
Bypassing Space Explosion in
High-Speed Regular Expression Matching

Jignesh Patel Alex X. Liu∗ Eric Torng

Abstract—Network intrusion detection and prevention systems
commonly use regular expression (RE) signatures to represent
individual security threats. While the corresponding DFA for
any one RE is typically small, the DFA that corresponds to
the entire set of REs is usually too large to be constructed or
deployed. To address this issue, a variety of alternative automata
implementations that compress the size of the final automaton
have been proposed such as XFA and D2FA. The resulting final
automata are typically much smaller than the corresponding
DFA. However, the previously proposed automata construction
algorithms do suffer from some drawbacks. First, most employ
a “Union then Minimize” framework where the automata for
each RE are first joined before minimization occurs. This leads
to an expensive NFA to DFA subset construction on a relatively
large NFA. Second, most construct the corresponding large DFA
as an intermediate step. In some cases, this DFA is so large that
the final automaton cannot be constructed even though the final
automaton is small enough to be deployed. In this paper, we
propose a “Minimize then Union” framework for constructing
compact alternative automata focusing on the D2FA. We show
that we can construct an almost optimal final D2FA with small
intermediate parsers. The key to our approach is a space and time
efficient routine for merging two compact D2FA into a compact
D2FA. In our experiments, our algorithm runs on average 155
times faster and uses 1500 times less memory than previous
algorithms. For example, we are able to construct a D2FA with
over 80,000,000 states using only 1GB of main memory in only
77 minutes.

I. I NTRODUCTION

A. Background and Problem Statement

The core component of today’s network security devices
such as Network Intrusion Detection and Prevention Systems
is signature based deep packet inspection. The contents of
every packet need to be compared against a set of signa-
tures. Application level signature analysis can also be used
for detecting peer-to-peer traffic, providing advanced QoS
mechanisms. In the past, the signatures were specified as
simple strings. Today, most deep packet inspection engines
such as Snort [1], [2], Bro [3], TippingPoint X505 and Cisco
security appliances useregular expressions (REs)to define

∗ Alex X. Liu is the corresponding author of this paper. Email:
alexliu@cse.msu.edu. Tel: +1 (517) 353-5152. Fax: +1 (517) 432-1061.

Jignesh Patel and Eric Torng are with the Department of Computer Science
and Engineering, Michigan State University, East Lansing,MI, 48824. Alex
X. Liu is with the Department of Computer Science and Technology at
Nanjing University and the Department of Computer Science andEngineering
at Michigan State University. The preliminary version of this paper titled
“Bypassing space explosion in regular expression matching for network
intrusion detection and prevention systems” was published in the proceedings
of the Network and Distributed System Security Symposium (NDSS), 2012.
This work is supported in part by the National Science Foundation under Grant
Number CNS-1017588. E-mail:{patelji1, alexliu, torng}@cse.msu.edu

Manuscript received September 16, 2012.

the signatures. REs are used instead of simple string patterns
because REs are fundamentally more expressive and thus are
able to describe a wider variety of attack signatures [4]. Asa
result, there has been a lot of recent work on implementing
high speed RE parsers for network applications.

Most RE parsers use some variant of the Deterministic
Finite State Automata (DFA) representation of REs. A DFA
is defined as a5-tuple (Q,Σ, δ, q0, A), whereQ is a set of
states,Σ is an alphabet,δ : Q × Σ → Q is the transition
function,q0 ∈ Q is the start, andA ⊆ Q is the set of accepting
states. Any set of REs can be converted into an equivalent DFA
with the minimum number of states [5], [6]. DFAs have the
property of needing constant memory access per input symbol,
and hence result in predictable and fast bandwidth. The main
problem with DFAs is space explosion: a huge amount of
memory is needed to store the transition function which has
|Q|×|Σ| entries. Specifically, the number of states can be very
large (state explosion), and the number of transitions per state
is large (|Σ|).

To address the DFA space explosion problem, a variety
of DFA variants have been proposed that require much less
memory than DFAs to store. For example, there is theDelayed
Input DFA (D2FA) proposed by Kumaret al. [7]. The basic
idea of D2FA is that in a typical DFA for real world RE set,
given two statesu andv, δ(u, c) = δ(v, c) for many symbols
c ∈ Σ. We can remove all the transitions forv from δ for
which δ(u, c) = δ(v, c) and make a note thatv’s transitions
were removed based onu’s transitions. When the D2FA is later
processing input and is in statev and encounters input symbol
x, if δ(v, x) is missing, the D2FA can useδ(u, x) to determine
the next state. We can do the same thing for most states in
the DFA, and it results in tremendous transition compression.
Kumar et al. observe an average decrease of 97.6% in the
amount of memory required to store a D2FA when compared
to its corresponding DFA.

In more detail, to build a D2FA from a DFA, just do the
following two steps. First, for each stateu ∈ Q, pick adeferred
state, denoted byF (u). (We can haveF (u) = u.) Second,
for each stateu ∈ Q for which F (u) 6= u, remove all the
transitions foru for which δ(u, x) = δ(F (u), x).

When traversing the D2FA, if on current stateu and current
input symbolx, δ(u, x) is missing (i.e. has been removed),
we can useδ(F (u), x) to get the next state. Of course,
δ(F (u), x) might be missing too, in which case we then use
δ(F (F (u)), x) to get the next state, and so on. The only
restriction on selecting deferred states is that the function F
cannot create a cycle other than a self-loop on the states;
otherwise all states on that cycle might have their transitions

2

on somex ∈ Σ removed and there would no way of finding
the next state.

Figure 1(a) shows a DFA for the REs set{.*a.*bcb,
.*c.*bcb}, and Figure 1(c) shows the D2FA built from the
DFA. The dashed lines represent deferred states. The DFA has
13×256 = 3328 transitions, whereas the D2FA only has1030
actual transitions and9 deferred transitions.

D2FA are very effective at dealing with the DFA space
explosion problem. In particular, D2FA exhibit tremendous
transition compression reducing the size of the DFA by a huge
factor; this makes D2FA much more practical for a software
implementation of RE matching than DFAs. D2FAs are also
used as starting point for advanced techniques like those in
[8], [9].

This leads us to the fundamental problem we address in this
paper. Given as input a set of REsR, build a compact D2FA
as efficiently as possible that also supports frequent updates.
Efficiency is important as current methods for constructing
D2FA may be so expensive in both time and space that they
may not be able to construct the final D2FA even if the D2FA
is small enough to be deployed in networking devices that
have limited computing resources. Such issues become doubly
important when we consider the issue of the frequent updates
(typically additions) toR that occur as new security threats
are identified. The limited resource networking device must
be able to efficiently compute the new D2FA. One subtle but
important point about this problem is that the resulting D2FA
must report which RE (or REs) fromR matched a given input;
this applies because each RE typically corresponds to a unique
security threat. Finally, while we focus on D2FA in this paper,
we believe that our techniques can be generalized to other
compact RE matching automata solutions [10]–[14].

B. Summary of Prior Art

Given the input RE setR, any solution that builds a D2FA
for R will have to do the following two operations: (a) union
the automata corresponding to each RE inR and (b) minimize
the automata, both in terms of the number of states and the
number of edges. Previous solutions [7], [15] employ a “Union
then Minimize” framework where they first build automata for
each RE withinR, then perform union operations on these
automata to arrive at one combined automaton for all the
REs in R, and only then minimize the resulting combined
automaton. In particular, previous solutions typically perform
a computationally expensive NFA to DFA subset construction
followed by or composed with DFA minimization (for states)
and D2FA minimization (for edges).

Consider the D2FA construction algorithm proposed by
Kumar et al. [7]. They first apply the Union then Minimize
framework to produce a DFA that corresponds toR and
then construct the corresponding minimum state DFA. Next,
in order to maximize transition compression, they solve a
maximum weight spanning tree problem on the following
weighted graph which they call aSpace Reduction Graph
(SRG). The SRG has DFA states as its vertices. The SRG is a
complete graph with the weight of an edgew(u, v) equal to
the number of common transitions between DFA statesu and
v. Once the spanning tree is selected, a root state is picked and

all edges are directed towards the root. These directed edges
give the deferred state for each state. Figure 1(b) shows the
SRG built for the DFA in Figure 1(a).

Becchi and Crowley also use the Union then Minimize
Framework to arrive at a minimum state DFA [15]. At this
point, rather than using an SRG to set deferment states for
each state, Becchi and Crowley use state levels where the level
of a DFA stateu is the length of the shortest string that takes
the DFA from the start state to stateu. Becchi and Crowley
observed that if all states defer to a state that is at a lower level
than itself, then the deferment functionF can never produce a
cycle. Furthermore, when processing any input string of length
n, at mostn− 1 deferred transitions will be processed. Thus,
for each stateu, among all the states at a lower level thanu,
Becchi and Crowley setF (u) to be the state which shares the
most transitions withu. The resulting D2FA typically has a
few more transitions than the minimal D2FA that results by
applying the Kumaret al. algorithm.

C. Limitations of Prior Art

Prior methods have three fundamental limitations. First, they
follow the Union then Minimize framework which means they
create large automata and only minimize them at the end.
This also means they must employ the expensive NFA to
DFA subset construction. Second, prior methods build the
corresponding minimum state DFA before constructing the
final D2FA. This is very costly in both space and time. The
D2FA is typically 50 to 100 times smaller than the DFA,
so even if the D2FA would fit in available memory, the
intermediate DFA might be too large, making it impractical
to build the D2FA. This is exacerbated in the case of the
Kumar et al. algorithm which needs the SRG which ranges
from about the size of the DFA itself to over50 times the
size of the DFA. The resulting space and time required to
build the DFA and SRG impose serious limits on the D2FA
that can be practically constructed. We do observe that the
method proposed in [15] does not need to create the SRG.
Furthermore, as the authors have noted, there is a way to go
from the NFA directly to the D2FA, but implementing such an
approach is still very costly in time as many transition tables
need to be repeatedly recreated in order to realize these space
savings. Third, none of the previous methods provide efficient
algorithms for updating the D2FA when a new RE is added
to R.

D. Our Approach

To address these limitations, we propose a Minimize then
Union framework. Specifically, we first minimize the small
automata corresponding to each RE fromR and then union the
minimized automata together. A key property of our method
is that our union algorithm automatically produces a mini-
mum state D2FA for the regular expressions involved without
explicit state minimization. Likewise, we choose deferment
states efficiently while performing the union operation using
deferment information from the input D2FAs. Together, these
optimizations lead to a vastly more efficient D2FA construction
algorithm in both time and space.

In more detail, givenR, we first build a DFA and D2FA
for each individual RE inR. The heart of our technique is

3

a

b

 {a,c}

 {b,c}

0

1 3

a

c

 {a,b,c}

 {b,c}

2

4

6

b

b

5

7

9/1

b b

8

10c
12/1,2

c

c b

c

11/2

from!1,3

from!2,5,8,11

from!4,6,7,9,10,12from
4,6,10

c

a

from!5,8,11
b

b

b

b

b

cc

b

c

c

c

2

8

5

11

254

254

256
0

1

3

254

64

712

910

254

254

256

254 256

256

254

254

a

b

 {a,c}

 {b,c}

0

1 3

a

c

 {a,b}

 b

2

4

6

b

b

5

7

9/1

b b

8

10
c

12/1,2

c

c b

c

11/2

(a) (b) (c)

Fig. 1. (a) DFA for{.*a.*bcb, .*c.*bcb}. (b) Corresponding SRG. Edges of weight≤ 1 not shown. Unlabeled edges have weight255. (c) The D2FA.

the D2FA merge algorithm that performs the union. It merges
two smaller D2FAs into one larger D2FA such that the merged
D2FA is equivalent to the union of REs that the D2FAs being
merged were equivalent to. Starting from the the initial D2FAs
for each RE, using this D2FA merge subroutine, we merge two
D2FAs at a time until we are left with just one final D2FA.
The initial D2FAs are each equivalent to their respective REs,
so the final D2FA will be equivalent to the union of all the
REs inR. Figures 2(a) and 2(b) show the initial D2FAs for the
RE set{.*a.*bcb, .*c.*bcb}. The resulting D2FA from
merging these two D2FAs using the D2FA merge algorithm is
shown in Figure 2(c).

The D2FA produced by our merge algorithm can be larger
than the minimal D2FA produced by the Kumaret al. algo-
rithm. This is because the Kumaret al.algorithm does a global
optimization over the whole DFA (using the SRG), whereas
our merge algorithm efficiently computes state deferment in
the merged D2FA based on state deferment in the two input
D2FAs. In most cases, the D2FA produced by our approach
is sufficiently small to be deployed. However, in situations
where more compression is needed, we offer an efficient final
compression algorithm that produces a D2FA very similar in
size to that produced by the Kumaret al. algorithm. This final
compression algorithm uses an SRG; we improve efficiency
by using the deferment already computed in the merged D2FA
to greatly reduce the size of this SRG and thus significantly
reduce the time and memory required to do this compression.

a) Advantages of our algorithm: One of the main
advantages of our algorithm is a dramatic increase in time
and space efficiency. These efficiency gains are partly due
to our use of the Minimize then Union framework instead
of the Union then Minimize framework. More specifically,
our improved efficiency comes about from the following four
factors. First, other than for the initial DFAs that correspond to
individual REs inR, we build D2FA bypassing DFAs. Those
initial DFAs are very small (typically< 50 states), so the
memory and time required to build the initial DFAs and D2FAs
is negligible. The D2FA merge algorithm directly merges the
two input D2FAs to get the output D2FA without creating the
DFA first. Second, other than for the initial DFAs, we never
have to perform the NFA to DFA subset construction. Third,
other than for the initial DFAs, we never have to perform
DFA state minimization. Fourth, when setting deferment states
in the D2FA merge algorithm, we use deferment information
from the two input D2FA. This typically involves performing

only a constant number of comparisons per state rather than
a linear in the number of states comparison per state as is
required by previous techniques. All told, our algorithm has a
practical time complexity ofO(n|Σ|) wheren is the number
of states in the final D2FA and |Σ| is the size of the input
alphabet. In contrast, Kumaret al.’s algorithm [7] has a time
complexity ofO(n2(log(n)+ |Σ|)) and Becchi and Crowley’s
algorithm [15] has a time complexity ofO(n2|Σ|) just for
setting the deferment state for each state and ignoring the cost
of the NFA subset construction and DFA state minimization.
See Section V-D for a more detailed complexity analysis.

These efficiency advantages allow us to build much larger
D2FAs than are possible with previous methods. For the
synthetic RE set that we consider in Section VI, given a
maximum working memory size of 1GB, we can build a
D2FA with 80, 216, 064 states with our D2FA merge algorithm
whereas the Kumaret al. algorithm can only build a D2FA
with 397, 312 states. Also from Section VI, our algorithm is
typically 35 to 250 times faster than previous algorithms on
our RE sets.

Besides being much more efficient in constructing D2FA
from scratch, our algorithm is very well suited for frequent
RE updates. When an RE needs to be added to the current
set, we just need to merge the D2FA for the RE to the current
D2FA using our merge routine which is a very fast operation.

b) Technical Challenges: For our approach to work, the
main challenge is to figure out how to efficiently union two
minimum state D2FAsD1 andD2 so that the resulting D2FA
D3 is also a minimum state D2FA. There are two aspects to
this challenge. First, we need to make sure that D2FA D3 has
the minimum number of states. More specifically, supposeD1

andD2 are equivalent to RE setsR1 andR2, respectively. We
need to ensure thatD3 has the minimum number of states of
any D2FA equivalent toR1 ∪ R2. We use an existingunion
cross product constructionfor this and prove that it results in
a minimum state D2FA for our purpose. We emphasize that
this is not true in general but holds for applications whereD3

must identify which REs fromR1 ∪ R2 match a given input
string. Many security applications meet this criteria.

Our second challenge is building the D2FA D3 without
building the entire DFA equivalent toD3 while ensuring that
D3 achieves significant transition compression; that is, the
number of actual edges stored in D2FA D3 must be small.
More concretely, as each state inD3 is created, we need to
immediately set a deferred state for it; otherwise, we wouldbe

4

a b c b

 a b

0 1 2 3 4/1

(a)

c b c b

 c b

0 1 2 3 4/2

(b)

a b

 {a,c} {b,c}

0,0

0

1,0

1

2,0

3

a

c

 {a,b}

 b

0,1

2

1,1

4

3,1

6

b b

0,2

5

2,2

7

4,2

9/1

b

b

0,3

8

3,3

10

c

4,4
12/1,2

c

c

b

c

0,4

11/2

(c)

7
256

4
255

9
256

4 2 1

4 2 1

12

4
255

7
256

4 2 1

2 1

9

2 1

2 1

7
4
255

2
255

0

2 1

5

Deferment for 5= 0,2!

Deferment for 7= 2,2!

Deferment for 9= 4,2!

Deferment for 12= 4,4!

(d)
Fig. 2. (a)D1: D2FA for .*a.*bcb. (b) D2: D2FA for .*c.*bcb. (c) D3: merged D2FA. (d) Illustration of setting deferment for some states inD3.

storing the entire DFA. Furthermore, we need to choose a good
deferment state that eliminates as many edges as possible.
We address this challenge by efficiently choosing a good
deferment state forD3 by using the deferment information
from D1 and D2. Typically, the algorithm only needs to
compare a handful of candidate deferment states.

c) Key Contributions: In summary, we make the fol-
lowing contributions: (1) We propose a novel Minimize then
Union framework for efficiently construcing D2FA for network
security RE sets that we believe will generalize to other RE
matching automata. Note, Smithet al. used the Minimize then
Union Framework when constructing XFA [11], [12], though
they did not prove any properties about their union algorithms.
(2) To implement this framework, we propose a very efficient
D2FA merge algorithm for performing the union of two
D2FAs. (3) When maximum compression is needed, we
propose an efficient final compression step to produce a nearly
minimal D2FA. (4) To prove the correctness of our D2FA
merge algorithm, we prove a fundamental property about the
standard union cross product construction and minimum state
DFAs when applied to network security RE sets that can be
applied to other RE matching automata.

We implemented our algorithms and conducted experiments
on real-world and synthetic RE sets. Our experiments indicate
that: (a) Our algorithm generates D2FA with a fraction of the
memory required by existing algorithms making it feasible to
build D2FA with many more states. For the real world RE sets
we consider in the experimental section, our algorithm requires
an average of 1500 times less memory than the algorithm
proposed in [7] and 30 times less memory than the algorithm
proposed in [15]. (b) Our algorithm runs much faster then
existing algorithms. For the real world RE sets we consider in
the experimental section, our algorithm runs an average of 154
times faster than the algorithm proposed in [7] and 19 times
faster than the algorithm proposed in [15]. (c) Even with the
huge space and time efficiency gains, our algorithm generates
D2FA only slightly larger than existing algorithms in the worst
case. If the resulting D2FA is too large, our efficient final
compression algorithm produces a nearly minimal D2FA.

II. RELATED WORK
Initially network intrusion detection and prevention systems

used string patterns to specify attack signatures [16]–[22].
Sommer and Paxson [4] first proposed using REs instead of
strings to specify attack signatures. Today network intrusion
detection and prevention systems mostly use REs for attack
signatures. RE matching solutions are typically software-based
or hardware-based (FPGA or ASIC).

Software-based approaches are cheap and deployable on
general purpose processors, but their throughput may not be
high. To achieve higher throughput, software solutions can
be deployed on customized ASIC chips at the cost of low
versatility and high deployment cost. To achieve deterministic
throughput, software-based solutions must use DFAs, which
face a space explosion problem. Specifically, there can be state
explosion where the number of states increases exponentially
in the number of REs, and the number of transitions per state
is extremely high. To address the space explosion problem,
transition compression and state minimization software-based
solutions have been developed.

Transition compression schemes that minimize the number
of transitions per state have mostly used one of two techniques.
One is alphabet re-encoding, which exploits redundancy within
a state, [15], [23]–[25]. The second is default transitionsor
deferment states which exploits redundancy among states [7],
[8], [15], [26]. Kumaret al. [7] originally proposed the use of
default transitions. Becchi and Crowley [15] proposed a more
efficient way of using default transitions. Our work falls into
the category of transition compression via default transitions.
Our algorithms are much more efficient than those of [7], [15]
and thus can be applied to much larger RE sets. For example,
if we are limited to 1GB of memory to work with, we show
that Kumar et al.’s original algorithm can only build a D2FA
with less than 400,000 states whereas our algorithm can build
a D2FA with over 80,000,000 states.

Two basic approaches have been proposed for state min-
imization. One is to partition the given RE set and build a
DFA for each partition [27]. When inspecting packet payload,
each input symbol needs to be scanned against each partition’s
DFA. Our work is orthogonal to this technique and can be used

5

in combination with this technique. The second approach is
to modify the automata structure and/or use extra memory to
remember history and thus avoid state duplication [10]–[14].
We believe our merge technique can be adopted to work with
some of these approaches. For example, Smithet al. also use
the Minimize then Union framework when constructing XFA
[11], [12]. One potential drawback with XFA is that there is
no fully automated procedure to construct XFAs from a set
of regular expressions. Paraphrasing Yang, Karim, Ganapathy,
and Smith [28], constructing an XFA from a set of REs
requires manual analysis of the REs to identify and eliminate
ambiguity.

FPGA-based solutions typically exploit the parallel process-
ing capabilities of FPGAs to implement a Nondeterministic
Finite Automata (NFA) [13], [24], [29]–[33] or to implement
multiple parallel DFAs [34]. TCAM based solutions have been
proposed for string matching in [20]–[22], [35] and for REs
in [9]. Our work can potentially be applied to these solutions
as well.

Recently and independently, Liuet al.proposed to construct
DFA by hierarchical merging [36]. That is, they essentially
propose the Minimize then Union framework for DFA con-
struction. They consider merging multiple DFAs at a time
rather than just two. However, they do not consider D2FA, and
they do not prove any properties about their merge algorithm
including that it results in minimum state DFAs.

III. PATTERN MATCHING DFAS
A. Pattern Matching DFA Definition

In a standard DFA, defined as a5-tuple (Q,Σ, δ, q0, A),
each accepting state is equivalent to any other accepting state.
However, in many pattern matching applications where we
are given a set of REsR, we must keep track of which REs
have been matched. For example, each RE may correspond
to a unique security threat that requires its own processing
routine. This leads us to define Pattern Matching Deterministic
Finite State Automata (PMDFA). The key difference between
a PMDFA and a DFA is that for each stateq in a PMDFA, we
cannot simply mark it as accepting or rejecting; instead, we
must record which REs fromR are matched when we reach
q. More formally, given as input a set of REsR, a PMDFA
is a 5-tuple (Q,Σ, δ, q0,M) where the last termM is now
defined asM : Q→ 2R.

B. Minimum State PMDFA construction
Given a set of REsR, we can build the corresponding min-

imum state PMDFA using the standard Union then Minimize
framework: first build an NFA for the RE that corresponds
to an OR of all the REsr ∈ R, then convert the NFA to a
DFA, and finally minimize the DFA treating accepting states
as equivalent if and only if they correspond to the same set
of regular expressions. This method can be very slow, mainly
due to the NFA to DFA conversion, which often results in
an exponential growth in the number of states. Instead, we
propose a more efficient Minimize then Union framwork.

Let R1 and R2 denote any two disjoint subsets ofR,
and letD1 and D2 be their corresponding minimum state
PMDFAs. We use the standardunion cross productcon-
struction to construct a minimum state PMDFAD3 that

corresponds toR3 = R1 ∪ R2. Specifically, suppose we
are given the two PMDFAsD1 = (Q1,Σ, δ1, q01,M1) and
D2 = (Q2,Σ, δ2, q02,M2). The union cross product PMDFA
of D1 andD2, denoted as UCP(D1, D2), is given byD3 =
UCP(D1, D2) = (Q3,Σ, δ3, q03,M3) whereQ3 = Q1 × Q2,
δ3(〈qi, qj〉, x) = 〈δ1(qi, x), δ2(qj , x)〉, q03 = 〈q01, q02〉, and
M3(〈qi, qj〉) =M1(qi) ∪M2(qj).

Each state inD3 corresponds to a pair of states, one from
D1 and one fromD2. For notational clarity, we use〈 and
〉 to enclose an ordered pair of states. Transition functionδ3
just simulates bothδ1 and δ2 in parallel. Many states inQ3

might not be reachable from the start stateq03. Thus, while
constructingD3, we only create states that are reachable from
q03.

We now argue that this construction is correct. This is a
standard construction, so the fact thatD3 is a PMDFA for
R3 = R1 ∪ R2 is straightforward and covered in standard
automata theory textbooks (e.g. [5]). We now show thatD3 is
also a minimum state PMDFA forR3 assumingR1∩R2 = ∅,
a result that does not follow for standard DFAs.

Theorem III.1. Given two RE sets,R1 andR2, and equiva-
lent minimum state PMDFAs,D1 and D2, the union cross
product DFA D3 = UCP(D1, D2), with only reachable
states constructed, is the minimum state PMDFA equivalent
to R3 = R1 ∪R2 if R1 ∩R2 = ∅.

Proof: First since only reachable states are constructed,
D3 cannot be trivially reduced. Now assumeD3 is not
minimum. That would mean there are two states inD3, say
〈p1, p2〉 and 〈q1, q2〉, that are indistinguishable. This implies
that

∀x ∈ Σ∗, M3(δ3(〈p1, p2〉, x)) =M3(δ3(〈q1, q2〉, x)).

Working on both sides of this equality, we get∀x ∈ Σ∗,

M3(δ3(〈p1, p2〉, x)) =M3(〈δ1(p1, x), δ2(p2, x)〉)

=M1(δ1(p1, x)) ∪M2(δ2(p2, x))

as well as∀x ∈ Σ∗,

M3(δ3(〈q1, q2〉, x)) =M3(〈δ1(q1, x), δ2(q2, x)〉)

=M1(δ1(q1, x)) ∪M2(δ2(q2, x))

This implies that

∀x ∈ Σ∗M1(δ1(p1, x)) ∪M2(δ2(p2, x)) =

M1(δ1(q1, x)) ∪M2(δ2(q2, x)).

Now sinceR1 ∩R2 = ∅, this gives us

∀x ∈ Σ∗, M1(δ1(p1, x)) =M1(δ1(q1, x)) and

∀x ∈ Σ∗, M2(δ1(p2, x)) =M2(δ1(q2, x))

This implies thatp1 andq1 are indistinguishable inD1 and
p2 and q2 are indistinguishable inD2, implying that both
D1 and D2 are not minimum state PMDFAs, which is a
contradiction and the result follows.

Our efficient construction algorithm works as follows. First,
for each REr ∈ R, we build an equivalent minimum state
PMDFA D for r using the standard method, resulting in a set

6

of PMDFAs D. Then we merge two PMDFAs fromD at a
time using the above UCP construction until there is just one
PMDFA left in D. The merging is done in a greedy manner: in
each step, the two PMDFAs with the fewest states are merged
together. Note the conditionR1 ∩ R2 = ∅ is always satisfied
in all the merges.

In our experiments, our Minimize then Union technique runs
exponentially faster than the standard Union then Minimize
technique because we only apply the NFA to DFA step to the
NFAs that correspond to each individual regular expression
rather than the composite regular expression. This makes a
significant difference even when we have a relatively small
number of regular expressions. For example, for our C7 RE set
which contains 7 REs, the standard technique requires385.5
seconds to build the PMDFA, but our technique builds the
PMDFA in only 0.66 seconds. For the remainder of this paper,
we use DFA to stand for minimum state PMDFA.

IV. D2FA CONSTRUCTION
In this section, we first formally define what a D2FA is and

then describe how we can extend the Minimize then Union
technique to D2FA bypassing DFA construction.

A. D2FA Definition
Let D = (Q,Σ, δ, q0,M) be a DFA. A corresponding

D2FA D′ is defined as a6-tuple(Q,Σ, ρ, q0,M, F). Together,
function F : Q → Q and partial functionρ : Q × Σ → Q

are equivalent to DFA transition functionδ. Specifically,F
defines a unique deferred state for each state inQ, and ρ
is a partially defined transition function. We usedom(ρ) to
denote the domain ofρ, i.e. the values for whichρ is defined.
The key property of a D2FA D′ that corresponds to DFAD
is that ∀〈q, c〉 ∈ Q × Σ, 〈q, c〉 ∈ dom(ρ) ⇐⇒ (F (q) =
q ∨ δ(q, c) 6= δ(F (q), c)); that is for each state,ρ only has
those transitions that are different from that of its deferred
state in the underlying DFA. When defined,ρ(q, c) = δ(q, c).
States that defer to themselves must have all their transitions
defined. We only consider D2FA that correspond to minimum
state DFA, though the definition applies to all DFA.

The functionF defines a directed graph on the states ofQ.
A D2FA is well defined if and only if there are no cycles of
length> 1 in this directed graph which we call a deferment
forest. We usep→q to denoteF (p) = q, i.e. p directly defers
to q. We usep�q to denote that there is a path fromp to q
in the deferment forest defined byF . We usep u q to denote
the number of transitions in common between statesp andq;
i.e. p u q = |{c | c ∈ Σ ∧ δ(p, c) = δ(q, c)}|.

The total transition function for a D2FA is defined as

δ′(u, c) =

{

ρ(u, c) if 〈u, c〉 ∈ dom(ρ)
δ′(F (u), c) else

It is easy to see thatδ′ is well defined and equal toδ if the
D2FA is well defined.

B. D2FA Merge Algorithm
The UCP construction merges two DFAs together. We

extend the UCP construction to merge two D2FAs together
as follows. During the UCP construction, as each new stateu

is created, we defineF (u) at that time. We then defineρ to
only include transitions foru that differ fromF (u).

To help explain our algorithm, Figure 2 shows an example
execution of the D2FA merge algorithm. Figures 2(a) and 2(b)
show the D2FA for the REs.*a.*bcb and.*c.*bcb, re-
spectively. Figure 2(c) shows the merged D2FA for the D2FAs
in figures 2(a) and 2(b). We use the following conventions
when depicting a D2FA. The dashed lines correspond to the
deferred state for a given state. For each state in the merged
D2FA, the pair of numbers above the line refer to the states in
the original D2FAs that correspond to the state in the merged
D2FA. The number below the line is the state in the merged
D2FA. The number(s) after the ‘/’ in accepting states give the
id(s) of the pattern(s) matched. Figure 2(d) shows how the
deferred state is set for a few states in the merged D2FAsD3.
We explain the notation in this figure as we give our algorithm
description.

For each stateu ∈ D3, we set the deferred stateF (u) as
follows. While merging D2FAs D1 and D2, let stateu =
〈p0, q0〉 be the new state currently being added to the merged
D2FA D3. Let p0→p1→· · ·→pl be the maximal deferment
chainDC1 (i.e. pl defers to itself) inD1 starting atp0, and
q0→q1→· · ·→qm be the maximal deferment chainDC2 in D2

starting atq0. For example, in Figure 2 (d), we see the maximal
deferment chains foru = 5 = 〈0, 2〉, u = 7 = 〈2, 2〉, u = 9 =
〈4, 2〉, andu = 12 = 〈4, 4〉. For u = 9 = 〈4, 2〉, the top row
is the deferment chain of state4 in D1 and the bottom row
is the deferment chain of state2 in D2. We will choose some
state〈pi, qj〉 where0 ≤ i ≤ l and 0 ≤ j ≤ m to beF (u).
In Figure 2(d), we represent these candidateF (u) pairs with
edges between the nodes of the deferment chains. For each
candidate pair, the number on the top is the corresponding state
number inD3 and the number on the bottom is the number
of common transitions inD3 between that pair and stateu.
For example, foru = 9 = 〈4, 2〉, the two candidate pairs
represented are state 7 (〈2, 2〉) which shares 256 transitions
in common with state 9 and state 4 (〈1, 1〉) which shares 255
transitions in common with state 9. Note that a candidate pair
is only considered if it is reachable inD3. In Figure 2(d) with
u = 9 = 〈4, 2〉, three of the candidate pairs corresponding
to 〈4, 1〉, 〈2, 1〉, and 〈1, 2〉 are not reachable, so no edge is
included for these candidate pairs. Ideally, we wanti andj to
be as small as possible though not both 0. For example, our
best choices are typically〈p0, q1〉 or 〈p1, q0〉. In the first case,
p0 u p1 = 〈p0, q0〉 u 〈p1, q0〉, and we already havep0→p1 in
D1. In the second case,q0 u q1 = 〈p0, q0〉 u 〈p0, q1〉, and we
already haveq0→q1 in D2. In Figure 2 (d), we setF (u) to be
〈p0, q1〉 for u = 5 = 〈0, 2〉 andu = 12 = 〈4, 4〉, and we use
〈p1, q0〉 for u = 9 = 〈4, 2〉. However, it is possible that both
states are not reachable from the start state inD3. This leads
us to consider other possible〈pi, qj〉. For example, in Figure
2 (d), both〈2, 1〉 and 〈1, 2〉 are not reachable inD3, so we
use reachable state〈1, 1〉 asF (u) for u = 7 = 〈2, 2〉.

We consider a few different algorithms for choosing〈pi, qj〉.
The first algorithm which we call thefirst match methodis to
find a pair of states (pi, qj) for which 〈pi, qj〉 ∈ Q3 andi+ j

is minimum. Stated another way, we find the minimumz ≥ 1
such that the set of statesZ = {〈pi, qz−i〉 | (max(0, z−m) ≤
i ≤ min(l, z))∧(〈pi, qz−i〉 ∈ Q3)} 6= ∅. From the set of states
Z, we choose the state that has the most transitions in common

7

with 〈p0, q0〉 breaking ties arbitrarily. IfZ is empty for all
z > 1, then we just pick〈p0, q0〉, i.e. the deferment pointer
is not set (or the state defers to itself). The idea behind the
first match method is that〈p0, q0〉u 〈pi, qj〉 decreases asi+ j
increases. In Figure 2(d), all the selectedF (u) correspond to
the first match method.

A second more complete algorithm for settingF (u) is
the best match methodwhere we always consider all(l +
1) × (m + 1) − 1 pairs and pick the pair that is inQ3 and
has the most transitions in common with〈p0, q0〉. The idea
behind the best match method is that it is not always true that
〈p0, q0〉 u 〈px, qy〉 ≥ 〈p0, q0〉 u 〈px+i, qy+j〉 for i+ j > 0. For
instance we can havep0 u p2 < p0 u p3, which would mean
〈p0, q0〉 u 〈p2, q0〉 < 〈p0, q0〉 u 〈p3, q0〉. In such cases, the
first match method will not find the pair along the deferment
chains with the most transitions in common with〈p0, q0〉. In
Figure 2(d), all the selectedF (u) also correspond to the best
match method. It is difficult to create a small example where
first match and best match differ.

When adding the new stateu to D3, it is possible that
some state pairs along the deferment chains that were not
in Q3 while finding the deferred state foru will later on be
added toQ3. This means that after all the states have been
added toQ3, the deferment foru can potentially be improved.
Thus, after all the states have been added, for each state we
again find a deferred state. If the new deferred state is better
than the old one, we reset the deferment to the new deferred
state. Algorithm 1 shows the pseudocode for the D2FA merge
algorithm with the first match method for choosing a deferred
state. Note that we useu and 〈u1, u2〉 interchangeably to
indicate a state in the merged D2FA D3 whereu is a state in
Q3, andu1 andu2 are the states inQ1 andQ2, respectively,
that stateu corresponds to.

C. Original D2FA construction for one RE
Before we can merge D2FAs, we first must construct a

D2FA for each RE. One option, which we used in the NDSS
preliminary version of this paper, is the D2FA construction
algorithm proposed in [9] which is based on the original D2FA
construction algorithm proposed in [7]. This is an effective
algorithm which we now describe in more detail.

The first step is to build the Space Reduction Graph (SRG):
a complete graph where the vertices represent DFA states
and the weight of each SRG edge is the number of common
transitions between its end points in the DFA. Meinerset
al. note that for real world RE sets, the distribution of edge
weights in the SRG is bimodal, with edge weights typically
either very small (< 10) or very large (> 180). They chose
to omit low (< 10) weight edges from the SRG which then
produced a forest with many distinct connected components.
They then construct a maximum spanning forest of the SRG
using Kruskal’s algorithm.

The next step is to choose a root state for each connected
component of the SRG. For this, Meinerset al. choose self-
looping states to be root states. A state is aself-looping state
if it has more than half (i.e. 128) of its transitions looping
back to itself. Each component of the SRG has at most one
self-looping state. For components that do not have a self-
looping state, they choose one of the states in the center of

Algorithm 1: D2FAMerge(D1, D2)

Input : A pair of D2FAs, D1 = (Q1,Σ, ρ1, q01
,M1, F1) and

D2 = (Q2,Σ, ρ2, q02
,M2, F2), corresponding to RE sets, sayR1

andR2, with R1 ∩ R2 = ∅.
Output : A D2FA corresponding to the RE setR1 ∪ R2

1 Initialize D3 to an empty D2FA;
2 Initialize queue as an empty queue;
3 queue.push (〈q01 , q02 〉);
4 while queue not emptydo
5 u = 〈u1, u2〉 := queue.pop();
6 Q3 := Q3 ∪ {u};
7 foreach c ∈ Σ do
8 nxt := 〈δ′

1
(u1, c), δ′

2
(u2, c)〉;

9 if nxt /∈ Q3 ∧ nxt /∈ queue then queue.push (nxt);
10 Add (u, c) → nxt transition toρ3;

11 M3(u) := M1(u1) ∪ M2(u2);
12 F3(u) := FindDefState(u);
13 Remove transitions foru from ρ3 that are in common withF3(u);

14 foreach u ∈ Q3 do
15 newDptr := FindDefState(u);
16 if (newDptr 6= F3(u)) ∧ (newDptr u u > F3(u) u u) then
17 F3(u) := newDptr;
18 Reset all transitions foru in ρ3 and then remove ones that are in

common withF3(u);

19 return D3;

20 FindDefState (〈v1, v2〉)
21 Let 〈p0 = v1, p1, . . . , pl〉 be the list of states on the deferment chain from

v1 to the root inD1;
22 Let 〈q0 = v2, q1, . . . , qm〉 be the list of states on the deferment chain from

v2 to the root inD2;
23 for z = 1 to (l + m) do
24 S := {〈pi, qz−i〉 | (max(0, z − m) ≤ i ≤ min(l, z))∧

(〈pi, qz−i〉 ∈ Q3)};
25 if S 6= ∅ then return argmax

v∈S
(〈v1, v2〉 u v);

26 return 〈v1, v2〉;

the spanning tree as the root state. After choosing the root
for each tree, all the edges in the spanning tree are directed
towards the root, giving the deferment pointer for each state.

One subtle point of this algorithm is that there are many
cases where multiple edges can be added to the spanning tree.
Specifically, Kruskal’s algorithm always chooses the edge with
the maximum weight from the remaining edges. Since there
are only256 possible edge weights, there often are multiple
edges with the same maximum weight. Meinerset al. use the
following tie breaking order among edges having the current
maximum weight.

1) Edges that have a self-looping state as one of their end
points are given the highest priority.

2) Next, priority is given to edges with higher sum of
degrees (in the current spanning tree) of their end
vertices.

D. Improved D2FA construction for one RE
We now offer an improved algorithm for constructing a

D2FA for one RE. This algorithm is similar to that of Meiners
et al.’s algorithm [9]. The difference is we modify and extend
the tie-breaking strategy as follows.

For each stateu, we store a value,deg′(u), which is initially
set to0. During Kruskal’s algorithm, when an edgee = (u, v)
is added to the current spanning tree,deg′(u) is incremented
by 2 if level(u) ≤ level(v); otherwise it is incremented by
1. Recall thatlevel(u) is the length of the shortest string that
takes the DFA from the start state to stateu. We similarly

8

updatedeg′(v). Then we use the following tie breaking order
among edges having the current maximum weight.

1) Edges that have a self-looping state as one of their end
points are given the highest priority.

2) Next, priority is given to edges with higher sum ofdeg′

of their end vertices.
3) Next, priority is given to edges with higher difference

between the levels of their end vertices.
The sum of degrees of end vertices is used for tie breaking

in order to prioritize states that are already highly connected.
However, we also want to prioritize connecting to states at
lower levels, so we usedeg′ instead of just the degree. Using
the difference between levels of end points for tie breaking
also prioritizes states at a lower level. This helps reduce
the deferment depth and the D2FA size for RE sets whose
D2FAs have a higher average deferment depth. We observe
in our experiments section that the improved algorithm does
outperform the original algorithm.

E. D2FA construction for RE setR
We now have methods for constructing a D2FA given one

RE and merging two D2FAs into one D2FA. We combine these
methods in the natural way to build one D2FA for a set of
REs. That is, we first build a D2FA for each RE inR. We
then merge the D2FAs together using a balanced binary tree
structure to minimize the worst-case number of merges that
any RE experiences. We do use two different variations of our
D2FAMerge algorithm. For all merges except the final merge,
we use the first match method for settingF (u). When doing
the final merge to get the final D2FA, we use the best match
method for settingF (u). It turns out that using the first match
method results in a better deferment forest structure in the
D2FA, which helps when the D2FA is further merged with
other D2FAs. The local optimization achieved by using the
best match method only helps when used in the final merge.

F. Optional Final Compression Algorithm
When there is no bound on the deferment depth (see Sec-

tion V-B), the original D2FA algorithm proposed in [7] results
in a D2FA with smallest possible size because it runs Kruskal’s
algorithm on a large SRG. Our D2FA merge algorithm results
in a slightly larger D2FA because it uses a greedy approach
to determine deferment. We can further reduce the size of the
D2FA produced by our algorithm by running the following
compression algorithm on the D2FA produced by the D2FA
merge algorithm.

We construct an SRG and perform a maximum weight
spanning tree construction on the SRG, but we only add edges
to the SRG that have the potential to reduce the size of the
D2FA. More specifically, letu andv be any two states in the
current D2FA. We only add the edgee = (u, v) in the SRG
if its weight w(e) is ≥ min(uu F (u), v u F (v)). Here,F (u)
is the deferred state ofu in the current D2FA. As a result,
very few edges are added to the SRG, so we only need to run
Kruskal’s algorithm on a small SRG. This saves both space
and time compared to previous D2FA construction methods.
However, this compression step does require more time and
space than the D2FA merge algorithm because it does construct
an SRG and then runs Kruskal’s algorithm on the SRG.

V. D2FA MERGEALGORITHM PROPERTIES

A. Proof of Correctness
The D2FA merge algorithm exactly follows the UCP con-

struction to create the states. So the correctness of the un-
derlying DFA follows from the the correctness of the UCP
construction.

Theorem V.1 shows that the merged D2FA is also well
defined (no cycles in deferment forest).

Lemma V.1. In the D2FA D3 = D2FAMerge(D1, D2),
〈u1, u2〉�〈v1, v2〉 ⇒ u1�v1 ∧ u2�v2.

Proof: If 〈u1, u2〉 = 〈v1, v2〉 then the lemma is trivially
true. Otherwise, let〈u1, u2〉 → 〈w1, w2〉 � 〈v1, v2〉 be the
deferment chain inD3. When selecting the deferred state
for 〈u1, u2〉, D2FA Merge always choose a state that cor-
responds to a pair of states along deferment chains foru1
and u2 in D1 andD2, respectively. Therefore, we have that
〈u1, u2〉→〈w1, w2〉 ⇒ u1�w1 ∧ u2�w2. By induction on the
length of the deferment chain and the fact that the� relation
is transitive, we get our result.

Theorem V.1. If D2FAsD1 andD2 are well defined, then the
D2FA D3 = D2FAMerge(D1, D2) is also well defined.

Proof: SinceD1 andD2 are well defined, there are no
cycles in their deferment forests. Now assume thatD3 is not
well defined,i.e. there is a cycle in its deferment forest. Let
〈u1, u2〉 and〈v1, v2〉 be two distinct states on the cycle. Then,
we have that

〈u1, u2〉�〈v1, v2〉 ∧ 〈v1, v2〉�〈u1, u2〉

Using Lemma V.1 we get

(u1�v1 ∧ u2�v2) ∧ (v1�u1 ∧ v2�u2)

i.e. (u1�v1 ∧ v1�u1) ∧ (u2�v2 ∧ v2�u2)

Since〈u1, u2〉 6= 〈v1, v2〉, we haveu1 6= v1 ∨ u2 6= v2 which
implies that at least one ofD1 or D2 has a cycle in their
deferment forest which is a contradiction.

B. Limiting Deferment Depth
Since no input is consumed while traversing a deferred

transition, in the worst case, the number of lookups needed
to process one input character is given by the depth of the
deferment forest. As previously proposed, we can guaranteea
worst case performance by limiting the depth of the deferment
forest.

For a stateu1 of a D2FA D1, the deferment depthof u1,
denoted asψ(u1), is the length of the maximal deferment chain
in D1 from u1 to the root.Ψ(D1) = maxv∈Q1

ψ(v) denotes
the deferment depth ofD1 (i.e. the depth of the deferment
forest inD1).

Lemma V.2. In the D2FA D3 = D2FAMerge(D1, D2),
∀〈u1, u2〉 ∈ Q3, ψ(〈u1, u2〉) ≤ ψ(u1) + ψ(u2).

Proof: Let ψ(〈u1, u2〉) = d. If ψ(〈u1, u2〉) = 0, then
〈u1, u2〉 is a root and the lemma is trivially true. So, we
considerd ≥ 1 and assume the lemma is true for all states

9

with ψ < d. Let 〈u1, u2〉→〈w1, w2〉�〈v1, v2〉 be the deferment
chain inD3. Using the inductive hypothesis, we have

ψ(〈w1, w2〉) ≤ ψ(w1) + ψ(w2)

Given 〈u1, u2〉 6= 〈w1, w2〉, we assume without loss of
generality thatu1 6= w1. Using Lemma V.1 we get that
u1�w1. Thereforeψ(w1) ≤ ψ(u1)−1. Combining the above,
we getψ(〈u1, u2〉) = ψ(〈w1, w2〉)+1 ≤ ψ(w1)+ψ(w2)+1 ≤
(ψ(u1)− 1) + ψ(u2) + 1 ≤ ψ(u1) + ψ(u2).

Lemma V.2 directly gives us the following Theorem.

Theorem V.2. If D3 = D2FAMerge(D1, D2), thenΨ(D3) ≤
Ψ(D1) + Ψ(D2).

For an RE setR, if the initial D2FAs haveΨ = d, in the
worst case, the final merged D2FA corresponding toR can
haveΨ = d× |R|. Although Theorem V.2 gives the value of
Ψ in the worst case, in practical cases,Ψ(D3) is very close to
max(Ψ(D1),Ψ(D2)). Thus the deferment depth of the final
merged D2FA is usually not much higher thand.

Let Ω denote the desired upper bound onΨ. To guarantee
Ψ(D3) ≤ Ω, we modify theFindDefState subroutine
in Algorithm 1 as follows: When selecting candidate pairs
for the deferred state, we only consider states withψ < Ω.
Specifically, we replace line 24 with the following
S := {〈pi, qz−i〉 |(max(0, z −m) ≤ i ≤ min(l, z))∧

〈pi, qz−i〉 ∈ Q3) ∧ (ψ(〈pi, qz−i〉) < Ω)}

When we do the second pass (lines 14-19), we may increase
the deferment depth of nodes that defer to nodes that we
readjust. We record the affected nodes and then do a third
pass to reset their deferment states so that the maximum depth
bound is satisfied. In practice, this happens very rarely.

When constructing a D2FA with a given boundΩ, we first
build D2FAs without this bound. We only apply the boundΩ
when performing the final merge of two D2FAs to create the
final D2FA.

C. Deferment to a Lower Level
In [15], the authors propose a technique to guarantee an

amortized cost of2 lookups per input character without
limiting the depth of the deferment tree. They achieve this by
having states only defer to lower level states where the level of
any stateu in a DFA (or D2FA), denotedlevel(u), is defined
as the length of the shortest string that ends in that state (from
the start state). More formally, they ensure that for all states
u, level(u) > level(F (u)) if u 6= F (u). We call this property
the back-pointerproperty. If the back-pointer property holds,
then every deferred transition taken decreases the level ofthe
current state by at least1. Since a regular transition on an
input character can only increase the level of the current state
by at most1, there have to be fewer deferred transitions taken
on the entire input string than regular transitions. This gives
an amortized cost of at most2 transitions taken per input
character.

In order to guarantee the D2FA D3 has the back-
pointer property, we perform a similar modification to the
FindDefState subroutine in Algorithm 1 as we performed
when we wanted to limit the maximum deferment depth.
When selecting candidate pairs for the deferred state, we only

consider states with a lower level. Specifically, we replaceline
24 with the following:

S := {〈pi, qz−i〉 | (max(0, z −m) ≤ i ≤ min(l, z))∧

(〈pi, qz−i〉 ∈ Q3) ∧ (level(〈v1, v2〉) > level(〈pi, qz−i〉))}

For states for which no candidate pairs are found, we just
search through all states inQ3 that are at a lower level for
the deferred state. In practice, this search through all the
states needs to be done for very few states because if D2FAs
D1 and D2 have the back-pointer property, then almost all
the states in D2FAs D3 have the back-pointer property. As
with limiting maximum deferment depth, we only apply this
restriction when performing the final merge of two D2FAs to
create the final D2FA.

D. Algorithmic Complexity
The time complexity of the original D2FA algorithm pro-

posed in [7] isO(n2(log(n) + |Σ|)). The SRG hasO(n2)
edges, andO(|Σ|) time is required to add each edge to the
SRG andO(log(n)) time is required to process each edge
in the SRG during the maximum spanning tree routine. The
time complexity of the D2FA algorithm proposed in [15] is
O(n2|Σ|). Each state is compared withO(n) other states, and
each comparison requiresO(|Σ|) time.

The time complexity of our new D2FAMerge algorithm to
merge two D2FAs isO(nΨ1Ψ2|Σ|), wheren is the number of
states in the merged D2FA, andΨ1 andΨ2 are the maximum
deferment depths of the two input D2FAs. When setting the
deferment for any stateu = 〈u1, u2〉, in the worst case
the algorithm compares〈u1, u2〉 with all the pairs along the
deferment chains ofu1 andu2, which are at mostΨ1 andΨ2

in length, respectively. Each comparison requiresO(|Σ|) time.
In practice, the time complexity isO(n|Σ|) as each state needs
to be compared with very few states for the following three
reasons. First, the maximum deferment depthΨ is usually very
small. The largest value ofΨ among our 8 primary RE sets
in Section VI is7. Second, the length of the deferment chains
for most states is much smaller thanΨ. The largest value
of average deferment depthψ among our 8 RE sets is2.54.
Finally, many of the state pairs along the deferment chains are
not reachable in the merged D2FA. Among our 8 RE sets, the
largest value of the average number of comparisons needed is
1.47.

When merging all the D2FAs together for an RE set
R, the total time required in the worst case would be
O(nΨ1Ψ2|Σ| log(|R|)). The worst case would happen when
the RE set contains strings and there is no state explosion. In
this case, each merged D2FA would have a number of states
roughly equal to the sum of the sizes of the D2FAs being
merged. When there is state explosion, the last D2FA merge
would be the dominating factor, and the total time would just
beO(nΨ1Ψ2|Σ|).

When modifying the D2FAMerge algorithm to maintain
back-pointers, the worst case time would beO(n2|Σ|) because
we would have to compare each state withO(n) other states
if none of the candidate pairs are found at a lower level than
the state. In practice, this search needs to be done for very
few states, typically less than1%.

10

The worst case time complexity of the final compression
step is the same as that of Kumaret al.’s D2FA algorithm,
which isO(n2(log(n)+ |Σ|)), since both involve computing a
maximum weight spanning tree on the SRG. However, because
we only consider edges which improve upon the existing
deferment forest, the actual size of the SRG in practice is
typically linear in the number of nodes. In particular, for the
real-world RE sets that we consider in the experiments section,
the size of the SRG generated by our final compression step
is on average 100 times smaller than the SRG generated by
Kumar et al.’s algorithm. As a result the optimization step
requires much less memory and time compared to the original
algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of our algo-
rithms on real-world and synthetic RE sets. We consider three
variants of our D2FA merge algorithm. We denote the main
variant asD2FAMERGE; this variant uses our improved D2FA
construction algorithm for one RE. The other two variants are
D2FAMergeOld, which uses the D2FA construction algorithm
in [9] to build D2FA for each RE and was used exclusively
in the preliminary version of this paper, andD2FAMergeOpt
, which applies our final compression algorithm after running
D2FAMERGE. We compare our algorithms with the original
D2FA construction algorithm proposed in [7]ORIGINAL that
optimizes transition compression and the D2FA construction
algorithm proposed in [15]BACKPTR that enforces the back-
pointer property described in Section V-C.

A. Methodology
1) Data Sets: Our main results are based on eight real

RE sets, four proprietary RE sets C7, C8, C10, and C613
from a large networking vendor and four public RE sets
Bro217, Snort 24, Snort31, and Snort 34, that we partition
into three groups, STRING, WILDCARD, and SNORT, based
upon their RE composition. For each RE set, the number
indicates the number of REs in the RE set. The STRING RE
sets, C613 and Bro217, contain mostly string matching REs.
The WILDCARD RE sets, C7, C8 and C10, contain mostly
REs with multiple wildcard closures ‘.*’. The SNORT RE
sets, Snort24, Snort31, and Snort34, contain a more diverse
set of REs, roughly 40% of which have wildcard closures. To
test scalability, we use Scale, a synthetic RE set consisting of
26 REs of the form /.*cu0123456.*cl789!#%&/, where
cu andcl are the 26 uppercase and lowercase alphabet letters.
Even though all the REs are nearly identical differing only in
the character after the two .*’s, we still get the full multiplica-
tive effect where the number of states in the corresponding
minimum state DFA roughly doubles for every RE added.

2) Metrics: We use the following metrics to evaluate the
algorithms. First, we measure the resulting D2FA size (#
transitions) to assess transition compression performance. Our
D2FAMERGE algorithm typically performs almost as well
as the other algorithms even though it builds up the D2FA
incrementally rather than compressing the final minimum state
DFA. Second, we measure the the maximum deferment depth
(Ψ) and average deferment depth (ψ) in the D2FA to assess
how quickly the resulting D2FA can be used to perform regular

expression matching. SmallerΨ andψ mean that fewer de-
ferment transitions that process no input characters need to be
traversed when processing an input string. Our D2FAMERGE
significantly outperforms the other algorithms. Finally, we
measure the space and time required by the algorithm to build
the final automaton. Again, our D2FAMERGE significantly
outperforms the other algorithms. When comparing the per-
formance of D2FAMERGE with another algorithmA on a
given RE or RE set, we define the following quantities to
compare them: transition increase is (D2FAMERGE D2FA size
- A D2FA size) divided byA D2FA size, transition decrease
is (A D2FA size - D2FAMERGE D2FA size) divided byA
D2FA size, average (maximum) deferment depth ratio isA av-
erage (maximum) deferment depth divided by D2FAMERGE
average (maximum) deferment depth, space ratio isA space
divided by D2FAMERGE space, and time ratio isA build time
divided by D2FAMERGE build time.

Since we have a new D2FAMERGE algorithm, we needed
to rerun our experiments. We ran them on faster processors
than in our conference version, so all of the algorithms report
smaller processing times than before. One interesting note
is that while the new D2FAMERGE performs better than
D2FAMergeOld, the running times are essentially the same.

3) Measuring Space:When measuring the required space
for an algorithm, we measure the maximum amount of mem-
ory required at any point in time during the construction and
then final storage of the automaton. This is a difficult quantity
to measure exactly; we approximate this required space for
each of the algorithms as follows. For D2FAMERGE and
D2FAMergeOld, the dominant data structure is the D2FA. For
a D2FA, the transitions for each state can be stored as pairs
of input character and next state id, so the memory required
to store a D2FA is calculated as= (#transitions)×5 bytes.
However, the maximum amount of memory required while
running D2FAMERGE may be higher than the final D2FA
size because of the following two reasons. First, when merging
two D2FAs, we need to maintain the two input D2FAs as well
as the output D2FA. Second, we may create an intermediate
output D2FA that has more transitions than needed; these
extra transitions will be eliminated once all D2FA states are
added. We keep track of the worst case required space for
our algorithm during D2FA construction. This typically occurs
when merging the final two intermediate D2FA to form the
final D2FA.

For ORIGINAL, we measure the space required by the
minimized DFA and the SRG. For the DFA, the transitions
for each state can be stored as an array of sizeΣ with each
array entry requiring four bytes to hold the next state id. For
the SRG, each edge requires 17 bytes as observed in [15].
This leads to a required memory for building the D2FA of
= |Q| × |Σ| × 4 + (#edges in SRG)× 17 bytes.

For D2FAMergeOpt, the space required is the size of the
final D2FA resulting from the merge step, plus the size of the
SRG used by the final compression algorithm. The sizes are
computed as in the case of D2FAMERGE and ORIGINAL.

For BACKPTR, we consider two variants. The first variant
builds the minimized DFA directly from the NFA and then
sets the deferment for each state. For this variant, no SRG is

11

needed, so the space required is the space needed for the min-
imized DFA which is|Q| × |Σ| × 4 bytes. The second variant
goes directly from the NFA to the final D2FA; this variant uses
less space but is much slower as it stores incomplete transition
tables for most states. Thus, when computing the deferment
state for a new state, the algorithm must recreate the complete
transition tables for each state to determine which has the most
common transitions with the new state. For this variant, we
assume the only space required is the space to store the final
D2FA which is= (#transitions)×5 bytes even though more
memory is needed at various points during the computation.
We also note that both implementations must perform the NFA
to DFA subset construction on a large NFA which means even
the faster variant runs much more slowly than D2FAMERGE.

4) Correctness:We tested correctness of our algorithms
by verifying the final D2FA is equivalent to the corresponding
DFA. Note, we can only do this check for our RE sets where
we were able to compute the corresponding DFA. Thus, we
only verified correctness of the final D2FA for our eight real
RE sets and the smaller Scale RE sets.

B. D2FAMERGE versus ORIGINAL
We first compare D2FAMERGE with ORIGINAL that op-

timizes transition compression when both algorithms have un-
limited maximum deferment depth. These results are shown in
Table I for our 8 primary RE sets. Table III summarizes these
results by RE group. We make the following observations.

(1) D2FAMERGE uses much less space than ORIGINAL.
On average, D2FAMERGE uses 1500 times less memory than
ORIGINAL to build the resulting D2FA. This difference is
most extreme when the SRG is large, which is true for the
two STRING RE sets and Snort24 and Snort34. For these
RE sets, D2FAMERGE uses between 1422 and 4568 times
less memory than ORIGINAL. For the RE sets with relatively
small SRGs such as those in the WILDCARD and Snort31,
D2FAMERGE uses between 35 and 231 times less space than
ORIGINAL.

(2) D2FAMERGE is much faster than ORIGINAL.On av-
erage, D2FAMERGE builds the D2FA 155 times faster than
ORIGINAL. This time difference is maximized when the
deferment chains are shortest. For example, D2FAMERGE
only requires an average of0.05 msec and0.09 msec per
state for the WILDCARD and SNORT RE sets, respectively,
so D2FAMERGE is, on average,247 and142 times faster than
ORIGINAL for these RE sets, respectively. For the STRING
RE sets, the deferment chains are longer, so D2FAMERGE
requires an average of0.67 msec per state, and is, on average,
35 times faster than ORIGINAL.

(3) D2FAMERGE produces D2FA with much smaller av-
erage and maximum deferment depths than ORIGINAL.On
average, D2FAMERGE produces D2FA that have average
deferment depths that are 6.4 times smaller than ORIGINAL
and maximum deferment depths that are 4.4 times smaller
than ORIGINAL. In particular, the average deferment depth
for D2FAMERGE is less than 2 for all but the two STRING
RE sets, where the average deferment depths are 2.15 and
2.69. Thus, the expected number of deferment transitions to
be traversed when processing a lengthn string is less thann.
One reason D2FAMERGE works so well is that it eliminates

low weight edges from the SRG so that the deferment forest
has many shallow deferment trees instead of one deep tree.
This is particularly effective for the WILDCARD RE sets and,
to a lesser extent, the SNORT RE sets. For the STRING RE
sets, the SRG is fairly dense, so D2FAMERGE has a smaller
advantage relative to ORIGINAL.

(4) D2FAMERGE produces D2FA with only slightly more
transitions than ORIGINAL, particularly on the RE sets
that need transition compression the most.On average,
D2FAMERGE produces D2FA with roughly 11% more transi-
tions than ORIGINAL does. D2FAMERGE works best when
state explosion from wildcard closures creates DFA composed
of many similar repeating substructures. This is precisely
when transition compression is most needed. For example, for
the WILDCARD RE sets that experience the greatest state
explosion, D2FAMERGE only has 1% more transitions than
ORIGINAL. On the other hand, for the STRING RE sets,
D2FAMERGE has, on average, 22% more transitions. For
this group, ORIGINAL needed to build a very large SRG and
thus used much more space and time to achieve the improved
transition compression. Furthermore, transition compression is
typically not needed for such RE sets as all string matching
REs can be placed into a single group and the resulting DFA
can be built.

In summary, D2FAMERGE achieves its best performance
relative to ORIGINAL on the WILDCARD RE sets (except
for space used for construction of the D2FA) and its worst
performance relative to ORIGINAL on the STRING RE sets
(except for space used to construct the D2FA). This is desirable
as the space and time efficient D2FAMERGE is most needed
on RE sets like those in the WILDCARD because those RE
sets experience the greatest state explosion.

(5) Improvement of D2FAMERGE over D2FAMergeOld.
Using our improved algorithm to build the initial D2FAs
results in significant reduction in the final size of the
D2FA produced by the D2FA merge algorithm. On average,
D2FAMergeOld produces a D2FA 8.2% larger than that pro-
duced by D2FAMERGE.

C. Assessment of Final Compression Algorithm
We now assess the effectiveness of our final compression

algorithm by comparing D2FAMergeOpt to ORIGINAL and
D2FAMERGE. As expected D2FAMergeOpt produces a D2FA
that is almost as small as that produced by ORIGINAL; on
average, the number of transitions increases by only 0.4%.
There is a very small increase for WILDCARD and SNORT
because ORIGINAL also considers all edges with weight> 1
in the SRG, whereas D2FAMergeOpt does not use edges with
weight< 10. There is a significant benefit to not using these
low weight SRG edges; the deferment depths are much higher
for the D2FA produced by ORIGINAL when compared to the
D2FA produced by D2FAMergeOpt.

The final compression algorithm of D2FAMergeOpt does
require more resources than are required by D2FAMERGE.
In some cases, this may limit the size of the RE set
D2FAMergeOpt can be used for. However, as explained earlier,
D2FAMERGE performs best on the WILDCARD (which has
the most state explosion) and performs the worst on the
STRING (which has the no or limited state explosion). So the

12

RE set #
States

ORIGINAL D2FAMERGE

Trans
Def. depth RAM Time

Trans
Def. depth RAM Time

Avg. Max. (MB) (s) Avg. Max. (MB) (s)
Bro217 6533 9816 3.90 8 179.3 119.4 11737 2.15 5 0.13 3.2

C613 11308 21633 4.38 11 1042.7 326.0 26709 2.69 7 0.23 9.7
C7 24750 205633 16.38 27 47.4 397.7 207540 1.14 3 1.07 0.9
C8 3108 23209 8.60 14 4.9 14.5 23334 1.14 2 0.14 0.2

C10 14868 96793 16.39 26 25.5 141.0 97296 1.18 3 0.52 0.6
Snort24 13886 38485 9.67 18 861.2 299.2 39409 1.56 4 0.32 0.2
Snort31 20068 70701 9.17 16 298.5 244.3 92284 2.00 6 1.29 2.6
Snort34 13825 40199 10.95 18 795.2 309.9 43141 1.38 5 0.27 1.8

TABLE I
PERFORMANCE DATA OFORIGINAL AND D2FAMERGE

RE set #
States

D2FAMergeOld D2FAMergeOpt

Trans
Def. depth RAM Time

Trans
Def. depth RAM Time

Avg. Max. (MB) (s) Avg. Max. (MB) (s)
Bro217 6533 12325 2.16 5 0.10 3.2 9816 2.44 7 2.64 99.2

C613 11308 34991 2.54 7 0.29 9.7 21633 3.04 8 7.48 940.4
C7 24750 208564 1.14 3 1.07 0.9 207540 1.14 3 2.49 45.7
C8 3108 24604 1.14 2 0.14 0.2 23334 1.14 2 0.32 1.0

C10 14868 99124 1.17 3 0.53 0.6 97296 1.17 2 1.61 14.8
Snort24 13886 44883 1.56 4 0.35 0.2 38601 1.57 4 2.67 19.9
Snort31 20068 94339 1.97 6 0.86 2.6 70780 2.17 8 15.61 59.1
Snort34 13825 45642 1.38 5 0.28 1.8 40387 1.42 8 2.60 14.2

TABLE II
PERFORMANCE DATA OFD2FAMERGEOLD AND D2FAMERGEOPT.

RE set group
D2FAMergeOld D2FAMERGE D2FAMergeOpt

Trans Def. depth ratio Space Time Trans Def. depth ratio Space Time Trans Def. depth ratio Space Time
increase Avg. Max. ratio ratio increase Avg. Max. ratio ratio increase Avg. Max. ratio ratio

All 20.1% 6.5 4.4 1388.6 154.5 10.8% 6.4 4.4 1499.8 154.5 0.4% 6.0 3.7 113.1 9.4
STRING 44.0% 2.5 2.0 2667.0 35.4 21.5% 2.4 2.0 2994.8 35.4 0.0% 2.2 1.6 103.5 0.8

WILDCARD 3.0% 12.1 8.8 42.7 246.6 1.0% 12.1 8.8 42.8 246.6 1.0% 12.1 10.0 16.8 10.8
SNORT 21.3% 6.3 4.0 1882.3 141.8 13.3% 6.3 4.0 1960.3 141.8 0.0% 6.0 3.0 215.8 13.7

TABLE III
COMPARING D2FAMERGEOLD , D2FAMERGE AND D2FAMERGEOPT WITH ORIGINAL.

final compression algorithm is only needed for and is most
beneficial for RE sets with limited state explosion. Finally, we
observe that D2FAMergeOpt requires on average 113 times
less RAM than ORIGINAL, and, on average, runs 9 times
faster than ORIGINAL.
D. D2FAMERGE versus ORIGINAL with Bounded Maximum
Deferment Depth

We now compare D2FAMERGE and ORIGINAL when they
impose a maximum deferment depth boundΩ of 1, 2, and
4. Because time and space do not change significantly, we
focus only on number of transitions and average deferment
depth. These results are shown in Table IV. Note that for
these data sets, the resulting maximum depthΨ typically is
identical to the maximum depth boundΩ; the only exception
is for D2FAMERGE andΩ = 4; thus we omit the maximum
deferment depth from Table IV. Table V summarizes the
results by RE group highlighting how much better or worse
D2FAMERGE does than ORIGINAL on the two metrics of
number of transitions and average deferment depthψ.

Overall, D2FAMERGE performs very well when presented
a boundΩ. In particular, the average increase in the number
of transitions for D2FAMERGE with Ω equal to 1, 2 and
4, is only 131%, 20% and 1% respectively, compared to
D2FAMERGE with unbounded maximum deferment depth.
Stated another way, when D2FAMERGE is required to have
a maximum deferment depth of 1, this only results in slightly
more than twice the number of transitions in the resulting
D2FA. The corresponding values for ORIGINAL are3121%,
1216% and197%.

These results can be partially explained by examin-
ing the average deferment depth data. Unlike in the un-
bounded maximum deferment depth scenario, here we see

RE set group
Ω = 1 Ω = 2 Ω = 4

Trans Avg. def. Trans Avg. def. Trans Avg. dptr
decr. depth ratio decr. depth ratio decr. len ratio

All 91.3% 0.7 79.4% 0.9 42.5% 1.5
STRING 90.0% 0.6 92.5% 0.6 75.5% 0.9

WILDCARD 89.3% 0.8 59.0% 1.1 0.0% 2.0
SNORT 94.0% 0.7 91.0% 0.8 63.0% 1.4

TABLE V
COMPARING D2FAMERGE WITH ORIGINAL GIVEN MAXIMUM

DEFERMENT DEPTH BOUNDS OF1, 2 AND 4.

that D2FAMERGE has a larger average deferment depthψ

than ORIGINAL except for the WILDCARD whenΩ is 1
or 2. What this means is that D2FAMERGE has more states
that defer to at least one other state than ORIGINAL does.
This leads to the lower number of transitions in the final
D2FA. Overall, for Ω = 1, D2FAMERGE produces D2FA
with roughly 91% fewer transitions than ORIGINAL for all
RE set groups. ForΩ = 2, D2FAMERGE produces D2FA
with roughly 59% fewer transitions than ORIGINAL for the
WILDCARD RE sets and roughly 92% fewer transitions than
ORIGINAL for the other RE sets.

E. D2FAMERGE versus BACKPTR

We now compare D2FAMERGE with BACKPTR which
enforces the back-pointer property described in Section V-C.
We adapt D2FAMERGE to also enforce this back-pointer
property. The results for all our metrics are shown in Table VI
for our 8 primary RE sets. We consider the two variants of
BACKPTR described in Section VI-A3, one which constructs
the minimum state DFA corresponding to the given NFA
and one which bypasses the minimum state DFA and goes
directly to the D2FA from the given NFA. We note the second
variant appears to use less space than D2FAMERGE. This
is partially true since BACKPTR creates a smaller D2FA

13

RE
set

ORIGINAL D2FAMERGE
Trans Avg. def. depth # Trans Avg. def. depth

Ω = 1 Ω = 2 Ω = 4 Ω=1 Ω=2 Ω=4 Ω = 1 Ω = 2 Ω = 4 Ω=1 Ω=2 Ω=4
Bro217 698229 296433 52628 0.62 1.18 2.09 50026 15087 11757 1.00 1.83 2.15

C613 1204831 507613 102183 0.62 1.17 2.16 154548 51858 27735 1.00 1.94 2.64
C7 2044171 597544 206814 0.71 1.24 2.07 215940 208044 207540 0.97 1.13 1.14
C8 206897 40411 23261 0.77 1.32 2.51 24090 23334 23334 0.98 1.14 1.14

C10 1105160 325536 97137 0.75 1.31 2.39 101556 97326 97296 0.98 1.18 1.18
Snort24 1376779 543378 106211 0.66 1.25 2.39 68906 42176 39409 0.99 1.47 1.56
Snort31 2193679 1102693 405785 0.62 1.11 2.08 208136 119810 95496 1.00 1.52 1.97
Snort34 1357697 559255 85800 0.66 1.19 2.17 57187 44607 43231 1.00 1.34 1.38

TABLE IV
PERFORMANCE DATA FORORIGINAL AND D2FAMERGE GIVEN MAXIMUM DEFERMENT DEPTH BOUNDS OF1, 2 AND 4.

RE
set

BACKPTR D2FAMERGE with back-pointer

Trans
Def. depth RAM Time RAM2 Time2

Trans
Def. depth RAM Time

Avg. Max. (MB) (s) (MB) (s) Avg. Max. (MB) (s)
Bro217 11247 2.61 6 6.38 88.08 0.05 273.95 13567 2.33 6 0.13 6.24

C613 26222 2.50 5 11.04 55.91 0.13 971.45 33777 2.30 5 0.25 10.78
C7 217812 5.94 13 24.17 277.80 1.04 1950.00 219684 1.15 4 1.12 4.51
C8 34636 2.44 8 3.04 12.61 0.17 27.76 35476 1.20 4 0.19 0.69

C10 157139 2.13 7 14.52 96.86 0.75 476.54 158232 1.21 4 0.80 11.94
Snort24 46005 8.74 17 13.56 70.95 0.22 1130.00 58273 1.62 8 0.41 47.77
Snort31 82809 2.87 8 19.60 109.56 0.39 1110.00 124584 1.74 6 1.29 3.61
Snort34 46046 7.05 14 13.50 94.19 0.22 983.98 51557 1.42 5 0.30 6.06

TABLE VI
PERFORMANCE DATA FOR BOTH VARIANTS OFBACKPTR AND D2FAMERGE WITH THE BACK-POINTER PROPERTY.

than D2FAMERGE. However, we underestimate the actual
space used by this BACKPTR variant by simply assuming its
required space is the final D2FA size. We ignore, for instance,
the space required to store intermediate complete tables or
to perform the NFA to DFA subset construction. Table VII
summarizes these results by RE group displaying ratios for
many of our metrics that highlight how much better or worse
D2FAMERGE does than BACKPTR.

Similar to D2FAMERGE versus ORIGINAL, we find that
D2FAMERGE with the backpointer property performs well
when compared with both variants of BACKPTR. Specifically,
with an average increase in the number of transitions of
roughly 18%, D2FAMERGE runs on average 19 times faster
than the fast variant of BACKPTR and 143 times faster than
the slow variant of BACKPTR. For space, D2FAMERGE
uses on average almost 30 times less space than the first
variant of BACKPTR and on average roughly 42% more
space than the second variant of BACKPTR. Furthermore,
D2FAMERGE creates D2FA with average deferment depth
2.9 times smaller than BACKPTR and maximum deferment
depth 1.9 times smaller than BACKPTR. As was the case
with ORIGINAL, D2FAMERGE achieves its best performance
relative to BACKPTR on the WILDCARD RE sets and its
worst performance relative to BACKPTR on the STRING
RE sets. This is desirable as the space and time efficient
D2FAMERGE is most needed on RE sets like those in the
WILDCARD because those RE sets experience the greatest
state explosion.

RE set group Trans Def. depth ratio Space Time Space2 Time2
increase Avg. Max. ratio ratio ratio ratio

All 17.9% 2.9 1.9 30.4 19.3 0.7 142.5
STRING 25.0% 1.1 1.0 47.3 9.7 0.5 67.0

WILDCARD 1.3% 3.0 2.3 18.5 29.3 0.9 170.8
SNORT 29.7% 4.0 2.1 31.1 15.8 0.5 164.5

TABLE VII
COMPARING D2FAMERGE WITH BOTH VARIANTS OF BACKPTR.

F. Scalability results

Finally, we assess the improved scalability of D2FAMERGE
relative to ORIGINAL using the Scale RE set assuming
that we have a maximum memory size of 1 GB. For both

ORIGINAL and D2FAMERGE, we add one RE at a time
from Scale until the space estimate to build the D2FA goes
over the1GB limit. For ORIGINAL, we are able only able to
add 12 REs; the final D2FA has397, 312 states and requires
over 71 hours to compute. As explained earlier, we include
the SRG edges in the RAM size estimate. If we exclude
the SRG edges and only include the DFA size in the RAM
size estimate, we would only be able to add one more RE
before we reach the1GB limit. For D2FAMERGE, we are
able to add19 REs; the final D2FA has80, 216, 064 states and
requires only 77 minutes to compute. This data set highlights
the quadratic versus linear running time of ORIGINAL and
D2FAMERGE, respectively. Figure 3 shows how the space and
time requirements grow for ORIGINAL and D2FAMERGE as
RE’s from Scale are added one by one until 19 have been
added.

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

R
A

M
 (

M
B

)

#REs

Memory required to build

ORIGINAL
D2FAMERGE

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 2 4 6 8 10 12 14 16 18 20

T
im

e
(s

)

#REs

Time required to build

ORIGINAL
D2FAMERGE

Fig. 3. Memory& time for ORIGINAL’s D2FA and D2FAMERGE’s D2FA.

VII. C ONCLUSIONS
In this paper, we propose a novel Minimize then Union

framework for constructing D2FAs using D2FA merging. Our
approach requires a fraction of memory and time compared to
current algorithms. This allows us to build much larger D2FAs

14

than was possible with previous techniques. Our algorithm
naturally supports frequent RE set updates. We conducted
experiments on real-world and synthetic RE sets that verify
our claims. For example, our algorithm requires an average
of 1500 times less memory and150 times less time than the
original D2FA construction algorithm of Kumaret al.. We
also provide an optimization postprocessing step that produces
D2FAs that are essentially as good as those produced by the
original D2FA construction algorithm; the optimization step
requires on average 113 times less memory and 9 times less
time than the original D2FA construction algorithm.

REFERENCES

[1] M. Roesch, “Snort: Lightweight intrusion detection fornetworks,” in
Proc. 13th Systems Administration Conference (LISA), USENIX Associ-
ation, November 1999, pp. 229–238.

[2] “Snort,” http://www.snort.org/.
[3] V. Paxson, “Bro: a system for detecting network intruders in real-time,”

Computer Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999. [Online].
Available: citeseer.ist.psu.edu/paxson98bro.html

[4] R. Sommer and V. Paxson, “Enhancing bytelevel network intrusion
detection signatures with context,” inProc. ACM Conf. on Computer
and Communication Security, 2003, pp. 262–271.

[5] J. E. Hopcroft, R. Motwani, and J. D. Ullman,Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2000.

[6] J. E. Hopcroft,The Theory of Machines and Computations. Academic
Press, 1971, ch. An nlogn algorithm for minimizing the states in a finite
automaton, pp. 189–196.

[7] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turner, “Al-
gorithms to accelerate multiple regular expressions matchingfor deep
packet inspection,” inProc. SIGCOMM, 2006, pp. 339–350.

[8] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” inProc. IEEE/ACM ANCS, 2006, pp.
81–92.

[9] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu,“Fast regular
expression matching using small tcams for network intrusion detection
and prevention systems,” inProc. 19th USENIX Security Symposium,
Washington, DC, August 2010.

[10] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese,“Curing
regular expressions matching algorithms from insomnia, amnesia, and
acalculia,” inProc. ACM/IEEE ANCS, 2007, pp. 155–164.

[11] R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature matching with
extended automata,” inProc. IEEE Symposium on Security and Privacy,
2008, pp. 187–201.

[12] R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the big bang: fast
and scalable deep packet inspection with extended finite automata,” in
Proc. SIGCOMM, 2008, pp. 207–218.

[13] M. Becchi and P. Crowley, “A hybrid finite automaton for practical deep
packet inspection,” inProc. CoNext, 2007.

[14] ——, “Extending finite automata to efficiently match perl-compatible
regular expressions,” inProc. ACM CoNEXT, 2008, article Number 25.

[15] ——, “An improved algorithm to accelerate regular expression evalua-
tion,” in Proc. ACM/IEEE ANCS, 2007.

[16] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,”Communications of the ACM, vol. 18, no. 6, pp.
333–340, 1975.

[17] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,” in
Proc. IEEE Infocom, 2004, pp. 333–340.

[18] I. Sourdis and D. Pnevmatikatos, “Pnevmatikatos: Fast, large-scale string
match for a 10gbps fpga-based network intrusion detection system,” in
Proc. Int. on Field Programmable Logic and Applications, 2003, pp.
880–889.

[19] L. Tan and T. Sherwood, “A high throughput string matching architecture
for intrusion detection and prevention,” inProc. 32nd Annual Int.
Symposium on Computer Architecture (ISCA), 2005, pp. 112–122.

[20] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packetpattern-
matching using TCAM,” inProc. 12th IEEE Int. Conf. on Network
Protocols (ICNP), 2004, pp. 174–183.

[21] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. Kim,“A multi-
gigabit rate deep packet inspection algorithm using tcam,” in Proc. IEEE
GLOBECOM, 2005.

[22] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High speed pattern
matching for network ids/ips,” inProc. 2006 IEEE International Con-
ference on Network Protocols. Ieee, 2006, pp. 187–196.

[23] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture
for high-throughput regular-expression pattern matching,” SIGARCH
Computer Architecture News, 2006.

[24] M. Becchi and P. Crowley, “Efficient regular expressionevaluation:
Theory to practice,” inProc. ACM/IEEE ANCS, 2008.

[25] S. Kong, R. Smith, and C. Estan, “Efficient signature matching with
multiple alphabet compression tables,” inProc. 4th Int. Conf. on Security
and privacy in communication netowrks (SecureComm). ACM Press,
2008, p. 1.

[26] M. Becchi and S. Cadambi, “Memory-efficient regular expression search
using state merging,” inProc. INFOCOM. IEEE, 2007.

[27] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fast and
memory-efficient regular expression matching for deep packet inspec-
tion,” in Proc. ACM/IEEE Symposium on Architecture for Networking
and Communications Systems (ANCS), 2006, pp. 93–102.

[28] L. Yang, R. Karim, V. Ganapathy, and R. Smith, “Fast, memory-efficient
regular expression matching with NFA-OBDDs,”Computer Networks,
vol. 55, no. 55, pp. 3376–3393, 2011.

[29] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
fpgas,” in Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines FCCM, 2001, pp. 227–238.

[30] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuits
for matching complex network intrusion detection patterns,”in Proc.
Field-Programmable Logic and Applications, 2003, pp. 956–959.

[31] ——, “Scalable pattern matching for high speed networks,” in Proc. 12th
Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), Washington, DC, 2004.

[32] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient and
high-speed nids pattern matching,” inProc. Field-Programmable Custom
Computing Machines, 2004.

[33] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling PCRE to FPGA for
accelerating SNORT IDS,” inProc. ACM/IEEE ANCS, 2007.

[34] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation
of a content-scanning module for an internet firewall,” inProc. IEEE
Field Programmable Custom Computing Machines, 2003.

[35] A. Bremler-Barr, D. Hay, and Y. Koral, “Compactdfa: Generic state
machine compression for scalable pattern matching,” inProc. IEEE
INFOCOM. Ieee, 2010, pp. 1–9.

[36] Y. Liu, L. Guo, M. Guo, and P. Liu., “Accelerating DFA construction
by hierarchical merging,” inProc. IEEE 9th Int. Symposium on Parallel
and Distributed Processing with Applications, 2011.

Jignesh Patel Jignesh Patel is currently a Ph.D.
student in the Department of Computer Science
and Engineering at Michigan State University. His
research interests include algorithms, networking,
and security.

Alex X. Liu received his Ph.D. degree in computer
science from the University of Texas at Austin in
2006. He received the IEEE & IFIP William C.
Carter Award in 2004 and an NSF CAREER award
in 2009. He received the Withrow Distinguished
Scholar Award in 2011 at Michigan State University.
His research interests focus on networking, security,
and dependable systems.

Eric Torng Eric Torng received his Ph.D. degree in
computer science from Stanford University in 1994.
He is currently an associate professor and graduate
director in the Department of Computer Science
and Engineering at Michigan State University. He
received an NSF CAREER award in 1997. His re-
search interests include algorithms, scheduling, and
networking.

