.e., equalγ2 values). In more densely populated
cities, theWSPmay utilize a denser AP deployment in order
to accommodate the larger number of users in the sparse
and dense cities. These additional APs do not increase the
geographical coverage area, but rather accommodate more
users within the same area.

We model the cost of deployment ascAPη, a linear function
of η; we usecAP = 6.2, 4.9, and 11.5 respectively for the
small, sparse, and dense cities, as calculated in Appendix C.
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TABLE V
ADOPTION LEVELS AT THE REVENUE-MAXIMIZING PRICES FOR FIXEDη.

Condition x∗
1 x∗1+2

η γ2
γ1

≤ (1− η) q2
q1

0
(1−η)q1+ηq2

2((1−η)q1+ηq2+(1−η)2γ1+η2γ2)

η γ2
γ1

> (1− η) q2
q1

(1−η)γ1q2−ηq1γ2
2(−γ1q2−ηγ1γ2+q1((1−η)γ1−ηγ2+q1−q2))

−γ1q2+q1(q1−q2)
2(−γ1q2−ηγ1γ2+q1((1−η)γ1−ηγ2+q1−q2))
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Fig. 8. Adoption levels for the profit-maximizing prices andfixed coverage factorη (q1 = 50, q2 = 100, γ1 = 25, γ2 = 50) in different scenarios.
Nominal cost parameters are(cWF, cAP) = (5.4, 6.2), (10.6, 4.9) and (15.9, 11.5) for the small, sparse, and dense cities respectively. Asη increases past
a threshold value, adoptionx1+2

(

p∗,∆∗
)

of Technologies (1 + 2) decreases despite the potential to offload more trafficwith a largerx1+2
(

p∗,∆∗
)

.

(a) Hourly 3G and WiFi usage. (b) Location-specific usage.

Fig. 9. Screenshots of our usage monitoring app on the Android platform.
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Fig. 10. Adoption levels for the profit-maximizing prices and coverage factor
for the sparse city (q1 = 50, q2 = 100, γ1 = 25, γ2 = 50, cAP = 4.9).

We thus maximize theWSP’s total profit at equilibrium

p (x1 + x1+2) + ∆x1+2 + cWFηx1+2 − cAPη (15)

with respect to the optimization variablesη, p, and∆. In the
remainder of this section, we useη∗, p∗, and∆∗ to denote the
optimal values ofη, p, and∆, respectively; the corresponding
adoption levels are denoted byx∗

1 andx∗

1+2.
3) Adoption Behaviors:We first examine adoption behavior

at the profit-maximizing pricesp∗ and∆∗ for fixed coverage
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Fig. 11. Optimal coverage factorsη∗ in Fig. 10.

factorη and cost parameterscAP andcWF. Sinceη is fixed in
this scenario, we see from (15) that the onlycost term in the
optimization iscWFηx1+2; we would thus expect to observe
higher adoption of the bundled technologies when profit is
maximized, rather than revenue.

We show the profit-maximizing adoption levels in Fig. 8;
visually, their behavior is qualitatively similar to the revenue-
maximizing adoption levels in Fig. 7. In particular, even
though theWSPreceives an additional offloading benefit from
more users adopting the bundled technologies, adoptionx∗

1+2

of the bundled technologies still decreases for largeη. We
note, however, that as the marginal benefit from offloading
cWF increases (cWF is smallest for the small city and largest
for the dense city), the threshold value ofη at which x∗

1+2

decreases grows. Thus, ifcWF is sufficiently large, theWSP’s
prices will be such that adoption of the bundled technologies
never decreases as the coverage factorη increases.

In Fig. 10, we show the adoption levelsx∗

1 andx∗

1+2 for the
sparse city at the WSP’s profit-maximizingoperating point for
a range ofoffloading benefitscWF. Results for the small and
dense cities are similar.We show the optimal coverage factors
in Fig. 11; as we might expectfrom Fig. 8, the optimalvalue
of η increases withcWF and eventually becomes 1.

We next vary the cost of deploymentcAP, keepingcWF

constant. Figure 12 shows the resulting adoption levels, with
the optimal coverage factorsη∗ shown in Fig. 13.For all cities,
as the marginal cost of deploymentcAP increases,η∗ and the
adoptionx∗

1 of Technology 1 decrease. The decrease inη∗
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Fig. 12. Adoption levels for the profit-maximizing prices and coverage factor (q1 = 50, q2 = 100, γ1 = 25, γ2 = 50) in different scenarios. Nominal cost
parameters arecWF = 5.4, 10.6, and15.9 for the small, sparse, and dense cities respectively.
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Fig. 13. Optimal coverage factorsη∗ for the simulations in Fig. 12.

is nonlinear:initially, η∗ = 1 as the cost of deployment is
outweighed by the savings from offloadingcWFηx

∗

1+2. The
initial decrease fromη∗ = 1, however, is relatively rapid, as
the decrease incWFηx

∗

1+2 due to decreasingη is muted by
an increase in adoption of the bundled technologiesx1+2. For
any fixedcAP, the optimal coverage factor is largest for the
dense city and smallest for the small city; this reflects the
ordering of the marginal savings from offloadingcWF, which
are largest for the dense city.

For the small city, the immediate decrease in the optimal
coverageη∗ induces behavior similar to that of Fig. 7: asη∗

decreases (Fig. 13),adoption of the bundle first increasesand
then decreases as Technology 2 experiences greter congestion
and less coverage. The same effect is observed for the sparse
and dense cities, without the final decrease inx∗

1+2 for large
cAP (small η∗). Thus, in cities with denser populations, a
decrease in coverage due to higher costs may in fact increase
adoption of the bundled technologies.

VI. CONCLUSION

In this paper, we develop a model of user adoption for base
and supplemental wireless network technologies that accounts
for heterogeneity in users’ technology valuations, congestion
effects, and pricing decisions. We show that user adoption
converges to a unique, stable equilibrium point, and derive
analytical conditions under which non-intuitive adoptionbe-
haviors occur. We then show that these may persist when
WSPs maximize either their revenue or profit.Our profit model
incorporates both the savings from offloading and deployment
costs of a WiFi network.

Though we use empirical data to realistically studyWSP
savings from offloading traffic onto a supplementary network,
our parameters can only approximate true market structures.
Similarly, our user adoption model makes approximating as-
sumptions, one of which is that users’ technology valuations

are uniformly distributed.We thereforeshow that many of the
reported qualitative adoption behaviors are also observedfor
non-uniform distributions and nonlinear throughput functions
(cf. Section IV-C and Appendix B). Our framework thus
enables researchers to gain additional insights into the role of
supplementary technologies in alleviating network congestion
and the resulting economic implications.

Broadly speaking, our work fits into the framework of
“Smart Data Pricing” (SDP), which studies new ways of
pricing mobile data with the aim of making mobile data
networks more operationally efficient [22]. While other SDP
works have shown that users change their behavior in response
to pricing policies such as time-dependent pricing [23], the
framework introduced in this work can be used to investigate
the effects of such pricing schemes on technology adoption
levels when heterogeneous networks are present. Though such
investigations are beyond the scope of this work, we anticipate
that these smarter pricing policies can significantly improve
WSP revenue and can even be used to steer the adoption levels
to operationally favorable targets.
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APPENDIX A
PROOFS

A. Proposition 1

First we suppose thatθ1,0 < θ1+2,0. Then using (4) and (5),
the inequalityθ1+2,0 < θ1,1+2 is equivalent to

p (q1 − q2) >q1T2 (ηx1+2)− η−1∆q1

− q2T1 (x1 + (1− η)x1+2) . (16)

But expanding the inequalityθ1,0 < θ1+2,0 using (3) and
(4), we have the exact same inequality. On the other hand,
if θ1+2,0 < θ1,0, then we switch the sign of (16) to show that
θ1+2,0 < θ1,0 implies θ1,1+2 < θ1+2,0.

B. Proposition 2

In regions a, f and g, it is simple to show that the equilibria
are stable: lettingx = (x1, x1+2), we denote (11) aṡx = f(x)
so that

∂f

∂x
=

[

−1 0
0 −1

]

at each equilibrium in regions a, f and g. Since this matrix
is clearly negative definite, the equilibria are asymptotically
stable.

In region b, the Jacobian of the dynamics (11) is
[

γ1

q1−q2
− 1 −ηγ2+(1−η)γ1

q1−q2
−γ1

q1−q2

ηγ2−(1−η)γ1

q1−q2
− 1

]

The eigenvalues of this matrix areλ = η γ1+γ2

q1−q2
− 1, λ =

−1. Since we assumeq1 < q2, both eigenvalues are real and
negative and the equilibrium in region b is stable. Similarly,
in region c the Jacobian has the form

[

γ1

q1−q2
− γ1

q1
− 1 −ηγ2+(1−η)γ1

q1−q2
− (1−η)γ1

q1
−γ1

q1−q2

ηγ2−(1−η)γ1

q1−q2
− 1

]

,

which has eigenvaluesλ satisfying

2 (λ+ 1) =
η (γ2 + γ1)

q1 − q2
−

γ1
q1

±

√

(

η (γ2 + γ1)

q1 − q2
−

γ1
q1

)2

+
4ηγ1γ2

q1 (q1 − q2)
.

Upon simplifying, we find thatλ = η γ2+γ1

q1−q2
, − γ1

q1
. As both

of these are real and negative, we see that the equilibrium in
region c is asymptotically stable.

Finally, in regions d and e we have the triangular Jacobian
matrices

[

−γ1

q1
− 1 −(1−η)γ1

q1

0 −1

]

,

[

−1 0
−(1−η)γ1

(1−η)q1+ηq2

−(1−η)2γ1−η2γ2

(1−η)q1+ηq2
− 1

]

.

Since all diagonal entries in these matrices are negative, the
equilibria in both regions are asymptotically stable.

C. Proposition 3

The result follows from Bendixson’s criterion. We can use
the Jacobian expressions in the proof of Prop. 2 to show
that the divergence∂f1/∂x1 + ∂f2/∂x1+2 of the dynamical
equations (11) is negative in each region. Then Bendixson’s
criterion tells us that no periodic orbits can exist.8 Since
no periodic orbits exist, each trajectory must converge to an
equilibrium point. From Prop. 2, this equilibrium must be
stable.

D. Theorem 1

The stability of the equilibrium follows from Prop. 2, while
existence of at least one such equilibrium follows from the
boundedness of thexi and the non-existence of a periodic
orbit (Prop. 3). Thus, it remains to show that at most one
equilibrium point can exist.

Suppose that two stable equilibrium points
exist, and consider a bounded neighborhoodS of
{x1 ≥ 0, x1+2 ≥ 0, x1 + x1+2 ≤ 1}. We suppose that
the dynamical equations (11) are continuously extended to all
of S for the purposes of the proof, and that no new equilibria
are created. If we consider all trajectories lying inS, the
regions of attraction for both equilibria are (disjoint) open,
connected, and invariant sets, whose boundaries are formed
by trajectories [24]. However, since no periodic orbits exist,
the boundaries must be the boundary ofS itself. Then since
S is connected, it cannot be a disjoint union of open sets, and
there exists at least one point inS that is in neither region of
attraction. But this is a contradiction, as the trajectory starting
from this point must approach a compact limit set.

8Bendixson’s criterion relies on Green’s theorem for the vector field f ,
which is typically assumed to be continuously differentiable. In our case,f
is merely piecewise-linear and continuous. However, sincewe are working
in R

2 and f is continuously differentiable almost everywhere, the proof of
Green’s theorem is still valid.
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E. Result 1

We first note from Table II that in regions a, b, f, and g of
Table I, the total adoptionx1 + x1+2 remains constant at 1,
i.e., full adoption. We may then differentiate the equilibrium
expressions forx1 + x1+2 and x1+2 in region c and use
the constraints in Table II to show that these quantities are
increasing inη. The remaining region is then region e, where
x1 = 0 (no users adopt the base technology),x1 + x1+2 < 1
(some users adopt neither technology), andx1+2 > 0 (some
users adopt the bundled technologies). Differentiating Table
II’s equilibrium expression forx1+2 in this region, we find
the condition (12).

F. Result 2

We first note from Table II that in regions a, b, e, f, and
g in Table I, adoption of the base technology (x1) does not
depend on the pricep. In region d, we differentiate Table II’s
expression forx1 to find that it is decreasing inp. Finally,
we consider region c, wherex1 > 0 (some users adopt the
base technology),x1+2 > 0 (some users adopt the bundled
technologies), andx1 + x1+2 < 1 (some users adopt neither
technology). We differentiate the equilibrium expressionfor
x1 to obtain the condition (13).

G. Proposition 4

By inspection, the optimal revenue in regions a, f, and g
is non-positive in Table IV. Thus, since full adoption only
occurs in regions a, b, f, or g and the bundled technologies
have positive adoption in regions c and e, for the first part of
the proposition it suffices to show that the revenue in regions
b and d does not exceed that in regions c or e.

Region b: We first consider the case2(1− η)γ1 − 2ηγ2 >
q2 − q1. By inspection, in this case region b has negative
revenue. Since regions c, d and e have positive revenue, this
cannot be optimal.

We now suppose that2(1 − η)γ1 − 2ηγ2 ≤ q2 − q1 and
ηγ2q1 < (1 − η)γ1q2. We show that the maximum revenue
in region b is less than the maximum revenue in region e. It
suffices, from Table IV, to show that

(

η (q2 − q1)
2 + 4(1− η)γ1 (q1 − q2)

)

×
(

(1− η)q1 + ηq2 + (1− η)2γ1 + η2γ2
)

≤ ((1− η)q1 + ηq2)
2
(η (γ1 + γ2) + q2 − q1) .

Simplifying and neglecting some terms, we find the sufficient
condition

ηγ1q
2
1 + ηγ2q

2
1 + q21 (q2 − q1) + 2η2γ1q1 (q2 − q1)

+ 2η2γ2q2 (q2 − q1) + ηq1 (q2 − q1)
2 + η2γ1 (q2 − q1)

2

+ 4η(1− η) (4− 1 + η) γ1 (q2 − q1)
2 ≥ 0,

which is clearly true, since each term in the sum is nonnega-
tive.

Next, we suppose thatηγ2q1 ≥ (1 − η)γ1q2 and show that
the revenue at region c’s revenue-maximizing point is larger

than the maximum revenue in region b. From Table IV, it
suffices to show that

η

4 (q1 − q2)
2

η (γ1 + γ2) + q2 − q1
≤
q21ηγ2 + q22ηγ1

4A

+
q21 (q2 − q1)

4A

+
ηq1 (q1 − q2)

2

4A
for any givenη, where

A =γ1q2 + ηγ1γ2

+ q1 (q2 − q1 + ηγ2 − (1− η)γ1) .

Multiplying out the fractions, we find the sufficient condition
(

ηγ1q2 + η2γ1γ2
)

(q1 − q2)
2

− η(1− η)q1γ1 (q1 − q2)
2

≤ (ηγ1 + ηγ2 + q2 − q1)
(

ηγ2q
2
1 + ηγ1q

2
2

)

.

We now expand the left side of this inequality; it is

≤− ηγ1q1q
2
2 + ηγ1q

3
2

+ η2γ1γ2q
2
1 − 2η2γ1γ2q1q2 + η2γ1γ2q

2
2

=ηγ1q
2
2 (q2 − q1) + η2γ1γ2q

2
1

− 2η2γ1γ2q1q2 + η2γ1γ2q
2
2 .

We now obtain

−2η2γ1γ2q1q2 ≤η2γ2
1q

2
2 + η2γ2

2q
2
1

+ ηγ1q
2
2 (q2 − q1) .

Since the left-hand side is clearly negative, while the right-
hand side is positive, we have the desired result.

Region d: We first show that the revenue in region c is
increasing inη. By inspection, the revenue expressions in
regions c, d, and e are equal atη = 0 and the optimal revenue
in region d is independent ofη, which will complete the proof.
We calculate that

dRc

dη
=
γ2
1q

2
2 (q2 − q1) + 2γ1q1q2 (q2 − q1)

2

4X2

+
q21 (q2 − q1)

2
+ (1− η)γ1q

3
1 (q2 − q1)

4X2
,

where

X =γ1q2 + ηγ1γ2

+ q1 (q2 − q1 + ηγ2 − (1 − η)γ1) .

Thus,dRc/dη ≥ 0 for all values ofη ∈ [0, 1]. The revenue in
region c forη = 1 then exceeds that in region d. We note that
sinceηγ2q1 ≥ (1 − η)γ1q2 at η = 1, the expression in Table
IV for region c’s maximum revenue is valid.

We next use the optimal revenue expressions in Table IV to
show that for fixedη, the revenue in region c exceeds that in
region e if and only if

((1 − η)γ1q2 − ηq1γ2)
2
≥ 0.

Since this expression is always nonnegative and region c’s
revenue is increasing inη, we see that the maximum revenue
in region c occurs atη = 1, which exceeds that in region e.
The maximum revenue thus occurs in region c, withη = 1.
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H. Proposition 3

From the proof of Prop. 4, we see that for fixedη, the
maximum revenue occurs in region c if and only if

ηq1γ2 > (1− η)γ1q2, (17)

i.e., if (17) holds then at the revenue-maximizing prices, the
equilibrium adoption levels lie in region c. If (17) does not
hold, then the maximum revenue lies in either region d or
region e. But we note that the revenue in regions d and e is
the same atη = 0, and the revenue in region d does not depend
on η. In contrast, in region e the revenue increases withη if
(17) does not hold: we take the derivative of revenue in region
e with respect toη to find that it equals

C
[

η (q2 − q1)
2
− 2ηγ1q2 − 2ηγ2q1 + 2γ1q2 + q1 (q2 − q1)

]

,

where

C =
((1− η)q1 + ηq2)

4 ((1− η)q1 + ηq2 + (1− η)2γ1 + η2γ2)
2 .

Since ηγ2q1 ≤ (1 − η)γ1q2, we see that this quantity is
nonnegative, and thus that the revenue increases asη increases.
Revenue in region e thus exceeds that in region d for any value
of η not satisfying (17). No users adopt the base technology
in region e (Table II), which completes the proof.

I. Result 4

The ISP’s revenue is maximized when the dynamics lie in
region c if and only ifηγ2q1 ≥ (1−η)γ1q2. Thus, we can use
Table IV’s expressions for the optimal prices in region c to find
the corresponding adoption levels in Table II. Differentiating
with respect toη shows that total adoption increases withη
in region c, yielding the proposition.

APPENDIX B
THROUGHPUTL INEARIZATION

In Section III, we use linear models to represent the de-
crease in utility due to throughput degradation. We justify
this assumption here by analyzing the accuracy of a linear
approximation to previously proposed throughput measures.

Prior works on technology adoption [16] take congestion
levels into account with a Markov chain analysis, assuming
Poisson arrivals of rateλx and exponentially distributed ses-
sion length with meanµ−1. The expected throughput is then

−R0(1− νx)
log(1− νx)

νx
, (18)

whereR0 is the average time of service without interference or
queueing, andwe assumeν = λ/µ < 1. Thus, thethroughput
degradationequals (18), less the maximum throughput. We
now use Taylor’s remainder theorem to bound the error of a
linear approximation to (18). The second derivative of (18) is

R0

(

2

x2
+

ν

x
+

ν2

1− νx
+

2 log(1 − νx)

νx3

)

=

R0ν
2

∞
∑

n=0

n+ 1

n+ 3
(νx)

n
,
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Fig. 14. Nonlinear throughput functions (19) used in Fig. 15’s simulations.

where the infinite sum uses the Taylor series forlog(1− νx)
and the geometric series for(1− νx)−1. Thus, approximating
(18) atx = 0.5, we can bound the error by

R0ν
2 max
x∈(0,1)

(x− 0.5)
2

2

∞
∑

n=0

n+ 1

n+ 3
(νx)

n

≤
R0ν

2

8
max

x∈(0,1)

∞
∑

n=0

n+ 1

n+ 3
(νx)

n
.

Approximating the sum as the geometric series ofνx, we
let x = 1 to obtain an upper bound ofR0ν

2/(8 − 8ν).
Numerically, this bound is in fact conservative; for instance,
taking R0 = 1 and ν = 0.5 produces a maximum error of
0.013, as opposed to an analytical bound of 0.0625.

Having shown that linear functions can closely approximate
proposed nonlinear throughput functions, we next investigate
the dynamical behavior when the throughput degradation
functionsT1 and T2 are nonlinear. We take the throughput
functions to be as in (18), i.e.,

Ti(x) = Ri

(

1 + (1− νix)
log(1− νix)

νix

)

(19)

wherei = 1, 2 denotes the two technologies. Figure 14 shows
the throughput functions (19) forRi = 100 and νi = 0.5,
0.8; a differentRi coefficient merely scales these functions
and does not affect their qualitative shape. As expected from
Appendix B, these functions are close to linear, though their
slope clearly increases for largerx (i.e., more congestion).

Figure 15 shows a range of simulations withν = 0.5 (Figs.
15a and 15b) andν = 0.8 (Fig. 15c) in (19). Figure 15a
can be compared to Fig. 3a; in both figures, we observe a
decrease in adoption of the bundled technologies and increase
in adoption of the base technology for a large coverage factor
η. Total adoption increases for all values ofη in both cases.
Figures 3b and 15b show a similar decrease in adoption
of the bundled technology for largeη, but one in which
adoption of the base technology is zero for larger values of
η. Finally, Fig. 15c shows that even when prices are chosen
so as to maximize operator revenue, the adoption behavior
with nonlinear throughput degradation functions mirrors that
with linear throughput degradation, shown in Fig. 7. In both
cases, we observe that the adoption of the base technology is
initially zero, with adoption of the bundled technologiesx1+2

increasing with the coverage factorη. After a threshold value
of η, however, adoption of the bundled technologies begins to
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(a) Adoption withx1 > 0 for all η.
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(b) Adoption withx1 = 0 for η > 0.12.
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(c) Adoption with revenue-maximizing prices.

Fig. 15. Equilibrium adoption levels as the coverage factorη varies for nonlinear throughput degradation functionsT1 and T2 given by (19). System
parameters are (a)q1 = 50, q2 = 80, R1 = 10, R2 = 50, ν1 = ν2 = 0.8, p = 20, ∆ = 5; (b) q1 = 35, q2 = 80, R1 = 120, R2 = 100, ν1 = ν2 = 0.8,
p = 20, ∆ = 5; and (c)q1 = 100, q2 = 200, R1 = 50, R2 = 80, ν1 = ν2 = 0.5, revenue-maximizing prices.

decrease due to congestion on Technology 2, and adoption of
Technology 1 correspondingly increases.

APPENDIX C
ESTIMATING COST PARAMETERS

Savings from Offloading: We take the marginal cost of 3G
traffic during the peak hour to be 1.0¢/MB in the small city,
1.9 ¢/MB in the sparse city, and 2.9¢/MB in the dense city;
these values are based on AT&T’s and Verizon’s data plan
overage charges in the U.S. We next estimateCWFη, the
probability that a 3G and WiFi user has access to WiFi in the
hour of peak 3G usage, multiplied by this peak 3G usage. From
our trial data, we find that each user consumes on average
1200MB in each month, with 660MB occurring at peak hours
of the day. The probability of peak-hour WiFi access is 82%
of the overall access probability; thus, the probability ofWiFi
access during the peak hour is0.82η. Each user then offloads
(0.82η)(660MB) = 541η MB at the peak hours over one
month (i.e.,CWF = 541). Multiplying by the ¢/MB marginal
savings from offloading, we find thatcWF = 5.4, 10.6, or 15.8
for the small, sparse, and dense cities respectively.

Deployment Costs: To find the marginal cost of deployment
cAP, we assume that each additional AP increases the coverage
factor η by a fixed amount∆η and costs theWSP a fixed
amountCAP per month. From [25], we estimateCAP as
a monthly operational cost of $20, plus capital investment
of $1200 spread over 12 months, so thatCAP = $120. For
simplicity, we interpret the WiFi access probabilityη as the
physical area covered by APs, e.g., uniform user mobility. The
cost of covering an areaη with APs is thenCAP⌈η/∆η⌉ ≈
(CAP/∆η) η. Normalizing by the user population, we find that

cAPη =
CAP (Market area)

(AP coverage area) (Market population)
η

=
$120

(AP coverage area) (Population density)
η.

We use population densities of 2000, 5000, and 12000
people per square mile for the small, sparse, and dense cities
respectively. The AP coverage area is assumed to be 0.01
square miles, (a 130 meter radius), for the small city, 0.005
square miles for the sparse city, and 0.002 square miles for
the dense city. We then findcAP = 6.2, 4.9, and 11.5 for the
small, sparse, and dense cities respectively.

APPENDIX D
EXTENSION TO MULTIPLE WSPS

We can extend our model to include multiple WSPs by
adding additional adoption choices for users, e.g., adopting
the base technology from another WSP. Conceptually, this
change is simple: we simply formulate an additional utility
function for each additional adoption choice, and then find the
option that yields the highest utility for each value ofθ(v). In
practice, solving for the optimal choice for each user becomes
complex due to the many possible orderings of the utility
functions for different values ofθ (i.e., extending Proposition
1 to multiple adoption choices). In this Appendix, we illustrate
this complexity by considering two WSPs: one offering both
the base and bundled technologies, and the other offering only
the base technology. Each user then has four adoption choices:
adopt no technology, adopt the base technology 1 from WSP
1, adopt the bundled technologies (1 + 2) from WSP 1, or
adopt the base technology 3 from WSP 2.

We suppose that the utility of WSP 1’s base and bundled
technologies is given by (1) and (2) as in Section III; the utility
of WSP 2’s base technology is given analogously by

U3 = θq3 + T3(x3)− p3 (20)

where as in Section III the intrinsic quality of the technology
is captured in the variableq3, T3 represents the negative
externality experienced due to greater traffic on Technology
3, andp3 is the access price. The fraction of users adopting
Technology 3 is denoted byx3(t).

We next solve for the utility-maximizing adoption choice as
a function ofθ. As in Section III, we solve for the threshold
θ values at which the ordering of different adoption choices
changes. The thresholdsθ(1,0), θ(1+2,0), andθ(1+2,1) are as in
Section III; the remaining thresholds are given by

θ(3,0) =
p3 − T3(x3)

q3

θ(3,1) =
T1 (x1 + (1− η)x1+2)− T3(x3)− p+ p3

q3 − q1

θ(1+2,3) =
T3(x3)− (1− η)T1 (x1 + (1− η)x1+2)

(1 − η)q1 + ηq2 − q3
−ηT2 (ηx1+2) + p+∆− p3

(1− η)q1 + ηq2 − q3

where θ(x,y) again denotes the threshold value ofθ above
which adoption choicex yields higher utility than choicey.
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To keep this meaning consistent, we suppose thatq1 < q3 <
(1−η)q1+ηq2; if insteadq3 < q1, the thresholdθ(3,1) should
instead be denotedθ(1,3), and if q3 > (1 − η)q1 + ηq2, the
thresholdθ(1+2,3) would becomeθ(3,1+2).

We next derive the analogue of Proposition 1 by enumerat-
ing the possible orderings of theθ thresholds:

Proposition 5: Suppose we are given the pairwise ordering
of the following pairs of thresholds: (a)θ(1,0) andθ(1+2,0); (b)
θ(1,0) andθ(3,0); (c) θ(3,0) andθ(1+2,0); (d) θ(3,1) andθ(1+2,1);
(e) θ(3,0) andθ(1+2,1); (f) θ(3,1) andθ(1+2,0); and (g)θ(1+2,3)

andθ(1,0). Then for any user withθ ∈ [0, 1], we can determine
the adoption choice yielding the highest utility for this user.

Proof: First, we show that the orderings (a–d) above
imply the following:

(a) θ(1,0) < θ(1+2,0) if and only if θ(1+2,0) < θ(1+2,1).
This is exactly the statement of Proposition 1.

(b) θ(1,0) < θ(3,0) if and only if θ(3,0) < θ(3,1).
Suppose thatθ(1,0) < θ(3,0). Then upon cross-multiplying
the denominators and simplifying,θ(1,0) < θ(3,0) is
equivalent to

q3p+ q3γ1 (x1 + (1− η)x1+2) < q1p3 + q1γ3x3,

which is exactly the same expression obtained by sim-
plifying the expressionθ(3,0) < θ(3,1). Thus, the two
inequalities are equivalent.

(c) θ(3,0) < θ(1+2,0) if and only if θ(1+2,0) < θ(1+2,3).
Suppose thatθ(3,0) < θ(1+2,0). We can cross-multiply and
simplify to find the equivalent inequality

p3 ((1 − η)q1 + ηq2) + γ3x3 ((1− η)q1 + ηq2) <

(1 − η)q3γ1 (x1 + (1− η)x1+2)

+ q3η
2γ2x1+2 + pq3 +∆q3.

We can obtain the same inequality by simplifying
θ(1+2,0) < θ(1+2,3). As in case (b), we thus obtain the
proof in the other direction.

(d) θ(3,1) < θ(1+2,1) if and only if θ(1+2,1) < θ(1+2,3).
As in cases (b) and (c) above, we first cross-multiply and
simplify θ(3,1) < θ(1+2,1) to obtain

−ηq2γ1 (x1 + (1− η)x1+2) + η (γ3x3 − p+ p3) (q2 − q1)
(

η2γ2x1+2 +∆
)

(q3 − q1)− ηq3γ1 (x1 + (1− η)x1+2)

Simplifying θ(1+2,1) < θ(1+2,3) yields the same inequality,
thus yielding the other direction of the proof.

We next show that for any two thresholdsθ(w,x) and θ(y,z)
wherew, x, y, z ∈ {0, 1, 1 + 2, 3}, the orderings (a–d) above
allow us to determine whetherθ(w,x) < θ(y,z) or vice versa so
long as thew, x, y, z are not all distinct. We first note that at
most two ofw, x, y, z can be equal, sincew 6= x andy 6= z
for all thresholds. We now divide the proof into three cases:

• Suppose thatw = y. Then without loss of generality,
x = 1 andz = 0. If w = y = 3 or 1 + 2, then orderings
(b) and (a) respectively determine whetherθ(w,x) < θ(y,z)
or θ(y,z) < θ(w,x).

• Suppose thatw = z. Thenw = 1 or w = 3.
If w = 1, then x = 0 and y = 3 or y = 1 + 2.
We must show that orderings (a-d) determine whether

θ(1,0) < θ(y,1) or θ(1,0) > θ(y,1), which is determined by
orderings (b) and (a) ify = 3 or y = 1 + 2 respectively.
If w = 3, theny = 1 + 2 andx = 1 or 0. Orderings (c)
and (d) respectively determine whetherθ(3,x) < θ(1+2,3)

or θ(3,x) > θ(1+2,3) if x = 0 or x = 1 respectively.
• Suppose thatx = z. Thenx = 1 or x = 0, and without

loss of generalityw = 3 and y = 1 + 2. Then whether
θ(3,x) < θ(1+2,x) or θ(3,x) > θ(1+2,x) is determined by
orderings (c) and (d) respectively ifx = 0 or x = 1.

We can now conclude that given two thresholdsθ(w,x) and
θ(y,z), their relative order is determined by inequalities (a–d)
unlessw, x, y, z are distinct. In that case, since there are only
four possible values forw, x, y, z, θ(w,x) andθ(y,z) are ordered
with respect to all other thresholds. Thus, we can order all six
thresholds given inequalities (a–d) except in the case where no
other threshold lies betweenθ(w,x) and θ(y,z), in which case
we must use orderings (e–g) to find the ordering ofθ(w,x) and
θ(y,z). Since any user’s adoption choice is wholly determined
by the orderings of theθ thresholds relative to the user’s value
of θ, the proposition follows: the orderings (a–g) completely
determine the ordering of theθ thresholds.
We next note that the seven orderings (a–g) cannot be chosen
independently; for instance, if orderings (b) and (c) implythat
θ(1,0) < θ(3,0) < θ(1+2,0), then ordering (a) must beθ(1,0) <
θ(1+2,0). To enumerate all possible orderings, we introduce the
“sign” of an ordering, which is+ if the ordering is the same
as stated in Proposition 5, and− if reversed. For instance,
ordering (a) is+ if θ(1,0) < θ(1+2,0).

We first note that orderings (a) and (b) are independent.
Ordering (c) is determined by orderings (a) and (b) if these
orderings have opposite sign, so orderings (a–c) have 6 pos-
sible orderings total. From the proof of Prop. 5, ordering (d)
is similarly determined by orderings (a–c) if any pair of these
have opposite signs. Thus, orderings (a–d) yield 8 possible
types of orderings for the sixθ thresholds.

Orderings (e–g) can also not be chosen independently of
orderings (a–d); these orderings serve as “tiebreakers” inthe
case that two thresholds with non-overlapping components
end up placed consecutively. By explicitly enumerating the
8 possibilities of orderings (a–d), we find that two orderings
require one tiebreaker each, and two others require two
tiebreakers each. We thus find a total of 16 orderings of the
six θ thresholds, which are as follows:

1) θ(1,0) < θ(3,0) <
(

θ(1+2,0), θ(3,1)
)

< θ(1+2,1) < θ(1+2,3)

2) θ(1,0) < θ(3,0) < θ(1+2,0) < θ(1+2,3) < θ(1+2,1) < θ(3,1)
3)

(

θ(1,0), θ(1+2,3)

)

< θ(1+2,0) <
(

θ(3,0), θ(1+2,1)

)

< θ(3,1)
4) θ(1+2,3) < θ(1+2,1) <

(

θ(3,1), θ(1+2,0)

)

< θ(3,0) < θ(1,0)
5) θ(3,1) < θ(1+2,1) < θ(1+2,3) < θ(1+2,0) < θ(3,0) < θ(1,0)
6) θ(3,1) <

(

θ(3,0), θ(1+2,1)

)

< θ(1+2,0) <
(

θ(1,0), θ(1+2,3)

)

7) θ(1+2,3) < θ(1+2,1) < θ(1+2,0) < θ(1,0) < θ(3,0) < θ(3,1)
8) θ(3,1) < θ(3,0) < θ(1,0) < θ(1+2,0) < θ(1+2,1) < θ(1+2,3)

We use the notation
(

θ(w,x), θ(y,z)
)

to indicate thatθ(w,x) <
θ(y,z) and θ(w,x) > θ(y,z) are both valid pairwise orderings.
Given these threshold orderings, one can then characterize
different regions as in Table I and solve for each region’s
adoption dynamics and equilibrium adoption point. It is then
straightforward to solve for the equilibrium in each region
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and derive conditions under which each equilibrium point
exists. One can then use such equilibria to examine, e.g.,
what proportion of users WSP 1 will gain from WSP 2 by
introducing the supplementary technology.
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