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On Asymptotic Statistics for Geometric Routing
Schemes in Wireless Ad-Hoc Networks

Armin Banaei, Daren B.H. Cline, Costas N. Georghiades, and Shuguang Cui

Abstract—In this paper we present a methodology employing
statistical analysis and stochastic geometry to study geometric
routing schemes in wireless ad-hoc networks. In particular, we
analyze the network layer performance of one such scheme, the
random 1

2
disk routing scheme, which is a localized geometric

routing scheme in which each node chooses the next relay
randomly among the nodes within its transmission range and in
the general direction of the destination. The techniques developed
in this paper enable us to establish the asymptotic connectivity
and the convergence results for the mean and variance of the
routing path lengths generated by geometric routing schemes
in random wireless networks. In particular, we approximate the
progress of the routing path towards the destination by a Markov
process and determine the sufficient conditions that ensure the
asymptotic connectivity for both dense and large-scale ad-hoc net-
works deploying the random 1

2
disk routing scheme. Furthermore,

using this Markov characterization, we show that the expected
length (hop-count) of the path generated by the random 1

2
disk

routing scheme normalized by the length of the path generated
by the ideal direct-line routing, converges to 3π/4 asymptotically.
Moreover, we show that the variance-to-mean ratio of the routing
path length converges to 9π2/64 − 1 asymptotically. Through
simulation, we show that the aforementioned asymptotic statistics
are in fact quite accurate even for finite granularity and size of
the network.

Index Terms—Geometric Routing Schemes, Asymptotic Net-
work Connectivity, Asymptotic Path Length Statistics, Statistical
Analysis, Stochastic Geometry, Markov Process.

I. INTRODUCTION

A wireless ad-hoc network consists of autonomous wire-
less nodes that collaborate on communicating informa-

tion in the absence of a fixed infrastructure. Each of the nodes
might act as a source/destination node or as a relay. Commu-
nication occurs between a source-destination pair through a
single-hop transmission if they are close enough, or through
multi-hop transmissions over intermediate relaying nodes if
they are far apart. The selection of relaying nodes along the
multi-hop path is governed by the adopted routing scheme.

The conventional method to establish a routing path between
a given source-destination pair is through exchanges of control
packets containing the complete network topology information
[1], which creates scalability issues when the network size
becomes large. One way to reduce the overhead for global
topology inquiries is to build routes on demand via flooding
techniques [2]. However, such routing protocols essentially
suffer from a similar issue of large signaling overheads.
To deal with the above issues, Takagi and Kleinrock [3]
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Fig. 1. Some variants of geometric routing schemes: The source node S
has different choices to find a relay node for further forwarding a message
to the destination Dst. V1 = Nearest Forward Progress (NFP), V2 = Most
Forward within Radius (MFR), V3 = Compass Routing (DIR), V4 = Shortest
Remaining Distance (SRD).

introduced the first geographical (or position-based) routing
scheme, coined as Most Forward within Radius (MFR), based
on the notion of progress:1 Given a transmitting node S and
a destination node Dst, the progress at relay node V is
defined as the projection of the line segment SV onto the line
connecting S and Dst. In MFR, each node forwards the packet
to the neighbor with the largest progress (e.g., node V2 in Fig.
1), or discards the packet if none of its neighbors are closer
to the destination than itself. There are some other variants
of the geographical routing scheme in the literature [4]–[6],
which are similar to MFR. In [4], the authors introduced
the Nearest Forward Progress (NFP) method that selects the
nearest neighbor of the transmitter with forward (positive)
progress (e.g., node V1 in Fig. 1); in [5], the Compass Routing
(also referred to as the DIR method) was proposed, where
the neighbor closest to the line connecting the sender and the
destination is chosen (e.g., node V3 in Fig. 1); in [6], the
authors considered the Shortest Remaining Distance (SRD)
method, where the neighbor closet to the destination is selected
as the relay (e.g., node V4 in Fig. 1).

Geographical routing protocols might fail for some network
configurations due to dead-ends or routing loops. In these
cases, alternative routing strategies, such as route discovery
based on flooding [8] and face routing [9] can be deployed.
However, it has been shown in [10] that for dense wireless net-

1It should be noted that the reduction in complexity comes at the cost
of knowing the location of the neighboring nodes in addition to that of the
destination.
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works, the MFR-like routing strategies will succeed with high
probability and there is no need to resort to recovery methods
such as face routing. In this paper we study the network layer
performance of geographical routing schemes in such dense or
large wireless networks; and we expect to observe a similar
high-probability successful routing performance (the proof of
this claim is presented in Section IV-B).

Below we present a methodology employing statistical
analysis and stochastic geometry to study geometric rout-
ing schemes in wireless ad-hoc networks. We consider a
wireless ad-hoc network consisting of wireless nodes that
are distributed according to a Poisson point process over a
circular area, where nodes are randomly grouped in source-
destination pairs and can establish direct communication links
with other nodes that are within a certain range. We determine
the conditions under which, in such a network, all source-
destination node pairs are connected via the adopted geo-
graphical routing scheme with high probability and quantify
the asymptotic statistics (mean and variance) for the length
of the generated routing paths. In particular, we focus on
a variant of the geographical routing schemes, namely the
random 1

2 disk routing scheme, as an example, where each
node chooses the next relay uniformly at random among the
nodes in its transmission range over a 1

2 disk with radius R
oriented towards the destination. This scheme is similar to
the geometric routing scheme discussed in [3], in which one
of the nodes with forward progress is chosen as a relay at
random, arguing that there is a trade-off between progress and
transmission success.

We chose the random 1
2 disk routing scheme mainly for

tractability and simplicity in mathematical characterization.
However, the solution techniques developed in this paper can
be used (with some modifications) to study other variants of
geographical routing schemes, such as MFR, NFP, DIR, etc,
which will be further discussed in Section VI. Moreover, the
random 1

2 disk routing scheme can be used to model situations
where nodes have partial or imprecise routing information and
the locally optimal selection criterion of greedy forwarding
schemes fails [7], e.g., when nodes have perfect knowledge
about their destination locations but imprecise information
about their own locations, or when nodes only know the half-
plane over which the final destination lies such that randomly
forwarding the packet to a node in the general direction of the
destination is a plausible choice.

There has been a considerable interest regarding the network
connectivity and the average length of the route generated by
geographical routing schemes under different network settings
[7], [11]–[15]. The authors in [11] considered a wireless
network that consists of n nodes uniformly distributed over
a disc of unit area with each node transmission covering
an area of r(n) = (log n + c(n))/n. They show that this
network is connected asymptotically with probability one if
and only if c(n) → ∞ as n → ∞. Although the asymptotic
expression that they derived for the sufficient transmission
range is similar to ours, their notion of connectivity is quite
different from ours. In [11], the network is connected as
long as it is percolated, i.e., the network contains an infinite-
order component, where no constraints are considered for

the paths connecting source-destination pairs. However, the
routing paths that we consider in this work have more structure
such that we need a different proof technique to prove the
asymptotic connectivity of the network. Xing et al. showed in
[12] that the route establishment can be guaranteed between
any source-destination pair using greedy forwarding schemes
if the transmission radius is larger than twice the sensing radius
in a fully covered homogeneous wireless sensor network. In
[13] the authors derived the critical transmission radius to be√

β0 logn
n which ensures network connectivity asymptotically

almost surely (a.a.s.) based on the SRD routing method, where
β0 = 1/(2π/3−

√
3/2).

In [14], Bordenave considered the maximal progress navi-
gation for small world networks and showed that small world
navigation is regenerative.2 It is shown furthermore in [14] that
as the cardinality of the navigation (or routing) path grows,
the expected number of hops converges, without providing an
explicit value for the limit. Baccelli et al. [15] introduced a
time-space opportunistic routing scheme for wireless ad-hoc
networks which utilizes a self-selection procedure at the re-
ceivers. They show through simulations that such opportunis-
tic schemes can significantly outperform traditional routing
schemes when properly optimized. Furthermore, they analyt-
ically proved the asymptotic convergence of such schemes.
In [7], Subramanian and Shakkottai studied the routing delay
(measured by the expected length of the routing path) of
geographic routing schemes when the information available
to network nodes is limited or imprecise. They showed that
one can still achieve the same delay scaling even with limited
information. Note that the asymptotic delay expression derived
in [7] is similar to the one we derive in this paper; however,
our proof technique is more constructive and enables us to
derive tight bounds for the mean and the variance of the
routing-path lengths in a network of arbitrary size, together
with the exact expressions for their asymptotes. Moreover, in
[7] the authors presumes that the progress (as defined in [3]
and described earlier) at nodes along the routing path form
a sequence of i.i.d. random variables. However, as we show
later (cf. Proposition 1), this assumption may not hold for
Poisson distributed networks of arbitrary finite sizes as the
distribution of nodes contained in the transmission range of
a given node along a routing path depends on the history of
the routing path up to this node, i.e., the progress at each
hop is history dependent. Hence, it is neither independent nor
identically distributed; but we show that, as the size of the
network (either density or area) goes to infinity, the conditional
distribution of the progresses along the routing path given the
two previous hops, in fact, depends asymptotically only on the
last hop.

The remainder of this paper is organized as follows. In
Section II we introduce the system model and describe the
random 1

2 disk routing scheme. Then we define the notion of
connectivity based on generic geometric routing schemes and
state the main results of the paper in a theorem regarding
the connectivity and the statistical performance of the random

2This routing scheme, unlike ours, assumes nonnegative progress in each
hop.
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1
2 disk routing scheme. In Sections III and IV we prove the
claims made in this theorem. In Section III, we establish
sufficient conditions on the transmission range that ensure the
existence of a relaying node in every direction of a transmitting
node for both dense and large-scale networks. In Section IV,
we study the stochastic properties of the paths generated by
the random 1

2 disk routing scheme. Specifically, in Section
IV-A, we prove that the routing path progress conditioned on
the previous two hops can be approximated with a Markov
process. In Section IV-B, using the Markovian approximation,
we derive the asymptotic expression for the expected length,
and in Section IV-C we derive the asymptotic expression for
the variance of the length of the random 1

2 disk routing paths. In
Section V, we present some simulation results to validate our
analytical results. In Section VI, we present some guidelines
on how to generalize the results derived for the random 1

2 disk
routing scheme to other variants of the geometric routing
schemes. We conclude the paper in Section VII.

II. SYSTEM MODEL

Consider a circular area A over which a network of wireless
nodes resides.3 Nodes are distributed according to a homoge-
neous Poisson point process with density λ. In this work we
adopt a continuum model for the network where each node is a
zero-dimensional point in a unit-area disk.4 As such, network
nodes can be located at any geometric locations (x, y) ∈ R2

such that x2 + y2 ≤ |A|π , where |A| denotes the area of region
A.

Each node picks a destination node uniformly at random
among all other nodes in the network, and operates with a
fixed transmission power that can cover a disk of radius R =
R(λ, |A|).5

For a generic geometric routing scheme, when the targeted
destination node is out of the one-hop transmission range
R of a given transmitting node, the next relay is selected
(based on some rules) among the nodes contained in the relay
selection region (RSR) of the transmitting node, where the
RSR, in general, can be any subset of a full disk of radius
R centered at the transmitting node. For example, the RSR
for all the geometric routing schemes cited in the introduction
section is a 1

2 disk of radius R centered at the transmitting node
and oriented towards the destination (denoted by 1

2 RSR). We
define the rule that governs the selection of the next relay
in each node’s RSR as the relay selection rule (RSL). For
example, the RSL for MFR is to choose the node with the
largest “progress” towards the destination among the nodes
contained in its 1

2 RSR. We define the progress x′V at a relay
node V as in [3], and described in the introduction section.

3The results will carry over, with some minor considerations, to any convex
region with bounded curvature.

4This is due to the asymptotic nature of the results presented in this
work. Furthermore, a Poisson point process model for the node locations
can be considered on a discrete space of countably infinite isolated points
(for instance, lattices). Adapting such a model does not change the nature of
the results presented.

5As mentioned earlier, we are only interested in the network layer per-
formance of the network; as such, we do not consider physical layer related
issues such as interference. However, as a rule of thumb (cf. [10]), to minimize
the interference among wireless nodes we are interested in the smallest
transmission radius that ensures network connectivity in this paper.

We define the network to be connected if for any source-
destination node pair in the network, there exists a path
constructed by a finite sequence of relay nodes complying with
the RSL, with high probability;6 henceforth, we call such a
relay sequence a routing path. Note that a node can potentially
act as a relay only if it is contained in the RSR of the current
transmitting node. For the sake of definition, we claim that the
network is connected if the set of network nodes is empty.

In this paper we study a special case of localized geometric
routing schemes, namely the random 1

2 disk routing scheme,
where for each transmitting node S in the network, the next
relay V is selected uniformly at random among the nodes
contained in the 1

2 RSR of S. We denote the relay selection
rule of the random 1

2 disk routing scheme by rRSL. Observe
that according to our routing scheme, the next chosen relay
might be farther away from the destination than the current
transmitting node.

In the following, we present a theorem that summarizes the
main results of this paper on the random 1

2 disk routing scheme,
regarding i) the sufficient conditions on R(λ, |A|), which
ensure the existence of a relaying node in any direction of a
particular transmitting node based on a generalized version of
1
2 RSR; ii) the mathematical model describing the routing path;
iii) the mean asymptotes of the path-lengths established by the
random 1

2 disk routing scheme; iv) the corresponding variance
asymptotes; and v) the asymptotic network connectivity with
the random 1

2 disk routing scheme. For the generalized version
of the 1

2 RSR, we assume that the RSR of a node is a wedge
of angle 2πη with radius R, where 0 < η ≤ 1 (hereafter
called ηdisk or ηRSR, interchangeably). Hence, the 1

2 RSR is
a special case of the ηRSR with η = 1/2.

Note that in this paper we define the length of a routing path
as the number of hops traversed over the routing path between
a source and its destination. For notational convenience, we
let N := λ|A| designate the expected number of nodes in the
network region of area |A| and d = d(N) := πR2

|A| denote
the normalized area of a full disk with radius R relative to the
area of the whole region, such that dN is the expected number
of nodes in such a disk. The asymptotic nature of the results
presented in this paper is due to N →∞, which can represent
results for either large-scale networks (i.e., when |A| → ∞
with a fixed λ) or dense networks (i.e., when λ→∞ with a
fixed |A|).

Also, f(n) = O (g(n)) means that there exist positive
constants c and M such that f(n)/g(n) ≤ c whenever n ≥M ,
f(n) = o (g(n)) means that lim f(n)/g(n) → 0 as n → ∞,
f(n) ∼ g(n) means that lim f(n)/g(n) → 1 as n → ∞,
and f(n) = Θ (g(n)) means that both f(n) = O (g(n)) and
g(n) = O (f(n)).

Theorem 1. Consider a Poisson distributed wireless network
with an average node population N deployed over a circular
area A. Each node picks a destination node uniformly at
random among all other nodes in the network. Assume all
nodes have the same transmission range R(N) that covers

6According to this definition, the network is connected if starting from any
source and choosing relays based on the routing scheme, the destination is
reachable with high probability.
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a normalized area d = d(N) and let x′ be the progress at
each node. Choosing R(N) such that ηdN + log d→ +∞ as
N →∞, we have

i) the ηdisk of each node in the network pointing at
any direction in which its targeted destinations may
lie contains at least one relaying node asymptotically
almost surely (a.a.s.);

ii) the routing path progress can be approximated to a
“second-order” with a Markov process; more specifi-
cally, the conditional distribution of the next hop given
the previous two hops, asymptotically depends only on
the last hop.

iii) Using the Markovian approximation, we have that the
length ν of the random 1

2 disk routing path is asymptot-
ically finite with the asymptotic expected value E (ν) ∼
32
15

1√
d

; specifically, the expected length of the random
1
2 disk routing path connecting a source-destination pair
that is h-distance apart satisfies E (ν | h) ∼ h

E(x′) =
3π
4
h
R as N →∞;

iv) the variance-to-mean ratio of the routing path length

satisfies Var(ν)
E(ν) ∼

Var(x′)
E(x′)2 = 9π2

61 − 1 as N →∞;
v) the network is asymptotically connected with the random

1
2 disk routing scheme with high probability,

where the expectation is taken over all realizations of the
network nodes, source-destination pair assignments, and the
routing paths between source-destination pairs.

Proof: Here we only sketch the outline of the proof
and present the respective details in the following sections.
In Section III, we show that for random networks, choosing
R(N) such that ηdN + log d → +∞ as N → ∞ guarantees
the existence of at least one relaying node in the ηdisk of
each network node pointing at any directions in which their
targeted destinations may lie a.a.s..7 To this end, we first
derive an upper bound on the probability σ(N) that the ηdisk
of some nodes in the network pointing at some directions
is empty. Then we show that choosing d(N) as mentioned
before ensures the asymptotic convergence of σ(N) to zero
as N →∞. This ensures the existence of a relaying node in
every direction of a particular transmitting node and ascertains
the possibility of packet delivery to a particular destination
from any direction a.a.s..

In Section IV, assuming R(N) satisfies the above condition
and N is large enough such that there exists a relaying node
in every direction of a particular transmitting node with high
probability, we prove that the routing path progress condi-
tioned on the previous two hops can be approximated with a
Markov process. Using the Markovian approximation, we then
derive the asymptotic expressions for the mean and variance of
the routing path length generated by the random 1

2 disk routing
scheme between a source-destination pair that is h-distance
apart and show that they are asymptotic to h

E(x′) = 3π
4
h
R and

Var(x′)
E(x′)2 E (ν) =

(
9π2

61 − 1
)

E (ν), respectively. Furthermore,
we show that the length of the random 1

2 disk routing path
connecting a source to its destination is finite asymptotically.

7A specific node might act as a relay for multiple source-destination pairs.

This shows that starting from a source and following the
random 1

2 disk routing scheme we can reach the destination in
finitely many hops with high probability; hence the network
is asymptotically connected with the random 1

2 disk routing
scheme.

III. THEOREM 1.i PROOF: UNIFORM RELAYING
CAPABILITY

In this section we derive the sufficient conditions on R(N)
that ensure, for any node in the network, its ηdisks pointing
in any directions over which its targeted destinations may lie
contain at least one potential relaying node. To this end, we
first characterize the upper bound on the probability σ(N)
that, for some network nodes, there are certain directions at
which their ηdisks are empty; we then choose R such that this
bound is vanishingly small. In this process, we can distinguish
between two types of network nodes based on their distances
to the edge of the network: Nodes that are farther than R
away from the edge of the network, which we call interior
nodes, and nodes that are closer than R to the edge of the
network, which we call edge nodes. For the sake of definition,
we assume σ(N) = 0 when N = 0.

For interior nodes, it is clear that the node distribution in
their ηdisks, pointing at any direction, is the same. Therefore,
the existence probability of an empty ηdisk for an interior node
is independent of its targeted destination direction. However,
due to the proximity of edge nodes to the boundary of the
network, the existence probability of an empty ηdisk for
an edge node highly depends on its destination orientation.
For example, the ηdisks that fall partly outside the network
region are more likely to be empty than the ones that are
fully contained in the network region. Hence, we derive
the probabilities of a node having an empty ηdisk in some
direction separately for the interior nodes and the edge nodes,
denoted by σ′(N) and σ′′(N), respectively.

Recall that a ηdisk is a wedge of angle 2πη and radius R,
with 0 < η ≤ 1. Each ηdisk has an expected number of nodes
ηdN . As shown in Section III-C, the existence probability of
an empty ηdisk increases as η decreases. However, we can
show that the expected length of the routing path connecting
a source to its destination will decrease as η decreases. Hence,
there exist a tradeoff between the existence probability of
an empty ηdisk (i.e., a disconnected node) and the expected
length of the routing path between a source-destination pair
parameterized by η. We leave the study of this trade-off to
future work and only derive (in Section IV) the mean and
variance of the path length connecting a source-destination
pair when η = 1/2.

A. Calculation of σ′(N)

Consider an interior node x, fixed for now. Given i ≥ 1
nodes are in the transmission range of x, their directions in
reference to x are independent and uniformly distributed on
[0, 2π]. The probability that x has an empty ηdisk in some
direction equals the probability Ui(η) that the angle of the
widest wedge containing none of these i nodes is at least 2ηπ.
It is not difficult to give a simple upper bound on Ui(η): Of the
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i nodes, without loss of generality (W.L.O.G.), we can assume
that (at least) one is at one edge of an empty wedge with angle
of 2ηπ, while the other i−1 are distributed independently and
uniformly in the remainder of the full transmission disk, as
shown in Fig. 2. Hence, we obtain Ui(η) ≤ i(1 − η)i−1, for
i ≥ 1. Of course, if i = 0 the probability is U0(η) = 1.

x
πη2

disk−η

Fig. 2. A realization for which the widest wedge between the nodes is of
an angle at least 2ηπ.

One can obtain a more precise expression for Ui(η) using
results in [16], page 188:

Ui(η) =

min{b1/ηc,i}∑
k=1

(−1)k−1

(
i

k

)
(1− kη)i−1 ≤ i(1− η)i−1 ,

for i ≥ 1, where bac is the largest integer smaller than a. This
expression is based on the inclusion-exclusion principle for
the probability of the union of events, for which the first term
in the sum provides an upper bound and the first two terms
provide a lower bound.

Averaging over i (number of the nodes in the transmission
range of x) and over the number of network nodes, we have:

σ′(N) ≤
∞∑
k=1

e−N
Nk

k!

· k
k−1∑
i=0

(
k − 1

i

)
di(1− d)k−1−iUi(η)

≤ dN2e−ηdN
(

1 +
1

dN
e−(1−η)dN

)
. (1)

B. Calculation of σ′′(N)

So far we have considered the interior nodes that are at least
R-distance away from the boundary of the network region.
Now, we consider edge nodes that are within R of the network
edge. Some ηdisks of an edge node may fall partially (up to
half) outside the region, which increases the chance that they
are empty. We refer to this phenomenon as the edge effect.
Since the network region is circular, the number of such edge
nodes equals (2 −

√
d)
√
dN , which is of order Θ

(√
dN
)

.
We need to determine how their contribution to σ(N) differs
from the interior nodes.

Consider an edge node e, (δ′R)-distance away from the
network edge, with 0 < δ′ < 1. As shown in Fig. 3, we

ϕθ

Dst

e u

A

B

C

F

Left Edge

Right Edge

Network Edge

disk−η

Rδ ′
Rδ

Fig. 3. Intersection of the ηdisk with the network region.

take node e as the pole and the ray eu (perpendicular to the
network edge) as the polar axis of the local (polar) coordinates
at node e. We argued at the beginning of this section that,
for edge node e, the probability of an ηdisk being empty,
depends highly on its orientation. Let us consider this claim
more closely. Let ϕ := cos−1(δ), as shown in Fig. 3, where
δR is the distance between node e and the line passing through
the intersection points B and F in Fig. 3 with

δ = δ′ − R

L

1− δ′2

2(1− δ′RL )
,

and L :=
√
|A|/π = R/

√
d being the network region radius.

Note that all the ηdisks are oriented towards the destination
node. Hence, for all ηdisks that are oriented at an angle in
the range (−ϕ,ϕ), we must have that the destination is within
node e’s transmission range. Therefore, we only need to be
concerned with empty ηdisks oriented at an angle in the range
(ϕ, 2π − ϕ). The ηdisks oriented at an angle in the range
(−ϕ−ηπ,−ϕ)∪(ϕ,ϕ+ηπ) are partially outside the network
region, as illustrated in Fig. 3, and those oriented at any angle
in (ϕ+ηπ, 2π−ϕ−ηπ) are fully contained inside the network
region. Note that here, all the angles are measured relative
to the polar axis eu. In both aforementioned cases, the area
of the ηdisk inside the network region is at least ηπR2/2.
Hence, we can compute a simple upper bound on σ′′(N) as
follows. Let a2 := π(L2 − (L − R)2)/|A| =

√
d(2 −

√
d)

and a1 := π(L2 − (L − 2R)2)/|A| = 4
√
d(1 −

√
d) be the

normalized areas of the network edge region and the network
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extended edge region8 respectively. We have

σ′′(N) ≤
∞∑
l=1

e−a1N
(a1N)l

l!
l
a2

a1

·
l−1∑
i=0

(
l − 1

i

)
(
d

2a1
)i(1− d

2a1
)l−1−iUi(

η

2
)

≤ (2−
√
d)
√
dNe−

1
2dN + (1−

√
d

2
)d3/2N2e−

η
4 dN .

(2)

A much tighter upper bound on σ′′(N) can be obtained
as follows. First, suppose that there are no nodes within
the transmission range of node e; this event occurs with
probability no greater than

σ′′(N) ≤
∞∑
l=1

e−a1N
(a1N)l

l!
l
a2

a1
(1− d

2a2
)l−1

≤ (2−
√
d)
√
dNe−

1
2dN . (3)

Second, suppose that there are i ≥ 1 nodes in the intersec-
tion of node e’s transmission range with the network region.
If an empty ηdisk exists and it is completely contained within
the network region, W.L.O.G., there should be a node on its
left edge at some angle θ ∈ (ϕ+ 2ηπ, 2π − ϕ). However, for
an empty ηdisk that is partially contained within the network
region there should be, again W.L.O.G., a node at an angle
θ ∈ (ϕ + ηπ, ϕ + 2ηπ) or θ ∈ (−ϕ,−ϕ + ηπ) on the left
edge of the ηdisk (note that, as discussed earlier, no ηdisks
can be oriented at an angle in (−ϕ,ϕ)). Clearly, the existence
probability of such empty ηdisks (that is partially contained
in the region A) increases as either δ or |θ| decreases. The
area of the intersection between such an ηdisk (that is partially
contained in the region A) and the network region A is that of a
wedge with angle |θ|−ϕ (wedge AeB in Fig. 3) plus at least a
triangle abutting the right edge of the wedge (triangle BeC in
Fig. 3). In fact for an arbitrary small ε, if either δ ≥ sin(3επ)
or θ ≥ ϕ + ηπ + 2επ, the area of the intersection between
the ηdisk and the network region is at least (η/2 + ε)πR2.
Otherwise, it is at least ηπR2/2. Thus, averaging over δ, θ
and the number of edge nodes, the probability that some edge
nodes have empty ηdisks in some directions, σ′′(N), is derived
to be no more than
∞∑
l=1

e−a2N
(a2N)l

l!
l
a2

a1

l−1∑
i=1

(
l − 1

i

)
(
d

2a1
)i(1− d

2a1
)l−1−ii

·
{

Pr (δ < sin(3πε)) Pr
(
∃ empty ηdisk

∣∣∣ i, δ < sin(3πε)
)

+ Pr (δ > sin(3πε)) Pr
(
∃ empty ηdisk

∣∣∣ i, δ > sin(3πε)
)}

≤ d3/2N2

2−
√
d

{
12πε2e−

ηdN
1+8ε + 6πεe−

(η+2ε)dN
1+8ε + 3πεe−

2ηdN
1+8ε

+ 2e−
(η+2ε)dN

2 + e−ηdN
}
, (4)

8The extended edge region is the area of the network that is within 2R of
the network edge.

for arbitrary ε ≥ 0. Choosing ε = 2 log dN
dN , together with (3),

yields a tighter upper bound for the probability that some edge
nodes has an empty ηdisk oriented in some direction:

σ′′(N) ≤ 400π (log dN)
2

√
d

e−
η
2 dN

+
16(dN)2

√
d

e−ηdN + 4
√
dNe−

1
2dN , (5)

for large enough dN where the last summand is the probability
that some edge nodes have no other nodes within their
transmission ranges, derived in (3).

C. Calculation of σ(N)

Finally, summing (1) and (5), we obtain the bound σ(N)
on the probability that some nodes in the network have empty
ηdisks looking in some directions as:

σ(N) ≤ 400π (log dN)
2

√
d

e−
η
2 dN +

16(dN)2

√
d

e−ηdN

+ 4
√
dNe−

1
2dN + 4dN2e−ηdN . (6)

This bound on σ(N) is asymptotic to 400π(log dN)2

√
d

e−
η
2 dN ,

which goes to zero if ηdN + log d→∞ as N →∞. Hence,
setting d = c logN

N with c > 1/η, we obtain that every node in
the network have at least one relaying node in every direction
over which their targeted destinations may lie with probability
approaching one as N → ∞, which shows the consistency
between our result and the ones derived in [11], [17] and [18]
for η = 1.

Remark 1. Setting d = c logN
N is equivalent to setting

R(λ, |A|) =
√

c
π

log λ+log |A|
λ for c > 1/η. In particular, for

the case of dense networks (i.e., λ→∞ with a finite |A|) and
for the case of large-scale networks (i.e., |A| → ∞ with a finite
λ), setting R(λ) = K

√
log λ/λ and R(|A|) = K

√
log |A|

respectively, with a large enough constant K, guarantees the
existence of relaying nodes in a “uniform” manner around
each node in the network.

IV. THEOREM 1.ii–v PROOF: PATH LENGTH STATISTICS
AND CONNECTIVITY

Assume R(N) is chosen such that ηdN + log d → +∞
as N → ∞ and N is large enough such that each node in
the network has at least one relaying node in every direction
with high probability. We now investigate the question of how
long the path generated by the random ηdisk routing scheme
is, where we focus on the η = 1/2 case in this paper. To
answer this question, we need to characterize the process of
path establishment from a given source to its destination by
the random 1

2 disk routing scheme.
In the following, we ignore the edge effect for the sake of

simplicity in mathematical characterization. In other words,
we assume that the 1

2 disks of all network nodes looking
in any direction are completely contained in the network
region. Later, we show (through simulation) in Section V that
the asymptotic results derived in this section still hold even
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Fig. 4. Evolution of the random 1
2

disk routing path.

when considering the routing next to the boundary for source-
destination pairs that are located near the network boundary.

Now consider an arbitrary source-destination pair that is h-
distance apart. We set the destination node at the origin and
assume that the routing path starts from the source node at
X0 = (−h, 0), where Xn is the Cartesian coordinate of the
nth relay node along the routing path and rn := ‖Xn‖ is the
Euclidean distance of the nth relay node from the destination.

More specifically, the routing path starts at the source node
X0 = (−h, 0) with its 1

2 RSR D0 that is a 1
2 disk with radius

R centered at X0 and oriented towards the destination at
(0, 0). The next relay X1 is selected at random from those
contained in D0 (the rRSL rule). This induces a new 1

2 RSR
D1, also a 1

2 disk but centered at X1 and oriented towards
the destination. Relay X2 is selected randomly among the
nodes in D1, and the process continues in the same manner
until the destination is within the transmission range. Note
that Dn solely depends on Xn. We claim that the routing
path has converged (or is established) whenever it enters
the transmission/reception range of the final destination, i.e.,
rν ≤ R, for some ν ∈ {1, 2, · · · }. In Fig. 4, we illustrate the
progress of routing towards the destination.

Define Sn := h − rn and the routing increment as Yn :=
Sn − Sn−1 = rn−1 − rn. Let φ(Dn) be the number of nodes
in Dn. For the sake of definition, we set Yi = 0 for i > n
if φ(Dn−1) = 0. In the next subsection we investigate how
similar {Sn} and consequently {rn} are to a Markov process.9

A. Theorem 1.ii Proof: Markov Approximation

In this subsection we investigate how close our Markov
approximation model for {rn} is to the actual process of route
establishment by the random 1

2 disk routing scheme. Observe
that even though the underlying distribution of the network
nodes is Poisson and the new relays are chosen uniformly
at random within each 1

2 RSR, the increments Y1, Y2, . . . are
neither independent nor identically distributed. This is due to
the fact that the orientations of all 1

2 RSRs are pointing to a

9For an alternative treatment of the problem refer to [19], Section 4.1.

common node (destination) and might overlap, as shown in
Fig. 4.

More specifically, let kn be the number of previous relaying
nodes whose RSRs intersect with Dn. Assuming φ(Dn) > 0,
Sn+1 = Sn + Yn+1 is a Markov process if the conditional
distribution of Yn+1 given Si, n− kn ≤ i ≤ n, only depends
on Sn. Equivalently, rn+1 = h−Sn+1 is a Markov process if
the conditional distribution of Xn+1 given Xi, n−kn ≤ i ≤ n,
only depends on Xn. However, the overlap of Dn with Dj ,
n − kn ≤ j < n, correlates the spatial distribution of nodes
in Dn (and consequently Xn+1 and Yn+1), not only with Xn,
but also possibly with Xj , n − kn ≤ j < n.10 In fact, given
Xi, n − kn ≤ i ≤ n, the nodes contained in Dn are no
longer uniformly distributed over Dn as one would expect for
a Poisson distributed network due to the overlap of Dn with
Dj , n− kn ≤ j < n (cf. Proposition 1). As such, the process
of path establishment by the random 1

2 disk routing scheme,
{rn}, is not a Markov process. What is less clear, however, is
how close {rn} is to a Markov process.

Tracking the dependence of Xn+1 on all Xj , n − kn ≤
j ≤ n, is extremely tedious. As such, in this work we only
show how close the routing path progress conditioned on the
previous two hops is to a Markov process, i.e., we show in
Proposition 1 that the conditional distribution of Xn+1 given
(Xn, Xn−1) is close to that of Xn+1 given Xn for large N .
We show that the error resulted from considering only Xn and
neglecting the effect of Xn−1 on the distribution of Xn+1 is
at most 1/(dN), which goes to zero as N →∞.11

Note that, by a method similar to the proof of Proposition
1, we might show that the incurred errors in modeling {rn}
due to higher-order dependencies should be at most kn/(dN),
which is relatively negligible if kn = o

(√
dN
)

for large N .
Simulations indicate that kn should in fact remain in the order
of o

(√
dN
)

; however, we could not establish an explicit proof
for this claim, which will be left for our future study.

We emphasize that, in what follows, conditioning on
φ(Dn) > 0 means we only know that there is at least one node
in Dn; however, conditioning on φ(Dn) means we know the
exact number of nodes in Dn. Furthermore, Let Cc := A−C
denote the complement of C with respect to network region
A and 1{·} represent the indicator function, i.e., 1{·} = 1 if
the event in the subscript happens and 1{·} = 0 otherwise.

Now we investigate how similar the distribution of Xn+1

over Dn is to a uniform distribution given (Xn, Xn−1).
Note that given only Xn, Xn+1 is uniformly distributed
over Dn. Given Xn, Xn−1, φ(Dn−1), and φ(Dn) >
0, the number of nodes in Dn−1Dn := Dn−1 ∩ Dn

is φ(Dn−1Dn) ∼ Binomial
(
φ(Dn−1)− 1, |Dn−1Dn|

|Dn−1|

)
+

1{Xn−1∈Dn} and is independent of the number of nodes in

10This dependence increases as the packet gets closer to the destination
due to the fact that the overlapping area between Dn and Dn−1, Dn−2,
. . . increases (stochastically) as the packet gets closer to the destination. In
[19] and its companion papers [20]–[22], the authors looked at hop length
distributions in ad hoc sensor networks with geometric routing schemes, and
reported similar dependencies between hop increments Y1, Y2, . . ..

11Note that by Theorem 1, R is chosen such that ηdN + log d→ +∞ as
N →∞, which implies that dN →∞ and d→ 0 for smallest transmission
radius [10].
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Dc
n−1Dn, which is φ(Dc

n−1Dn) ∼ Poisson(λ|Dc
n−1Dn|).

Moreover, conditioned additionally on the two random vari-
ables φ(Dn−1Dn) and φ(Dc

n−1Dn), each collection of nodes
(located in Dn−1Dn and Dc

n−1Dn) is uniformly distributed
over the respective areas. This does not, however, imply
that the combined collection of nodes is uniformly dis-
tributed over Dn as shown in the following proposition. The
combined points are uniformly distributed over Dn only if
the (conditional) expected proportion of points in Dn−1Dn

is E(φ(Dn−1Dn)
φ(Dn) | φ(Dn) > 0, φ(Dn−1) > 0, Xn, Xn−1) =

|Dn−1Dn|
|Dn| .

Proposition 1. Assume the locations of current and previ-
ous relay nodes (Xn, Xn−1) are given and φ(Dn−1) > 0.
Given φ(Dn) > 0, the distribution of the nodes located
inside Dn converges to a uniform distribution over Dn as
N →∞. In particular, the conditional probability of selecting
the next node Xn+1 from Dn−1Dn, i.e., ρ(Xn−1, Xn) :=

E( φ(Dn−1Dn)
φ(Dn)

∣∣∣ φ(Dn) > 0, φ(Dn−1) > 0, Xn, Xn−1) satis-
fies(

1− 2

dN
− α1(n)e−α2(n)dN

)
|Dn−1Dn|
|Dn|

< ρ(Xn−1, Xn) <
|Dn−1Dn|
|Dn|

,

(7)

where α1(n) > 2 and 0 < α2(n) < 1 are independent of N .

Proof: Refer to Appendix A.
Observe that according to (7), given the locations of two

previous relay nodes (Xn−1, Xn), it is less likely that the
next relay Xn+1 is selected from Dn−1Dn as opposed to the
case where the nodes were actually uniformly distributed over
Dn. Hence, Xn+1 is not uniformly distributed over Dn given
(Xn−1, Xn). However, we have ρ(Xn−1, Xn) → ρ(Xn) =
|DnDn−1|/|Dn| as N →∞. Hence, the routing path progress
given the second-order history of the routing path converges
asymptotically to a Markov process. Nevertheless, the routing
increments Y1, Y2, . . . are not identically distributed and as
shown in the next subsection, Yn+1 is in fact a function of rn.
As such, in the following, we proceed as if the process that
governs the path establishment by the random 1

2 disk routing
scheme is a non-homogeneous Markov process for large N .

B. Theorem 1.iii and v Proof: Expected Length of the Random
1
2 disk Routing Path and network Connectivity

Using the Markovian approximation model for the routing
path evolution {rn}, we now derive the asymptotic statistics
for the length of the random 1

2 disk routing paths. Let Xn

be the nth hop of the routing path and (x′n+1, y
′
n+1) be the

projection of Xn+1−Xn onto the local Cartesian coordinates
with node Xn as the origin and the x-axis pointing from Xn

to the destination node as shown in Fig. 5. Hence,

rn+1 =
√

(rn − x′n+1)2 + y′2n+1 , (8)

characterizes the distance evolution of the routing path at the
nth hop. Based on the Markov approximation model, Xn+1 is

1+nX

nX nr

1+nr

1
'
+nx

1
'
+ny

n
D

Dst

Fig. 5. Distance between the next relay and the current node projected onto
to the local coordinates at the current node.

uniformly distributed over Dn; hence {(x′n, y′n)} is an i.i.d.
sequence of random variables with ranges x′n ∈ [0, R] and
y′n ∈ [−R,R] for all n.

Define ν(h)
r := inf{n : rn ≤ r, r0 = h}, r ≥ R, to be the

index of the first relay node (along the routing path) that gets
closer than r to the destination when the source and destination
nodes are h-distance apart. Hence, ν(h)

R represents the first time
the routing path enters the reception range of the destination
and ν(h)

R + 1 quantifies the length of the routing path, where
ν

(h)
R ∼ ν(h)

R + 1. Recall that in this paper we define the length
of a routing path as the number of hops traversed over the
routing path. It is easy to show that ν(h)

r is a stopping time
[24] and

r −R ≤ r
ν

(h)
r
≤ r .

Furthermore, let g(r, x′, y′) :=
√

(r − x′)2 + y′2 − r. Ob-
serve that g is a nonincreasing function over r > R, for fixed
(x′, y′), and g(rn, x

′
n+1, y

′
n+1) = −Yn+1. Thus, for n < ν

(h)
r ,

we have rn > r and

−x′n+1 ≤ rn+1−rn = g(rn, x
′
n+1, y

′
n+1) ≤ g(r, x′n+1, y

′
n+1) .

Hence, for a source-destination pair that is h-distance apart
(r0 = h), we have

r −R ≤ r
ν

(h)
r
≤ h+

ν(h)
r∑
n=1

g(r, x′n, y
′
n) , (9a)

h+

ν(h)
r∑
n=1

(−x′n) ≤ r
ν

(h)
r
≤ r . (9b)

Note, as well, that (refer to Appendix B)

−4R

3π
= E (−x′n) ≤E (g(r, x′n, y

′
n)) ≤

E (g(R, x′n, y
′
n)) < −R

4
< 0 . (10)

Now, applying Wald’s equality [25] to (9a) and (9b) and
rearranging, we obtain a bound on the expected value of the
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stopping time ν(h)
r :

3π(h− r)
4R

≤ E
(
ν(h)
r | h

)
≤ h− r +R

−E (g(r, x′n, y
′
n))

≤ h

−E (g(r, x′n, y
′
n))
≤ 4h

R
. (11)

Substituting r with R we obtain a general bound for the
expected length of routing path (minus one) between a source-
destination pair that is h distance apart as

3π

4

(
h

R
− 1

)
≤ E

(
ν

(h)
R | h

)
≤ 4h

R
.

This implies that the length of the random 1
2 disk routing path

is almost surely (a.s.) finite when each network node has at
least one node in its 1

2 RSR looking in any direction, which
happens with probability no less than 1 − σ(N) as obtained
in (6). In other words, when dN/2 + log d→∞ as N →∞,
we obtain that Pr(ν(h)

R <∞) → 1 as N → ∞. This in turn
shows that given dN/2 + log d→∞ as N →∞, every path
starting from any source will reach its destination in finitely
many hops a.a.s., which proves that the network is connected
employing the random 1

2 disk routing scheme, according to the
connectivity definition in Section II.

When the ratio h/R (i.e., the ratio between the source-
destination distance and the transmission range) is large, we
can obtain a tighter bound on the expected length of the routing
path between a source-destination pair with h separation. For
the following, we assume h ≥ 2R. Since r

ν
(h)
r
≤ r, we must

have E(ν
(h)
R | h) ≤ E(ν

(h)
r | h) + E(ν

(r)
R | r). Thus, by (11)

and proper substitutions, we have

3π

4

(
1− R

h

)
≤

E
(
ν

(h)
R | h

)
h/R

≤ R

−E (g(r, x′n, y
′
n))

+
4r

h
,

for all R ≤ r ≤ h. Using

− x′n ≤ g(r, x′n, y
′
n) ≤ −x′n +

(y′n)2

2(r −R)
, (12)

and (25b) we get E(g(r, x′n, y
′
n)) ≤ − 4R

3π + R2

8(r−R) . Choosing

r such that 8(r−R)
R = 3π

4 (
√

h
2R + 1) (we may do so using the

intermediate value theorem and the fact that R ≤ r ≤ h and
h ≥ 2R), we may determine that

3π

4

(
1− R

h

)
≤

E
(
ν

(h)
R | h

)
h/R

≤ 3π

4

1

1−
(√

h
2R + 1

)−1

+
4R

h

(
3π

32

(√
h

2R
+ 1

)
+ 1

)

=
3π

4

(
1 +

5

2

√
R

2h
+
R

2h

)
+

4R

h
. (13)

This implies

R

h
E
(
ν

(h)
R | h

)
→ R

E (x′n)
=

3π

4
, (14)

or
E
(
ν

(h)
R | h

)
∼ h

E (x′n)
=

3π

4

h

R
, (15)

as h
R →∞ given that r0 = h.

Remark 2. Recall that L =
√
|A|/π and observe

that Pr (h ≤ α) ≤ πα2

|A| . Therefore, we can obtain
that Pr (h ≤ α(N)) → 0 for α(N) = o (L)
as N → ∞, which in return implies that
Pr (h/R→∞ | ηdN + log d→∞ as N →∞) = 1.
Hence, assuming that the conditions in Theorem 1.i hold, we
have h/R→∞ a.s. as N →∞.

Remark 3. The asymptotic expected length of the routing
path established by the random 1

2 disk routing scheme is
3π
4 = R/E (x′n) ≈ 2.36 times greater compared to the length

of the routing path generated by the ideal direct-line routing
scheme; in the ideal direct-line routing scheme we assume that
there are relays located on the line connecting the source and
destination with the maximal separation R.

By averaging over all the possible source-destination pair
distances h, we can determine the expected length of a typical
random 1

2 disk routing path. Again using Pr (h ≤ αR) ≤
π
|A| (αR)2 and (13) we have that

E (νR) = E
(

E
(
ν

(h)
R | h

)
1{h≤αR} + E

(
ν

(h)
R | h

)
1{h>αR}

)
≤ πα3R2

|A|

[
3π

4

(
1 +

5√
8α

+
1

2α

)
+

4

α

]
+

3π

4

E
(
h1{h>αR}

)
R

(
1 +

5√
8α

+
1

2α

)
+ 4 ,

and

E (νR) = E
(

E
(
ν

(h)
R | h

))
≥ 3π

4

(
E (h)

R
− 1

)
.

The problem of quantifying E (h) is well studied in
the literature [23], with the following known results for
two network regions specifically: If the region is a planar
disc with diameter 2L, we have E (h) = 128L/(45π) ≈
0.9054L; and if it is a square with side length L, we have
E (h) =

(
2 +
√

2 + 5 log(
√

2 + 1)
)
L/15 ≈ 0.5214L. Choos-

ing α = o
(
d−1/6

)
and recalling Remark 2, we observe that

E
(
h1{h>αR}

)
→ E (h) as N →∞; hence, we have

E (νR) ∼ 32

15

1√
d
, (16)

as N →∞.

C. Theorem 1.iv Proof: Variance of the Random 1
2 disk Rout-

ing Path Length

So far we have characterized the expected length of the
routing paths generated by the random 1

2 disk routing scheme.
However, the expected value alone is not descriptive enough
regarding the individual realizations of the routing path length.
We need to determine how much the individual realization
deviates from the expected value. Therefore, in this section,
we consider the variance of the path lengths generated by the
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random 1
2 disk routing scheme. We first show that the variance

is finite almost surely and then we show that asymptotically
it grows linearly with the expected path length:

Var
(
ν

(h)
R | h

)
E
(
ν

(h)
R | h

) → Var (x′n)

(E (x′n))
2 =

9π2

64
− 1, (17)

as N →∞. We will frequently use the following well known
inequalities∣∣∣√E (X2)−

√
E (Y 2)

∣∣∣ ≤√E ((X − Y )2) ,

and ∣∣∣√Var (X)−
√

Var (Y )
∣∣∣ ≤√Var (X − Y ) .

Consider the i.i.d. sequence {(x′n, y′n)} as defined in Section
IV-B, and define the generalized stopping time ν

(b)
a to be

ν
(b)
a := inf{n : rn ≤ a, r0 = b} for R ≤ a < b ≤ h.

Observe that {ν(b)
a ≥ N} and {x′n}n<N are independent, and

E(ν
(b)
a ) < ∞ and E

(
(x′n)2

)
< ∞ as shown in Section IV-B

and Appendix B.
Note first that, by definition,

E

ν
(h)
R ∧n∑
i=1

(−g(ri−1, x
′
i, y
′
i))

 = E
(
r0 − rν(h)

R ∧n

)
≤ h ,

for any n, where ν
(h)
R ∧ n := min{ν(h)

R , n}. Define
Un :=

∑n
i=1(−g(R, x′i, y

′
i)). From Wald’s equation, Eq. (10),

and the fact that g(r, x′, y′) is a nonincreasing function over
r ≥ R, we have
R

4
E
(
ν

(h)
R ∧ n

∣∣∣ h) ≤ E (−g(R, x′i, y
′
i)) E

(
ν

(h)
R ∧ n

∣∣∣ h)
= E

(
U
ν

(h)
R ∧n

∣∣∣ h)
≤ E

ν
(h)
R ∧n∑
i=1

(−g(ri−1, x
′
i, y
′
i))
∣∣∣ h
 ≤ h ,

for all n. As shown in the previous section, it follows that
E(ν

(h)
R | h) = limn→∞ E(ν

(h)
R ∧ n | h) ≤ 4h

R <∞. Similarly,(
E
(
−g(R, x′i, y′i)

))2 Var
(
ν
(h)
R ∧ n

∣∣∣ h) ≤ 2

[
Var

(
U
ν

(h)
R
∧n

∣∣∣ h)
+ Var

(
(ν

(h)
R ∧ n)E

(
−g(R, x′i, y′i)

)
− U

ν
(h)
R
∧n

∣∣∣ h)]
≤ 2

[
Var

(
U
ν

(h)
R
∧n

∣∣∣ h)+ E
(
ν
(h)
R ∧ n

∣∣∣ h)Var
(
−g(R, x′i, y′i)

) ]
≤ 2

[
h2 +

4h

R

R2

4

]
,

for all n, where the second inequality is due to Wald’s identity
([25], page 398). Thus,

Var
(
ν

(h)
R

∣∣∣ h) = lim
n→∞

Var
(
ν

(h)
R ∧ n

∣∣∣ h)
≤ 32h(h+R)

R2
<∞ . (18)

This proves that the variance of path length generated by
the random 1

2 disk routing scheme is finite almost surely. Next

we will find some asymptotically tight bounds on the variance
of the routing path lengths.

Let Sν :=
∑ν
n=1 x

′
n for a stopping time ν such that

{ν ≥ N} and {x′n}n<N are independent and E (ν) < ∞.
Then by Wald’s identity ([25], page 398) we have E (Sν) =
E (x′n) E (ν) and

Var (νE (x′n)− Sν) = E
(
(Sν − νE (x′n))2

)
= E (ν) Var (x′n) .

As such, we have∣∣∣∣√Var (ν)E (x′n)−
√

E (ν) Var (x′n)

∣∣∣∣ =∣∣∣√Var (νE (x′n))−
√

Var (νE (x′n)− Sν)
∣∣∣ ≤√Var (Sν).

In particular, for ν = ν
(h)
R , we have∣∣∣∣∣∣∣

√√√√√Var
(
ν

(h)
R | h

)
E
(
ν

(h)
R | h

) −√ Var (x′n)

(E (x′n))2

∣∣∣∣∣∣∣ ≤
√√√√√ Var

(
S
ν

(h)
R

| h
)

E
(
ν

(h)
R | h

)
(E (x′n))2

.

(19)

Hence, in order to prove the limit in (17), we need to show
that

Var
(
S
ν

(h)
R

| h
)

E
(
ν

(h)
R | h

)
(E (x′n))2

∼
Var
(
S
ν

(h)
R

| h
)

3π
16Rh

→ 0 ,

as N →∞. Suppose R ≤ a < b ≤ h and note that

−g(rn−1, x
′
n, y
′
n) ≤ x′n ≤ −g(rn−1, x

′
n, y
′
n) +

R2

2rn−1
;

then together with (9a), we obtain

b− a ≤
ν

(b)
R∑

n=1+ν
(a)
R

(−g(rn−1, x
′
n, y
′
n)) ≤

ν
(b)
R∑

n=1+ν
(a)
R

x′n

= S
ν

(b)
R

− S
ν

(a)
R

≤
ν

(b)
R∑

n=1+ν
(a)
R

(−g(rn−1, x
′
n, y
′
n)) +

ν
(b)
R∑

n=1+ν
(a)
R

R2

2rn−1

≤ b− a+R+
R2

2a
ν

(b)
R ,

where the last inequality is due to the fact that rn ≥ a for
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ν
(a)
R ≤ n ≤ ν(b)

R . Therefore, we obtain√
Var
(
S
ν

(b)
R

− S
ν

(a)
R

∣∣∣ a, b)
=

√
E
([
S
ν

(b)
R

− S
ν

(a)
R

− E
(
S
ν

(b)
R

− S
ν

(a)
R

)]2 ∣∣∣ a, b)

≤

√
E
([
S
ν

(b)
R

− S
ν

(a)
R

− b+ a
]2 ∣∣∣ a, b)

≤

√√√√E

([
R+

R2

2a
ν

(b)
R

]2 ∣∣∣ a, b)

≤ R+
R2

2a
E
(
ν

(b)
R | b

)
+
R2

2a

√
Var
(
ν

(b)
R | b

)
≤ 6R+

5Rb

a
,

using (18) and the fact that E(ν
(b)
R | b) ≤ 4b

R and
Var(ν(b)

R | b) ≤
32b(b+R)

R2 . Finally, we let ai = R
(
h
R

)i/k
, for

k = dlog h
Re and i = 0, 1, 2, . . . , k, where dlog h

Re is the
smallest integer larger than log h

R . Then we have

√
Var
(
S
ν

(h)
R

| h
)
≤

k∑
i=1

√
Var
(
S
ν

(ai)

R

− S
ν

(ai−1)

R

∣∣∣ h)

≤ 6kR+ 5R

k∑
i=1

ai
ai−1

≤ (6 + 5e)(1 + log
h

R
)R. (20)

From this, it follows that√√√√Var
(
S
ν

(h)
R

| h
)

Rh
≤ (6 + 5e)(1 + log

h

R
)

√
R

h
→ 0

as N → ∞, which concludes the proof for the limit in Eq.
(17).

Remark 4. It is worth noting that the path-stretch statistics
can be easily derived from the hop-count statistics: Let L

ν
(h)
R

denote the path-stretch of a routing path with length ν
(h)
R

connecting a source-destination pair that is h-distance apart,
i.e., L

ν
(h)
R

:= ‖X1 −X0‖ + ‖X2 −X1‖ + · · · + ‖X
ν

(h)
R +1

−
X
ν

(h)
R

‖. Then, it is easy to show that E(L
ν

(h)
R

| h) ∼ π
2h and

Var(L
ν

(h)
R

| h) ∼ π
12Rh as N →∞. Therefore, in the case of

a dense network, L
ν

(h)
R

→ π
2h a.a.s. since Var(L

ν
(h)
R

)→ 0 as
N →∞.

V. SIMULATION RESULTS

In this section we compare our analytical results with some
empirical results derived through simulation. In Fig. 6, we
depict some realizations for the routing paths generated by the
random 1

2 disk routing scheme for an arbitrary source located
at (−1/4,−1/4) and its destination at (1/4, 1/4) with the
following network specifications: |A| = 1, λ = 106, and R =√

2 log λ
λ ≈ 5.2 × 10−3. As illustrated in this figure, the path

realizations do not closely follow the direct line connecting
the source-destination nodes. The lengthes of the routing paths
are 328, 314, 343 for the realizations depicted in Fig. 6 (a),
(b), and (c) respectively. Fig. 6 (d) depicts an ensemble of
thirty realizations of the random 1

2 disk routing scheme. Based
on (13) we obtain the lower and upper bounds of 314, 370
for the expected path length with the asymptotic value of 317.
(Note that the bounds derived in (13) are for the expected path
length; therefore, individual realizations for the path length
might violate these bounds.)

(a) (b)

(c) (d)
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Fig. 6. Random 1
2

disk routing realizations for λ = 106, |A| = 1, and R =√
2 log λ
λ

, when the source is located at (−1/4,−1/4) and its destination is
located at (1/4, 1/4). The dashed circle demonstrates the network boundary.

The following empirical path length statistics are obtained
by generating 100 realizations of the network via placing
N ∼ Poisson(λ) nodes uniformly over a circular disk with
unit area. For each network realization we constructed 100
realizations for the random 1

2 disk routing path: starting from
a fixed source node, we find the subsequent relaying nodes
according to the rRSL scheme until (possibly) reaching the
fixed destination node. Source and destination are set h =√

2/2 distance apart and the transmission ranges are chosen

as R =
√

2 log λ
λ . In Fig. 7, we compare the (normalized)

empirical mean, R
h E(ν

(h)
R ), of the path lengths generated by

the random 1
2 disk routing scheme with the analytical bounds

derived in Eq. (13) for different values of network node
density. As shown in this figure, the normalized empirical
mean converges to 3π/4 ≈ 2.3562, and is always bounded
by the expressions derived in Eq. (13).

In Fig. 8, we compare the empirical variance-to-mean ratio

of the random 1
2 disk routing scheme,

√
Var(ν(h)

R )/E(ν
(h)
R ),

with the analytical bounds derived in Eq. (20) for different
values of network node density. As shown in this figure,
the normalized empirical standard deviation converges to√

9π2/64− 1 ≈ 0.6228, and is always bounded by the
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Fig. 7. Numerical comparison between analytical bounds derived in Eq.
(13) and the (normalized) empirical mean of the path length generated by
the random 1

2
disk routing scheme when h =

√
2/2, |A| = 1, and R =√

2 log λ
λ

.

expressions derived in Eq. (20). Furthermore, it can be seen
that although the bounds in (20) are quite loose for small
values of λ, the asymptotic standard deviation derived in (17)
is very close to the empirical standard deviation even for small
values of λ.
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Fig. 8. Numerical comparison between analytical bounds derived in Eq.
(19) and the (normalized) empirical standard deviation of the path length
generated by the random 1

2
disk routing scheme, when h =

√
2/2, |A| = 1,

and R =
√

2 log λ
λ

.

In Fig. 9, we demonstrate the deviation of the path length
realizations from its asymptotic expected value for different
values of network node density. As shown in this figure,
the deviation of the path length realizations increases as the
network density and consequently the expected length of the
routing path increases. However, all realizations stay relatively
close to the value predicted by Eq. (15).

As mentioned earlier, we ignored the edge effect when
computing the asymptotic path length statistics of the random
1
2 disk routing scheme. In Figs. 10 and 11, we consider
two source-destination pairs that are close to the network
edge with different distances and investigate whether routing

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0
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)(h
Rυ

Asymptotic Expected Path−Length
Path−Length Realizations

λ10log

Fig. 9. Random 1
2

disk routing realizations for λ = 106, |A| = 1, and R =√
2 log λ
λ

, when the source is located at (−1/4,−1/4) and its destination is
located at (1/4, 1/4).

“next to the boundary” has a considerable impact on the
length of the routing paths. We consider a source node
S at (−0.379,−0.379) and two destination nodes Dst1 at
(0.3267,−0.4234) and Dst2 at (−0.315,−0.4336) such that
h1 = ‖S −Dst1‖ =

√
2/2 and h2 = ‖S −Dst2‖ =

√
2/33.

Note that ‖S‖ = 0.95L, ‖Dst1‖ = 0.948L, and ‖Dst2‖ =
0.95L. Fig. 10 depicts the empirical mean and Fig. 11 depicts
the empirical variance-to-mean ratio of paths generated by the
random 1

2 disk routing scheme for source-destination pairs a)
S−Dst1 and b) S−Dst2. Comparing these figures with Figs.
7 and 8, we observe that given a fixed h, routing close to the
network edge does not affect the asymptotic path statistics.
Intuitively, as shown in Remark 2, the distances between
source-destination pairs will be of order h = Θ(L) with high
probability where h/R → 0 as N →∞. Therefore, for large
enough N , it is very unlikely that a considerable portion of
the path connecting a source to its destination traverses close
to the network edge. As such, the effect of the routing close to
the boundary on path statistics is relatively negligible for large
network sizes. However, for small network sizes (when h and
R are comparable), the empirical mean of the path length is
smaller than the value predicted in (14).

VI. GENERALIZATION

In the previous sections we derived sufficient conditions
for the network to be connected deploying the random 1

2 disk
routing scheme and quantified the mean and variance asymp-
totes of the routing path generated the random 1

2 disk routing
scheme. In this section we present some guidelines that
generalize the aforementioned results for some other variants
of the geometric routing schemes such as MFR, DIR, NFP,
and the random ηdisk routing scheme, where the latter one is
the generalized version of the random 1

2 disk routing scheme
with an ηdisk as its RSR.

Observe that the results of Section III were derived for the
general ηdisks relay selection region which encompasses most
of the geometric routing schemes such as MFR, DIR, NFP,
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Fig. 10. Numerical comparison between analytical bounds derived in Eq.
(13) and the (normalized) empirical mean of the path length generated by the
random 1

2
disk routing scheme for source-destination pairs that are close to

the network boundary when a) h =
√
2/2 and b) h =

√
2/33. In both cases

|A| = 1, R =
√

2 log λ
λ

, and ‖S‖ = ‖Dst‖ ' 0.95L.
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Fig. 11. Numerical comparison between analytical bounds derived in Eq. (19)
and the (normalized) empirical standard deviation of the path length generated
by the random 1

2
disk routing scheme for source-destination pairs that are close

to the network boundary when a) h =
√
2/2 and b) h =

√
2/33. In both

cases |A| = 1, R =
√

2 log λ
λ

, and ‖S‖ = ‖Dst‖ ' 0.95L.

and the random ηdisk routing scheme. Let ∆ be the set of all
nodes (in the RSR of a specific transmitting node) that can
be selected as the next relay by the relay selection rule (RSL)
of the geometric routing scheme. For example, in the cases
of MFR, DIR, NFP, and the random ηdisk routing scheme we
have: ∆MFR := {(x′n, y′n) ∈ 1

2 RSR : x′n ≥ x, for all (x, y) ∈
1
2 RSR}, ∆DIR := {(x′n, y′n) ∈ 1

2 RSR : | tan−1(y′n/x
′
n)| ≤

| tan−1(y/x)|, for all (x, y) ∈ 1
2 RSR}, ∆NFP := {(x′n, y′n) ∈

1
2 RSR :

√
(x′n)2 + (y′n)2 ≤

√
(x)2 + (y)2, for all (x, y) ∈

1
2 RSR}, and ∆η = {(x′n, y′n) ∈ ηRSR}, respectively. Since
the nodes in ∆ (if more than one) are indistinguishable by
the RSL, the transmitting node selects one of the nodes in
∆ randomly as the next relay. Next, we present the general-
ized results for the network connectivity and the mean and
variance asymptotes of routing paths generated by the general
geometric routing schemes.

Corollary 1. Let ∆ be the set of all nodes that can be selected
by the relay selection rule as the next relay. Then the network
is connected employing the geometric routing scheme a.a.s. if
E
(
g(R, x′, y′)1{∆}

)
< 0.

Proof: The proof is immediate due to (11).

Corollary 2. If E
(
g(R, x′, y′)1{∆}

)
< 0 and

E
(
(y′)21{∆}

)
≤ RE

(
x′1{∆}

)
, the expected length of

the routing path generated by the general geometric routing

scheme connecting a source-destination pair that is h-distance
apart scales as E (ν | h) ∼ h/E

(
x′1{∆}

)
as N →∞.

Proof: The proof follows directly from (12) and noting
that if E

(
(y′)21{∆}

)
≤ RE

(
x′1{∆}

)
, using the intermedi-

ate value theorem, we can find r such that 2R(r−h)

E((y′)21{∆})
=

R

E(x′1{∆})
(
√

h
2R + 1), which yields the bound in Eq. (13) and

hence the desired result.

Corollary 3. If E
(
g(R, x′, y′)1{∆}

)
< 0, the variance of

the path length generated by the general geometric routing
scheme, normalized by its mean, scales as Var (ν) /E (ν) ∼
Var
(
x′1{∆}

)
/
(
E
(
x′1{∆}

))2
as N →∞.

Proof: The proof follows the same steps as in Section
IV-C.

VII. CONCLUSION

In this paper, we presented a simple methodology em-
ploying statistical analysis and stochastic geometry to study
geometric routing schemes in wireless ad-hoc networks, and
in particular, analyzed the network layer performance of one
such scheme named the random 1

2 disk routing scheme. We
defined a notion of network connectivity considering the
special local properties of geometric routing schemes and
determined some sufficient conditions that guarantee network
connectivity when each node finds its next relay in the so-
defined 1

2 disk. More specifically, if all nodes transmit at a
power that covers a normalized area d and the expected
number of nodes in the network is N , the network is connected
a.a.s. if ηdN + log d → ∞ when N → ∞. Furthermore,
we proved that the routing path progress conditioned on
the previous two hops can be approximated with a Markov
process. Then using this Markovian approximation, we derived
exact asymptotic expressions for the mean and variance of the
path length generated by the random 1

2 disk routing scheme.
Furthermore, we provided guidelines to extend these results
to other variants of geometric routing schemes such as MFR,
DIR, and NFP.

APPENDIX A
PROOF OF PROPOSITION 1

First, let us consider the distribution of a Poisson point
process conditioned on deleting one point. Let Φ be a homo-
geneous Poisson point process with intensity λ and assume
a fixed region D. If φ(D) > 0, one point in D is selected
at random and removed. Let X be the location of that point.
The distribution of Φ on Dc remains Poisson and independent
of Φ on D, and thus independent of both φ(D) and X . Let
Φ′ be the (point) process with the point at X deleted. (Note
that the distribution of Φ′ is not the same as the reduced Palm
distribution [26] of Φ, as the location of node X is random.)

Let A1, A2, . . . , Ak be a partition of D. Given φ(D) >
0, the points in D are distributed uniformly. If one point is
removed at random, the remaining points are still distributed
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uniformly on D. Hence,

Pr

 k⋂
j=1

{φ′(Aj) = nj}
∣∣∣ φ(D) > 0, X

 =

(1− e−λ|D|)−1
k∑
i=1

ni + 1

n1 + . . .+ nk + 1
·

k∏
j=1

(λ|Aj |)nj+1{j=i}

(nj + 1{j=i})!
e−λ|Aj | =

λ|D|
(1− e−λ|D|)(n1 + . . .+ nk + 1)

k∏
j=1

(λ|Aj |)nj
(nj)!

e−λ|Aj | ,

(21)

since |A1| + . . . + |Ak| = |D|. Therefore, conditional on
φ(D) > 0, Φ′ is independent of the location of the removed
point (X). In particular,

Pr
(
φ′(D) = n

∣∣∣ φ(D) > 0, X
)

=

(λ|D|)n+1

(n+ 1)!(1− e−λ|D|)
e−λ|D| =

Pr
(
φ(D) = n+ 1

∣∣∣ φ(D) > 0
)
.

Furthermore, given n1 + . . .+ nk = n > 0, we have

Pr

 k⋂
j=1

{φ′(Aj) = nj}
∣∣∣ φ(D) > 0, φ′(D) = n,X

 =

(
n

n1 · · ·nk

) k∏
j=1

(
|Aj |
|D|

)nj
.

Thus, for A ⊆ D and given φ′(D) = n > 0, φ′(A)

is conditionally Binomial
(
n, |A||D|

)
. Without knowing φ′(D),

however, we obtain from (21) that

Pr
(
φ′(A) = k

∣∣∣ φ(D) > 0, X
)

=

λ|D|e−λ|D|

(1− e−λ|D|)

∞∑
j=0

1

k + j + 1

(λ|A|)k

k!

(λ|Ac ∩D|)j

j!
=

λ|D|e−λ|D|

(1− e−λ|D|)
(λ|A|)k

k!

∫ 1

0

ykeλ|A
c∩D|ydy , (22)

where the second equality is due to
∞∑
j=0

1

k + j + 1

aj

j!
=

∞∑
j=0

1

ak+1

∫ a

0

xk+j

j!
dx

=

∫ a

0

xk

ak+1
exdx =

∫ 1

0

ykeaydy .

After the aforementioned preliminaries, we now proceed
with the proof of Proposition 1. Suppose C is a random set
that depends only on X .12 The points of Φ′, if any, which are
in CD := C ∩D, are uniformly distributed and independent
of the points in CDc, which are also uniformly distributed
(if any). The combined points are uniformly distributed on C

12Note that D and C here correspond to Dn−1 and Dn in Section IV,
respectively.

only if the expected proportion of points in CD is |CD||C| .
However, the expected proportion of points in CD is strictly

less than |CD||C| in our case as we now compute. Given φ′(C) >
0, the probability that a randomly selected point in C is also in
D is E(φ

′(CD)
φ′(C)

∣∣ φ′(C) > 0, φ(D) > 0, X). Let φ′(CD)
φ′(C) = 0

when φ′(C) = 0. Using (22), we have

Pr
(
φ′(C) > 0

∣∣∣ φ(D) > 0, X
)

=

1− Pr
(
φ′(CD) = 0, φ′(CDc) = 0

∣∣∣ φ(D) > 0, X
)

=

1− λ|D|e−λ|D|

1− e−λ|D|
eλ|C

cD| − 1

λ|CcD|
e−λ|CD

c| =

1− |D|
|CcD|

1− e−λ|CcD|

1− e−λ|D|
e−λ|C| ;

so we have

1− |D|
|CcD|e

−λ|C| ≤ Pr
(
φ′(C) > 0

∣∣∣ φ(D) > 0, X
)
≤ 1−e−λ|C| .

Using the observation above and (22) we obtain (23b).
Therefore,

E
(
φ′(CD)

φ′(C)

∣∣ φ′(C) > 0, φ(D) > 0, X

)
<
|CD|
|C|

.

Noting that

1− 1

a
≤ ae−a

∫ 1

0

yeaydy = 1− 1− e−a

a
≤ 1 ,

we could derive (24) from (23a) for large enough N such that
1 − 1

λ|D| −
|C||D|

|CD||CcD| exp(−2λ|CDc|) > 0. Hence we can
ascertain that

E
(
φ′(CD)

φ′(C)

∣∣ φ′(C) > 0, φ(D) > 0, X

)
>(

1− 1

λ|D|
− |C||D|
|CD||CcD|

e−2λ|CDc|
)
|CD|
|C|

.

As such, the selected point is less likely to be in D than
the case where we assume Φ′ is Poisson on C.

APPENDIX B
DERIVATION OF INEQUALITY (10)

We have (x′n, y
′
n)

D
= (Rz cos(θ), Rz sin(θ)), where θ ∼

Uniform(−π/2, π/2) and z ∼ Beta(2, 1) are independent.
Thus, we have

E (x′n) = R
2

π

∫ π/2

0

cos(θ) dθ
∫ 1

0

2z2 dz =
4R

3π
, (25a)

E
(
(y′n)2

)
=
R2

π

∫ π/2

−π/2
sin2(θ) dθ

∫ 1

0

2z3 dz =
R2

4
. (25b)

Also, by first changing x to 1 − x and then using polar
coordinates, we obtain

1

R
E
(
g(R,x′n, y

′
n)

)
+ 1

=
4

π

∫ 1

0

∫ 1

0

1x2+y2≤1

√
(1− x)2 + y2 dxdy

=
4

3π

∫ π/4

0

(
(sec(θ))3 + (2 sin(θ))3

)
dθ
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E
(
φ′(CD)

φ′(C)
1{φ′(C)>0}

∣∣ φ(D) > 0, X

)
=

∞∑
n=0

∞∑
m=1

n

n+m

(λ|CDc|)m

m!
e−λ|CD

c|λ|D|e−λ|D|

1− e−λ|D|
(λ|CD|)n

n!

∫ 1

0

yneλ|C
cD|ydy

=
λ|D|e−λ|C∪D|

1− e−λ|D|

∫ 1

0

∫ 1

0

λ|CD|yeλ(|CD|yw+|CcD|y)
(
eλ|CD

c|w − 1
)

dwdy (23a)

<
λ|D|e−λ|C∪D|

1− e−λ|D|

∫ 1

0

|CD|y
|CD|y + |CDc|

(
eλ(|CD|y+|CDc|) − 1

)
eλ|C

cD|ydy

<
|CD|
|C|

(
1− |D|
|CcD|

1− e−λ|CcD|

1− e−λ|D|
e−λ|C|

)
. (23b)

E
(
φ′(CD)

φ′(C)
1{φ′(C)>0}

∣∣ φ(D) > 0, X

)
>
|CD|
|C|

1

(1− e−λ|D|)

{
λ|D|e−λ|D|

∫ 1

0

yeλ|D|ydy − λ|D|e−λ|C∪D|
∫ 1

0

yeλ|C
cD|ydy

+
|C|
|CD|

(
−e−λ|CD

c|(1− e−λ|D|) +
|D|
|CcD|

(
e−λ|C| − e−λ|C∪D|

))}
>
|CD|
|C|

1

(1− e−λ|D|)

(
1− 1

λ|D|
− |C||D|
|CD||CcD|

e−2λ|CDc|
)
. (24)

=
3(23/2) + 6 log(1 +

√
2) + 64− 5(27/2)

9π
≈ 0.7499728 .

Hence, E (g(R, x′n, y
′
n)) < −R4 .
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