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A Poisson Hidden Markov Model
for Multiview Video Traffic
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Abstract—Multiview video has recently emerged as a means to
improve user experience in novel multimedia services. We propose
a new stochastic model to characterize the traffic generated by a
Multiview Video Coding (MVC) variable bit-rate source. To this
aim, we resort to a Poisson hidden Markov model (P-HMM), in
which the first (hidden) layer represents the evolution of the video
activity and the second layer represents the frame sizes of the mul-
tiple encoded views. We propose a method for estimating the model
parameters in long MVC sequences. We then present extensive nu-
merical simulations assessing the model’s ability to produce traffic
with realistic characteristics for a general class of MVC sequences.
We then extend our framework to network applications where we
show that our model is able to accurately describe the sender and
receiver buffers behavior in MVC transmission. Finally, we derive
a model of user behavior for interactive view selection, which, in
conjunction with our traffic model, is able to accurately predict ac-
tual network load in interactive multiview services.

Index Terms—Hidden Markov models, multiview video,
telecommunication traffic, three-dimensional TV.

I. INTRODUCTION

HE ADVENT of novel video services with multiple

views of the same video scene, e.g., 3-D TV or free-view
point video, poses many novel challenges in terms of coding,
processing, and transmission of the multimedia content. As far
as encoding techniques are concerned, the ISO/ITU-T Joint
Video Team has recently finalized the H.264 Multiview Video
Coding (MVC) standard, which is explicitly devoted to efficient
compression of a multiview source [1]. It is expected that mul-
tiview video communication services will be traffic-intensive,
which raises important questions in network dimensioning.
In addition, the encoding dependencies between the different
views renders resource allocation quite challenging in an MVC
communication system.

Both problems of network dimensioning and resource allo-
cation are usually addressed with the help of traffic models in
classical video delivery services. Such tools have proved to be
a valid support for efficient and accurate allocation of network
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resources by characterizing the compressed video content
through statistical models. Video traffic models have been
derived for different applications in teleconferencing [2], video
broadcasting [3], [4], or streaming [5]. Different stochastic
models based on autoregressive processes [2], transform
expanded sample (TES) processes [6], and hidden Markov
models (HMMs) [7] have been considered for network design,
resource allocation, buffer dimensioning, and performance
evaluation [8].

The type of data and the traffic characteristics [9] are quite
different in multiview video services compared to classical
video streaming. The traffic observed during a multiview
video communication session is generated by dynamically
multiplexing different encoded streams, corresponding to the
hierarchically organized encoding of different views. The en-
coded video data are richer than in the single-view case. When
n encoded frames are extracted for transmission according to
the user’s view switching pattern, they are selected from an
1 - Nview encoded frames set, where the number of views may
range from a few to a hundred. In turn, a hierarchical prediction
encoding structure is superimposed to the 7 - Nyjew encoded
frames set. This results in statistical constraints on the gener-
ated traffic trace, which need to be addressed by new devoted
models. For the aforementioned reasons, although there are
many single-view video traffic models already available, they
cannot be directly adapted to model MVC traffic or lead to poor
modeling performance.

In this paper, we propose a new traffic model for MVC con-
tent that characterizes the frame size sequence observed at the
output of an MVC variable bit rate (VBR) source. Specifically,
building upon our preliminary work [10], we design a doubly
stochastic source model, namely a Poisson hidden Markov
model (P-HMM) [11], in which the first (hidden) layer consists
of a nonstationary chain modeling the video activity level and
the second layer represents the frame sizes of the different
MVC encoded views. Furthermore, we extend the P-HMM
parameter estimation algorithm for short observation sequences
presented in [11] and adapt it to long sequences such as those
encountered in video communication services. We assess the
model’s performance by extensive numerical simulations on
classes of MVC sequences sharing common properties. We
apply our model to predict the traffic load generated by two
different network services based on a client-server video
communication paradigm. In the first scenario, which we name
Multiview TV, the server simultaneously streams all the MVC
encoded views to the client. Our model is shown to be able to
accurately predict the states of the sender and receiver buffers
in Multiview TV. In the second scenario, named interactive TV,
the client dynamically selects the views during the streaming
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session by means of a feedback channel. Due to the MVC en-
coding dependencies, the server transmits a composite stream
comprising all the encoded data required to correctly decode
the selected view. Finally, we introduce an Interactive TV user
service request model in order to mimic the sequence of re-
quested views selected by the user. In fact, the traffic generated
during the interactive TV session depends both on the MVC
encoded video traces and on the user’s view selection. We show
that the combination of our two models is able to accurately
characterize the traffic in interactive multiview applications.
To the best of our knowledge, this paper is the first attempt
of modeling the end-to-end traffic generated during a general
multiview session, including a flexible model of the user’s
switching behavior. The modeling of MVC traffic has not been
deeply studied in the literature, and the recent work in [12] is
the only existing work that has studied such traffic by analyzing
the GOP correlation structure of 3-D video streams. However,
it does not provide a comprehensive end-to-end traffic model
contrarily to the framework we propose in this paper.

The main contributions of this paper can be summarized as
follows.

* A nonstationary traffic model for VBR MVC sequences is
introduced, with the ability to characterize different classes
of MVC streams at different encoding settings. The model
can predict actual network load in network applications.

* A maximum likelihood (ML) estimation procedure
suitable to derive the traffic model parameters in long
sequences is derived.

* A user behavior model for interactive view selection is
combined with our traffic model to characterize interactive
multiview traffic.

The rest of the paper is organized as follows. In Section II, we
introduce the P-HMM; we also describe the P-HMM parameter
set estimation procedure. In Section III, we validate the model
in different stream settings. Network applications of our model
are studied in Section IV, along with the view switching model.
Section V concludes the paper.

II. MVC SOURCE MODELING

A. MVC Coding Format

An MVC stream jointly encodes different video sequences
captured by multiple cameras with overlapping fields of view.
Let us denote by Nyiew the number of such sequences. One
view, denoted as reference view, is independently encoded
using temporal motion compensation and transform coding
techniques, similarly to a classical video sequence encoded
with the H.264 encoder [1]. The other Nvyjew — 1 views are
encoded using inter-view prediction in addition to temporal
prediction, in order to further improve the compression per-
formance. In H.264 MVC [1], inter-view prediction is allowed
between frames referring to the same time instant, whereas
intra-view encoding dependencies are usually set to permit
temporal scalability [13]. The encoding dependencies give rise
to a generalized GOP structure of duration Ngop, comprising
Ny = Nview X Ngop frames. Figs. 1 and 2 show two exam-
ples of such MVC GOPs. Given the complete MVC encoded
bitstream, up to Nyiew flows are transmitted and decoded by
the client. In most applications, all the views are transmitted
together in a simulcast mode.
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Fig. 2. GOP structure and encoding hierarchy ( Ngop = 4).

In order to control the size of the bitstreams, different rate
control algorithms [14] can be implemented in MVC encoders.
We however focus in this paper on VBR streams, where the
quantization step sizes are fixed. Their value only depends on
the frame type, as commonly employed in most MVC appli-
cations [1]. H.264/MVC is the current standard for multiview
video encoding standard, but our work can be applied to any
encoding technique based on a similar framework with mo-
tion-compensation, such as the recent HEVC [15].

B. Traffic Model

We propose now a new model that is able to characterize
the frame sizes in GOPs of an MVC compressed stream with
a given GOP structure. In VBR operating mode, the bit rate
of the MVC encoded views varies according to the video
activity level, and the traffic model should match this non-
stationary stochastic process. In fact, the video activity level
changes unpredictably according to the scene content (e.g.,
indoor/outdoor scenes, moving objects, etc.), and we cannot
assume any a priori relation between the duration of the current
activity level and that of the previous levels. To represent
this behavior, we resort to the class of hidden semi-Markov
models (HSMMs) [16]-[18]. HMMs’ state duration times are
constrained to have a geometric distribution; HSMMs model
the state duration by a general probability distribution, thus
encompassing both stationary and nonstationary models. As far
as the choice of the distribution is concerned, the work in [19]
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analyzes different distributions, namely Gamma, Pareto, and
Weibull, for modeling scene duration time of a single-view
video stream. According to the results in [19], the Poisson
distribution properly trades off compactness for accuracy in
the traffic model. Here, we observe that the duration of a given
video activity level in a multiview sequence has similar sta-
tistical characteristics to the activity duration in a single-view
sequence since both are based on the real scene dynamics as
represented by the video frames. Thus, we assume a Poissonian
state duration distribution.

We build a new P-HMM [11] as a two-layer stochastic
process in which the first (hidden) layer is a discrete-time
Markov chain whose states represent different video activity
levels, and the second layer represents the frame size sequence
corresponding to a given activity level. We make the following
assumptions about the nonstationarity of the sources.

1) The activity level of the video content varies in time ac-

cording to a Poisson distribution.
2) The hidden-layer state transitions (i.e., the change of the
activity level) occur at the beginning of a GOP.

3) The activity level is the same in all views since views are

correlated.

With these simplifying assumptions, we model the duration
of a scene of a given activity level, by a simple one param-
eter distribution. We discard the possible changes in the average
frame size due to activity level changes observed in the middle
of a GOP. We will show that, in spite of this approximation, the
model closely matches the MVC source characteristics.

Let us denote the number of states (i.e., different video ac-
tivity levels) in our model as N,. The state duration obeys a
Poisson distribution denoted by
oA M)

k!

When a state transition occurs, the model is described by a state
transition matrix 1I, whose element 7;; denotes the probability
of transition from state % to state j. Because of the explicit mod-
eling of the state duration time distribution, 7;; = 0 for all 4.
Finally, m; denotes the initial probability of the model being in
state .

The second layer in our model describes the frame sizes in an
entire GOP. Formally, let us consider the random vector

di[k] =

[zo[n], ..., xn, —1[n]]

representing the set of frames sizes in the nth GOP of the com-
pressed multiview content. The vector x[n] is emitted in ac-
cordance to a multivariate probability mass function (pmf) de-
pending on the actual hidden layer state. Given the current state
in the first layer of the model, say ¢, a random vector x[n] is gen-
erated according to the pmy b;[x[n]]. For the sake of compact-
ness, each pmf'b;[], i = 1,..., N, has a different number of
bins depending on the coding mode (namely I-, P-, or B-frames)
of the compressed picture to be generated. This choice is moti-
vated by not imposing that the frame size pmf follows a fixed
probability distribution (e.g., Gaussian, Gamma, ...), but in-
stead by adapting the distribution shape to the actual MVC se-
quences. Moreover, by allowing a different number of bins for
different frame types, we can adaptively control the model’s
complexity (i.e., the parameter set) in order to avoid model over-
fitting to the training data. Fig. 3 illustrates the hidden-state

x[n] =

Fig. 3. State diagram for a three-state P-HMM. Enclosed between parentheses,
the explicit duration k for every state is represented.

chain for a three-state P-HMM. The hidden state 2, ¢ = 1,2, 3,
lasts for & instants (expressed by the 1-probability transitions),
where £ is explicitly extracted according to state ¢ duration dis-
tribution d;[k]. Then, the next state j # ¢ is selected by means
of the transition matrix II. In every instant, a random vector z[n]
is extracted according to b;[] like in a typical HMM.

C. Parameter Estimation

The estimation of the model parameters is a crucial step in
traffic characterization. Since the model belongs to the wide
HMM family [17], we can resort to one of the estimation
algorithms employed for such models. In particular, an es-
timation procedure called Expectation-Maximization (EM)
algorithm [20] is widely used for HMMs. A version of the EM
algorithm has been proposed for P-HMMs in [11]. However,
it exhibits numerical instability when used for long data se-
quences [16]. We derive here a new EM algorithm for stable
parameter estimation in long sequences. Our algorithm extends
the method of [16] to the case of nonstationary hidden-state
durations. We present the parameter estimation in detail below.

Suppose that we observe a video sequence composed of N
GOPs. Let y(j)\bldéf{y[n] 1! denote the training sequence and
© € O the parameter set of our model, where @ is the pa-
rameter space and (*)dg{l_[, A, AN O [ T, )
The EM algorithm comprises two iterative computational steps.
The first one is an expectation step that computes the auxiliary
likelihood function Q(© | ™)) = E{log(Prob{s,z, €}) |
y, ©m) 1, in which S € S represents a plausible state sequence
and ©("™) is the mth estimate of the parameter set. Then, a max-
imization step maximizes the likelihood function, i.e.,

O+ = argmax Q(O | ™), ?2)
e

The algorithm iterates between the two steps until convergence
of the parameter set. )

Before getting into more details, let us define a function d;[k]
representing the duration distribution for the state ; and taking
into account the finite length of the observed sequence, as

sor J1=Dik—1], ifk=N-n-1
dilk] = {dl[k], otherwise

where d;[k] has been defined in (1), and D;[k] is the cumula-
tive distribution of the state duration times. Note that D;[k] is
zero for £ < 0. Then, the computations in our EM algorithm,
as applied to P-HMMs, comprise: 1) the computation of for-
ward probabilities; 2) the computation of backward probabili-
ties; 3) the estimation of the parameter set. The first two steps

(€))
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Algorithm 1: Computing forward probabilities c,, (7, k) and

Algorithm 2: Stable estimation of backward probabilities

o (i) Yali, k) and &, (i, j, k), from (6) and (7)
I: forn =0— N —1do . o
) fork—=0—N—n—1do I: forn=N—-1—1do
. 2 fork=N-n—-1—0do
3: if n = 0 then .
. : 3 ifn = N — 1 then
4: ag(i, k) o mid;[k]b:[y[0]] . )
4. v -1(i, k) = an_1(7)
> else N ; 5: else
6 aﬂ(ll” k)O(bZ[y[nH(ZJ,; QO — 1(J O)”jidi [l‘]+ 6: lf]ﬁ 7& 0 then
On— 1( k+ 1)) 7 ’VT:( ) - En+1(Z i, k— )
7 end if 8: else
8:  end for 9: Yn(i,0) = 2] 12\ (i k)
9:  anli) = 2y ik 10: end if
10: end for 11: end if o e -
. . k Gy —1(1,0)7m5d; =+ 2.ozn‘_l 7, k+
. . o 12 Enll 3 8) = S 1 (L0) s [K]4+6] a1 (LE+1)
calculate three auxiliary variables, namely the conditioned prob- 5 (} k)
abilities of the state sequence to the observed sequence, repre- 13: end for "

senting the expectation steps of our EM algorithm (see [17] for
further details). Then, the parameter set is expressed as func-
tion of these auxiliary variables. We first define the following

forward probabilities! forn = 0,.... N — 1:
o (4, l.)dOfP(S’n =i,y Sk = b Skl 0| U0 O('”))
E<N-n—-1 (4
an(7)difp(9n =i |y ®(m)) (5)

Fork = N —n—1, the definitions above are slightly different in
order to take into account the finite length of the actual sequence

(i, N —n — 1)defP (S,L =d4,....sn-1=1]y0, G)(m)> .
Those quantities are calculated by the recursive algorithm illus-
trated in Algorithm 1.2 They represent the probability for the
system to be in state ¢ at time n and to stay in the same state for
the next k instants, given the sequence observed until time 7.

Then, the following backward probabilities are defined in a
similar way

i ) Pl =1, Sppr =, Sminsr 21 | 91 00,
N-1LE<N-n—-1 (6)
gn(l J k)(IEt (9n71 :1 Sn :]

ey Stk = Jv Sntk+1 7é ] |y0 -t O(’n))
n=1,... N-1L; k<N-n—-1. (7)

n=20,...

Note that we resort to a different definition for the backward
probabilities with respect to the usual  notation [17]. In[17], a
[ backward probability is defined representing the likelihood of
the observed sequence, and « and £ are calculated by means of
« and 0. Here, we calculate directly v and £ in a backward itera-
tion in order to avoid numerical issues arising from the sequence
length. Algorithm 2 illustrates the backward probabilities com-
putation, where &7 denotes the Kronecker function.

Finally, the parameter set ©**1) in the maximization step
can be calculated with the help of the forward and the backward

1Qur definitions differ from [11] in order to avoid numerical instability.

2The normalization coefficient for e, (¢, k) in steps 4 and 6 is calculated by
summation over ¢ and k.

14: end for

probabilities above. We can write the initial probability of being
in state 7 as

N-1

T = Z Yo(%, k).

Then, we can express the transition probabilities as

Z A o 1£n(77k)
Z z “ Lo el k)

(®)

©)

Tij =

The frame size distribution in each state is given by

Zn 0 i\vi[flil’)'n(i-,k)(sz[n]
S Sy i k)

Finally, the state duration is expressed as

bilz] = (10)

N—1N-n—-2 N,

Z Z > k&a(iik) +Zmak

n=1 k=0 =1

J#t

A =

-1
N—-1N-n-2 N N-1

Z Z ZSWJLkJeroM
n=1 i=

7#1

(11)

Note that a single iteration of the estimation algorithm consists
of calculating first the state sequence probabilities (4)—(7),
which is the expectation step. Subsequently, we compute
the new parameter estimates by averaging the observations
weighted with the state probabilities (8)—(11), which corre-
sponds to the maximization step of an iteration of the algorithm.
Convergence is assured by Jensen’s inequality [16].

III. TRAFFIC MODEL VALIDATION

In this section, we assess our model by comparing statistics
evaluated on a pseudo-random synthetic traffic generated ac-
cording to our P-HMM to the statistics evaluated on a composite
MVC test sequence. The P-HMM parameters are estimated by
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TABLE 1
REFERENCE TEST SEQUENCES USED TO GENERATE THE COMPOUND SEQUENCE
sequence name | # frames | # views
Akko & Kayo 290 100
Champagne Tower 500 8
Uli 250 8
Jungle 250 8
Balloons 500 7
Kendo 400 7
Dog 300 80
Pantomime 500 80

applying the EM algorithm of Section II-C on the observed com-
posite sequence. We also test the case in which the test sequence
is different from the sequence used to train the model in order
to show the model’s ability to represent not only the training se-
quence, but also other sequences with similar content. A com-
parison to a well-known single-view VBR model [21] is also
carried out.

A. MVC Encoder Settings

The composite MVC sequences considered in the model
assessment are generated by randomly selecting and concate-
nating the views of several reference tests sequences with very
different activity levels, as reported in Table I [22], [23]. All the
sequences are in CIF format, with a frame rate of 25 fps. The
resulting MVC composite sequence is approximately 6 min
long and with Nvyieww = 4 views. We encode the sequence
using the two different GOP structures reported in Figs. 1 and
2. Both structures exhibit motion compensation dependencies
among the views for anchor and non-anchor frames [24].
The large number of dependencies accentuates the difference
between MVC traffic and simple aggregations of single-view
traffic. The two GOP structures differ in the number of I- and
P-frames. The bit-rate variability of sequences encoded using
the GOP in Fig. 1 is mainly due to the residuals of the motion
compensation, whereas for sequences encoded using the GOP
in Fig. 2, the bit-rate variability depends on the large number
of intra- or P-frames. For each GOP structure, different MVC
bitstreams have been generated by setting the quantization pa-
rameter of the reference view to 10 (high quality), 20 (medium
quality), or 40 (low quality), and by adjusting the temporal
layers quantization parameter accordingly.3 We use JMVC v7.0
to encode the sequences [25], then we use the different MVC
bitstreams to build traffic models.

As we discussed in Section II, the number of bins in the
pmfs of the model may be different for different frame types
in order to have a tradeoff between performance and model
complexity. However, increasing the number of parameters may
lead to model overfitting. In our tests, we heuristically set the
number of bins as shown in Table II(a) and (b) for the GOP
structures in Figs. 1 and 2, respectively. The number of bins is
fixed for every kind of sequence, and it is selected according to
the frame coding mode and the hierachical prediction structure
(see Figs. 1 and 2). In Section III-B, we will evaluate the perfor-
mance of our model with different test and training sequences
in order to study overfitting problems and validate the values

3Specifically, we have set the quantization parameters according to the default
settings of IMVC [25].

TABLE II
NUMBER OF BINS IN THE pmf FOR EACH FRAME OF THE GOP GIVEN IN
DISPLAY ORDER. (a) GOP STRUCTURE IN FIG. 1. (b) GOP STRUCTURE IN FIG. 2

(a)

View #0 50| 10| 10| 10 | 20 | 10 | 10 | 10
View #1 to #3 | 30 | 10 | 10 | 10 | 20 | 10 | 10 | 10
(b)

View #0 50 (10]20 |10

View #1 to #3 | 30 | 10 | 20 | 10

chosen for our parameter set. The bins are placed in the interval
between the minimum and the maximum observed frame size
for each frame type.

In the simulations, we employ a three-state model in order to
represent low-, medium-, and high-level activity. Our choice for
the number of states is motivated by prior results in single-view
sequence traffic modeling [26]. Since the activity levels corre-
spond to the real scene dynamics, in our tests we can retain the
same number of levels as in single-view modeling. Specifically,
we adopt the most compact representation (three states) that per-
mits to achieve an accurate description of the video traffic.

A first coarse estimation of the model parameters is per-
formed by labeling each GOP of the actual sequence as low,
medium or high according to its average frame size. The thresh-
olds are set in order to have the same number of GOPs in the
three states. Then, a coarse estimation is obtained by evaluating
frame size histograms related to each state. Zero-valued bins
are set to a low fixed value, and the histograms are normalized
accordingly. The transition probability matrix is initialized with
positive random values, and the Poisson mean values are set to
1 for each state. After that, the EM algorithm is performed as
described in Section II-C using the coarse estimation as starting
point. Estimation ends when the difference between the log
likelihoods of the two most recent iterates is smaller than 0.01.

Finally, synthetic traffic is produced by first generating a state
sequence according to the model and then producing synthetic
traffic for a GOP for each state of the sequence by means of the
frame size pmfs. The bins are converted to the mean frame size
of the interval they represent. The synthetic traffic generation is
described in Algorithm 3.

B. Performance Evaluation

We now assess the model’s accuracy by first comparing the
autocorrelation function (acf) and the Q-Q plot computed on a
sequence of frame sizes of the actual MVC encoded sequence
(comprising all the views) with the respective statistics eval-
uated on a pseudo-random traffic sequence generated by the
P-HMM with parameters estimated from the corresponding
composite sequence. Q-Q plot measures the similarity of two
distributions by comparing their quantiles. The closer the Q-Q
plot to the bisector of the first and third quadrant, the more
similar the two distributions. Figs. 4-6 show the acf and the
Q-Q plot for different compressed MVC sequences. It is clear
that the statistics evaluated on the synthetic traffic (P-HMM-A)
closely follow the statistics of the actual MVC sequences, for
every GOP structure and quantization parameter. The close
match with the actual data is due to the fact that we do not
constrain the frame size pmf$ to have an explicit probability
distribution and that we employ the Poisson distribution for
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Fig. 4. Comparison of (a) the autocorrelation function and (b) the Q-Q plot estimated on the real MVC encoded sequence and on the synthetic P-HMM generated

video sequence (GOP structure in Fig. 2, high-quality stream).

Algorithm 3: Synthetic traffic generation

1: Initial state 7 extracted according to the distribution

3: whilen < N do
4: k extracted from the Poisson distribution belonging
to the current state, i.e., d;[k]

5 if n > N — k then

6: k—N-n-1

7: end if

8: for j = 0tok do

9 generate a synthetic GOP z[n—+ j] according to
bi[];

end for

11: n—mn+k

perform state transition according to transition

matrix II.

13: end while

the state durations, thus forcing a nonstationary recurrence of
the activity levels. In order to validate these conclusions, we
compare our model to the well-known single-view VBR model
described in [21]. Specifically, we focus on the “model A” in
[21], whose main differences with our P-HMM model relate
to the frame size distribution and the hidden chain describing
the activity level. The model A employs three shifted gamma
distributions for the sizes of frames (I, P, B) and a stationary
seven-state Markov chain for the activity level. Moreover, an
ad hoc parameter estimation procedure is used in [21]. We see
in Figs. 4-6 that model A is not able to describe it correctly. In
particular, we can see that model A does not depict accurately
the shape of the actual sequence, both for the Q-Q plots and the
autocorrelation function. We finally consider the case in which
our model is trained with a different sequence with respect
to the test sequence; we denote the synthetic traffic generated
by this model as P-HMM-B. The purpose of P-HMM-B is to
show how our model can approximate not only the training

sequence but also other sequences belonging to the same class
of MVC sources. The test sequences are generated similarly
to the training sequences by a random selection and concate-
nation of the views from the reference sequences in Table I.
P-HMM-A outperforms the other models in mimicking the
overall frame size distribution, while P-HMM-B also achieves
good adherence performance.

The same statistics have been calculated separately on the
traffic related to each view in MVC streams. Figs. 7 and 8 show
these statistics for the view #1 and view #3, respectively. Sim-
ilar results have been obtained for different encoder settings.
Again, it is clear that model A [21] is not able to capture the
statistics for each single view. Conversely, our models can ef-
ficiently characterize the traffic for each view. The character-
ization of the first- and second-order statistics for every view
makes the model attractive to describe real MVC traffic in net-
work applications, where a subset of the views are transmitted
to the receivers. The good results obtained with PHMM-B show
that the model is able to capture features that are not only related
to a single MVC stream, but also to a class of sequences sharing
similar content characteristics. Finally, we remark that the slight
divergence in terms of autocorrelation function is caused by ne-
glecting the intra-GOP correlation in the model design.

IV. TRAFFIC MODEL IN MULTIVIEW SERVICES

A. Applications Scenarios

We examine the accuracy of our model in the context of multi-
view services. We consider two case studies illustrated in Fig. 9.
In the first one, called “Multiview TV,” the server sends all the
MYVC content to the user. In the second one, denoted as “Inter-
active TV,” the user requests one view at a time and can switch
dynamically among the available views during the playout, ex-
ploiting an out-of-band feedback control channel. Due to the
coding dependencies, the reference views still have to be trans-
mitted along with the target view in the Interactive TV service.

From the point of view of the MVC source model, the above
services differ in that the traffic generated during the Multiview
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Fig. 5. Comparison of (a) the autocorrelation function and (b) the Q-Q plot estimated on the real MVC encoded sequence and on the synthetic P-HMM generated
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Fig. 9. System description for multiview services. The feedback channel is
present only in the interactive TV case.

TV session depends only on the encoded video, whereas the
traffic generated during the Interactive TV session depends also
on the view selection process. Thus, in order to fully charac-
terize the latter scenario, we develop a new model of the view
switching sequence, inspired by related models in the context
of channel switching in IPTV systems [27]-[30]. In the de-
sign of our view switching model, we employ the following
assumptions.

1) A user watches the reference view most of the time.

2) Other views are occasionally selected by the user because
they represent added content with respect to the main view
(e.g., in a football game, these views may show close-up
of the players).

3) A user selects views with preferences that depend on the
present view the user is currently watching (first-order
dependency).

We model the view switching sequence as a chain in which the
states represent different views. The duration of stay in each
view is explicitly modeled with a probability distribution. Ac-
cording to the above assumptions, we heuristically select sample
values for the view transition probabilities, which are reported
in Table III(a). The average and standard deviation of state du-
rations are also set to sample values corresponding to the above
assumptions [see Table III(b)]. We have found that the Gamma
distribution is suitable and flexible for modeling the state dura-
tion time since it takes only nonnegative values with mean and
standard deviation that are set independently. Formally, let d? [#]
be the density function for the duration time in state ¢

det 5"
- D)

a3 [k] ki te Pk for k > 0.

(12)

TABLE III
VIEW SWITCHING MODEL (VSM) PARAMETERS. (a) VSM TRANSITION
MATRIX. (b) VSM STATE DURATION PARAMETERS

(@)

Views | #0 | #1 | #2 | #3
#0 0 [04]02]|04
#1 04 0 | 0402
#2 02(04] 0 |04
#3 0410204 ] 0

(b)
Views av. time | st. dev.
#0 6min 30s
#1 to #3 1min 10s

The parameters «; and [3; are derived from the mean and the
standard deviation of duration time for the corresponding state,
respectively y; and o;, according to the following expressions:

Lk

¢T3
5 (13)
.

¢

Although MVC coding techniques and standards are avail-
able, modeling the view-selection pattern is an emerging
research topic [31], which has been addressed only in a few
works [32], [33]. Furthermore, the analysis is limited to the
case in which the user behavior is deterministic. Our goal in
this paper is to formulate a general stochastic characteriza-
tion of the problem, being both compact and flexible in the
analysis. When referring to a flexible characterization, we
mean that we search for a distribution that can characterize
both a fast-view-surfing user behavior and a static user that
rarely performs view switching. Within this scope, the Gamma
distribution applies appropriately because it is able to describe
heterogeneous users’ behavior, even with only two parameters.
For instance, a Gamma distribution parameterized by a small ¢
and a large /3 can well describe a view-surfing user, whereas a
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TABLE IV
AVERAGE FRAME-LOSS RATE DIVERGENCE BETWEEN REAL SEQUENCE AND SYNTHETIC SEQUENCES (MULTIVIEW TV CASE).
(a) HIGH-QUALITY SEQUENCE. (b) LOW-QUALITY SEQUENCE

(@)
c=1 c=1.5 cr=2
buffer sender | receiver || sender | receiver || sender | receiver
P-HHM-A | 0.37 0.5 041 0.39 0.15 0.39
P-HHM-B 0.56 1.47 0.7 1.17 0.63 1.06
Model A 1.58 1.84 1.42 1.23 1.11 0.83
nested AR | 3.18 3.00 2.05 2.89 1.43 2.17
b
cr=1 =15 cr=2
buffer sender | receiver || sender | receiver || sender | receiver
P-HHM-A | 0.18 0.39 0.11 0.87 0.09 1.27
P-HHM-B 0.46 1.13 0.61 1.66 0.62 0.87
Model A 1.47 5.68 1.61 5.52 1.68 4.33
nested AR 1.93 8.04 2.09 7.62 2.15 4.46

Gamma distribution parameterized by large v and § describe
a more static user. Moreover, many well-known distributions
are particular instances of the Gamma distribution, such as the
exponential, the Chi square, and the Erlang distribution. Finally,
we note that the specific model of user behavior employed in
the performance analysis is however not critical, and a similar
study could be conducted with other behavior models.

B. Performance Analysis

We compare the traffic load due to the H.264 MVC source
and the synthetic video traffic trace generated by our P-HMM
model in both network scenarios defined above. We also in-
clude the comparison to a non-Markovian single-view traffic
model, [34]. We denote the traffic generated by this method as
nested AR. We consider that the MVC traffic is fed into the
transmission buffer B that is characterized by a buffer size
br and an output rate + (see Fig. 9). The transmission buffer
adopts a first-in—first-out (FIFO) scheduling policy. The buffer
output is encapsulated into networks packets in accordance with
network packetization rules and transmitted to the destination
through the channel. Each packet might be affected by a dif-
ferent (random) delay during transmission. The delay d[n] is
the sum of the channel delay d[n] and the transmission buffer
delay dp[n]. For modeling the channel delay d¢[n], we resort
to the quite general and complete channel model introduced by
Miao and Chou* [35]. After an initial prefetch delay D (namely
D = 2 s in our study) from the arrival time of the first frame,
the playout buffer is drained at a rate given by the MVC com-
pressed stream. If frames are not available in the playout buffer
at their decoding deadline, they are considered as lost. We con-
sider three different values for the channel rate, namely 1, 1.5,
or 2 times the average bit rate of the MVC source rate. We de-
note the ratio between the channel rate and then average source
rate by the factor ¢,..

We have generated a 25-min-long multiview test sequence
by concatenating the streams described in Table I, similarly to

4Specifically, we have adopted the same numerical channel model parameters
asin [35], e« = 80, n = 4, y = 0.025.

the sequences used in Section ITI-A. A three-state model is built
by running the EM algorithm on the actual sequence using the
same procedure as Section III-A. For each sequence, we gener-
ated two streams with high (@ = 10) and low (Q = 40) quality,
respectively. We then study the accuracy of our model by com-
paring the traffic and more particularly the loss rate due to late
packets, for both the synthetic traffic and the actual MVC se-
quence. The loss rate is defined as the ratio between the number
of lost frames and the number of transmitted frames at both the
sender and receiver buffers. The frame-loss rate is averaged over
10 Monte Carlo simulations. We compare the synthetic traffic
and the actual sequence at different values of the buffers size in
order to show that the model is able to describe the MVC traffic
both in case of acceptable frame-loss rate and very large loss
rate.

First, we compare the sender buffer frame loss rate for
different values of the transmission buffer size. Figs. 10(a) and
11(a) show respectively these results for the Multiview TV and
the Interactive TV cases, for ¢, = 2 and low stream quality
value. It can be seen that the actual MVC sequence and the
synthetic sequence share a similar frame loss rate for different
channel rates and transmission buffer sizes. Note that the close
similarity is due to the model’s capability to describe higher
order statistics by means of the nonstationary activity level
chain.

Finally, we compare the overall frame-loss rate, i.e., the sum
of lost frames at both the sender and receiver buffers, divided by
the total number of frames, as a function of the receiver buffer
size.> Figs. 10(b) and 11(b) show these results for the Multiview
TV and Interactive TV cases, respectively. Table V summarizes
these results for other test settings, quantifying the model’s ac-
curacy as the average absolute difference ¢ of the frame-loss
rate, between the real sequence and the synthetic sequence.

The average is taken over the different buffer sizes under con-
sideration, and the frame-loss rate is expressed in percent. It can
be seen that the synthetic sequence closely follows the behavior

5To determine the overall frame-loss rate, we set the transmission buffer size
to be large enough to guarantee that the frame-loss rate at the transmission side
is not higher than 5%.
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TABLE V
AVERAGE FRAME-LOSS RATE DIVERGENCE BETWEEN REAL SEQUENCE AND SYNTHETIC SEQUENCES (INTERACTIVE TV CASE).
(a) HIGH-QUALITY SEQUENCE. (b) LOW-QUALITY SEQUENCE

(@)
=1 =15 =2
buffer sender | receiver || sender | receiver || sender | receiver
P-HHM-A | 0.29 0.23 0.32 0.18 0.12 0.23
P-HHM-B 1.08 0.88 1.18 0.75 0.65 0.72
Model A 2.43 1.83 1.69 0.55 1.05 0.86
nested AR 1.24 2.17 0.63 0.89 0.75 0.74

(b)
cr=1 c=15 =2
buffer sender | receiver || sender | receiver || sender | receiver
P-HHM-A | 0.39 1.21 0.34 091 0.34 0.91
P-HHM-B | 0.59 3.53 0.65 1.50 0.67 1.61
Model A 4.02 10.24 4.22 3.85 4.27 3.94
nested AR | 4.57 14.20 4.78 5.11 4.82 4.80

of the actual MV C source; specifically, the difference between buffer depends on the size of the previous frames that are trans-
the frame-loss rate of the model and the one of the actual se- mitted, the close similarity between the synthetic and the actual
quence is smaller than 0.03 for most of the playout buffer sizes traffic demonstrates the accuracy of the model in characterizing
under examination. Since the frame arrival time at the playout MVC traffic statistics. In addition, even the P-HMM-B model,
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which is trained on different sequences than the test sequences,
is able to capture relevant traffic features of actual data, thus pro-
viding a good frame-loss rate estimation for both transmission
and playout buffer, as seen from Table V. Finally, it is worth
noting that both model A and nested AR fail in predicting the
buffer losses, as they have not been designed for the specific
structure of MV C streams. These simulations are aimed to show
that our model effectively allows to predict the real frame loss
experienced by the multiview sequence, which can be quite high
unless a suitable buffering is performed. Thereby, our model
permits to properly select the operating ranges of the system
parameters, namely the transmitter/receiver buffer sizes. There-
fore, the P-HMM can replace real MV C sequences in the dimen-
sioning of transmit and receive buffers. It can be employed both
for synthetic trace generation as well as for theoretical network
performance analysis.

V. CONCLUSION

In this paper, we have presented a new stochastic model char-
acterizing the frame size sequence for MVC VBR sources. The
model exploits a Poisson hidden Markov model representing the
random frame sizes of the different MVC encoded views as a
function of the random real video scene activity variations. We
have also derived a stable EM algorithm that is applicable to
long data sequences for the P-HMM parameter estimation. We
have shown through extensive simulations that our model accu-
rately predicts the sequence of frame sizes in an MVC stream.
We have also applied our model to traffic load prediction in two
different network scenarios, namely a multiview TV service and
an interactive TV service. Simulation results show that the syn-
thetic traffic generated by the proposed model strongly resem-
bles the traffic due to real MVC video traces. The model is able
to accurately characterize a class of MVC streams sharing sim-
ilar content characteristics with the training data. The model is
therefore an appropriate tool for different networking problems,
such as network dimensioning, resource allocation, and call ad-
mission control.
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