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Offering Supplementary Network Technologies:
Adoption Behavior and Offloading Benefits

Carlee Joe-Wong, Soumya Sen, and Sangtae Ha

Abstract—To alleviate the congestion caused by rapid growth in
demand for mobile data, wireless service providers (WSPs) have
begun encouraging users to offload some of their traffic onto
supplementary network technologiese.g., offloading from 3G or
4G to WiFi or femtocells. With the growing popularity of such
offerings, a deeper understanding of the underlying econoin
principles and their impact on technology adoption is necesary.

in New York to manage persistent 3G congestidn [2]. In light
of rapid growth in the projected demand for mobile data [3],

WSPsare likely to continue using such supplemental networks

to curb network congestion|[4]. Indeed, as mobile demand
keeps growingWSPs are beginningp charge consumers for
access to these supplemental netwoRa. instance, Orange

To this end, we develop a model for user adoption of a base offers a£2 bundle to some of their customers for access to

technology (e.g., 3G)and a bundle of the base plus a supple-
mentary technology (e.g., 3G + WiFi). Users individually make
their adoption decisions based on several factors, includg the
technologies’ intrinsic qualities negative congestion externalities
from other subscribers, and the flat access rates that aVSP

charges. We then show how these user-level decisions translate

into aggregate adoption dynamics and prove that these conkge
to a unique equilibrium for a given set of exogenously deterimed
system parameters.We fully characterize these equilibria and
study adoption behaviors of interest to aWSP. We then derive
analytical expressions for the revenue-maximizing pricesand
optimal coverage factor for the supplementary technology ad

examine someresulting non-intuitive user adoption behaviors

Finally, we develop a mobile app to collectempirical 3G/WiFi

usage data and numerically investigate the profit-maximizig
adoption levels when aWSP accounts for its cost of deploying
the supplemental technology and savings from offloading trific

onto this technology.

I. INTRODUCTION

WiFi hotspots|[5].Given these developments, there is a need

for economic models that can help determimaw to price
access to such base and supplementary technologies and the
implications of those pricing decisions.

Our work is inspired by two research areas: the study of
user technology adoption and that of network offloadamgl
pricing. Though both areas have separately received consider-
able attention from economics and networking researcbars,
contribution lies in incorporating uséevel adoption models
to study technology subscription dynamics and tonse-
guent revenue and costdeoffsof offering a supplementary
technology. We seek to understand user adoption decisions
between a generic base technology and a bundled offering of
a base plus supplemental technology; users may adopt tee bas
technology, no technology, or the bundle of both techn@sgi
In particular, we explore the following example scenarios:

« Will increasing the coverage area of a supplemental

Successful technologies are often followed by other supple
mental technologies, which when combined with the original
enhance its features and quality. the context of networks,
one could think of 3G or 4G traffic being offloaded to WiFi
or femtocells respectively. Yet adoption of these supplaale
and base technologies depends not just on their access,price
but also on the externalities that users of each technology
impose on othersk-or example, as more users adopbase
technology like 3G or 4G, congestion on the network in-
creases, which can in turn reduce users’ utility from using
that technology.

The presence of negative network externalities affords net
work operators an opportunity to improve services on their e
base technology by offloading users onto a supplemental tech
nology. IndeedWireless Service Providers (WSP)s are already
beginning to do sofor instance, in the United States, Verizon
has begun to offer femtocells in order to supplement its 4G
network capacity [1], while AT&T has deployed WiFi hotspots
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network always lead to more users adopting #@ppose

that a WSP wishes to expand its supplemental network to
offload more traffic from the base technology, but cannot
change its pricing structure due to exogenous factors, e.g.
the presence of a major competitor. We derive conditions
under which increased supplemental network coverage
will decreasdts adoption: at the new equilibrium, each
user offloads more traffic, which can increase overall
congestion on the supplemental network and induce some
users to drop the bundled service (Re&ult 1). We show
that this decrease may occur even when the WSP offers
revenue-maximizing prices (Res[lt 4).

Can increasing the base technology’s access price reduce
its adoption?Consider a WSP trying to induce some users
to leave its base technology’s network by increasing the
access price. In some scenarios, this move can increase
the base technology’s adoption: increasing the price of
base and the base + supplementary bundle by the same
amount can lead some users dropping from their bundled
subscriptions to only the base technology (Result 2).

Given these adoption behaviors, we then consider a WSP’s
optimal operating point. In our framework, the WSP may
influence user adoption with three variables: the accesegri
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of the two technologies, and the coverage area of the suppletn Sectior[l, we compare our work to similar contributions
mentary technology (e.g., supplementary WiFi access may o the literature, focusing on network adoption and offloadi

be available at all locations). We first consider a generideho works. We then introduce and analyze our model in SeEfin 11
of WSP revenue and derive analytical expressions for thed examine some interesting adoption outcomes in Section
revenue-maximizing prices and coverage of the supplerhef@ Finally, in Section[Y, we consider users’ equilibrium
technology. We then focus on the scenario of offloadirgdoption levels when aVSP maximizes its revenue and
traffic from base to supplementary technology, estimativey tprofit. We conclude the paper in Sectibnl VI. Proofs of all
offloading benefits and deployment costs with empirical asagropositions, theorems and resudtie available in Appendix
data. We consider the following questions: Al

« What is the optimal coverage area of a supplemental
network? Suppose that a WSP seeks to maximize its Il. RELATED WORK
revenue by optimizing the supplemental technology’s Our work relates to two topics in the literature: technology
coverage area and the base and bundle access pricesadption dynamics and the economics of offloading traffic to
show that revenue is maximized with full supplementalupplemental networks (e.g., 3G/4G to WiFi/femtocells).
network coverage (i.e., available everywhere) (Ptdp. 4).

o Will users always adopt both the base and bundl
technologies at the revenue-maximizing pric€&sdpose
that the WSP cannot expand its supplemental networkMany works in economics have studied technology adoption
coverage, e.g., due to investment costs. We show thatvarious contexts[[7],[[8]. Katz and Shapiro, for instance
the base and bundle offers will both have users unleggnsider competing network technologies with positiveeext
the supplementary network coverage area is sufficientiplities in a homogeneous user population [9], while Cabral
small and the base technology experiences sufficienfil0] presents a diffusion model for a single technolsgy
severe congestion externalities (Re&Ult 3). adoption by users with heterogeneous network valuations.

« Will increasing the supplemental technology’s CO\,erag%conomides and Viard [11] provide a static analysis for the
area always increase the total adoption of the base arffloption of two complementary technologies with positive
bundled technologiesSuppose that a WSP increases itgxternalities and heterogeneity in user evaluations. & th
supplementary network coverage in an attempt to increg&@ntext of networks, Joseph et al. [12] study the adoption of
its revenue. We derive necessary and sufficient conditioR@W network architectures, characterizing possible adopt
under which the total adoption will decrease as thigajectories for a continuum of identical utility-maxinmig
coverage increases (Reslt 4). usersJin et al. [13] andSen et. al.[[14] model heterogeneous

« Will deployment costs affect the optimal coverage aripers to study the dynamics of competition between two
resu|ting adoption of the base p|us Supp|ementary buaeneric network teChnOlOgieS with pOSitive network exadrn
dle? While increasing the deployment costs of the Suﬁties, considering in particular the effects of converters [14]
plementary technology decreases its optimal coverageWh”e our work follows these in modeling user hetero-
area, it also decreases the potential congestion on tARNeity, it differs in that (a) we explicitly model the neyat
supplementary network. Consequently we find that trexternality of network congestion, as opposed to the domina
adoption of the supplementary technology can increaBgsitive externality generally considered in technologypz
with its deployment costs, even when choosing proﬁtlon models; (b) we consider a non-competitive scenario in

maximizing prices and coverage area (ffigl 12). which the supplementary technologytiandled with the base
) ) technology; and (c) we optimize the system decision vagmbl
To answer these questions, we develop an analytical framgy investigate the resulting equilibrium adoption outeam

work that incorporates individual users’ adoption decisio | another work related to ours, Ren, Park, and van der
instead ofsimply considering the aggregate adoption dynamschaar consider market entry and spectrum sharing desision
ics. Users have heterogeneous valuations of each technologyf§emtocell providers[[15]. We do not focus on the entrant-
quality and account for the negative externalities of Calige  jncymbent interaction of two providers sharing a market;
effects as a technology’s adoption increases. In lieu Ofeh()dinstead, we model the adoption of a supplementary techgiolog

ing details specific to a given technology, we utilize a g&neryftered by a monopolist provider and the resulting tradgoff
externality model and investigate possible adoption biehsy penveen deployment costs and savings from offloading.
we also show that our qualitative results hold for some more

specific externality model&Ve consideia monopolistic WSP, _ )

reflecting the near-monopolistic conditions in many wissle B- Traffic Offloading

Internet markets. For instance, in 2012 the dominant U.S.Shetty, Parekh and Walrand analyze user adoption of split-
carriers AT&T and Verizon reported near-negligible churand common-spectrum 4G and femtocell networks to study
rates [6], indicating that these providers essentiallycfiom WSP revenue maximization_[16]. They consider the utility

as monopolists for their respective customer basestead of heterogeneous users under both spectrum sharing schemes
of considering competition between such WSP, we considemd account for congestion effects with detailed throughpu
different data plans that each WSP can offer. In Appehdix Dyodels. However[ [16] does not consi##BPcosts or savings

we show an extension to multiple competing WSPs. from offloading and relies on numerical studies due to the

e,g' Technology Adoption



complexity of their throughput models. In our more generidenoted byy;, i = 1,2; we assume that the supplemental tech-
framework, we take the spectrum sharing scheme as an inpatogy has a higher intrinsic quality than the bage ¥ ¢1).
and consider the resulting adoption dynamics. For example, WiFi typically delivers much higher maximum
Other works have also studied traffic offloading, but withouhroughput than 3G. While the actual throughput, delay, etc
developing an analytical model of user adoption decisibos. at a given time can vary depending on the distance from a cell
instance,[[1[7] considers the problem of offloading 3G trdffic tower, obstacles, etagcallthat users make adoption decisions
WiFi networks, focusing on the implications fa¢SPrevenue. based on theverall quality experienced over a subscription
User adoption is here modeled using given demand functiopgriod. The valuation of this intrinsic quality is weightby a
which depend on the prices of 3G and WiFi. Offloadingandom variablé € [0, 1] to account for user heterogenﬂty.
onto femtocell networks is studied in_[18], which considers The supplemental technology, Technology 2, can have
WSP revenue and social welfare under flat and usage-basiited coverage area (e.g., users are not always withigaan
pricing of both open and closed femtocell networks. Our woif a hotspot or a femtocell) that determines the “coverage
contributes to these efforts by providing a generic anedyti factor” », such thaton averagea fractionn of traffic from
framework, complemented with data collected from real siseadopters of the technology bundle is offloaded to Technology
to study the role of economic and technological decisions @ network. We assume that users are distributed uniformly

the possible outcomes of the adoption process. throughout the coverage area, so that at any given location,
the expected amount of traffic offloaded over time equgls
I1l. TECHNOLOGYADOPTION MODEL multiplied by the total traffic of the bundle adopters. As&ogn

. . . . that the distribution of usage volume for these adopters is
In this section, we introduce an analytic framework t(I) dependent of their valuation typek the total usage of
model the dynamics of user adoption based on the usepscP yp 9

utility of subscribing to the base and supplemental tecﬁ-e bundled adopters is then proportional to the number of

. . . ch adopters. Moreover, since users are distributed ramlijo
nologies, denoted as Technologies 1 and 2, respectively. e .
7 : hroughout the coverage area, each user experiences tlee sam
consider a monopolisfVSP. Users may choose to adopt the . .
amount of congestion from others. As is generally the case

base technology (Technology 1), a bundie of the base avr\]/ﬂh supplementary technologies such as WiFi, we suppose

supplemental technologies (Technologies (1+2)), or lEmith{hat adequate infrastructure (e.g., device antennas) amdbiff
technology; Technology 2 is never offered without Techgglo . o L
protocols are in place to allow users connectivity to the two

1. This choice is governed by thdility that each of the above . : oo
. : . : technologies with no cost of switching between them. Nearly
options provides to the user, as derived in Sedfion]II-Aeids ) . i
all mobile phones and tablets, for instance, can automigtica

subscription choices evolve over time (e.g., weeks or ng)nth witch from cellular to WiFi networks.

in response to changes in the network adoption and congesﬁo , . )
Given the above assumptions, the average amount of traffic

levels. To reflect the timescale of these choices, changes in hnol ; ional tohe fracti ;
the adoption dynamics are based on users’ overall qualﬂg Tgc nology 2 is proportiona t. € raction ot users
opting the technology bundle, multiplied hyWe letx;(t)

of experience in using each network. In Section TlI-A, w% he fract p ot v Technol 1
formulate these subscription dynamics, andSiection[TI-B, d€note the fraction of users adopting only Technology 1 at

we show that exactly one asymptotically stable equilibriurliif“et andzy2(t) the fraction of users adopting the bundle.

exists for any given set of exogenous system parameters. Thus, thevolum_e of trafficon Technology 2 isjz1.2(). _The
amount of traffic on Technology 1 from users adopting only

Technology 1 isty (), while theamount from bundle adopters

A. User Adoption Decisions is (1 — 1)z1,2(t). The total traffic volume on Technology 1

A user’s value or utility from subscribing to a particulais thenz:(t) + (1 — n)z142(t). We use decreasing functions
wireless technology depends on several factors, such as théz1(t) + (1 — n)z142(¢)) and Tz (nz142(t)) to represent
intrinsic quality of the technology (e.g., the user's valoa the negative externalitys a function of thewumber of users
of the maximum throughput), the negative externality of-corfor Technologies 1 and 2 respectivBlyVe can interpret these
gestion (i.e., reduced throughput), and the access praxgetl negative externalities as the decrease in user utility due t
by the service provider. Following [14] and [16], we accourlower throughput fromhigher usage volumes.
for these factors in defining the utility functions assoeiat The wireless service provider prices the access for the two
with each technology adoption option. For the two optionsptions atp for the base technology ang+ A for the base
the base and the bundle (base plus supplementary) plans,phs supplemental technology bundle (i4.js the extra price
respective utility functions are given biyl (1) aild (2); thaityt

of non-adoption is assumed to be zero. 1The exact values of thg; parameters depend on the particular technology
being considered, while the distribution 6fvalues can be estimated from
Ui(t) =0 + T1 (1 + (1 = n)x142) — p (1) established techniques in marketing research, e.g., ioorgoalysis [[19].
. 2We note thatry (t), z142(t), andz1(t) + z142(t) € [0,1].
Ur2(t) =(1 = n) (9q1 + T (2 + (1 - n)x1+2)) 3While users can also experience positive externalitieshéncontext of
+ 7](9@ + Ty (anQ)) — (p + A) . (2) mobile data this positive externality is dominated by thateat that users

can access. Since data plans, unlike in-network voice, aalisly offer extra

The above utility functions have three separate value coRgnefits for communicating with other users on the same toby the
sitive externality can be modeled as a constant term entzpd in the

: . 0!
popents, as. We. d!SCUSS h.ere' All are norm‘?‘l'zed to monmg{r}filarly constant access price of the base technology. Wpase that plans
units. The intrinsic qualities of Technologies 1 and 2 ar@r voice calls or text messages are orthogonal to a usets man.



. . TABLE |

that a user pays for the bundled 0pt|0n_)- For ease of notatiGfpressions FORH, AND Hi 4o IN DIFFERENT REGIONS OR(x1, 71 2).
the time arguments (_Jfl_(t) anda:_l_+2(t) W|I_I be assumed from Conditons ord 2 s
here on to be implicit in the utility function§](1) and] (2).

. . . O142,0) <O1y2,1) <O 0 1

Given these functions, we can find the threshold value pf 0(112.1) < 01420 <0
0, 9(1,0), for Wh|ch_ users will prefer to a_dopt Technologyp 81.0) <0 <0421 <1 2.0 1—64.2.1)
1 (.e,U; > _0). Similarly, we can al§o find the value of| ¢ [ 0<61.0) <0100 <1 | 00121 —00.0) | 1= Ohian
f(142,1) for which Technology 1 users will prefer the bundle of d [ 0 <60 <1 <8u421) 1—6(1,0) 0
Technologies (1 + 2) (i.el/1+2 > Uy > 0). Eaché threshold o | 0<0042,0 <1<0, 0 1= 1m0
is a (time-dependent) function aof, andx;,-. The threshold 0 <b142,0 <00 <1 (1420
0(1,0) for preferring Technology 1 occurs whéR =0, i.e., f | 000 <0<1<buio1 1 0
9 1< 9(1_’0) < 9(14,2_’0) 0 0
_p—Ti(z1 + (1 —n)zi42) 1<0u12.0) <900
01,0 = o : 3

utility from adopting Technology 1. We thus I{at[o"” denote
the projection onto the0, 1] intervalfl
We first consider the casé( < 0(1420), i-e., the
Ty (nz142) — T (21 4+ (1 = n)x140) — 2 threshold for preferring the base technology to no adoption
01 42,1)= P L. (4) is smaller than that of preferring both technologies to no
adoption. We show thaf(; 5 1) > 6142, thus, if a user
Finally, we solve for the threshol}, ., o) above which users receives positive utility from Technology 1 and increases i
will prefer to adopt both technologies, rather than have ng adopting Technology 2 as wel(1,0) < O(142,1) < 9), she
connectivity. This occurs whefi; 12 = 0, or cannot receive negative utility from adopting both teclogigs
010y < O1421) <0 < B01420)). The threshold orderings
—(L =T (21 + (1 = n)r1ve) = nTa (1) r(11l(JSt)then(sgtis%‘y the foll(o¢vihé;):
(1 =n)q1 + gz . )
Proposition 1:1f 010y < 0ni2,0), then 040 <
(5) O142,1)- If 142,00 < O(1,0), thendii o1y < 01420

The threshold)(; ;» 1) for adopting Technology 2 in addition
to Technology 1 occurs whefi; o = U; >0, i.e.,

0(142,0) =

D 2t S
(1—=n)aq +ng’

In the remainder of this paper, we follow existing literatur
[13], [14], [15] by taking the throughput degradation function
T, and T, to be linear, i.e.T;(z) = —yz, i = 1,2 for
some positive constantg. In practice, linear functions will
only approximate the “true,” nonlinear throughput degtada
functions, e.g.,T;j(z) = —z® for a« € (0,1). We use Hy(x1,2142) = [9<1+2,1)][0,1] — [60.0)] 0.1]°
this approximation to keep our approach generic rather than
technology-specific, as the exact algorithm for distribgti
resources among multiple users varies by the type of teehniblthe thresholds are reversed, i.6¢ 20y < 0(1,0), then we
ogy (i.e., 3G, 4G, WiFi, etc.) and sometimes the deploymemtay use Profd.]1 to derive
vendor. In AppendiX™B, we derive analytical bounds on the
approximation error for typical throughput functions amdw Hi(21,2142) = 0, Hisz (21, 2142) = 1= [fa+2,0)] [071(]1'

that qualitatively similar results are achieved with noahr Following standard economic models, we assume a neg?igible
functions.With the linear7; andT5, become . ! :
! > @) cost of switching between the adoption choides [14]] [15].

By dividing the dynamical space into seven regions, we can

Thus, if0(; 0y < 0(142,0), the fraction of usersl; willing to
adopt Technology 1 equals the fraction for whémg) < 6 <
§(1+2,1), and the fractiont/; ;2 willing to adopt Technologies
(1 + 2) equals those for whoity, 5 1) < 6. Assumingd is
uniformly distributed between 0 and 1, we have

Hijo(21,2142) =1 — [0(142,1)] 0.1]" )

1 _
o) _pHmn@+( 77)171+2). ©)

¢ explicitly write out [9 -[I0) as in Tablfl I. Figufd 1 visually

—yaz1es + 71 (@1 + (1= )a14e) — 2 represents the adoption expressions in two regions, an@Fig
O(142,1) = — L. (7) uses the threshold value$16[d8) to map them to the adoption

(1 - (qll q)2 ) 1 levelsx, andx1+gﬁ The user dynamics are then
0142.0) = )71 (T . n)T1+2 N"Y2%142 . _ -

(1 =n)q1 +ngz i1(t) = p( Hi(21(t), 2142(t)) — 21(t)
p+A .
(EIEE TS (8) d112(t) = p(H1+z (z1(t), 2142(t)) — $1+2(L‘))7 (11)

For given adoption levels;; and z4», the ordering of Wherep € (0,1] expresses the hazard rate, or the probability
these threshold value§l[6-8) determines whether a usertft @ user who has not yet adopted a technology will do

type ¢ is wiling to adopt a particular technology. ThusSC at timet. If p = 1, the fraction of users adopting each
we can determine the fraction of useks (w1 (t), z112(t)) technology equals the fraction willing to adopt, less those

and Hyo(x1(t), 2142(t)) willing to adopt Technology 1 and 4, . . [ylioy — ¥ if ¥ € [0,1], 0t y < 0, and Lify > L.

TeChnOlOgieS. (1+2) r?SPeCtiveW- In doing so, we rec"{‘llt tha s, qualitatively similar figure with the same adjacent regiowill be
6 < [0,1]; for instance, iff; ¢y < 0, all users receive positive obtained even for nonlinear; and 7.



strictly decreasing, both propositions still hold, i.eor fany
initial valuesz1(0) andz142(0), z1(t) andx42(t) converge
to a stable equilibrium point.

Region ¢

o

810 Buizo) B1+2,1) 1 Moreover, only one such equilibrium point exists:
Teohnology 1 Adopted__|_1+2dopted_| Theorem 1:For given values of the system parametegrs
~- g2, 1, 71, Y2, p, and A, the adoption levels; (t) andz42(t)
Region U; >0 converge to a unique, asymptotically stable equilibriurat th
does not depend on the initial values(0) andx;42(0).
| U;,,>U, .
ol 9(1321) 9(112 N 9(11 N 11 In the remainder of the paper, we ueandz; - to denote
’ l' Technologies 1 + 2 Adopted | the unique equilibrium adoption levels. While theverall
adoption levelsr; and x;,5 do not change at equilibrium,
Fig. 1. Visualization off and H values for regions ¢ and e in Talile I. individual users may Change their adoption decisions.

Xi+2

81,00=0 IV. SELECTEDADOPTION BEHAVIORS

We now investigate the dependence of the equilibrium adop-
tion on prices and the coverage factor. Though the full dutuil
rium behaviors may be directly derived from Tablk I, in this
section we present some adoption outcomes and consequences
that are of importance to &SP. Section[IV-A highlights
conditions under which the total adoption can increase with
an increase ithe coverage factor, while Sectibn T\-B derives
conditions under which adoption of the base technology can
increase with the base technology’s access pricesdation
we show that similar behaviors occur when the user
heterogeneity variablé is non-uniformly distributed. Similar
results are obtained with nonlinear throughput degradatio
Fig. 2. Visualization of Tabl€lI's regions in terms of the ption levels. functionsT} andTy, as shown in Appendikx]B.

who have already done s@iven these dynamics, we now Our first observation is that full adoptia, + 71,2 = 1)
derive the possible equilibrium points in each region,, i.€can only be achieved with subsidigs € 0, A < 0 or both)

the values ofz, and x4 for which H, (z1,2142) = o which may be seen by inspection of regions a, b, and fin Table
and Hy4o (21, 7142) = @142 for the H expressions in Table [ If some users’ technology valuatiorts; are sufficiently

M Tables[D andIl summarize the expressions for possibFéose to zero due to a smallvalue, their utility functions[{1)

equilibria in each regiaralong with constraints ensuring tha@nd [2) will be negative unless the prices are negative, i.e.
the equilibria lie in their corresponding regions. the WSP offers adoption subsidies). Since we assume that

is uniformly distributed, these subsidies are necessarjufb
adoption. In the remainder of this section, we consider only

B42,1)= 1

B(142,1=0

B14+2,0=0

B. Convergence and Stability scenarios without full adoptiof; 4+ Z; o < 1).

We now examine the stability of the equilibrium points in
Tables[D) and IIi: A. Effect of the Coverage Factor

Proposition 2: Assuming that an equilibrium point exists, e first consider the adoption behavior for a range of
it is asymptotically stable. coverage factorgn), e.g., aWSP that increases its WiFi

We can use this result to show that for any set of exogendt@vérage to offload more traffic from 3G, but cannot change
parameters values and initial adoption levels, the adoptiiS access prices due to the presence of a competitor. Figure

dynamics must converge to some stable equilibrium: shows the equilibrium adoption levels for a set of exogenous

. o . . . system parameter#t very small values ofy (< 0.1), the
Proposition 3: With the adoption dynamicg {IL1), no perl'adoption levels lie in region d of Tablel Il and users adopt

odic orbit can exist. for any initial valuesl(o_)_ a’?dl’m_(o)* the bundle only if Technology 2 has sufficient coverage, i.e.
x1(t) andx142(t) converge to a stable equilibrium point. n > 0.1. At large values ofy (> 0.7), adoption, ., of
While we assume that throughput degradatidh énd7:) the bundled technologies decreases wijtheven though the
is linear in the previous section, the proofs of Préps. 2[dndcBverage area increases. We can explain this phenomenon
depend respectively on only the Jacobian of the dynarhids (B noting thatas n increases, two effects are present. First,
at given adoption level&zy, 2142). Since our only assumption each adopter of Technologies (1 + 2) can offload a larger
on the slopesy; and v, of the throughput degradatiofy amount of traffic to Technology 2. The total amount of traffic
and 75 is positivity, the Jacobian expressions at any giveoifloaded sz, 2, therefore increases, leading to more conges-
adoption levels are not affected by nonlinear forms of thén on Technology 2. Lower-end users then cease adopting
T;. Thus, if Ty and Ty are continuously differentiable andthe bundled technologies (i.e., the user valuation thidsho



TABLE I
EQUILIBRIUM POINTS (T1Z142) OF THE DIFFERENT REGIONS INTABLE[T]

(T1,T142) Region Constraints
A< —(1-n)2y —n?
a ©0,1) PtA<—(1—n)*n—n72
A<n((X=m)m —n72)
b ( n((=mv1—ny2)=A _ A—nv1+n(g1—a2) ) M +r)—a+e@)p+mnA<—-mmy2+ 1= (@1 —q)
n(q1—a2)—n*(v1+72) n(a1—a2)—n? (1 +72) n((1=my —ny2) <A<n(n+q—aq)
c See TablgTll. See TablgTll.
q1—p _ nyip _ Y141
d <41+’Y1’0) ’yl<p<q1’A+CI1+’Y1 >n(q2 ql+cl1+’Yl)
e (07 (-n)atngz—p-A ) —1 = =P <p+A<(1-na +ne
(1-n)a1+naz+(1-n)*n1+n'r nl@e-—qg-0-—pn+m2)p— (@ +0-ny)A>n gy —n(l —nne
f (1,0) p< -7, A>n(@2+7 —q)
P>q1
g (0,0)
p+A>(1—=n)q +ng2

TABLE Il
EQUILIBRIUM POINTS (T1,Z142) OF REGION C INTABLE[D

71 —nyeait+A—m)vigetp(my2—(A—n)v1+e2—g1)+A(=A—n)y1—a1)/n
—v1a2—n71v2+a1 (1—n)v1 —nv2+91—aq2
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Fig. 3. As the supplemental technology’s coverage aréacreases, (af;+2 decreases for largg, while (b) total adoption may also decrease. Parameter
values are (&)1 = 200, g2 = 250, v1 = 50, v2 = 20, p = 40, A = 10 and (b)g1 = 100, g2 = 300, v1 = 50, v2 = 100, p = 40, A = 10.

(142,1) and 6,12y for adopting the bundle will increase)total adoptionz; + 7, to decrease.

and adopt only the base technology instead. Second, ificgeas Suppose that the coverage factprincreases fronmy, to

n allows more traffic to be offloaded from Technology 1 t@);,. Then the total adoption at the new equilibrium adoption

Technology 2, decreasing the congestion on Technology 1 dedels (for whichn = 7;) is larger than the total adoption at

inducing some non-adopters to begin adopting Technologythe former equilibrium (for which; = 1) if and only if, for

the valuation threshold,, ) for adoption of Technology 1 anyn € [no, ], the equilibrium adoption outcome is such

decreases. Thus, though adoption of the bundled techmsloghat no users adopt the base technol@gy = 0), some users

will decrease, adoption of Technology 1 will increase, anadopt the bundled technologi€®, ;» > 0), and

the total adoptioriz; + Z14o will also increase due to the

movement of non-adopters towards Technology 1. I=n’na+ 0 -7 )nmae+@+A) (@—a-20-7n)
Figure[3b shows an example in which the second effect is nvy, ((n — 2)g1 —ng2 +2(p+ A)) < 0. (12)

not present, i.e., non-adopters still prefer to adwthertech-

nology. In this case, the increased congestion on Techygolog We note that the left-hand side &F{12) is decreasingin

2 induces some bundled adopters to adopt neither tecmo'%)’sufﬁciently small prices: Technology 2's throughpugce:
rather than adopting Technology ‘39(1,0) > 0(142,0) > 9). d

tion coefficienty,, multiplied by», must be sufficiently high
Non-adopters still prefer to adopt neither technology, ar}éil lclentz, MuUltipl ¥, A

. . r .o to decrease ag increases. Withousuch aloss of
T fac_t no us_ers ad(:jpththe ba}sedtechnolcﬁgy j 0). Thu's, utility from congestion on Technology 2, users will contino
T1 + T1y2 = T142 @Nd the total adoption may decrease: 4 the bundled Technologies (1 + 2) for largdhis effect,

Result 1: Increasing the coverage factprcan cause the however, may be outweighed by a large price- A for the



—Base (¢2 — q1) from adoption of Technology 2 is outweighed by
o0 Il the marginal savings in throughput degradation from adgpti
50 : 1 only Technology 1((1 — 1)1 — nv2). Users will then choose
wl ] to adopt Technology 1, rather than the bundled technologies

the valuation threshold,, ., ;) for adopting the bundled tech-
nologies will increase. This increase may be faster thanaha

Adoption Levels (%)

2"//\ t(1,0), i-e., more users will drop from the bundled technology

101 ] to Technology 1 than the users who cease adopting Technology
. ‘ Regono ‘ :_Regiond 1, leading to a net increase if. As shown in Fig[%, once
e T the number of users of Technologies (1 + 2) has gone to zero,

feighn‘é-logyésag;%tigﬁsfn aticml?'e%%ﬁs( ;;;enith%g?f”%gwesy 1“622*35358 the dynamics transition from region c to region d and users no

1 = 150, 79 = 50, A = 30, 1 = 0.5). ' P &2 ' longer switch from adopting Technologies (1_ +2)to ad(_)ptmg
Technology 1. The base technology’s adoptigrthen begins

bundle,which increaseshe positive(p + A) (g2 — ¢1) term.  to decrease with Technology 1's prigeThe threshold price at

If the Technology 2 has a much higher intrinsic quality, i.ewhich this transition occurs is that at whigh, » = 0 in region

(g2 — q1) is large, users may adopt the bundled technologigsi.e., p(A,n) = g2 + q1 (g2 — @1) /71 — A (71 + q1) /(1)

asn increases even if Technology 2 hatagge ..

Another interesting feature of Fif. Bb is thapid switch
from all users adopting the base technology to all use?s
adopting the bundled technologies when< 0.08. In this  In Figs.[5 and 6, we show adoption behaviors for fixed
example, the access priceof Technology 2 is relatively low, system parameters when the user valuatiérare not uni-
as is its throughput degradation coefficientwhen compared formly distributed. We consider three different distrilouts
to ¢». Thus, asny increases slightly, the utility of adoptingof #, chosen as different distributions, and investigate the
Technologies (1 + 2) increases quickly: the user need not peguilibrium adoption levels as the coverage facjoraries.
much more for Technology 2, which provides higher quality We first note that despite the nonuniform heterogeneity,
service with relatively little throughput degradation. ia equilibria exist for each value of simulated. In fact, as in
users then adopt the supplemental technology in addition Rig.[3a with a uniformly distributed variablg in Fig.[Ha we
the base one. Ag grows further to 0.08, the utility of adoptingobserve that as the coverage increases, adoption of the
both technologies exceedbat of adopting only the basebundled technologies decreases, while total adoptiorz 12
technology(f142,1) < f(1,0)), save for those users who adopincreases. Our simulation in Figl 5b even replicates [Fi¢s 3b

Nonuniform Valuation Distributions

neither technology due to low valuation levéls rapid switch from predominant adoption of only Technology
1 (n < 0.04) to predominant adoption of only Technologies
B. Effect of the Base Access Price (1 + 2). In Fig.[6, we present an example in whigh= 0

for n > 0.12; then as the adoption of Technologies (1 + 2)
%creases, so does the total adoption. This adoption k@havi
is qualitatively comparable to that observed in FEigl. 3b.

We next consider adoption behaviors for a fixed Technolo
2 access pricé and coverage factoy. For instance, th®VSP
may increase the base technology’s access pric@n attempt
to inducesomeusers to leave the network. However, we find
that in some cases, this approach can backfire: increasing
may instead increase Technology 1's adoptian Figure[4 Having used our model to identify and characterize a range
shows an example; we note that thoughincreasedor p > of equilibrium adoption behaviors, we now use the insights
118, the total adoptiort, 4+ 7142 decreases. We then see thatderived in Sectiong Tll and_IV to analyze the implications

Result 2: Increasing the base pripeneed not decrease thefor WSP profit and revenue. We first consider the WSP's
base technology’s adoptian. revenue in Sectiofl_VFA, deriving the revenue-maximizing

Suppose thap increases fromp, to p;. Then the base Prices and investigating the corresponding adoption behav
technology’s equilibrium adoption when= p, is larger than We then introduce two additional factors in Sectlm/-_B,
that at whichp = p, if and only if the equilibrium adoption WSP savings from offloading traffic and the cost of deploying
outcome for anyp € [po,p1] is such that some users adopth® supplemental technology. We use empirical usage data to
Technology 1 and some addfgchnologies 1 + 2 (i.ez; >0 estimate these costs and the resulting adoption behaviors.

andZ; 2 > 0 as in region c¢)and

V. REVENUE AND PROFIT MAXIMIZATION

(13) A. Revenue Maximization

We first consider the behavior of Technologies (1 + 2)’s
The quantity(1 — n)v; on the right side of{(13) representsequilibrium adoptionz; > asn varies and the WSP chooses
the throughput improvement on Technology 1 due to usqusices so as to maximize its revenp€zr; + T142) + AT142.
of Technologies (1 + 2) offloading traffic onto Technology 2\We use TableE]ll andlll's expressions for the equilibrieim
while —nvy, represents the throughput degradation on Technalrd 7,42 to find the revenue-maximizing pricgs and A*
ogy 2 due to congestioThus, [IB)indicates that Technology at each possible equilibrium (TadlellV). To emphasize their
1's adoptionz; increases withp if the quality differential dependence on price, in the rest of this section the notation

@2 —q < (I—=n)y1 —ny.



TABLE IV
REVENUE-MAXIMIZING PRICES ASSUMING EQUILIBRIUM ADOPTION LEVELS INREGIONS A-G (CF. TABLES[IHIT).
p* A* Revenue
a <—=(1-mm (1 =n)?y —n?y2—p —(1=n)y — 1?2
b* —nv1v2+(1—2)(q1—q2) n(q2—q1) T(q1—q2)*+(1—n)y1(q1—a2) —nY172
n(v1+y2)—a1+az 2 n(v1+v2)+92—a1
cf i n(g2—q1) aEnv2+a3nyi+ai(a2—a1)+nai (a1 —g2)?
2 2 A(vigz+mvivet+ai(az—gi+nv2—0=n)71))
2
a1 " — _mia __a
d 2 Zn (qz B oy +’Yl)> 4(q1+71)
e (=maitngz _ A < p( naz+n’ys 17) _ nPave-n-mvas ((1-n)q1 +n92)*?
2 - q1+(1—n)71 q1+(1—n)7 /1((177])(11 +nga+(1—n)2v, +7]2'yg)
f -n >n(g2+7 —q1) -M
g > q1 > (g2 — q1) 0
* _ _ _ - imizi ; ; ; _ (I=m)vi(=v1+q1—q2)
If 2(1 — n)y1 — 2ny2 > g2 — q1, the revenue-maximizing prices for region b are inste#d= P G
(1 _ _ _=m172+ (1 =m3y1+n7%72) (g1 —az) —n((1=m)v1 —172)?
A* = (1 =mm — 1y, revenue n(vi+y2)+a2—a1
TIf pyaqr < (1 — n)y192, then at the optimal prices; = 0 and the equilibrium lies in region e.
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(a) B distribution parameteréa, 8) = (5, 2). (b) 8 distribution parametersa, 8) = (2, 2). (c) B distribution parameteréa, ) = (1, 3).

Fig. 5. Equilibrium adoption levels as the coverage factmaries for differents distributions of the usevaluationsf. System parameters are @) = 150,
q2 = 250, v1 = 50, v2 = 150, p = 50, A = 40; (b) and (c)q1 = 200, g2 = 280, v1 = 50, y2 = 150, p = 50, A = 5.

z; = T1(p*,A*) and T, = T142(p*, A*) denotes the Thus, if (I3) is not satisfied, the WSP can eliminate dataglan

equilibrium adoption levels at the optimal prices and A*.  for only the base technology, and only offer bundled plans.
We see from Tabl¢ IV that the WSP earns non-positive thq congition in Resulf13 can be interpreted as stating

revenue if it maximizes its revenue at equilibria in regiong,at when the quality;,

. . i , of Technology 1 is sufficiently high
a, f, or g. In region g, there is no adoption, leading to Z€hd the marginal throughput degradatipn sufficiently low

revenue. In regions a and f, the WSP observes full adoptiq@asive to Technology 2, then for a large coverage fagtor
and as observed in Sectipn]!V, it must therefore offegative some users will adopt Technology 1 at the optimal prices.

pricesp andA, Iead_ing to negativ_e revenue. In region b, which Under these conditions, the adoptiop. » (p*7 A*) of Tech-
also has full adoption, the negative price of Technology ( q|ogjes (1 + 2) will decrease asincreases, as shown in Fig.

may be offset by a sufficiently positive prige" + A for g exampid As in Fig. [3a, two effects are present. First,

Technologies (1 + 2), so that the overall revenue is positivlqa]e total volume of traffioyz , , offloaded onto Technology 2

This (possibly) positive revenue, however, is exceededby t increases withy, increasing Technology 2's adoption threshold

in other regions. We therefore focus_on regions b-e. Usn@ 2.1y and driving more users to adopt only Technology 1
Table[1M, we can prove that revenue is greatest under partiali 2 4 of the bundle. Second. overall adopﬁ@l(lp* A*) n

adoption of both technologies: T14+2(p*, A*) increases: the increase in leads to more
Proposition 4: WSP revenue is maximized with partial, butraffic being offloaded from Technology 1 to Technology 2,
not full, adoption ¥} + 7], , < 1) and full coverage:{ = 1). reducing congestion on Technology 1 and inducing low-end

If the WSP is not free to vary its coverage factor, then Wréon-adopters to adopt Technology 1. If this second effewbts

can also derive conditions under which no users adopt the b%esent, then the overall adoption equals that of Tech g

. . + 2 and does not increase:
technology at the revenue-maximizing prices:

. Result 4: Increasing the coverage factgrat the WSP’s
Result 3: For any fixedn, some users adopt the base ¢ g ?

technology at the revenue-maximizing prices if and only if  6ye note that the overall adoption levels in Fffjare low when compared

with those of Figl3l With different parameters (e.g; and~; values), the
72 > (1 . )Q_2 (14) overall adoption levels may change; we use the ones hereflétreurrent
n 1 n ql' smartphone penetration rates in the UZ|[



e T I the supplemental one to be WiFi, and collect empirical data
ijis -+ Rogionc T —Base to estimate their costs and savings from offloading. We then
g% 7 o | derive a mathematical model for the offloading savings and
ol e ] deployment costs and show how these costs affect the optimal
Jap o coverage factor and adoption behaviors. We find that the
=§15, L ] adoption behavior with fixed coverage facipis qualitatively
I, \ § similar to the behavior when only revenue is maximized.
s \ ] 1) Trial Data: To estimate 3G and WiFi cost parameters,
U Regone we gather 3G and WiFi usage data from 20 Android smart-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M phones over six days. Sint®&SP cost is driven by peak-hour
Fig. 6. Equilibrium adoption levels as the coverage fagtorcreasesz; = 0 traffic, we focus on usage when the 3G network is most heavily
for large n. User heterogeneity follows a 8 distribution with parameters | +jlized [ﬂ] Our goal is twofold: first. to estimate the dtin
(o, B) = (1,3). System parameters atg = 100, g2 = 300, v1 = 50, . N ! o
o = 100, p = 40, A — 10. of 3G traffic that occurs at this peak time; and second, to
us ‘ ‘ e estimate the probability of WiFi access at this time, given

T the overall WiFi access probability. We can then estimage th

the volume of 3G and WiFi usage and WiFi base station

IDs. We find that the probability of WiFi access in the hour

of highest 3G usage is 82% of the overall probability of
WiFi access. On average, 55% of 3G traffic occurs in these

o o1 o0z 03 o4 05 06 o7 o8 09 1 peak hours, corroborating existing findings that 3G datgeisa

Fig. 7. Adoption levels forn € [0,1] and revenue-maximizing prices exhibits SeV_ere peaks_ du”ng_ the d@[Zl]. _Moreover' the
(g1 = 50, g2 = 100, v1 = 50, v2 = 100). As 1 increases, total adoption overall fraction of traffic on WiFi is fairly consistent a@®

z1(p*, A%) +T142(p*, A*) increases, driven by the increaseain. all participants, with an average of 71% and variance of 9%.
L . . This result helps validate our model’'s assumption of a sing|
revenue-maximizing prices can cause the total adoption ) R
ok oA\ — A coverage factor affecting heterogeneous users’ utiliiem
T1(p*, A*) + T142(p*, A*) to decrease. ina the b q | tal technolodi

Suppose that the coverage factoincreases fromy to 7;. using the base and supplemental fechnologies.

Then the total equilibrium adoption with revenue-maximgi  2) Cost Model: We model the cost savings introduced by
prices wherny; = n; will only be smaller than that when = user offloading as a linear function of the amount offloaded
no iIf, for any n € [no,m], the equilibrium adoption at the during the peak hour, i.e., the marginal cost of peak traffic,
revenue maximizing prices is such that no users adopt thailtiplied by the amount offloaded[21]. The amount offloaded
base technologyz; = 0), or equivalently,[(I4) does not hold.may be expressed &8y r1Z1+2, WhereCwpn is the probabil-

We can further derive the exact adoption levejsand? ity that abun_dl_euser has access to WiFi in the hour of_pea_\k 3G
as a function ofy from the proof of Resulfl3. Ifi{74) holds, Usa@ge, multiplied by thper-usepeak 3G usage. Multiplying
then the revenue-maximizing adoption levels occur in negio PY Z1-+2 then yields thamount of traffic offloaded, normalized
if not then they occur in region &rom Table§Tl an@1V, we by the user populatlpn.. The total savings from_offloadmg is
then find the equilibrium adoption levels as in Tablene also  then Cwr7Ti+2 multiplied by the marginal savingsvhich
note thatWSP revenue increases with In fact, we observe W€ d€note aswriTy+o. As described in Appendik]C, we
from Table[T¥ (region c) that\* = 1 (g2 — q1) /2 increases estimatecwr usingour trial datato denvecWE = 5.4, 10:6,
with 7; this increase in price offsets any decrease in adopti6h 1°-8 for the small, sparse, and dense cities respectively
for Technologies (1 + 2), increasing tNgSP revenue. We next consider the cost of deploying the supplemental
technology. We assume that tMg#SPs access point (AP)
deployment in each type of city is such that the throughput
degradation is the same function of ttraffic on Technology

In addition to its revenué\VSP prOflt includes its SaVingS 2's network (i'e_, equa‘if2 Va]ues)_ In more dense|y popu|ated
from offloading, less the cost of deploying a supplementaities, thewSP may utilize a denser AP deployment in order
technologyl Since these parameters depend on the markgt accommodate the larger number of users in the sparse
conditions, we consider three scenarios: a small @tlarge, and dense cities. These additional APs do not increase the

sparsely populated city; and a large, more densely popllaggeographical coverage area, but rather accommodate more
city. We refer to the latter two cities as the “sparse” angsers within the same area.

“dense” cities. Wetake the base technology to be 3G and

o

o , amount of traffic that will be offloaded to WiFi at the peak
£l : el ] time, given the WiFi adoptioevel and coverage factor.
%as, e | We implemented a simple data monitoring app and released
- Total it to users in the United States. In each hour, we recorded
.;%
<

=)

o
T

Region q ) Region c

B. Optimizing Profit

We model the cost of deployment agpn, a linear function

"We assume that the deployment cost of the base technologgiépendent of n; we usecap = 6.2, 4-9,_ and 11.5 respecti_vely for the
of the adoption levels, e.g., an already-deployed 3G nétwor small, sparse, and dense cities, as calculated in Appérdix C
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TABLE V
ADOPTION LEVELS AT THE REVENUEMAXIMIZING PRICES FOR FIXED 7.
L s —x
Condition z7 Tiio
22 < (1 —p)i2 0 (1—-n)g1+nqz
5 = ( ) a1 2((1=m)q1 +na2+(1—m)2v1+n3v2)
22 > (1) (I—=m)v192—m9172 —792+q1(q1—g2)
Y1 q1 2(=v192=1v17v2+q1 ((A=m)v1 —n¥2+491 —q2)) 2(=ma2—1my2t+a1 (A=n)v1—172+q1—g2))
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50 50 50
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Fig. 8. Adoption levels for the profit-maximizing prices afiged coverage factor, (g1 = 50, g2 = 100, v1 = 25, 72 = 50) in different scenarios.

Nominal cost parameters afewr,cap) = (5.4,6.2), (10.6,4.9) and (15.9, 11.5) for the small, sparse, and dense cities respectivelyn Axreases past
a threshold value, adopti0ﬁ1+2(p*7 A*) of Technologies (1 + 2) decreases despite the potentialfimadf more trafficwith a largerz2 (p*, A*).
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Fig. 9. Screenshots of our usage monitoring app on the Addtaitform.
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Fig. 10. Adoption levels for the profit-maximizing pricesdacoverage factor

40 50 60

for the sparse citygqy = 50, g2 = 100, v1 = 25, y2 = 50, cap = 4.9).

We thus maximize th&V/SPs total profit at equilibrium

P (T1 + Tiy2) + AT142 + cwFNT142 — CAPT)

with respect to the optimization variablgsp, andA. In the
remainder of this section, we ugé, p*, andA* to denote the

(15)

0.82 L L L L L
0 5 10 15 20 25 30

CWF

Optimal coverage factorg® in Fig. [10.

Fig. 11.

factorn and cost parametergp andcwg. Sincen is fixed in
this scenario, we see frofi {15) that the onbstterm in the
optimization iscwrnZ1+2; We would thus expect to observe
higher adoption of the bundled technologies when profit is
maximized, rather than revenue.

We show the profit-maximizing adoption levels in Fig. 8;
visually, their behavior is qualitatively similar to thevenue-
maximizing adoption levels in Fig.]7. In particular, even
though theWSPreceives an additional offloading benefit from
more users adopting the bundled technologies, adoptjon
of the bundled technologies still decreases for langaNe
note, however, that as the marginal benefit from offloading
cwr increasesdyr is smallest for the small city and largest
for the dense city), the threshold value mfat which 77, ,
decreases grows. Thusdfyr is sufficiently large, th&VSPs
prices will be such that adoption of the bundled technolegie
never decreases as the coverage fagtorcreases.

In Fig.[10, we show the adoption levei$ andz] , for the
sparse city at the WSPprofit-maximizingoperating point for
a range ofoffloading benefitewr. Results for the small and
dense cities are similawe show the optimal coverage factors
in Fig.[I3; as we might expeftom Fig.[§ the optimalvalue
of n increases withewr and eventually becomes 1.

We next vary the cost of deploymenip, keepingcwr

optimal values ofy, p, andA, respectively; the correspondingconstant. Figuré_12 shows the resulting adoption levelt) wi
adoption levels are denoted By andzy .

3) Adoption BehaviorsWe first examine adoption behavioras the marginal cost of deploymetip increasesy* and the
at the profit-maximizing pricep* and A* for fixed coverage adoptionz; of Technology 1 decrease. The decrease;in

the optimal coverage factorg shown in Fig[ZIBFor all cities,
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are uniformly distributedWe thereforeshow that many of the
reported qualitative adoption behaviors are also obsefwed
non-uniform distributions and nonlinear throughput fuocs
(cf. Section[IV-C and AppendixJB Our framework thus
enables researchers to gain additional insights into tleeafo
supplementary technologies in alleviating network cotigas
and the resulting economic implications.
Broadly speaking, our work fits into the framework of

0 L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20
c
AP

Fig. 13. Optimal coverage factors® for the simulations in Fig_12.

“Smart Data Pricing” (SDP), which studies new ways of
pricing mobile data with the aim of making mobile data
networks more operationally efficierit [22]. While other SDP

is nonlinear:initially, n* = 1 as the cost of deployment isworks have shown that users change their behavior in respons
outweighed by the savings from offloadirgyrnz],,. The to pricing policies such as time-dependent pricing! [23E th

initial decrease fromy* = 1, however, is relatively rapid, as framework introduced in this work can be used to investigate
the decrease imwrnT;,, due to decreasing is muted by the effects of such pricing schemes on technology adoption

an increase in adoption of the bundled technologies,. For

levels when heterogeneous networks are present. Though suc

any fixedcap, the optimal coverage factor is largest for thénvestigations are beyond the scope of this work, we argteip
dense city and smallest for the small city; this reflects thbat these smarter pricing policies can significantly invero
ordering of the marginal savings from offloadingr, which WSP revenue and can even be used to steer the adoption levels

are largest for the dense city.
For the small city, the immediate decrease in the optimal
coveragen* induces behavior similar to that of Figl 7: a%
decreases (Fi@._1L3adoption of the bundle first increasasd
then decreases as Technology 2 experiences greter ccmges{l]
and less coveragdhe same effect is observed for the sparse
and dense cities, without the final decreasajn, for large [2]
cap (small n*). Thus, in cities with denser populations, a

to operationally favorable targets.
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APPENDIXA
PROOFs

A. Propositior 1

First we suppose that o < 6142,0. Then using[(4) and15), criterion tells us that no periodic orbits can eBsSince
the inequalityf; 129 < 01,142 is equivalent to

(@ —q2) >0 To (nr142) — 0~ " Aq

= @T1 (z1 + (1 = n)z142) - (16)

But expanding the inequality; o < 6142, using [3) and

@), we have the exact same inequality. On the other hand

12

which has eigenvalues satisfying

n(e+mn)
q1 — q2

7

2(A+1) = ;
1

i

Upon simplifying, we find that\ = 7772+Zl q . As both
of these are real and negative, we see that the equilibrium in
region c is asymptotically stable.

Finally, in regions d and e we have the triangular Jacobian

matrices
—m 9 —(A-—mm
q1 q1 ,
0 -1

-1 0
—(1—mmn —(1=n)*y1 -1’72
(I—=n)q1+n492 (1—=n)q1+n4g2

+

n(e+n)
q1 — 42

7

2
) N 4ny172
q1 q1

(fh - QQ).

Bl

Since all diagonal entries in these matrices are negatiee, t
equilibria in both regions are asymptotically stalmie.

C. Propositior B

The result follows from Bendixson'’s criterion. We can use
the Jacobian expressions in the proof of Prigp. 2 to show
that the divergencéf,/0x, + 0f2/0x1,2 of the dynamical
equations[(11) is negative in each region. Then Bendixson’s

no periodic orbits exist, each trajectory must convergerto a

equilibrium point. From Prop[]2, this equilibrium must be
stable.m

Theoreni L

if 61420 < 61,0, then we switch the sign of {116) to show that The stability of the equilibrium follows from Prof] 2, while
91+270 < 9170 |mp||es 91_’14,2 < 91+270. |

B. Propositior 2

In regions a, f and g, it is simple to show that the equilibria

existence of at least one such equilibrium follows from the
boundedness of the; and the non-existence of a periodic

orbit (Prop.[B). Thus, it remains to show that at most one
equnlbrlum point can exist.

Suppose that two stable equilibrium  points
are stable: letting: = (x1,1+2), we denotel(Tl1) as = f(x) exist, and consider a bounded neighborhodtl of
so that of 1 0 {1 > 0,2142 > 0,21 + z142 < 1}. We suppose that
9 lo -1 the dynamical equation([11) are continuously extended to a

at each equilibrium in regions a, f and g. Since this matr

is clearly negative definite, the equilibria are asymptilyc
stable.
In region b, the Jacobian of the dynamiEs](11) is

The eigenvalues of this matrix are = n”“”2

of S for the purposes of the proof, and that no new equilibria
Xre created. If we consider all trajectories lying $h the
regions of attraction for both equilibria are (disjoint) emp
connected, and invariant sets, whose boundaries are formed
by trajectories[[24]. However, since no periodic orbitssexi

Y e t(-mn the boundaries must be the boundarySoftself. Then since
q1—4q2 q1—q2 . . . .
=" me=(=n)n _ 4 S is connected, it cannot be a disjoint union of open sets, and
q1—4q2 q1—4q2

1, A =

there exists at least one point fhthat is in neither region of
attraction. But this is a contradiction, as the trajectdayting

q1—qz2
—1. Since we assume, < ¢2, both eigenvalues are real androm this point must approach a compact limit at.
negative and the equilibrium in region b is stable. Simjlarl
in region c the Jacobian has the form 8Bendixson’s criterion relies on Green's theorem for thetoedield f,
which is typically assumed to be continuously differerigadin our case,f
is merely piecewise-linear and continuous. However, siweeare working
, in R? and f is continuously differentiable almost everywhere, theoprof
Green’s theorem is still valid.

—ny2+(1-my1  (I—-n)m
q1—q2

q1
me=(=mn _ 4
q1—q2

_n_
g1

71
q1—q2
—7
q1—q2
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E. Resulfll than the maximum revenue in region b. From Tablé IV, it
We first note from Tabl€&lll that in regions a, b, f, and g ofuffices to show that

Table[, the total adoptio®;, + Z;,» remains constant at 1, 1 (g~ g2)° <CI%7772 + @3nm
i.e., full adoption. We may then differentiate the equiliton ] (’71 +7)+t@—a 4A
expressions forz; + T142 and T4, in region ¢ and use (@ —aq)
the constraints in TablE]ll to show that these quantities are + T a4
increasing inn. The remaining region is then region e, where a1 (g1 — q2)2
71 = 0 (no users adopt the base technology)+ 7142 < 1 + Y —
(some users adopt neither technology), and, > 0 (some for any givenn, where

users adopt the bundled technologies). Differentiatingléra 77’

[Ms equilibrium expression forr; s in this region, we find A =y1q2 + 17172

the condition [(TP)m +a1(2—q+n2—0-nn).

Multiplying out the fractions, we find the sufficient conditi
F. Resul{®

(77’71(]2 + 772’71’72) (@1 — QQ)2

We first note from Tabl&]l that in regions a, b, e, f, and (1 -7 (g1 — g2)°
g in Table[, adoption of the base technology X does not 1 AN = 92 ) )
depend on the pricg. In region d, we differentiate Tablel II's < (i + vz + a2 — @) (m2af +1m103) -
expression forz; to find that it is decreasing ip. Finally, We now expand the left side of this inequality; it is
we consider region ¢, wherg; > 0 (some users adopt the 9 3
base technology)s; 2 > 0 (some users adopt the bundled S T IMmagz Hmd
technologies), and; + T14+2 < 1 (some users adopt neither + 77207 — 2071 Y2q142 + P N17245
technology). We differentiate the equilibrium expressfon =143 (2 — 1) + P’y

T, to obtain the conditio (13)m — 20° 1724102 + NP Y172G5 .

We now obtain
G. Propositior[%

. . . o 201720102 PTG + 1PV

By inspection, the optimal revenue in regions a, f, and g 9
is non-positive in Tabl€ V. Thus, since full adoption only +mmaz (2 — ).
occurs in regions a, b, f, or g and the bundled technologi&$ice the left-hand side is clearly negative, while the trigh
have positive adoption in regions ¢ and e, for the first part bfind side is positive, we have the desired result.
the proposition it suffices to show that the revenue in region Region d: We first show that the revenue in region c is
b and d does not exceed that in regions c or e. increasing inn. By inspection, the revenue expressions in

Region b: We first consider the cas®1 — )y, — 2y, > regions c, d, and e are equakat 0 and the optimal revenue
¢2 — q1. By inspection, in this case region b has negativé region d is independent gf which will complete the proof.
revenue. Since regions ¢, d and e have positive revenue, ¥ calculate that

cannot be optimal. dR, 243 (g2 — @) + 2710142 (g2 — a)?
We now suppose tha(1l — )y — 27y < ¢2 — ¢1 and dy 4X2
n2q1 < (1 — n)y1g2. We show that the maximum revenue 2 (00— a2 4 (1 — 3,
in region b is less than the maximum revenue in region e. It + 4 (92— q) + (4X277)71q1 (42 q1)’
suffices, from Tabl€V, to show that
where

(7002 = @0)* +400 =) (1 — 2) X =nas + e

X (L =n)q1 +ng2 + (1 = 0>y +1’72) +qa(@e—qa+me—0-nmn).

< (=g +1) O +72) + ¢ —aq). Thus,dR./dn > 0 for all values ofy € [0, 1]. The revenue in

region ¢ forn = 1 then exceeds that in region d. We note that
Simplifying and neglecting some terms, we find the suﬁmegﬁnce”wa > (1 —n)nqe atn = 1, the expression in Table
condition VIfor region c’s maximum revenue is valid.
2 2, 2 2 We next use the optimal revenue expressions in Table IV to
- 2 - . . . .
7771q12+ mi2ar+ a1 (g2 = 1) + 21 721(11 (32 a) ) show that for fixedy, the revenue in region ¢ exceeds that in
+20772q2 (g2 — q1) +nq1 (g2 — q1)” + 1771 (g2 — q1) region e if and only if

2
+4An(l—=n)(4—=14+n)y (g2 —q1)" >0, (1 = )y1g2 — nq12)? > 0.
which is clearly true, since each term in the sum is nonneggince this expression is always nonnegative and region c’s
tive. revenue is increasing in, we see that the maximum revenue

Next, we suppose thaty.q; > (1 — n)y1¢2 and show that in region c occurs at) = 1, which exceeds that in region e.
the revenue at region c’s revenue-maximizing point is larggéhe maximum revenue thus occurs in region ¢, wjta 1.
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H. Proposition[8 o~

From the proof of Prop[]4, we see that for fixed the
maximum revenue occurs in region c if and only if

T
—v=05
---v=08

ng1y2 > (1 —n)7142, (17)

i.e., if (I4) holds then at the revenue-maximizing pricés t

equilibrium adoption levels lie in region c. IE{lL7) does not
hold, then the maximum revenue lies in either region d or
region e. But we note that the revenue in regions d and e i L
the same ay = 0, and the revenue in region d does not depend © 01 02 03 04 05 06 07 08 09 1

X

on 7. In contrast, in region e the revenue increases wiith Fig. 14. Nonlinear throughput function§ {19) used in Figs&mulations.
(I72) does not hold: we take the derivative of revenue in megio

e with respect to; to find that it equals where the infinite sum uses the Taylor serieslf@i1 — vz)
and the geometric series for — vz)~1. Thus, approximating
(@I8) atx = 0.5, we can bound the error by

Throughput Degradation T(x)

C [n (42 — q1)° — 20712 — 207201 + 27102 + @1 (g2 — ql)} ,

where 2 oo
(x —0.5) n+1 n
_ (1 =) +1g2) Rov® max =— 2 a3 o)
= 5 - ’ n=0
4((L=m)ar +ng2 + (1 —n)*v +n*y2) R <
Since ny2q1 < (1 — n)y1q2, we see that this quantity is < 3 Ig}%’i)z nt3 (va)".
nonnegative, and thus that the revenue increasg$naseases. T n=0

Revenue in region e thus exceeds that in region d for any valdpproximating the sum as the geometric seriesvof we
of n not satisfying [I7). No users adopt the base technologgt = 1 to obtain an upper bound oRyv?/(8 — 8v).

in region e (Tabléll), which completes the prom. Numerically, this bound is in fact conservative; for instan
taking Ry = 1 andv = 0.5 produces a maximum error of
|. Resulf® 0.013, as opposed to an analytical bound of 0.0625.

, . - ... Having shown that linear functions can closely approximate
The ISP’s revenue is maximized when the dynamics lie in d i h hout f . ; .
region ¢ if and only ifpy2g1 > (1—n)7142. Thus, we can use proposed nonlinear throughput functions, we next investig
, 241 = A= )12, TTEES T - the dynamical behavior when the throughput degradation
Tablell's expressions for the optimal prices in region ¢ fulfi functions T} and T, are nonlinear. We take the throughput
the corresponding adoption levels in Table Il. Differetitig ! 2 ' ghp

. S ~  functions to be as il (18), i.e.,
with respect ton shows that total adoption increases with )

in region c, yielding the propositiom

(19)

i) = i (14 (1 = iy 8L

v;r
APPENDIXB

wherei = 1,2 denotes the two technologies. Figliré 14 shows
THROUGHPUTLINEARIZATION

the throughput functiong (19) foR; = 100 andv; = 0.5,

In Section[Tll, we use linear models to represent the de-8: a differentR; coefficient merely scales these functions
crease in utility due to throughput degradation. We justifs§ind does not affect their qualitative shape. As expecteu fro
this assumption here by analyzing the accuracy of a lineappendix[B, these functions are close to linear, thoughrthei
approximation to previously proposed throughput measuresslope clearly increases for larger(i.e., more congestion).

Prior works on technology adoption [16] take congestion Figure[I5 shows a range of simulations with= 0.5 (Figs.
levels into account with a Markov chain analysis, assumifisd and 15b) and' = 0.8 (Fig. [I5¢) in [I9). Figurd_1%a
Poisson arrivals of rataxz and exponentially distributed ses-can be compared to Fif_]3a; in both figures, we observe a
sion length with meam.~'. The expected throughput is thendecrease in adoption of the bundled technologies and iserea

log(1 — va) in adoption of the base technology for a large coverage ffacto
- Ro(1 —va)——, (18) 7. Total adoption increases for all values ®fin both cases.

vxr
. . . . . Figures[3b and_1%b show a similar decrease in adoption
whereRy is the average time of service without interference or 9 P

queueing, anve assume’ = A/ < 1. Thus, thethroughput of the bundled technology for largg, but one in which

degradationequals [7IB), less the maximum throughput. Wféldoptlon of the base technology is zero for larger values of

now use Taylor's remainder theorem to bound the error of & Finally, Fig.[15t shows that even when prices are chosen

. L — .SO as to maximize operator revenue, the adoption behavior
linear approximation to[(118). The second derivative [ofl(18) Rith nonlinear throughput degradation functions mirrdratt
2 v v? 21log(1 — vx) with linear throughput degradation, shown in Hig. 7. In both
Ro ) + — + 3 = . H
T r 1—vx v cases, we observe that the adoption of the base technology is
> initially zero, with adoption of the bundled technologigs, »
Rov? Z —— (vx)", increasing with the coverage factgr After a threshold value
=0

of n, however, adoption of the bundled technologies begins to
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Le

il

\,
Adoption Levels (%)

N

il

Adoption Levels (%)

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
n n n

(a) Adoption withz; > 0 for all 7. (b) Adoption withz; = 0 for n > 0.12. (c) Adoption with revenue-maximizing prices.
Fig. 15. Equilibrium adoption levels as the coverage faejovaries for nonlinear throughput degradation functidhis and 7> given by [19). System

parameters are (a)y = 50, g2 = 80, R1 = 10, R2 =50, v1 =v2 = 0.8, p =20, A = 5; (b) ¢1 = 35, g2 = 80, R1 = 120, Re = 100, v1 = v2 = 0.8,
p =20, A =5;and (¢c)q1 = 100, g2 = 200, R; = 50, Ry = 80, v1 = v2 = 0.5, revenue-maximizing prices.

decrease due to congestion on Technology 2, and adoption of APPENDIXD
Technology 1 correspondingly increases. EXTENSION TOMULTIPLE WSPs

We can extend our model to include multiple WSPs by
adding additional adoption choices for users, e.g., adgpti
the base technology from another WSP. Conceptually, this
change is simple: we simply formulate an additional utility

Savings from Offloading/Ve take the marginal cost of 3Gfunction for each additional adoption choice, and then fived t
traffic during the peak hour to be 1¢@MB in the small city, option that yields the highest utility for each valuetgp). In
1.9 ¢/MB in the sparse city, and 2.8&MB in the dense city; practice, solving for the optimal choice for each user bez®m
these values are based on AT&T’s and Verizon's data plgamplex due to the many possible orderings of the utility
overage charges in the U.S. We next estima@igrn, the functions for different values of (i.e., extending Proposition
probability that a 3G and WiFi user has access to WiFi in tfito multiple adoption choices). In this Appendix, we ilkae
hour of peak 3G usage, multiplied by this peak 3G usage. Frdhis complexity by considering two WSPs: one offering both
our trial data, we find that each user consumes on averdhe base and bundled technologies, and the other offerilyg on
1200MB in each month, with 660MB occurring at peak hourt$ie base technology. Each user then has four adoption choice
of the day. The probability of peak-hour WiFi access is 82@dopt no technology, adopt the base technology 1 from WSP
of the overall access probability; thus, the probabilitydfi 1, adopt the bundled technologies (1 + 2) from WSP 1, or
access during the peak hour(is$27. Each user then offloadsadopt the base technology 3 from WSP 2.

(0.821)(660MB) = 541n MB at the peak hours over one We suppose that the utility of WSP 1's base and bundled
month (i.e.,Cywr = 541). Multiplying by the ¢/MB marginal technologies is given by(1) and (2) as in Secfioh IlI; théityti
savings from offloading, we find thatyr = 5.4, 10.6, or 15.8 of WSP 2's base technology is given analogously by

for the small, sparse, and dense cities respectively.

Deployment CostsTo find the marginal cost of deployment Us = 0as + Ty(w3) = ps (20)
cap, We assume that each additional AP increases the cover@gfere as in Section Il the intrinsic quality of the techrmjo
factor ) by a fixed amountAn and costs theVSP a fixed s captured in the variablgs, 75 represents the negative
amountCap per month. From[[25], we estimat€sp as externality experienced due to greater traffic on Technplog
a monthly operational cost of $20, plus capital investmegt andp; is the access price. The fraction of users adopting
of $1200 spread over 12 months, so tiiatp = $120. For Technology 3 is denoted hiys(t).
simplicity, we interpret the WiFi access probabilifyas the  we next solve for the utility-maximizing adoption choice as
physical area covered by APs, e.g., uniform user mobilie T a function ofd. As in Sectior1ll, we solve for the threshold
cost of covering an areg with APs is thenCap[n/An] ~ ¢ values at which the ordering of different adoption choices
(Cap/An) 7. Normalizing by the user population, we find thathanges. The thresholds: o), 0(12.0), andf(; .2 1) are as in
Section1ll; the remaining thresholds are given by

APPENDIXC
ESTIMATING COST PARAMETERS

Cap (Market area)

AP = (AP coverage area) (Market population) 1 05,0, _b3s— Ts(xs)
. $120 ’ qs
(AP coverage area) (Population density) T Oi5.1) _nh (1 + A =n)ziy2) — Ts(xs) —p+ps
’ 43— q
We use population densities of 2000, 5000, and 12000 Ts(z3) — (1 — )T (21 + (1 — n)2142)

people per square mile for the small, sparse, and denss citie 0423 =
respectively. The AP coverage area is assumed to be 0.01

square miles, (a 130 meter radius), for the small city, 0.005

square miles for the sparse city, and 0.002 square miles for (I=naq +ng2 —qs

the dense city. We then finehp = 6.2, 4.9, and 11.5 for the where ¢, ,) again denotes the threshold value tbfabove
small, sparse, and dense cities respectively. which adoption choice: yields higher utility than choice.

(1 —n)q1 +1ng2 — g3
=Ty (nr112) +p+ A —p3
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To keep this meaning consistent, we suppose dhat g3 < 01,0y < O(y,1) OF 01,0y > 0(y,1), Which is determined by

(1—=n)q1 +nge; if insteadgs < ¢1, the thresholds ;) should orderings (b) and (a) iff = 3 or y = 1 + 2 respectively.

instead be denoted, sy, and if g3 > (1 — n)q1 + ng2, the If w=3,theny=1+2andz =1 or 0. Orderings (c)

thresholdf ;4 , 3y would become) 3 1 ;). and (d) respectively determine whettgs ,) < 0112 3)
We next derive the analogue of Propositidn 1 by enumerat-  or 63 ;) > 6(142,3) if 2 =0 or z = 1 respectively.

ing the possible orderings of thethresholds: o Suppose that = z. Thenz = 1 or x = 0, and without
Proposition 5: Suppose we are given the pairwise ordering loss of generalityw = 3 andy = 1 + 2. Then whether

of the following pairs of thresholds: (&), o) andf(; 2 ¢); (b) 03,2) < O(142,2) O 03.2) > O(142,) IS determined by

01,0y @nds oy; (C) 03,0y andd(1 42 0y; (d) 03,1y andb 42 1; orderings (c) and (d) respectivelyif=0 or z = 1.

(€) 03,0y aNdO(142,1); (f) O(3,1) @ndbi12,0); @nd (9)0112,3  we can now conclude that given two thresholls ) and

andf; o). Then for any user witl € [0, 1], we can determine 0(y.-), their relative order is determined by inequalities (a~d)

the adoption choice yielding the highest utility for thiseus ynjessw, «, y, » are distinct. In that case, since there are only
Proof: First, we show that the orderings (a—d) abovgyr possible values fab, z,y, , (., andd, ., are ordered

imply the following: with respect to all other thresholds. Thus, we can orderiall s

(@) 01,0y < O(142,0) if @and only if 61190y < O(142,1)- thresholds given inequalities (a—d) except in the case evher
This is exactly the statement of Propositldn 1. other threshold lies betweeh,, .,y andf, ., in which case

(b) 0(1,0) < 03,0y If @and only if O3 gy < O(31)- we must use orderings (e-g) to find the orderingqf ., and

Suppose thal(; ) < 63,0). Then upon cross-multiplying fy,~). Since any user’s adoption choice is wholly determined
the denominators and simplifyingd; 0y < 6(3,0) IS by the orderings of thé thresholds relative to the user’s value
equivalent to of 6, the proposition follows: the orderings (a—g) completely
determine the ordering of th# thresholds. ]

@3p + g3y (21 + (1 = n)z142) < 1p3 + qry3e3, We next note that the seven orderings (a—g) cannot be chosen
which is exactly the same expression obtained by sirirdependently; for instance, if orderings (b) and (c) imiblgt
plifying the expressionfs ) < 631). Thus, the two 01,0y < 0(3,0) < 0(1+2,0), then ordering (a) must b, ) <

inequalities are equivalent. t(1+2,0)- To enumerate all possible orderings, we introduce the
(€) 03,0y < O142,0) if @and only if 6145 gy < O(142,3)- “sign” of an ordering, which ist if the ordering is the same
Suppose thals o) < 0(142,0)- We can cross-multiply and as stated in Propositidd 5, and if reversed. For instance,
simplify to find the equivalent inequality ordering (@) is+ if 6(1,0) < 6(142,0)-
We first note that orderings (a) and (b) are independent.
P3 (1 =m)q1 +ng2) + 7323 (1 = n)q1 +nga) < Ordering (c) is determined by orderings (a) and (b) if these
(1 =mgz7 (z1 + (1 = n)x142) orderings have opposite sign, so orderings (a—c) have 6 pos-
+ @30 y2x1 42 + pg3 + Ags. sible orderings total. From the proof of Prdp. 5, orderiny (d

. . ) ~ is similarly determined by orderings (a—c) if any pair ofdhe
We can obtain the same inequality by S'mP“fY'nghave opposite signs. Thus, orderings (a—d) yield 8 possible
0(142,0) < 0(1423)- As in case (b), we thus obtain theyypes of orderings for the si& thresholds.

proof in the other direction. Orderings (e—g) can also not be chosen independently of
(d) 031y <Otz ifandonly if o) <Oai23)- orderings (a—d); these orderings serve as “tiebreakertign

As in cases (b) and (c) above, we first cross-multiply andhse that two thresholds with non-overlapping components

simplify 63,1) < f(142,1) to obtain end up placed consecutively. By explicitly enumerating the

—ngom1 (21 + (1 — n)x1s2) + 1 (Y323 — P+ p3) (G2 — q1) 8 pO§SIbI|ItIeS _of orderings (a—d), we find that two ord_esng
5 require one tiebreaker each, and two others require two

(M*v2m142 + A) (g3 — 1) — gz (@1 + (1 = n)2142) ' ;
+ T2/ tiebreakers each. We thus find a total of 16 orderings of the

Simplifying 0112 1) < 0(142.3) yields the same inequality, six 6 thresholds, which are as follows:
thus yielding the other direction of the proof. 1) 01,0) < 03,0 < (O(142,0):0(3,1)) < O142,1) < O(142,3)
We next show that for any two thresholdg, ., and 6, .,  2) (1,00 < 0(3,0) < O(142,0) < O142,3) < b112,1) < b3,1)
wherew, z,y,z € {0,1,1+ 2,3}, the orderings (a—d) above 3) (0(1,0),0(1+2,3)) < 01+2,0) < (0(3,0): O112,1)) < O(3,1)
allow us to determine whethéy,, ,) < 6. or vice versaso  4) 0(423) < 0a+21) < (03,1),0(142,0)) < 03,00 < b(1,0)
long as thew, z,y, z are not all distinct. We first note that at 5) 0(3,1) < 0(142,1) < O142.3) < O(142,0) < O3,0) < O(1,0
most two ofw, z,y, z can be equal, since # z andy # 2 6) 03,1) < (03,0),00142.1)) < O+2,0) < (01,0),0(142,3)
for all thresholds. We now divide the proof into three cases: 7) 0(142,3) < 0(142,1) < 042,00 < 0(1,0) < 0(3,0) < 03,1
« Suppose thaw = y. Then without loss of generality, 8) fs.1) <00 <0,0) <0420 <421y < sz
x=1andz=0.If w=y=3o0r1+ 2, then orderings We use the notatio(ﬂ(wym), O(W)) to indicate that,, ,,) <
(b) and (a) respectively determine whethigy .,y < 6(,..) 0(,,.) andb, ) > 0, ) are both valid pairwise orderings.
or 0y 2y < O(w,z)- Given these threshold orderings, one can then characterize
« Suppose thatv = z. Thenw =1 or w = 3. different regions as in Tablg | and solve for each region’s
If w=1,thenz = 0andy = 3 ory = 1+ 2. adoption dynamics and equilibrium adoption point. It isrthe
We must show that orderings (a-d) determine whethstraightforward to solve for the equilibrium in each region



and derive conditions under which each equilibrium point
exists. One can then use such equilibria to examine, e.g.,
what proportion of users WSP 1 will gain from WSP 2 by
introducing the supplementary technology.
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