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Abstract—An information collection problem in a wireless net-
work with random events is considered. Wireless devices report
on each event using one of multiple reporting formats. Each
format has a different quality and uses different data lengths.
Delivering all data in the highest quality format can overload sys-
tem resources. The goal is to make intelligent format selection and
routing decisions to maximize time-averaged information quality
subject to network stability. Lyapunov optimization theory can be
used to solve such a problem by repeatedly minimizing the linear
terms of a quadratic drift-plus-penalty expression. To reduce
delays, this paper proposes a novel extension of this technique
that preserves the quadratic nature of the drift minimization
while maintaining a fully separable structure. In addition, to
avoid high queuing delay, paths are restricted to at most two
hops. The resulting algorithm can push average information
quality arbitrarily close to optimum, with a trade-off in qu eue
backlog. The algorithm compares favorably to the basic drift-
plus-penalty scheme in terms of backlog and delay. Furthermore,
the technique is generalized to solve linear programs and yields
smoother results than the standard drift-plus-penalty scheme.

I. I NTRODUCTION

This paper investigates dynamic scheduling and data format
selection in a network where multiple wireless devices, such
as smart phones, report information to a receiver station.
The devices together act as a pervasive pool of information
about the network environment. Such scenarios have been
recently considered, for example, in applications of social
sensing [2] and personal environment monitoring [3], [4].
Sending all information in the highest quality format can
quickly overload network resources. Thus, it is often more
important to optimize thequality of information, as defined
by an end-user, rather than the raw number of bits that are
sent. The case for quality-aware networking is made in [5],
[6], [7]. Network management with quality of information
awareness for wireless sensor networks is considered in [8].
More recently, quality metrics of accuracy and credibilityare
considered in [9], [10] using simplified models that do not
consider the actual dynamics of a wireless network.

In this paper, we extend the quality-aware format selection
problem in [10] to a dynamic network setting. We particularly
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focus on distributed algorithms for routing, scheduling, and
format selection that jointly optimize quality of information.
Specifically, we assume that random events occur over time
in the network environment, and these can be sensed by
one or more of the wireless devices, perhaps at different
sensing qualities. At the transport layer, each device selects
one of multiple reporting formats, such as a video clip at
one of several resolution options, an audio clip, or a text
message. Information quality depends on the selected format.
For example, higher quality formats use messages with larger
bit lengths. The resulting bits are handed to the network layer
at each device and must be delivered to the receiver station
over possibly time-varying channels. This delivery can be a
direct transmission from a device to the receiver station via
an uplink channel, or can take a two-hop path that utilizes
another device as relay (we restrict paths to at most two-hops
for tight control over network delays). An example is a single-
cell wireless network with multiple smart phones and one base
station, where each smart phone has 3G capability for uplink
transmission and Wi-Fi capability for device-to-device relay
transmission.

Such a problem can be cast as a stochastic network opti-
mization and solved using Lyapunov optimization theory. A
“standard” method is to minimize a linear term in a quadratic
drift-plus-penalty expression [11], [12]. This can be shown to
yield algorithms that converge to optimal average utility with a
trade-off in average queue size. The linearization is useful for
enabling decisions to be separated at each device. However,
it can lead to larger queue sizes and delays. In this work, we
propose a novel method that uses a quadratic minimization for
the drift-plus-penalty expression, yet still allows separability
of the decisions. This results in an algorithm that maintains
distributed decisions across all devices for format selection and
routing, similar to the standard (linearized) drift-plus-penalty
approach, but reduces overall queue size.

For the derived algorithm, each device observes its input
queue length and then selects a format to report an event
according to a simple rule. The routing decision for each group
of bits is determined at each device by considering its input,
uplink, and relay queues. Then, allocation of channel resources
for direct transmission is determined from a receiver station
after observing current uplink queues and channel conditions.
For the relay transmission, an optimization problem involving
relay queues, uplink queues and channel conditions is solved
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at the receiver station to determine an optimal transmission
decision. This process can be decentralized if all channelsare
orthogonal.

Our analysis shows that the standard drift-plus-penalty
algorithm and our new algorithm both converge to the optimal
quality of information. The analysis also shows a deterministic
maximum size of each queue. Simulations show that the new
algorithm has a significant savings in queue length which
implies reduction of average delay.

Because of the generality of the novel method, it is applied
to solve linear programs in the last section. Linear programs
are a special case of the stochastic problems treated in [12],
and hence can be solved by the (linearized) drift plus penalty
method of Lyapunov optimization theory. This is done in [13]
to distributively solve linear programs over graphs. The current
paper applies our novel quadratic drift-plus-penalty algorithm
to linear programs to produce smoother results and faster
convergence. Although a solution of this new technique is the
time-average of results from multiple iterations, it is different
from the “dual averaging” method of [14] which has a different
problem construction, and from the “alternating direction
method of multipliers” in [15] which arises from gradient
descent methods rather than from Lyapunov optimization.

Thus, our contributions are threefold: (i) We formulate
an important quality-of-information problem for reporting
information in wireless systems. This problem is of recent
interest and can be used in other contexts where “data deluge”
issues require selectivity in reporting of information. (ii) We
extend Lyapunov optimization theory by presenting a new
algorithm that uses a quadratic minimization to reduce queue
sizes while maintaining separability across decisions. This new
technique is general and can be used to reduce queue sizes
in other Lyapunov optimization problems. (iii) We illustrate
the potential of the quadratic minimization for solving linear
programs.

In the next section we formulate the problem. Sec. III
derives the novel quadratic algorithm. Sec. IV analyzes its
performance. Sec. V presents simulation results. Sec. VI
illustrates how to solve linear programs. The conclusion is
in Sec. VII.

II. SYSTEM MODEL

Consider a network withN wireless devices that report
information to a single receiver station. LetN = {1, . . . , N}
be the set of devices. The receiver station is not part of the set
N and can be viewed as “device 0.” A network withN = 3
devices is shown in Fig. 1. The system is slotted with fixed size
slots t ∈ {0, 1, 2, . . .}. Every slot,format selection decisions
are made at the transport layer of each device, androuting
and schedulingdecisions are made at the network layer.

A. Format Selection

A new event can occur on each slot. Events are observed
with different levels of quality at each device. For example,
some devices may be physically closer to the event and
hence can deliver higher quality. On slott, each device
n ∈ N selects a formatfn(t) from a set of available formats

format selection

event

Fig. 1. An example network with illustration of the internalqueuesKn(t),
Qn(t), Jn(t) for each devicen.

F = {0, 1, . . . , F}. Format selection affects quality and data
lengths of the reported information. To model this, the event
on slot t is described by a vector ofevent characteristics
(r

(f)
n (t), d

(f)
n (t))|n∈N ,f∈F . The valuer(f)n (t) is a numeric

reward that is earned if devicen uses formatf to report
on the event that occurs on slott. The value d

(f)
n (t) is

the amount of data units required for this choice. This data
is injected into the network layer and must eventually be
delivered to the receiver station. To allow a devicen not to
report on an event, there is a “blank format”0 ∈ F such
that (r(0)n (t), d

(0)
n (t)) = (0, 0) for all slots t and all devices

n ∈ N . If a devicen does not observe the event on slott
(which might occur if it is physically too far from the event),
then (r

(f)
n (t), d

(f)
n (t)) = (0, 0) for all formatsf ∈ F . If no

event occurs on slott, then (r(f)n (t), d
(f)
n (t)) = (0, 0) for all

n ∈ N andf ∈ F .
Rewardsrn(t) are assumed to be real numbers that satisfy

0 ≤ rn(t) ≤ r
(max)
n for all t, wherer(max)

n is a finite maximum.
Data sizesdn(t) are non-negative integers that satisfy0 ≤

dn(t) ≤ d
(max)
n for all t, whered(max)

n is a finite maximum.
The vectors(r(f)n (t), d

(f)
n (t))|n∈N ,f∈F are independent and

identically distributed (i.i.d.) over slotst, and have a joint
probability distribution over devicesn and formatsf that is
arbitrary (subject to the above properties). This distribution is
not necessarily known.

B. Routing and Scheduling

At each devicen ∈ N , the dn(t) units of data generated
by format selection are put intoinput queueKn(t). Each
device has two orthogonal communication capabilities, called
(direct) uplink transmissionand (ad-hoc)relay transmission.
The uplink transmission capability allows each device to
communicate to the receiver station directly via an uplink
channel. The relay capability allows communication between a
device and its neighboring devices. To ensure all data takesat
most two hops to the destination, the data in each queueKn(t)
is internally routed to one of two queuesQn(t) and Jn(t),
respectively holding data for uplink and relay transmission (see
Fig. 1). Data in queueQn(t) must be transmitted directly to the
receiver station, while data in queueJn(t) can be transmitted
to another devicek, but is then placed in queueQk(t) for that
device. This is conceptually similar to the hop-count based
queue architecture in [16].

In each slott, let s(q)n (t) ands(j)n (t) represent the amount of
data inKn(t) that can be internally moved toQn(t) andJn(t),
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respectively, as illustrated in Fig. 1. These decision variables
are chosen within setsS(q)

n andS(j)
n , respectively, where:

S(q)
n , {0, 1, . . . , s(q)(max)

n }

S(j)
n , {0, 1, . . . , s(j)(max)

n }

wheres(q)(max)
n , s(j)(max)

n are finite maximum values. Then the
dynamics ofKn(t) are:

Kn(t+ 1) = max[Kn(t)− s(q)n (t)− s(j)n (t), 0] + dn(t) (1)

As a minor technical detail that is useful later, themax[· · · , 0]

operation above allows thes(q)n (t) ands(j)n (t) decisions to sum
to more thanKn(t). Theactuals(q)(act)

n (t) ands(j)(act)
n (t) data

units moved fromKn(t) can be any values that satisfy:

s(q)(act)
n (t) + s(j)(act)

n (t) = min[Kn(t), s
(q)
n (t) + s(j)n (t)] (2)

0 ≤ s(q)(act)
n (t) ≤ s(q)n (t) (3)

0 ≤ s(j)(act)
n (t) ≤ s(j)n (t) (4)

Wireless transmission is assumed to be channel-aware, and
decision options are determined by a vectorη(t) of current
channel statesin the network. Specifically, letun(t) be the
amount of uplink data that can be transmitted from devicen
to the receiver station, and letu(t) = (un(t))|n∈N be the
vector of these transmission decisions. It is assumed thatu(t)
is chosen every slott within a setUη(t) that depends on the
observedη(t). Similarly, let anm(t) be the amount of data
selected for ad-hoc transmission between devicesn and m,
and leta(t) = (anm(t))|n,m∈N and ann(t) = 0 for every t
andn. These transmissions are assumed to be orthogonal to
the uplink transmissions. Every slott, thea(t) vector is chosen
within a setAη(t) that depends on the observedη(t). The sets
Uη(t) andAη(t) depend on the resource allocation, modulation,
and coding options for transmission. If each uplink channel
is orthogonal then setUη(t) can be decomposed into a set
product of individual options for each uplink, where each
option depends on the component ofη(t) that represents its
own uplink channel. Orthogonal relay links can be treated
similarly.

The dynamics of relay queueJn(t) are:

Jn(t+ 1) = max
[

Jn(t)−
∑

m∈Nanm(t) + s(j)(act)
n (t), 0

]

.

(5)
As before, theactual amount of dataa(act)

nm (t) satisfies:

∑

m∈Na(act)
nm (t) = min

(

Jn(t) + s(j)(act)
n (t),

∑

m∈Nanm(t)
)

(6)

0 ≤ a(act)
nm (t) ≤ anm(t) for m ∈ N . (7)

The dynamics of uplink queueQn(t) are:

Qn(t+ 1) = max
[

Qn(t)− un(t) + s(q)(act)
n (t), 0

]

+
∑

m∈Na(act)
mn (t). (8)

Notice that all data transmitted to a relay is placed in the
uplink queue of that relay (which ensures all paths take at
most two hops). The queueing equations (5) and (8) involve

actual amounts of data, but they can be bounded using (3), (4)
and (7) as

Jn(t+ 1) ≤ max
[

Jn(t)−
∑

m∈Nanm(t) + s(j)n (t), 0
]

(9)

Qn(t+ 1) ≤ max
[

Qn(t)− un(t) + s(q)n (t), 0
]

+
∑

m∈Namn(t). (10)

The queue dynamics (1), (9), (10) do not require the actual
variabless(j)(act)

n , s
(q)(act)
n (t), a(act)

nm (t), and are the only ones
needed in the rest of the paper.

Assume the decision setsUη(t) and Aη(t) ensure that

transmissions have bounded rates. Specifically, letu
(max)
n and

a
(max)
nm be finite maximum values ofun(t) and anm(t). Fur-

ther, assume that for eachn ∈ N , s
(q)(max)
n ≥ u

(max)
n and

s
(j)(max)
n ≥

∑

m∈N a
(max)
nm , so that the maximum amount that

can be internally shifted is at least as much as the maximum
amount that can be transmitted.

C. Stochastic Network Optimization

Here we define the problem of maximizing time-averaged
quality of information subject to queue stability. We use the
following definitions [12]:

Definition 1: Queue{X(t) : t ∈ {0, 1, 2, . . .}} is strongly
stable if

lim sup
t→∞

1
t

∑t−1
τ=0E {X(τ)} < ∞

Definition 2: A network of queues is strongly stable if every
queue in the network is strongly stable.

In words, definition 1 means that a queue is strongly stable
if its average queue backlog is finite.

Let y0(t) ,
∑

n∈N rn(t) be the total quality of information

from format selection on slott, andy(max)
0 ,

∑

n∈N r
(max)
n is

its upper bound. The time-averaged total information quality
is

ȳ0 , lim inf
t→∞

1
t

∑t−1
τ=0E {y0(τ)}.

For simplicity of notation, letω(t) represent a collective
vector of event and channel randomness on slott, and let
α(t) be a collective vector of all decision variables on slott:

ω(t) , [η(t); (r(f)n (t), d(f)n (t))|n∈N ,f∈F ]

α(t) , [a(t);u(t); (fn(t))|n∈N ; (s(q)n (t), s(j)n (t))|n∈N ]

It is our objective to solve:

Maximize ȳ0 (11)

Subject to Network is strongly stable

α(t) ∈ Φω(t) for all t,

whereΦω(t) is a feasible set of control actions depending on
randomness at timet. So, any selectedα(t) ∈ Φω(t) yields:

fn(t) ∈ F for all n ∈ N

s(q)n (t) ∈ S(q)
n for all n ∈ N

s(j)n (t) ∈ S(j)
n for all n ∈ N

u(t) ∈ Uη(t)

a(t) ∈ Aη(t)

This problem is always feasible because stability is trivially
achieved if all devices always select the blank format.
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III. D YNAMIC ALGORITHM

This section derives a novel “quadratic policy” to solve
problem (11). The policy gives faster convergence and smaller
queue sizes as compared to the “standard” drift-plus-penalty
(or “max-weight”) policy of [11], [12].

A. Lyapunov Optimization

Let Θ(t) = (Kn(t), Qn(t), Jn(t))|n∈N represent a vector
of all queues in the system.

Define a quadratic Lyapunov function L(Θ(t)) ,
1
2

∑

n∈N

[

K2
n(t) +Q2

n(t) + J2
n(t)

]

. Then the Lyapunov drift,
the difference of Lyapunov functions between two consecutive
slots, is defined byL(Θ(t+ 1))− L(Θ(t)).

In order to maximizeȳ0 in (11), the drift-plus-penalty
functionL(Θ(t+1))−L(Θ(t))−V y0(t) is considered, where
V ≥ 0 is a constant that determines a trade-off between queue
size and proximity to the optimality.1

Later, this drift is used to show stability of a system.
Intuitively, when queue lengths grow large beyond certain
values, the drift becomes negative and a system is stable
because the negative drift roughly implies reduction of total
queue lengths.

Let R and R+ denote the set of real numbers and non-
negative real numbers, respectively.

Lemma 1:Let ai ∈ R andbj ∈ R+ for i ∈ {0, 1, 2, . . . , A}

and j ∈ {0, 1, 2, . . . , B}. Assume further that|ai| ≤ a
(max)
i

and |bj| ≤ b
(max)
j for each feasiblei and j. Then for any

x ∈ R+,

[

max
(

x+
∑A

i=1ai, 0
)

+
∑B

j=1bj

]2

− x2

≤
∑A

i=1(x+ ai)
2 +

∑B
j=1(x + bj)

2 − (A+B)x2 + C

(12)

≤ 2x

[

∑A
i=1ai +

∑B
j=1bj

]

+ C′ (13)

where

C = 2
[

∑A

i=1

∑i−1
i′=1a

(max)
i a

(max)
i′ +

∑B

j=1

∑j−1
j′=1b

(max)
j b

(max)
j′

+
∑A

i=1

∑B
j=1a

(max)
i b

(max)
j

]

C′ =
[

∑A
i=1a

(max)
i +

∑B
j=1b

(max)
j

]2

Note that the first bound (12) is used in the quadratic policy,
while the second bound (13) can lead to the max-weight policy.

1The minus sign in front ofV y0(t) is because the quality of information
can be viewed as a negative penalty.

Proof:

[

max
(

x+
∑A

i=1ai, 0
)

+
∑B

j=1bj

]2

− x2

≤(x+
∑A

i=1 ai)
2
+(

∑B
j=1 bj)

2
+2

∑B
j=1 bj|x+

∑A
i=1 ai|−x2

=2x
∑A

i=1 ai+(
∑A

i=1 ai)
2
+(

∑B
j=1 bj)

2
+2

∑B
j=1 bj|x+

∑A
i=1 ai|

≤2x
∑A

i=1 ai+
∑A

i=1 a2
i+2

∑A
i=1

∑i−1

i′=1
|aiai′ |+

∑B
j=1 b2j

+2
∑B

j=1

∑j−1

j′=1
bjbj′+2

∑B
j=1 bj |x+

∑A
i=1 |ai||

=2x
∑A

i=1 ai+
∑A

i=1 a2
i+2

∑A
i=1

∑i−1

i′=1
|aiai′ |+

∑B
j=1 b2j

+2
∑B

j=1

∑j−1

j′=1
bjbj′+2

∑B
j=1 bjx+2

∑B
j=1

∑A
i=1 bj |ai|

=
∑A

i=1 (x+ai)
2+

∑B
j=1 (x+bj)

2−(A+B)x2

+2
∑A

i=1

∑i−1

i′=1
|aiai′ |+2

∑B
j=1

∑j−1

j′=1
bjbj′+2

∑A
i=1

∑B
j=1 |ai|bj

≤
∑A

i=1 (x+ai)
2+

∑B
j=1 (x+bj)

2−(A+B)x2+C (14)

≤2x[
∑A

i=1 ai+
∑B

j=1 bj ]+
∑A

i=1 a
(max)2
i +

∑B
j=1 b

(max)2
j +C

=2x[
∑A

i=1 ai+
∑B

j=1 bj ]+C′ (15)

Inequalities (14) and (15) prove respectively relation (12) and
(13).

Using queuing dynamic (1), (9), and (10), the drift-plus-
penalty is bounded by (16) below. Then, using relation (12),
the bound becomes (17).

L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)

≤ 1
2

∑

n∈N

{

[max(Kn(τ)−s(q)n (τ)−s(j)n (τ),0)+dn(τ)]
2
−Kn(τ)

2

+[max(Qn(τ)−un(τ)+s(q)n (τ),0)+
∑

m∈N amn(τ)]
2
−Qn(τ)

2

+[max(Jn(τ)−
∑

m∈N anm(τ)+s(j)n (τ),0)]
2
−Jn(τ)

2−2V rn(τ)
}

(16)

≤ 1
2

∑

n∈N

{

[Kn(τ)−s(q)n (τ)]
2
+[Kn(τ)−s(j)n (τ)]

2
+[Kn(τ)+dn(τ)]

2

+[Qn(τ)−un(τ)]
2+[Qn(τ)+s(q)n (τ)]

2
+
∑

m∈N [Qn(τ)+amn(τ)]
2

+
∑

m∈N [Jn(τ)−anm(τ)]2+[Jn(τ)+s(j)n (τ)]2−2V rn(τ)+Dn(τ)
}

(17)

where

Dn(τ),−3K2
n(τ)−(2+|N |)Q2

n(τ)−(1+|N |)J2
n(τ)

+2s(q)(max)
n s(j)(max)

n +2s(q)(max)
n d(max)

n +2s(j)(max)
n d(max)

n

+2u(max)
n s(q)(max)

n +2u(max)
n

∑

m∈N a(max)
mn +2s(q)(max)

n

∑

m∈N a(max)
mn

+
∑

m∈N

∑

m′∈N−{m} a(max)
mn a

(max)
m′n

+2s(j)(max)
n

∑

m∈N a(max)
nm

+
∑

m∈N

∑

m′∈N−{m} a(max)
nm a

(max)
nm′

Minimizing the actual drift-plus-penalty term (16) is com-
putationally expensive. In this paper, we propose a novel
quadratic policy, derived from (17), that preserves the
quadratic nature of the actual minimization while keeping
decisions separable. As a result, the policy leads to a separated
control algorithm in Sec. III-B.

Definition 3: Every time t, the quadratic policy observes
current queue backlogsΘ(t) and randomnessω(t). Then it
makes a decision according to the following minimization
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problem.

Minimize ∑

n∈N

{

[Kn(t)−s(q)n (t)]2+[Kn(t)−s(j)n (t)]2

+[Kn(t)+dn(t)]
2+[Qn(t)−un(t)]

2+[Qn(t)+s(q)n (t)]
2

+
∑

m∈N [Qn(t)+amn(t)]
2+

∑

m∈N [Jn(t)−anm(t)]2

+[Jn(t)+s(j)n (t)]
2
−2V rn(t)

}

Subject to s(q)n (t)∈S(q)
n , s(j)n (t)∈S(j)

n ∀n∈N

fn(t)∈F ,dn(t)=d(fn(t))
n (t), rn(t)=r(fn(t))

n (t) ∀n∈N

a(t)∈Aη(t), u(t)∈Uη(t)

B. Separability

The control algorithm can be derived from the quadratic
policy in definition 3. The whole minimization can be done
separately due to a unique structure of the quadratic policy.
This leads to five subproblems, as described below.

At every slot t, each devicen ∈ N observes input queue
Kn(t) and options(r(f)n (t), d

(f)
n (t))|f∈F . It then chooses a

format fn(t) according to theadmission-control problem:

Minimize
[

Kn(t) + d(fn(t))n (t)
]2

− 2V r(fn(t))
n (t) (18)

Subject to fn(t) ∈ F

This is solved easily by comparing each optionfn(t) ∈ F .
Each devicen moves data from its input queue to its uplink

queue according to theuplink routing problem

Minimize
[

Kn(t)− s(q)n (t)
]2

+
[

Qn(t) + s(q)n (t)
]2

(19)

Subject to s(q)n (t) ∈ S(q)
n .

This can be solved in a closed form by lettingI+Q (t) ,
⌈

Kn(t)−Qn(t)
2

⌉

, I−Q (t) ,
⌊

Kn(t)−Qn(t)
2

⌋

and gQ(x, t) =

[Kn(t)− x]2 + [Qn(t) + x]2. Then choose

s(q)n (t) = (20)










s(q)(max)
n , Kn(t)−Qn(t)≥2s(q)(max)

n

argmin
x∈{I

+
Q

(t),I
−
Q

(t)} gQ(x,t) , 0<Kn(t)−Qn(t)<2s(q)(max)
n

0 , Kn(t)−Qn(t)≤0

Also each devicen moves data from its input queue to its
relay queue according to therelay routing problem

Minimize
[

Kn(t)− s(j)n (t)
]2

+
[

Jn(t) + s(j)n (t)
]2

. (21)

Subject to s(j)n (t) ∈ S(j)
n

Again, letI+J (t) ,
⌈

Kn(t)−Jn(t)
2

⌉

, I−J (t) ,
⌊

Kn(t)−Jn(t)
2

⌋

and
gJ(x, t) = [Kn(t)− x]

2
+ [Jn(t) + x]

2. Then choose

s(j)n (t) = (22)






s(j)(max)
n , Kn(t)−Jn(t)≥2s(j)(max)

n

argmin
x∈{I+

J
(t),I

−
J

(t)}
gJ (x,t) , 0<Kn(t)−Jn(t)<2s(j)(max)

n

0 , Kn(t)−Jn(t)≤0

Note that the solutions from the quadratic policy are
“smoother” as compared to the solutions from the max-weight
policy that would choose “bang-bang” decisions of either0 or
s
(q)(max)
n for s(q)n (t) (and0 or s(j)(max)

n for s(j)n (t)).

The uplink allocationproblem is

Minimize
∑

n∈N [Qn(t)− un(t)]
2 (23)

Subject to u(t) ∈ Uη(t).

This can be solved at the receiver station. If all uplink channels
are orthogonal, the problem can be decomposed further to be
solved at each devicen by

Minimize [Qn(t)− un(t)]
2 (24)

Subject to un(t) ∈ Un,η(t),

whereUn,η(t) is a feasible set ofun(t). An optimal uplink
transmission rate is the closest rate inUn,η(t) to Qn(t).

The relay allocationproblem is

Minimize
∑

n∈N

∑

m∈N

{

[Qn(t) + amn(t)]
2

+[Jn(t)− anm(t)]
2
}

(25)

Subject to a(t) ∈ Aη(t).

If channels are orthogonal so the sets have a product form, then
the decisions are separable across transmission links(n,m) for
n ∈ N ,m ∈ N as

Minimize [Qm(t) + anm(t)]
2
+ [Jn(t)− anm(t)]

2 (26)

Subject to anm(t) ∈ Anm,η(t),

whereAnm,η(t) is a feasible set ofanm(t). The closed form
solution of this problem is

anm(t) = (27)






a(max)
nm , Jn(t)−Qm(t)≥2a(max)

nm

argmin
x∈{I+

A
(t),I

−
A

(t)}
gA(x,t) , 0<Jn(t)−Qm(t)<2a(max)

nm

0 , Jn(t)−Qm(t)≤0

where I+A (t) , argmina∈Anm,η(t)

∣

∣

∣
a− Jn(t)−Qm(t)

2

∣

∣

∣
and

I−A (t) , argmina∈Anm,η(t)−{I+
A
(t)}

∣

∣

∣
a− Jn(t)−Qm(t)

2

∣

∣

∣
and

gA(x, t) = [Jn(t)− x]
2
+ [Qm(t) + x]

2.

C. Algorithm

At every time slott, our algorithm has two parts: device
side and receiver-station side.

Algorithm 1: Distributed format selection and routing

// Device side

foreach devicen ∈ N do
– ObserveKn(t), Qn(t) andJn(t)
– Observe(r(f)n (t), d

(f)
n (t))|f∈F

– Select formatfn(t) according to (18)
– Move data fromKn(t) to Qn(t) andJn(t) with
s
(q)(act)
n (t), s

(j)(act)
n (t) satisfying (2)-(4) and (6)-(7)

with values ofs(q)n (t), s
(j)
n (t) calculated from (20)

and (22).
end

After these processes, queuesKn(t + 1), Qn(t + 1) and
Jn(t+ 1) are updated via (1), (5), (8).
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Algorithm 2: Uplink and Relay resource allocation

// Receiver-station side

for receiver station0 do
– Observe(Qn(t), Jn(t))|n∈N

– ObserveUη(t) andAη(t)

– Signal devicesn ∈ N to make uplink transmission
u(t) according to (23)
– Signal devicesn ∈ N to relay dataa(t) according
to (25)

end

IV. STABILITY AND PERFORMANCEBOUNDS

Compare the quadratic policy with any other policy.
Let (fn(τ), s

(q)
n (τ), s

(j)
n (τ))|n∈N ,u(τ),a(τ) be the decision

variables from the quadratic policy in definition 3. From
fn(τ), rn(t) , r

(fn(t))
n (t) and dn(t) , d

(fn(t))
n (t). Then,

let (f̂n(τ), ŝ
(q)
n (τ), ŝ

(j)
n (τ))|n∈N , û(τ), â(τ) be decision vari-

ables from any other policy and̂rn(t) , r
(f̂n(t))
n (t), d̂n(t) ,

d
(f̂n(t))
n (t). From (17) and definition 3, the drift-plus-penalty

under quadratic policy is bounded by (28) and is further
bounded by (29) under any other policy as

L(Θ(τ + 1))− L(Θ(τ)) − V y0(t)(τ)

≤ 1
2

∑

n∈N

{

[Kn(τ)−s(q)n (τ)]2+[Kn(τ)−s(j)n (τ)]2+[Kn(τ)+dn(τ)]
2

+[Qn(τ)−un(τ)]
2+[Qn(τ)+s(q)n (τ)]

2
+
∑

m∈N [Qn(τ)+amn(τ)]
2

+
∑

m∈N [Jn(τ)−anm(τ)]2+[Jn(τ)+s(j)n (τ)]2−2V rn(τ)+Dn(τ)
}

(28)

≤ 1
2

∑

n∈N

{

[Kn(τ)−ŝ(q)n (τ)]2+[Kn(τ)−ŝ(j)n (τ)]2+[Kn(τ)+d̂n(τ)]
2

+[Qn(τ)−ûn(τ)]
2+[Qn(τ)+ŝ(q)n (τ)]

2
+[Qn(τ)+

∑

m∈N âmn(τ)]
2

+[Jn(τ)−
∑

m∈N ânm(τ)]2+[Jn(τ)+ŝ(j)n (τ)]2−2V r̂n(τ)+Dn(τ)
}

.

(29)

From the bounds (13), it follows that

L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)

≤
∑

n∈N

{

Kn(τ)
[

d̂n(τ) − ŝ
(q)
n (τ) − ŝ

(j)
n (τ)

]

+Qn(τ)

[

ŝ(q)n (τ) +
∑

m∈N

âmn(τ) − ûn(τ)

]

+ Jn(τ)
[

ŝ
(j)
n (τ) −

∑

m∈N ânm(τ)
]

− V r̂n(τ)
}

+ E (30)

where

E ,
1

2

∑

n∈N

{[

s(q)(max)
n + s(j)(max)

n + d(max)
n

]2

+
[

s(q)(max)
n + u(max)

n +
∑

m∈Na(max)
mn

]2

+
[

s(j)(max)
n +

∑

m∈Na(max)
nm

]2}

(31)

The derivations (28)–(30) show that applying the quadratic
policy to the drift-plus-penalty expression leads to the bound
(30) which is valid for every other control policy. However,
the linear minimization of (30), which leads to the max-weight
policy, does not resemble quadratic minimization of the actual

drift-plus-penalty term (16). The effects of the two policies are
revealed in Sec. V where the quadratic policy leads to smaller
queue backlogs.

As discussed in Sec. II,ω(t) is i.i.d. over slots and is
assumed further to have distributionπ(ω). Define anω-only
policy as one that make a (possibly randomized) choice of
decision variables based only on the observedω(t). Then we
customize an important theorem from [11].

Theorem 1:When problem (11) with stationary distribu-
tion π(ω) is feasible, then for anyδ > 0 there ex-
ists an ω-only policy that chooses all controlled variables
(f∗

n(t), s
(q)∗
n (t), s

(j)∗
n (t))|n∈N ,u∗(t),a∗(t), and for all n ∈

N :

E {y∗0(t)} ≤ y
(opt)
0 + δ (32)

E

{

d∗n(t)− s
(q)∗
n (t)− s

(j)∗
n (t)

}

≤ δ (33)

E

{

s
(q)∗
n (t) +

∑

m∈N a∗mn(t)− u∗
n(t)

}

≤ δ (34)

E

{

s
(j)∗
n (t)−

∑

m∈N a∗nm(t)
}

≤ δ (35)

where y
(opt)
0 is the optimal solution of problem (11). Also,

y∗0(t) ,
∑

n∈N r∗n(t) when r∗n(t) , r
(f∗

n(t))
n (t) and d∗n(t) ,

d
(f∗

n(t))
n (t).

We additionally assume all constraints of the network can
be achieved withǫ slackness [11]:

Assumption 1:There are valuesǫ > 0 and 0 ≤ y
(ǫ)
0 ≤

y
(max)
0 and anω-only policy choosing all controlled variables
(f∗

n(t), s
(q)∗
n (t), s

(j)∗
n (t))|n∈N ,u∗(t),a∗(t) that satisfies for

all n ∈ N :

E {y∗0(t)} = y
(ǫ)
0 (36)

E

{

d∗n(t)− s
(q)∗
n (t)− s

(j)∗
n (t)

}

≤ −ǫ (37)

E

{

s
(q)∗
n (t) +

∑

m∈N a∗mn(t)− u∗
n(t)

}

≤ −ǫ (38)

E

{

s
(j)∗
n (t)−

∑

m∈N a∗nm(t)
}

≤ −ǫ. (39)

A. Performance Analysis

Since our quadratic algorithm satisfies the bound (30),
where the right-hand-side is in terms of any alternative pol-
icy

(

ĥn(t), ŝ
(q)
n (t), ŝ

(j)
n (t)

)

|n∈N , û(t), â(t), it holds for any

ω-only policy
(

h∗
n(t), s

(q)∗
n (t), s

(j)∗
n (t)

)

|n∈N ,u∗(t),a∗(t).
Substituting anω-only policy into (30) and taking conditional
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expectations gives:

E {L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)|Θ(τ)} (40)

≤
∑

n∈N

{

Kn(τ)E
{

d∗n(τ)− s
(q)∗
n (τ) − s

(j)∗
n (τ)

∣

∣

∣
Θ(τ)

}

+Qn(τ)E
{

s
(q)∗
n (τ) +

∑

m∈N a∗mn(τ) − u∗
n(τ)

∣

∣

∣
Θ(τ)

}

+ Jn(τ)E
{

s
(j)∗
n (τ) −

∑

m∈N a∗nm(τ)
∣

∣

∣
Θ(τ)

}

− V E {r∗n(τ)|Θ(τ)}
}

+ E

≤
∑

n∈N

{

Kn(τ)E
{

d∗n(τ) − s
(q)∗
n (τ) − s

(j)∗
n (τ)

}

+Qn(τ)E
{

s
(q)∗
n (τ) +

∑

m∈N a∗mn(τ) − u∗
n(τ)

}

+ Jn(τ)E
{

s
(j)∗
n (τ)−

∑

m∈N a∗nm(τ)
}

− V E {r∗n(τ)}
}

+ E (41)

where we have used the fact that conditional expectations
given Θ(t) on the right-hand-side above are the same as
unconditional expectations becauseω-only policies do not
depend onΘ(t).

Theorem 2:If Assumption 1 holds, then the time-averaged
total quality of information̄y0 is within O(1/V ) of optimality
under the quadratic policy, while the total queue backlog grows
with O(V ).

Theorem 2 is proven by substituting theω-only policies
from Theorem 1 and Assumption 1 into the right-hand-side of
(41), as shown in the next subsections.

1) Quality of Information vs.V : Using theω-only policy
from (32)–(35) in the right-hand-side of (41) gives:

E {L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)|Θ(τ)}

≤ E − V
(

y
(opt)
0 + δ

)

+ δ
∑

n∈N [Kn(τ) +Qn(τ) + Jn(τ)]

This inequality is valid for everyδ > 0. Therefore

E {L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)|Θ(τ)} ≤ E−V y
(opt)
0 .

Taking an expectation and summing fromτ = 0 to t− 1:

E

{

L(Θ(t))− L(Θ(0))− V
∑t−1

τ=0 y0(τ)
}

≤ Et− V ty
(opt)
0 .

With rearrangement andL(Θ(t)) ≥ 0, it follows that

t−1
∑

τ=0

E {y0(τ)} ≥ −
Et

V
+ ty

(opt)
0 −

L(Θ(0))

V
.

Dividing by t and taking limit ast approaches infinity, the
performance of the quadratic policy is lower bounded by

lim inf
t→∞

1

t

t−1
∑

τ=0

E {y0(τ)} ≥ −
E

V
+ y

(opt)
0 . (42)

This shows that the system can be pushed to the optimality
y
(opt)
0 by increasingV under the quadratic policy.

2) Total Queue Backlog vs.V : Now consider the existence
of an ω-only policy with Assumption 1. Using (36)–(39) in
the right-hand-side of (41) gives:

E {L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)|Θ(τ)}

≤ E − V y
(ǫ)
0 − ǫ

∑

n∈N [Kn(τ) +Qn(τ) + Jn(τ)] .

Taking expectation and summing fromτ = 0 to t− 1:

E

{

L(Θ(t)) − L(Θ(0))− V
∑t−1

τ=0y0(τ)
}

≤ Et−V ty
(ǫ)
0 −ǫ

∑t−1
τ=0

∑

n∈N E {Kn(τ) +Qn(τ) + Jn(τ)}

With rearrangement andL(Θ(t)) ≥ 0, it follows that

∑t−1
τ=0

∑

n∈N E {Kn(τ) +Qn(τ) + Jn(τ)}

≤ Et
ǫ
+ V

ǫ

(

∑t−1
τ=0 E {y0(τ)} − ty

(ǫ)
0

)

+ E{L(Θ(0))}
ǫ

≤ Et
ǫ
+ V

ǫ

(

ty
(max)
0 − ty

(ǫ)
0

)

+ E{L(Θ(0))}
ǫ

.

Dividing by t and taking limit ast approaches infinity, the
time-averaged total queue backlog is bounded by

lim supt→∞
1
t

∑t−1
τ=0

∑

n∈N E {Kn(τ) +Qn(τ) + Jn(τ)}

≤
E

ǫ
+

V

ǫ

(

y
(max)
0 − y

(ǫ)
0

)

. (43)

This shows that the overall queue length tends to increase
linearly asV is increased. This is an asymptotic bound which
shows that every queue is strongly stable, and the network is
strongly stable.

The V parameter in (42) and (43) affects the performance
trade-off[O(1/V ), O(V )] between quality of information and
total queue backlog. These results are similar to those that
can be derived under the max-weight algorithm. However,
simulation in the next section shows significant reduction of
queue backlog under the quadratic policy.

B. Deterministic bounds of queue lengths

Here we show that, in addition to the average queue size
bounds derived in the previous subsection, our algorithm
also yields deterministic worst-case queue size bounds which
is summarized in the following lemma. DefineK(max)

n =

maxf∈F
2V r(f)

n −d(f)2
n

2d
(f)
n

+ d
(max)
n for n ∈ N , and Q

(max)
n ,

max

[

K
(max)
n ,

{

K
(max)
m

}

m∈N

]

+
∑

m∈N a
(max)
mn + s

(max)
n .

Lemma 2:For all devicesn ∈ N and all slotst ≥ 0, we
have:

Kn(t) ≤ K(max)
n (44)

Jn(t) ≤ K(max)
n (45)

Qn(t) ≤ Q(max)
n (46)

provided that these inequalities hold att = 0.
Proof: The bounds (44)–(46) are proved in Section

IV-B1–IV-B3 respectively.
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1) Input Queue:From the admission-control problem (18),
if (rn(t), dn(t)) = (0, 0), then the objective value of
the problem isKn(t)

2. Therefore, devicen only chooses
(rn(t), dn(t)) 6= (0, 0) when

[Kn(t) + dn(t)]
2 − 2V rn(t) ≤ Kn(t)

2

2Kn(t)dn(t) + dn(t)
2 − 2V rn(t) ≤ 0

Kn(t) ≤
2V rn(t)− dn(t)

2

2dn(t)

≤ max
f∈F

2V r
(f)
n − d

(f)2
n

2d
(f)
n

(47)

This implies that devicen can only obtain data when (47)
holds, and receives no new data otherwise.

Fix t, and assumeKn(t) ≤ K
(max)
n for this slott. From (1),

there are two cases to consider.
i) If 0 ≤ Kn(t) ≤ K

(max)
n − d

(max)
n then (47) holds and

Kn(t+ 1) = Kn(t) + dn(t) ≤ K
(max)
n .

ii) If Kn(t) > K
(max)
n − d

(max)
n , then (47) does not hold and

Kn(t + 1) = Kn(t) ≤ K
(max)
n . Thus, given thatKn(0) ≤

K
(max)
n , Kn(t) ≤ K

(max)
n for all t ≥ 0 by mathematical

induction.
2) Relay Queue:Fix t and assume for each devicen ∈ N

that Jn(t) ≤ K
(max)
n for this slot t. From the closed form

solution (22) and (5), there are three cases to consider.
i) WhenKn(t)− Jn(t) ≤ 0, thens(j)n (t) = 0, and

Jn(t+ 1) ≤ max
[

Jn(t) + s(j)n (t), 0
]

= Jn(t) ≤ K(max)
n .

ii) When Kn(t) − Jn(t) ≥ 2s
(j)(max)
n (or Jn(t) ≤ Kn(t) −

2s
(j)(max)
n ), thens(j)n (t) = s

(j)(max)
n , and

Jn(t+ 1) ≤ max
[

Jn(t) + s(j)n (t), 0
]

≤ max
[

Kn(t)− s(j)(max)
n , 0

]

≤ Kn(t) ≤ K(max)
n .

iii) When 0 < Kn(t) − Jn(t) < 2s
(j)(max)
n , then s

(j)
n (t) ≤

⌈

Kn(t)−Jn(t)
2

⌉

, and

Jn(t+ 1) ≤ max
[

Jn(t) + s(j)n (t), 0
]

≤ max

[⌈

Kn(t) + Jn(t)

2

⌉

, 0

]

≤ Kn(t) ≤ K(max)
n .

Thus, given thatJn(0) ≤ K
(max)
n , Jn(t) ≤ K

(max)
n for all t ≥ 0

by mathematical induction.
3) Uplink Queue:To provide a general upper bound for the

uplink queue, we assume that all relay channels are orthogonal.
This implies every devicen ∈ N can transmit and receive
relayed data simultanously.

Fix t and assumeQn(t) ≤ Q
(max)
n for this slot t. Then

considerQn(t+ 1) from (8).

i) When Qn(t) ≥ max

[

K
(max)
n ,

{

K
(max)
m

}

m∈N

]

, from (20)

and (27), it follows thats(q)n (t) = 0 and amn(t) = 0 for all

Fig. 2. Small network with independent channels with distributions shown.

m ∈ N , soQn(t+ 1) ≤ Q(t) ≤ Q
(max)
n .

ii) When Qn(t) < max

[

K
(max)
n ,

{

K
(max)
m

}

m∈N

]

, then this

queue may received datas(q)n (t) andamn(t) for somem ∈ N ,
so

Qn(t+ 1) ≤ max
[

Qn(t) + s(q)n (t), 0
]

+
∑

m∈N

amn(t)

≤ Q(t) + s(q)(max)
n +

∑

m∈N

a(max)
mn

≤ Q(max)
n .

Thus, givenQn(0) ≤ Q
(max)
n , Qn(t) ≤ Q

(max)
n for all t ≥ 0

by mathematical induction.

V. SIMULATION

Simulation under the proposed quadratic policy and the
standard max-weight policy is performed over a small network
in Fig. 2. The network contains two devicess,N = {1, 2}.
Each device has the other as its neighbor, soH1 = {2} and
H2 = {1}. An event occurs in every slot with probability
θ = 0.3. We assume all uplink and relay channels are
orthogonal. The uplink channel distribution for device1 is
better than that of device2 as in Fig. 2.

The constraints areun(t) ∈ {0, . . . , u
(best)
n (η(t))} for

n ∈ N . Also, a12(t) ∈ {0, . . . , a
(best)
12 (η(t))} and a21(t) ∈

{0, . . . , a
(best)
21 (η(t))}. Then sets(q)(max)

n = s
(j)(max)
n = 30.

The feasible set of formats isF = {0, 1, 2, 3} with con-
stant options given by(d(0)n , r

(0)
n ) = (0, 0), (d

(1)
n , r

(1)
n ) =

(100, 20), (d
(2)
n , r

(2)
n ) = (50, 15), (d

(3)
n , r

(3)
n ) = (10, 10) when-

ever there is an event.
The simulation is performed according to the algorithm in

Sec. III-C. The time-averaged quality of information under
the quadratic and max-weight policies are shown in Fig. 3.
From the plot, the values of̄y0 under both policies converge
to optimality following theO(1/V ) performance bound.

Fig. 4abc reveals queue lengths in the input, uplink, and
relay queues of device 1 under the quadratic and max-weight
policies. At the sameV , the quadratic policy reduces queue
lengths by a significant constant compared to the cases under
the max-weight policy. The plot also shows the growth of
queue lengths with parameterV , which follows theO(V )
bound of the queue length. Fig. 4d shows the average total
queue length in device 1 under the quadratic and max-weight
policies.

Fig. 5 shows that the quadratic policy can achieve near
optimality with significantly smaller total system backlog
compared to the case under the max-weight policy. This shows
a significant advantage, which in turn affects memory size and
packet delay.
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Fig. 3. Quality of Information versusV under the quadratic (QD) and max-
weight (MW) policies
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(b) Uplink queue: Q̄1
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(c) Relay queue: J̄1
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(d) Total queue length: K̄1 +J̄1 +Q̄1
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Fig. 4. Averaged backlog in queues versusV and system quality versus
backlog under the quadratic (QD) and max-weight (MW) policies
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Fig. 5. The system obtains average quality of information while having
average total queue length

Fig. 6. Larger network with independent channels with distributions shown
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Fig. 7. Convergence of time-averaged quality of information. The interval
of the moving average is 500 slots.

Another larger network shown in Fig. 6 is simulated to ob-
serve convergence of the proposed algorithm. As in the small
network scenario, the same probability of event occurrence
θ = 0.3 is set. Channel distributions are configured in Fig.
6. For V = 800, the time-averaged quality of information is
25.00 after 106 time slots as shown in the upper plot of Fig.
7. The lower plot in Fig. 7 illustrates the early period of the
simulation to illustrate convergence time.

VI. L INEAR PROGRAMS BY QUADRATIC POLICY

The generality of the quadratic policy is illustrated in this
section. The policy is applied to solve linear programs which
is one application of the Lyapunov optimization [12].

A. Problem Transformation

The following static linear program is considered where
(xi)

n

i=1 are decision variables and(aji)|
j=m,i=n
j=1,i=1 , (bj)|mj=1,

(ci)|
n
i=1,

(

x
(max)
i

)

|ni=1 are constants.

Maximize
n
∑

i=1

cixi (48)

Subject to
n
∑

i=1

ajixi ≤ bj, j ∈ {1, . . . ,m}

0 ≤ xi ≤ x
(max)
i , i ∈ {1, . . . , n}

In order to solve (48), the following time-averaged optimiza-
tion problem is solved by using the Lyapunov optimization
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technique.

Maximize ȳ0 =
n
∑

i=1

cix̄i (49)

Subject to
n
∑

i=1

ajix̄i ≤ bj , j ∈ {1, . . . ,m}

0 ≤ xi(t) ≤ x
(max)
i , i ∈ {1, . . . , n}, t ≥ 0

Solutions from the static problem (48) and the time-
averaged problem (49) are equivalent because using a solution
xi to the static problem for everyt in the time-averaged
problem leads tox̄i = xi for i ∈ {1, . . . , n} and every
constraint in the time-averaged problem is satisfied. The time-
averaged objective function is also maximized, since the time
average of the linear function is equal to the function of the
time averages. On the other hand, a solution to the time-
averaged problem is a solution of the static problem because
it satisfies all constraints and maximizes the same objective
function.

To solve problem (49), a concept of virtual queue is used
[12]. Let xi(t) be chosen every slott in the interval0 ≤

xi(t) ≤ x
(max)
i , and definēxi(t) for i ∈ {1, . . . , n} as

x̄i(t) ,
1

t

t−1
∑

τ=0

xi(τ), i ∈ {1, . . . , n}.

Define virtual queue

Zj(t+ 1) = max

[

Zj(t) +

n
∑

i=1

ajixi(t)− bj , 0

]

(50)

for all j ∈ {1, . . . ,m}. It follows that

Zj(τ + 1) = max

[

Zj(τ) +

n
∑

i=1

ajixi(τ)− bj , 0

]

≥ Zj(τ) +
n
∑

i=1

ajixi(τ) − bj

Zj(τ + 1)− Zj(τ) ≥
n
∑

i=1

ajixi(τ) − bj .

Summing fromτ = 0 to t− 1, and dividing byt:

Zj(t)− Zj(0) ≥
t−1
∑

τ=0

n
∑

i=1

ajixi(τ)− tbj

Zj(t)

t
≥

1

t

t−1
∑

τ=0

n
∑

i=1

ajixi(τ) − bj

=

n
∑

i=1

ajix̄i(t)− bj , (51)

where we assume thatZj(0) ≥ 0. It follows that if Z(t)
t

→ 0
(so that each queue is “rate stable”), the desired time-average
inequality constraint is satisfied.

Then let Θ(t) = (Zj(t))|
m
j=1 be a vector of all virtual

queues and

y0(t) =

n
∑

i=1

cixi(t)

be the objective function whose time average is to be mini-
mized according to the problem (49). Define a time-averaged
objective value up to iterationt by

ȳ0(t) ,
1

t

t−1
∑

τ=0

y0(τ).

Similar to Sec. II-C, letȳ0 , limt→∞ ȳ0(t) be andx̄i ,

limt→∞ x̄i(t) be their asymptotic averages.

B. Lyapunov Optimization

To solve (49), the drift-plus-penalty for this problem is
bounded by Lemma 1 as

L(Θ(t+ 1))− L(Θ(t)) − V y0(t)

= 1
2

∑m

j=1

{

Z2
j (t+ 1)− Z2

j (t)− 2V cixi(t)
}

= 1
2

∑m

j=1

{

max [Zj(t) +
∑n

i=1 ajixi(t)− bj , 0]

− Z2
j (t)− 2V cixi(t)

}

(52)

≤ 1
2

∑m
j=1

{
∑n

i=1 [Zi(t) + ajixi(t)]
2 + [Zj(t)− bj]

2

− (n+ 1)Z2
j (t)− 2V cixi +Hj

}

= 1
2

∑n
i=1

{

∑m
j=1 [Zj(t) + ajixi(t)]

2 − 2V cixi(t)
}

+ 1
2

∑m

j=1

{

[Zj(t)− bj ]
2 − (n+ 1)Z2

j (t) +Hj

}

,

(53)

where

Hj = 2
{
∑n

i=1

∑i−1
i′=1|aji||aji′ |x

(max)
i x

(max)
i′

+
∑n

i=1|aji||bj |x
(max)
i

}

for j ∈ {1, . . . ,m}. From (53), the quadratic policy minimize
the drift-plus-penalty every iteration, and this minimization is

Minimize
∑n

i=1

{

∑m

j=1 [Zj(t) + ajixi(t)]
2 − 2V cixi(t)

}

(54)

Subject to 0 ≤ xi(t) ≤ x
(max)
i i ∈ {1, . . . , n}.

Again, because problem’s structure and the fully separable
property of the quadratic policy, problem (54) can be solved
separately for eachxi(t). A closed form solution of eachxi(t)
for i ∈ {1, . . . , n} is

xi(t) = max

[

min

[

ciV −
∑m

j=1 ajiZj(t)
∑m

j=1 a
2
ji

, x
(max)
i

]

, 0

]

.

C. Algorithm

An algorithm to solve problem (49), which also solves (48),
is the following.

D. Convergence Analysis

Since our policy choosesxi(t) ∈ [0, x(max)] every slot to
minimize the right-hand-side of (53), this right-hand-side is
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Algorithm 3: Linear programming by quadratic policy

Initialize {Θ(0)} = 0

t = 0
foreach iteration t ≥ 0 do

// Update decision variables

foreach i ∈ {1, . . . , n} do

xi(t) = max
[

min
[

ciV−
∑m

j=1 ajiZj(t)
∑

m
j=1 a2

ji

, x
(max)
i

]

, 0
]

end
// Update virtual queues

foreach j ∈ {1, . . . ,m} do
Zj(t+ 1) =
max [Zj(t) + (

∑n
i=1 ajixi(t)− bj), 0]

end
t = t+ 1

end

less than or equal to the corresponding value with any other
feasible decisionx∗

i ∈ [0, x(max)]:

L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)

≤ 1
2

∑n

i=1

{

∑m

j=1 [Zj(t) + ajix
∗
i (t)]

2 − 2V cix
∗
i (t)

}

+ 1
2

∑m

j=1

{

[Zj(t)− bj ]
2 − (n+ 1)Z2

j (t) +Hj

}

≤
∑m

j=1 Zj(τ)[
∑n

i=1 ajix
∗
i (τ) − bj]− V

∑n
i=1 cix

∗
i (τ) + E

(55)

where

E =

m
∑

j=1

[

n
∑

i=1

|aji|x
(max)
i + bj

]2

and the final inequality uses (13).
Assume that problem (48) hasx∗ = (x∗

i )|
n
i=1 as an optimal

solution andy(opt)
0 as the optimal cost. This optimal solution

has the following properties:

y
(opt)
0 =

n
∑

i=1

cix
∗
i

n
∑

i=1

ajix
∗
i ≤ bj, j ∈ {1, . . . ,m}.

By applying xi(t) = x∗
i every iteration, the bound (55)

becomes

L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)

≤ −V y
(opt)
0 + E

Summing fromτ = 0 to t− 1 and rearranging lead to

L(Θ(t)) − L(Θ(0))− V

t−1
∑

τ=0

y0(τ) ≤ Et− V ty
(opt)
0

and

t−1
∑

τ=0

y0(τ) ≥
L(Θ(t))− L(Θ(0))− Et

V
+ ty

(opt)
0 .

Since Algorithm 3 initializesΘ(0) = 0, L(Θ(0)) = 0 and
alsoL(Θ(t)) ≥ 0. Then, dividing byt leads to

1

t

t−1
∑

τ=0

y0(τ) ≥
L(Θ(t))

tV
−

E

V
+ y

(opt)
0 (56)

1

t

t−1
∑

τ=0

y0(τ) ≥ −
E

V
+ y

(opt)
0 . (57)

The bound (57) shows that, whenV is large, the time-averaged
objective value from the algorithm approaches the optimal
objective value.

Since the feasible set of(xi(t))
n

i=1 in problem (49) is
bounded, there exist somey(max)

0 ≥ 0 such thaty0(t) ≤ y
(max)
0

for all t. Then, the bound (56) can also be rearranged to be

L(Θ(t)) ≤ Et+ V
t−1
∑

τ=0

y0(τ) − V ty
(opt)
0

m
∑

j=1

Z2
j (t) ≤ 2Et+ 2V t

[

y
(max)
0 − y

(opt)
0

]

Zj(t) ≤

√

2Et+ 2V t
[

y
(max)
0 − y

(opt)
0

]

Zj(t)

t
≤

√

1

t

{

2E + 2V
[

y
(max)
0 − y

(opt)
0

]}

.

From (51), it follows that
n
∑

i=1

ajix̄i(t)− bj ≤

√

1

t

{

2E + 2V
[

y
(max)
0 − y

(opt)
0

]}

. (58)

The bound (58) shows that the constraints of problem (48) are
asymptotically satisfied ast approaches infinity.

When the number of iterations is limited, we can obtain
convergence results in this case by assumingV = 1/ε and
t = 1/ε3 and consider (57) and (58). This leads to

y
(opt)
0 −

1

t

t−1
∑

τ=0

y0(τ) ≤ Eε = O(ε).

and
n
∑

i=1

ajix̄i(t)− bj ≤

√

1

1/ε3

{

2E + 2/ε×
[

y
(max)
0 − y

(opt)
0

]}

= O(ε). (59)

Therefore, usingO(1/ε3) iterations ensures the time-averaged
value ofȳ0(t) is withinO(ε) of the optimal valuey(opt)

0 , and all
constraints are withinO(ε) of being satisfied. However, This
O(1/ε3) tradeoff can be improved to anO(1/ε2) tradeoff if
the problem (49) satisfies a mild “Slater assumption” as the
following.

Assumption 2:There are valuesǫ > 0 andy
(opt)
0 ≤ y

(ǫ)
0 ≤

y
(max)
0 and a static policy choosing(x∗

i )
n
i=1 every iteration that

satisfies:

y∗0(t) = y
(ǫ)
0

∑n

i=1 ajix
∗
i − bj ≤ −ǫ j ∈ {1, . . . ,m}

0 ≤ x∗
i ≤ x

(max)
i .
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In fact, this assumption is a static version of Assumption 1
and is similar to a general Slater condition in the convex
optimization theory [17].

Applying Assumption (2) to (55), it follows that

L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)

≤ −V
∑n

i=1 cix
∗
i +

∑m
j=1 Zj(τ)[

∑n
i=1 ajix

∗
i − bj ] + E

≤ −V y
(ǫ)
0 − ǫ

∑m
j=1 Zj(τ) + E

From triangle inequality,‖Z(τ)‖ ≤
∑m

j=1 Zj , the above
inequality is

L(Θ(τ + 1))− L(Θ(τ)) − V y0(τ)

≤ −V y
(ǫ)
0 − ǫ‖Z(τ)‖ + E

SinceL(Θ(τ)) = 1
2‖Z(τ)‖2, we have:

‖Z(τ + 1)‖2 − ‖Z(τ)‖2 ≤ 2
[

V
(

y0(τ) − y
(ǫ)
0

)

− ǫ‖Z(τ)‖ + E
]

.

If ‖Z(τ)‖ ≥
V
(

y
(max)
0 −y

(ǫ)
0

)

+E

ǫ
, then

‖Z(τ + 1)‖2 − ‖Z(τ)‖2 ≤ 0.

Since
∑m

j=1 Z
2
j (τ) = ‖Z(τ)‖2, the above inequality implies

that the value of
∑m

j=1 Z
2
j (τ) is not increased in the next

iteration. Therefore, the value of eachZj(τ) is bounded by,
for all τ ≥ 0,

Zj(τ) ≤
V
(

y
(max)
0 − y

(ǫ)
0

)

+ E

ǫ
+

n
∑

i=1

|aji|x
(max)
i .

Dividing by τ :

Zj(τ)

τ
≤

V
(

y
(max)
0 − y

(ǫ)
0

)

+ E

ǫτ
+

∑n
i=1 |aji|x

(max)
i

τ
.

WhenV = 1/ε andτ = 1/ε2, it follows that

Zj(τ)

τ
≤

1/ε×
(

y
(max)
0 − y

(ǫ)
0

)

+ E

ǫ/ε2
+

∑n
i=1 |aji|x

(max)
i

1/ε2

= O(ε).

From (51), it follows that

n
∑

i=1

ajix̄i(t)− bj ≤ O(ε).

Thus, under Assumption 2, usingO(1/ε2) iterations ensures
the time-averaged value of̄y0(t) is within O(ε) of the optimal
value y

(opt)
0 , and all constraints are withinO(ε) of being

satisfied. This is theO(1/ε2) tradeoff between computation
and accuracy.

TABLE I
NUMERICAL RESULTS FROM AN EXAMPLE PROBLEM

Quadratic Max-weight Optimal

x̄1(500) 2.531 2.540 2.500
x̄2(500) 0.834 0.820 0.833
x1(500) 2.500 0.000 2.500
x2(500) 0.833 0.000 0.833

0 50 100 150 200
iteration

0

2

4

6

8

10

x
i(
t)

Values of decision variables under the Max-Weight policy

MW x1 (t)

MW x2 (t)

0 50 100 150 200
iteration

0

2

4

6

8

10

x
i(
t)

Values of decision variables under the Quadratic policy

QD x1 (t)

QD x2 (t)

Fig. 8. Comparison between max-weight and quadratic policies for solving
linear programming

E. Example

For an example, we solved a small linear programming
problem by using the max-weight and quadratic policies. The
problem is

Maximize 2x1 + x2

Subject to x1 + x2 ≤ 4

5x1 + 3x2 ≤ 15

x1 ≤ 2.5

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10.

The solution of this problem isx1 = 2.5, x2 = 0.833. For
both policies, the parameters areV = 200 and the number of
iteration is500. The values of decision variablesxi(t) from
both policies are shown in figure 8. The numerical values are
show in table I.

These time-averaged values of decision variables from both
policies approach the optimal solution. If number of iteration
is increased, the precision is increased. Interestingly, the
quadratic policy has a smooth property, as shown in Fig. 8, and
that the intermediate decision values converge to an optimal
solution before the time-averaged values does.

VII. C ONCLUSION

We studied information quality maximization in a system
with uplink and single-hop relay capability which was done
by designing queuing dynamic. From Lyapunov optimization
theory, we proposed a novel quadratic policy having a sep-
arable property, which leads to a distributed mechanism of
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format selection. In comparison with the standard method,
max-weight policy, our policy leads to an algorithm that
reduces queue backlog by a significant constant. This reduction
also propagates and grows with the number of queues in the
system. We simulated the algorithm to verify correctness and
behavior of the new policy. In addition, we shows how the
novel policy is applied to solve linear programs.
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