Bypassing Space Explosion in
High-Speed Regular Expression Matching

Jignesh Patel Alex X. Lit Eric Torng

Abstract—Network intrusion detection and prevention systems the signatures. REs are used instead of simple string patter
commonly use regular expression (RE) signatures to represent pecause REs are fundamentally more expressive and thus are
individual security threats. While the corresponding DFA for o116 to describe a wider variety of attack signatures [4]aAs

any one RE is typically small, the DFA that corresponds to It th has b lot of ¢ K imol fi
the entire set of REs is usually too large to be constructed or resiiit, tnere nas been a lot of recent work on impiementing

deployed. To address this issue, a variety of alternative automat Nigh speed RE parsers for network applications.
implementations that compress the size of the final automaton Most RE parsers use some variant of the Deterministic

have been proposed such as XFA and TFA. The resulting final Finjte State Automata (DFA) representation of REs. A DFA

automata are typically much smaller than the corresponding is defined as @-tuple (Q, X, d, g0, A), whereQ is a set of

DFA. However, the previously proposed automata construction .] . .
algorithms do suffer from some drawbacks. First, most employ states,% is an alphabety: @ x ¥ — Q is the transition

a “Union then Minimize” framework where the automata for function,qo € @ is the start, andl C @ is the set of accepting
each RE are first joined before minimization occurs. This leads states. Any set of REs can be converted into an equivalent DFA

to an expensive NFA to DFA subset construction on a relatively with the minimum number of states [5], [6]. DFAs have the
large NFA. Second, most construct the corresponding large DFA property of needing constant memory access per input symbol

as an intermediate step. In some cases, this DFA is so large that - . . -
the final automaton cannot be constructed even though the fina and hence result in predictable and fast bandwidth. The main

automaton is small enough to be deployed. In this paper, we Problem with DFAs is space explosion: a huge amount of
propose a “Minimize then Union” framework for constructing memory is needed to store the transition function which has

compact alternative automata focusing on the BFA. We show || x |3| entries. Specifically, the number of states can be very

that we can construct an almost optimal final GFA with small large (state explosion), and the number of transitions e s
intermediate parsers. The key to our approach is a space and time . ’

efficient routine for merging two compact D?FA into a compact is large (3:]). .)
D2FA. In our experiments, our algorithm runs on average 155 10 address the DFA space explosion problem, a variety
times faster and uses 1500 times less memory than previousof DFA variants have been proposed that require much less

algorithms. For example, we are able to construct a BFA with memory than DFAs to store. For example, there isDietayed
over 80,000,000 states using only 1GB of main memory in only Input DFA (D*FA) proposed by Kumaet al. [7]. The basic
77 minutes. idea of D’FA is that in a typical DFA for real world RE set,
given two states, andw, é(u,c) = d(v, ¢) for many symbols
¢ € ¥. We can remove all the transitions forfrom § for
A. Background and Problem Statement which §(u, c¢) = 6(v,c¢) and make a note thats transitions

The core component of today’s network security devica4ere removed baseg qrt'stransitiogs. When the iFA is Iatelr) I
such as Network Intrusion Detection and Prevention Systeff£C€SSINg input and is in stateand encounters input sympo
is signature based deep packet inspection. The contentségf rféi’txs)t;emlsvigngé;hgoezz C:;‘n‘::eféﬁ; gx)f(;(r) gﬁ;‘:{ggﬁes o
every packet need to be compared against a set of sigha: : i o 3
tures. Application level signature analysis can also bed usi'® DFA’t ar:d |tbresults In tremendo(tj.ls transmo? gg”ég;@s'?h
for detecting peer-to-peer traffic, providing advanced Qd§!mar e fa. observe an a(;/erage eé:;fseho 070 '”d €
mechanisms. In the past, the signatures were specified 23§3ount of memory required to store when compare
simple strings. Today, most deep packet inspection engiﬁ@sl'tS Co”ezp(t)”_(lj”lg EFﬁj BEA | DEA. fust do th
such as Snort [1], [2], Bro [3], TippingPoint X505 and Ciscof ”n mare detail, OF' ui fa - rom a kjusd fo de
security appliances useegular expressions (REsp define following two steps. First, for each statec @, pick adeferre

state, denoted by"(u). (We can haveF'(u) = u.) Second,

« Alex X. Liu is the corresponding author of this paper. Emailfor each statex € @ for which F(u) # u, remove all the
alexliu@cse.msu.edu. Tel: +1 (517) 353-5152. Fax: +1 (5B2)1061. transitions forwu for which 5(u T) — 5(F(u) x)

Jignesh Patel and Eric Torng are with the Department of Com@dience h . he IF f7) d
and Engineering, Michigan State University, East LansMg, 48824. Alex When traversing the - A, ' O_n current state, and current
X. Liu is with the Department of Computer Science and Technplag input symbolz, é(u,z) is missing {.e. has been removed),
Nanjing University and the Department of Computer Sciencekrgineering \we can useé(F(u) x) to get the next state. Of course
at Michigan State University. The preliminary version ofstlpaper titled §(F iaht b L . hich h ’
“Bypassing space explosion in regular expression matchaorg network ((u),ﬂc) might be missing too, In which case we then use
intrusion detection and prevention systems” was publishatié proceedings 6(F(F(u)),z) to get the next state, and so on. The only
of the Network and Distributed System Security Symposium 8D 2012. rastriction on selecting deferred states is that the foncl
This work is supported in part by the National Science Fotindainder Grant | h h £l h .
Number CNS-1017588. E-mai{pateljiL, alexliu, torng@cse.msu.edu cannot create a cycle other than a seli-loop on the states;

Manuscript received September 16, 2012. otherwise all states on that cycle might have their tramsti

I. INTRODUCTION

on somex € Y removed and there would no way of findingall edges are directed towards the root. These directedsedge
the next state. give the deferred state for each state. Figure 1(b) shows the
Figure 1(a) shows a DFA for the REs sgt+a. *bcb, SRG built for the DFA in Figure 1(a).
.*c.+bcb}, and Figure 1(c) shows the’PA built from the Becchi and Crowley also use the Union then Minimize
DFA. The dashed lines represent deferred states. The DFA Fasmework to arrive at a minimum state DFA [15]. At this
13 x 256 = 3328 transitions, whereas the’BA only has1030 point, rather than using an SRG to set deferment states for
actual transitions an€él deferred transitions. each state, Becchi and Crowley use state levels where tak lev
D2FA are very effective at dealing with the DFA spac®f a DFA stateu is the length of the shortest string that takes
explosion problem. In particular, IFA exhibit tremendous the DFA from the start state to state Becchi and Crowley
transition compression reducing the size of the DFA by a hugbserved that if all states defer to a state that is at a loswet |
factor; this makes BFA much more practical for a softwarethan itself, then the deferment functiédhcan never produce a
implementation of RE matching than DFAs2BEAs are also cycle. Furthermore, when processing any input string aftien
used as starting point for advanced techniques like thoserinat mostn — 1 deferred transitions will be processed. Thus,
[8l. [9]. for each state;, among all the states at a lower level than
This leads us to the fundamental problem we address in tBigcchi and Crowley sef'(u) to be the state which shares the
paper. Given as input a set of RS build a compact BFA most transitions withu. The resulting BFA typically has a
as efficiently as possible that also supports frequent esdafew more transitions than the minimal?BA that results by
Efficiency is important as current methods for constructingpplying the Kumaset al. algorithm.
D2FA may be so expensive in both time and space that they Limitations of Prior Art

may not be able to construct the fma?lB\ even if the BFA Prior methods have three fundamental limitations. Fingtyt
is small enough to be deployed in networking devices thgt

h limited i Such | b llow the Union then Minimize framework which means they
ave limited computing resources. Such issues becomeyiou eate large automata and only minimize them at the end.

impgrtant Whe.’? we consider the issue of the frequ_ent Updatﬁ%s also means they must employ the expensive NFA to
(typically additions) toR that occur as new security threat%FA subset construction. Second, prior methods build the

Ere 'gle n;uﬁe?f.. Thil limited r:—:tsct)#rce C;&ogmg d%\;'lcebn:u%rresponding minimum state DFA before constructing the
€ able 1o efliciently compute the ne - ONE SULLE bUL 401 D2FA. This is very costly in both space and time. The

important point about this problem is that the resultitB pap s i wnically 50 to 100 times smaller than the DFA,
mgst repprt which RE (or REs) frqrﬁ matched a given mput.so even if the BFA would fit in available memory, the
this applies because each RE typically corresponds to AN, termediate DFA might be too large, making it impractical

security threat. Finally, while we focus or?BA in this paper, to build the FFA. This is exacerbated in the case of the

we believe that our techniques can pe generalized to Otrllﬁfmar et al. algorithm which needs the SRG which ranges
compact RE matching automata solutions [10]—[14].

from about the size of the DFA itself to ovéb times the
B. Summary of Prior Art size of the DFA. The resulting space and time required to

. . . . build the DFA and SRG impose serious limits on théFR
Given the input RE seR, any solution that builds a tFA that can be practically constructed. We do observe that the

for R will have 1o do the followmg two operauons: _(a) u.monmethod proposed in [15] does not need to create the SRG.
the automata corresponding to each RERiand (b) minimize .
urthermore, as the authors have noted, there is a way to go

the automata, both in terms of the number of states and thé . . .
number of edges. Previous solutions [7], [15] employ a “Winio rom the NFA directly to the BFA, but implementing such an

then Minimize” framework where they first build automata fof';\pproach is sill very costly in tme as many tra_nsmon baipl
o ; : need to be repeatedly recreated in order to realize these spa

each RE withinR, then perform union operations on these X
savings. Third, none of the previous methods provide efficie

automata to arrive at one c;o_m_bmed automaton for a_II th(?gorithms for updating the TFA when a new RE is added
REs in R, and only then minimize the resulting combmec?11

automaton. In particular, previous solutions typicallyfpem oR.

a computationally expensive NFA to DFA subset constructida: Our Approach

followed by or composed with DFA minimization (for states) To address these limitations, we propose a Minimize then

and D’FA minimization (for edges). Union framework. Specifically, we first minimize the small
Consider the BFA construction algorithm proposed byautomata corresponding to each RE fr®mand then union the

Kumar et al. [7]. They first apply the Union then Minimize minimized automata together. A key property of our method

framework to produce a DFA that corresponds R and is that our union algorithm automatically produces a mini-

then construct the corresponding minimum state DFA. Nexhum state BFA for the regular expressions involved without

in order to maximize transition compression, they solve explicit state minimization. Likewise, we choose deferten

maximum weight spanning tree problem on the followingtates efficiently while performing the union operationngsi

weighted graph which they call 8pace Reduction Graphdeferment information from the inputiBAs. Together, these

(SRG) The SRG has DFA states as its vertices. The SRG iptimizations lead to a vastly more efficientfBA construction

complete graph with the weight of an edg€u,v) equal to algorithm in both time and space.

the number of common transitions between DFA statesmd In more detail, giveriR, we first build a DFA and BFA

v. Once the spanning tree is selected, a root state is picleed &or each individual RE inR. The heart of our technique is

Fig. 1. (a) DFA for{. a. bcb, . *c. *bcb}. (b) Corresponding SRG. Edges of weightl not shown. Unlabeled edges have weight. (c) The >FA.

the D’FA merge algorithm that performs the union. It mergesnly a constant number of comparisons per state rather than
two smaller [FFAs into one larger BFA such that the merged a linear in the number of states comparison per state as is
D2FA is equivalent to the union of REs that théfAs being required by previous techniques. All told, our algorithns laa
merged were equivalent to. Starting from the the initidFBs practical time complexity of)(n|%|) wheren is the number
for each RE, using this TFA merge subroutine, we merge twoof states in the final BFA and |%| is the size of the input
D2FAs at a time until we are left with just one final?BA. alphabet. In contrast, Kumat al’s algorithm [7] has a time
The initial D’FAs are each equivalent to their respective REspmplexity ofO(n?(log(n)+|X|)) and Becchi and Crowley’s
so the final BFA will be equivalent to the union of all the algorithm [15] has a time complexity ab(n?|X|) just for
REs inR. Figures 2(a) and 2(b) show the initiaPPAs for the setting the deferment state for each state and ignoringdsie ¢
RE set{. *a. *bcb, . *c. *bcb}. The resulting BFA from of the NFA subset construction and DFA state minimization.
merging these two EFAs using the BFA merge algorithm is See Section V-D for a more detailed complexity analysis.
shown in Figure 2(c). These efficiency advantages allow us to build much larger
The D*FA produced by our merge algorithm can be largdp*’FAs than are possible with previous methods. For the
than the minimal BFA produced by the Kumaet al. algo- synthetic RE set that we consider in Section VI, given a
rithm. This is because the Kumat al. algorithm does a global maximum working memory size of 1GB, we can build a
optimization over the whole DFA (using the SRG), wheredd*FA with 80,216, 064 states with our BFA merge algorithm
our merge algorithm efficiently computes state deferment Whereas the Kumaet al. algorithm can only build a BEFA
the merged BFA based on state deferment in the two inpuvith 397,312 states. Also from Section VI, our algorithm is
D?FAs. In most cases, the?BA produced by our approachtypically 35 to 250 times faster than previous algorithms on
is sufficiently small to be deployed. However, in situationgur RE sets.
where more compression is needed, we offer an efficient finalBesides being much more efficient in constructingFR
compression algorithm that produces &M very similar in from scratch, our algorithm is very well suited for frequent
size to that produced by the Kumetr al. algorithm. This final RE updates. When an RE needs to be added to the current
compression algorithm uses an SRG; we improve efficiensgt, we just need to merge théA for the RE to the current
by using the deferment already computed in the merg&eAD D2FA using our merge routine which is a very fast operation.
to greatly reduce the size of this SRG and thus significantly b) Technical Challenges: For our approach to work, the
reduce the time and memory required to do this compressiofain challenge is to figure out how to efficiently union two
a) Advantages of our algorithm: One of the main minimum state BFAs D; and D, so that the resulting fFA
advantages of our algorithm is a dramatic increase in tind; is also a minimum state 4FA. There are two aspects to
and space efficiency. These efficiency gains are partly dtiés challenge. First, we need to make sure th#M D has
to our use of the Minimize then Union framework insteaghe minimum number of states. More specifically, suppbse
of the Union then Minimize framework. More specificallyand D, are equivalent to RE sef$; and Ry, respectively. We
our improved efficiency comes about from the following founeed to ensure thdd; has the minimum number of states of
factors. First, other than for the initial DFAs that corresd to any D’FA equivalent toR; U R,. We use an existinginion
individual REs inR, we build D’FA bypassing DFAs. Those cross product constructiofor this and prove that it results in
initial DFAs are very small (typically< 50 states), so the a minimum state BFA for our purpose. We emphasize that
memory and time required to build the initial DFAs andFas this is not true in general but holds for applications whexge
is negligible. The BFA merge algorithm directly merges themust identify which REs fromR; U R, match a given input
two input D?FAs to get the output BFA without creating the String. Many security applications meet this criteria.
DFA first. Second, other than for the initial DFAs, we never Our second challenge is building the’?A D5 without
have to perform the NFA to DFA subset construction. Thirduilding the entire DFA equivalent t®; while ensuring that
other than for the initial DFAs, we never have to perfornD; achieves significant transition compression; that is, the
DFA state minimization. Fourth, when setting defermentesta number of actual edges stored ifFEA D; must be small.
in the D’FA merge algorithm, we use deferment informatioMore concretely, as each state ik is created, we need to
from the two input BFA. This typically involves performing immediately set a deferred state for it; otherwise, we wdnald

N,

> 355

St
Deferment for 5=(0,2)
2---->1
-
7 255
: [}
2----> 1

Deferment for 7=(2,2)

z} -—--> 2 ----> 1

g

?lﬁ
2%-e1
Deferment for 9=(4,2)

4} ----p D) ---->]

2
256,

PN
Deferment for 12=(4,4)

(©) (d)

Fig. 2. (a)D1: D2FA for . »a. *bcb. (b) D2: D2FA for . »c. *bcb. (c) D3: merged FA. (d) lllustration of setting deferment for some statesip.

2

storing the entire DFA. Furthermore, we need to choose a good 1. RELATED WORK
deferment state that eliminates as many edges as possiblénitially network intrusion detection and prevention sy
We address this challenge by efficiently choosing a gosged string patterns to specify attack signatures [16}-[22
deferment state foDs by using the deferment informationSommer and Paxson [4] first proposed using REs instead of
from D; and D,. Typically, the algorithm only needs tostrings to specify attack signatures. Today network indrus
compare a handful of candidate deferment states. detection and prevention systems mostly use REs for attack
signatures. RE matching solutions are typically softwaased
or hardware-based (FPGA or ASIC).

Software-based approaches are cheap and deployable on

. -) I&eneral purpose processors, but their throughput may not be
Union framework for efficiently construcing3PA for network high. To achieve higher throughput, software solutions can

security RE sets that we believe will generalize to other R@e deployed on customized ASIC chips at the cost of low
Sa.tCh'Eg automal;ta. r'?' ote, Smtm 6}{' usic'j:;helll/nm;nzmeﬂtlhen versatility and high deployment cost. To achieve deterstimi
nion Framework- when constructing _[]'_[] ngthoughput, software-based solutions must use DFAs, which
they did not prove any properties about their union algarith face a space explosion problem. Specifically, there candbe st
D2EA lorithm f formi h . p rétxplosion where the number of states increases exporigntial
merge algorithm for performing the union of WO, yhe nymper of REs, and the number of transitions per state

9 . L
D°FAs. (3) When maximum compression is needed, € extremely high. To address the space explosion problem,

propose an efficient final compression step to produce ay]ealF%msition compression and state minimization softwaased
minimal D?FA. (4) To prove the correctness of ourBA utions have been developed

. ol
merge algorithm, we prove a fundamental property about tﬁeTransition compression schemes that minimize the number

standard union cross product Construgtion and minimune St o nsitions per state have mostly used one of two teclesiqu
DFAI‘.S c\j/vhen ?ppl:_fg to ne;yvork security RE sets that can lEf’ne is alphabet re-encoding, which exploits redundandyimvit
applied to other matching automata. a state, [15], [23]-[25]. The second is default transitiams

deferment states which exploits redundancy among stajes [7

We implemented our algorithms and conducted experime 151, [26]. Kumaret al. [7] originally proposed the use of
on real-world and synthetic RE sets. Our experiments imelic%éi [15]. [26]. -17] originally prop

_ ; 2 X . efault transitions. Becchi and Crowley [15] proposed aenor
that: (a) Our algorithm generates A with a fraction of the oicient way of using default transitions. Our work fallgdn

memory required by existing algorithms making it feasille ty,o cateqory of transition compression via default tréorsit

build D”FA with many more states. For the real world RE Sei§, 1 qorithms are much more efficient than those of [7], [15]
we consider in the expgnmental section, our algorithm YU and thus can be applied to much larger RE sets. For example,
an average of 1500 times less memory than the algorithm e 4re jimited to 1GB of memory to work with, we show
proposed in [7] and 30 times less memory than the algorithyL; « mar et al’s original algorithm can only build £EA

proposed in [15]. (b) Our algorithm runs much faster thegy, jess than 400,000 states whereas our algorithm cad buil
existing algorithms. For the real world RE sets we consider L D2FA with over 80.000.000 states

the experimental section, our algorithm runs an averagégf 1 Two basic approaches have been proposed for state min-
times faster than the_ algorithm pfOPosed in [7] and 19 timeSization. One is to partition the given RE set and build a
faster than the a'go”thm, P“’Pose‘?‘ in [15]. (c) Even with thI5FA for each partition [27]. When inspecting packet payload,
huge space and time efficiency gains, our algorithm gereraje, .\, innut symbol needs to be scanned against each pastition

DFA only slightly larger than existing algorithms in the Wbrspea - oy work is orthogonal to this technique and can be used
case. If the resulting #FA is too large, our efficient final

compression algorithm produces a nearly minimaFm.

c) Key Contributions: In summary, we make the fol-
lowing contributions: (1) We propose a novel Minimize the

in combination with this technique. The second approach dsrresponds toR; = R; U R,. Specifically, suppose we
to modify the automata structure and/or use extra memorydee given the two PMDFAYD; = (Q1,%, 01,401, M) and
remember history and thus avoid state duplication [10]-[14Ds = (Q2, X, d2, g0, M2). The union cross product PMDFA
We believe our merge technique can be adopted to work with D; and D, denoted as UCE),, D-), is given by D3 =
some of these approaches. For example, Satithl. also use UCP(D1, D3) = (@3, X, 03, go3, M3) whereQs = Q1 x Qa,
the Minimize then Union framework when constructing XFAs({(g;, ¢;),) = (d1(qi,), 2(qj,)), gos = (o1, qos), and
[11], [12]. One potential drawback with XFA is that there iSV3({g;,q;)) = Mi(¢g;) U Ma(g;).
no fully automated procedure to construct XFAs from a set Each state inD3 corresponds to a pair of states, one from
of regular expressions. Paraphrasing Yang, Karim, GahgpatD; and one fromD,. For notational clarity, we usé and
and Smith [28], constructing an XFA from a set of RE$ to enclose an ordered pair of states. Transition funcipn
requires manual analysis of the REs to identify and elin@inajust simulates botld; and d, in parallel. Many states)3
ambiguity. might not be reachable from the start statg. Thus, while
FPGA-based solutions typically exploit the parallel pgsse constructingDs, we only create states that are reachable from
ing capabilities of FPGAs to implement a Nondeterministigy.
Finite Automata (NFA) [13], [24], [29]-[33] or to implement We now argue that this construction is correct. This is a
multiple parallel DFAs [34]. TCAM based solutions have beestandard construction, so the fact thag is a PMDFA for
proposed for string matching in [20]-[22], [35] and for RER3 = R; U R, is straightforward and covered in standard
in [9]. Our work can potentially be applied to these solusionautomata theory textbooke.@.[5]). We now show thaD; is
as well. also a minimum state PMDFA faR3 assumingR; N Ry = 0,
Recently and independently, Let al. proposed to construct a result that does not follow for standard DFAs.

DFA by hierarchical merging [36]. That is, they essentiall;i_heorem 1. Given two RE setsR, and Ry, and equiva-
propose the Minimize then Union framework for DFA ConTent minimu.m' state PMDFASD anclj D th2é Union Cross
struction. They consider merging multiple DFAs at a tim%roduct DFA D UCP(D lD) wifﬁ only reachable
i H 3 = 1,472)
rather than just two. However, _they do not CanIdéF'D’ and_ states constructed, is the minimum state PMDFA equivalent
they do not prove any properties about their merge algorlthtrgR — R,UR, if R Ry —0
including that it results in minimum state DFAs. 3 A2 i =
I, PATTERN MATCHING DFEAS Proof: First since only reachable states are constructed,
A. Pattern Matéhing DFEA Definition D3 cannot be trivially reduced. Now assum@s; is not
In a standard DFA, defined as atuple (Q, X, 8, go, A), Minimum. That would mean there are two statesly, say

each accepting state is equivalent to any other acceptitg,. st(1:P2) and (g1, ¢2), that are indistinguishable. This implies
However, in many pattern matching applications where vjgat

are given a set of RER, we must keep track of which RES vy ¢ v My (85((p1, p2), 7)) = M3 (85({q1, @2),).

have been matched. For example, each RE may correspond _ _ _

to a unique security threat that requires its own processiMgprking on both sides of this equality, we gét € ¥,
routine. This leads us to define Pattern Matching Deteritiinis .

Finite State Automata (PMDFA). The key difference between M;(33((p1,p2), x)) = M3({01(p1,2), 02(p2, 2)))

a PMDFA and a DFA is that for each statén a PMDFA, we = My(61(p1, x)) U Ma(02(pa2,))
cannot simply mark it as accepting or rejecting; instead, W& well asvs ¢ ¥

must record which REs fror’R are matched when we reach

q. More formally, given as input a set of RE8, a PMDFA M3(33({q1,g2), 7)) = M3({d1(q1,2),02(g2, 7))

is a 5-tuple (@, X%, 4, g0, M) where the last term\/ is now = M1 (01(q1,2)) U My(82(ga,)

defined asM : Q — 2. L
This implies that

B. Minimum State PMDFA construction .

Given a set of RE®R, we can build the corresponding min- Vo € XMy (61(p1, %)) U Ma(d2(p2, 7)) =
imum state PMDFA using the standard Union then Minimize Mi(61(q1,x)) U Ma(d2(g2,x)).
framework: first build an NFA for the RE that correspond
to an OR of all the REs € R, then convert the NFA to a
DFA, and finally minimize the DFA treating accepting states vy ¢ ¥*, M, (6,(p1,x)) = M1(61(q1,2)) and
as equivalent if and only if they correspond to the same set * _
of regular expressions. This method can be very slow, mainly Vo € X7, Mp(0u(p2,) = Ma(01 (a2, 7))
due to the NFA to DFA conversion, which often results in This implies thatp; andq; are indistinguishable i®; and
an exponential growth in the number of states. Instead, we and ¢, are indistinguishable inD,, implying that both
propose a more efficient Minimize then Union framwork. D; and D, are not minimum state PMDFAs, which is a

Let R; and R, denote any two disjoint subsets @&, contradiction and the result follows. []
and let D; and Dy be their corresponding minimum state Our efficient construction algorithm works as follows. Eirs
PMDFAs. We use the standandnion cross productcon- for each REr € R, we build an equivalent minimum state
struction to construct a minimum state PMDFR3; that PMDFA D for » using the standard method, resulting in a set

Now sinceR; N Ry = 0, this gives us

of PMDFAs D. Then we merge two PMDFAs fror®® at a To help explain our algorithm, Figure 2 shows an example
time using the above UCP construction until there is just omxecution of the BFA merge algorithm. Figures 2(a) and 2(b)
PMDFA left in D. The merging is done in a greedy manner: ishow the BFA for the REs. *a. *bcb and. *c. *bcb, re-
each step, the two PMDFASs with the fewest states are merggabctively. Figure 2(c) shows the mergedF for the D’FAs
together. Note the conditio®; N Ry, =) is always satisfied in figures 2(a) and 2(b). We use the following conventions
in all the merges. when depicting a BFA. The dashed lines correspond to the

In our experiments, our Minimize then Union technique rurdeferred state for a given state. For each state in the merged
exponentially faster than the standard Union then MinimiZ&2FA, the pair of numbers above the line refer to the states in
technique because we only apply the NFA to DFA step to tliee original [FFAs that correspond to the state in the merged
NFAs that correspond to each individual regular expressi®@?FA. The number below the line is the state in the merged
rather than the composite regular expression. This make®%#A. The number(s) after the ‘/’ in accepting states give the
significant difference even when we have a relatively smati(s) of the pattern(s) matched. Figure 2(d) shows how the
number of regular expressions. For example, for our C7 RE sietferred state is set for a few states in the merg&eAb Ds.
which contains 7 REs, the standard technique requigéss We explain the notation in this figure as we give our algorithm
seconds to build the PMDFA, but our technique builds th#escription.
PMDFA in only 0.66 seconds. For the remainder of this paper, For each state. € D3, we set the deferred stafé(u) as
we use DFA to stand for minimum state PMDFA. follows. While merging BFAs D; and D, let stateu =

IV. D2FA CONSTRUCTION (po, go) be the new state currently being added to the merged

In this section, we first formally define what &FA is and D?FA Ds. Let pg—p1—---—p; be the maximal deferment

then describe how we can extend the Minimize then Unid{t@in DC1 (i.e. pi defers to itself) inD, starting atpo, and
technique to BFA bypassing DFA construction. qo—=q1— - ~—qm b€ the maximal deferment chainCs in D
starting atyy. For example, in Figure 2 (d), we see the maximal

A. D?FA Definition deferment chains for = 5 = (0,2), u = 7= (2,2), u =9 =

Let D = (Q,%,0,q0,M) be a DFA. A corresponding (4 2), andu = 12 = (4,4). Foru = 9 = (4,2), the top row
D?FA D' is defined as &-tuple (Q, %, p, qo, M, F). Together, s the deferment chain of statein D; and the bottom row
function F': @ — @ and partial functionp: @ x ¥ — @ s the deferment chain of statein D,. We will choose some
are equivalent to DFA transition functiofi Specifically, ' state (p;, ¢;) where0 < i < and0 < j < m to be F(u).
defines a unique deferred state for each stat€)jrand p |n Figure 2(d), we represent these candidate,) pairs with
is a partially defined transition function. We udem(p) 10 edges between the nodes of the deferment chains. For each
denote the domain of, i.e. the values for whiclp is defined. candidate pair, the number on the top is the corresponditeg st
The key property of a BFA D’ that corresponds to DFA number in D5 and the number on the bottom is the number
is thatV(q,c) € @ x X,(¢q,c) € dom(p) <= (F(q9) = of common transitions iD; between that pair and state
qV (g, c) # 0(F(qg),c)); that is for each statey only has For example, foru = 9 = (4,2), the two candidate pairs
those transitions that are different from that of its defdrr represented are state ?‘27(2» which shares 256 transitions
state in the underlying DFA. When defingelg, ¢) = d(¢,¢). in common with state 9 and state 4 (1)) which shares 255
States that defer to themselves must have all their transiti transitions in common with state 9. Note that a candidate pai
defined. We only considerFA that correspond to minimum s only considered if it is reachable ;. In Figure 2(d) with
state DFA, though the definition applies to all DFA. u = 9 = (4,2), three of the candidate pairs corresponding

The functionF defines a directed graph on the StateQOf to <4) 1>, <2’ 1>, and <172> are not reachab|e1 SO ho edge is
A D?FA is well defined if and only if there are no cycles ofincluded for these candidate pairs. Ideally, we waand j to
length > 1 in this directed graph which we call a defermenge as small as possible though not both 0. For example, our
forest. We use—q to denoteF'(p) = ¢, i.e. p directly defers pest choices are typicallipo, ¢1) or (p1, qo). In the first case,
to g. We usep—q to denote that there is a path fromto ¢ ;1 p, = (o, q0) M (p1,qo), and we already havgy,—p; in
in the deferment forest defined Wy. We usep(q to denote p,. In the second casey ¢ = (po,qo) M (po, q1), and we
the number of transitions in common between St@teﬂd q, a|ready havezo_>q1 in Dy. In Figure 2 (d), we SeF(u) to be

ie.pfg=Hc|ceXAd(p,c)=6dqg)} (po,q1) for u =5 = (0,2) andu = 12 = (4,4), and we use
The total transition function for a TFA is defined as (p1,qo) for u = 9 = (4,2). However, it is possible that both

5 (u, ¢) = { p(u,c) if (u,c) € dom(p) states are not reachable from the start stat®{n This leads

’ 8 (F(u),c) else us to consider other possiblg;, ¢;). For example, in Figure

2 (d), both(2,1) and (1,2) are not reachable i3, so we
use reachable statg, 1) as F'(u) for u =7 = (2,2).
We consider a few different algorithms for choosipg, ¢;).
B. D?FA Merge Algorithm The first algorithm which we call thérst match methods to
The UCP construction merges two DFAs together. Wind a pair of statesy(, ¢;) for which (p;, ¢;) € Q3 andi+ j
extend the UCP construction to merge tw@MABs together is minimum. Stated another way, we find the minimarx 1
as follows. During the UCP construction, as each new statesuch that the set of statés= {(p;, ¢.—;) | (max(0,z—m) <
is created, we definé’(u) at that time. We then defineto ¢ < min(l, 2))A((pi, ¢.—i) € Q3)} # 0. From the set of states
only include transitions for that differ from F'(u). Z, we choose the state that has the most transitions in common

It is easy to see that’ is well defined and equal 6 if the
D2FA is well defined.

with (po, qo) breaking ties arbitrarily. 1fZ is empty for all

Algorithm 1: D2FAMerg€ D1, D5)

z > 1, then we just pick(po, q0), i.e. the deferment pointer

is not set (or the state defers to itself). The idea behind the

first match method is thapy, o) M (ps, ¢;) decreases aist j
increases. In Figure 2(d), all the selectB¢u) correspond to
the first match method.

A second more complete algorithm for settidg(u) is
the best match methoevhere we always consider afl +

Input: A pair of D®FAs, Dy = (Q1, %, p1, 401, M1, F1) and
Dy = (Q2,%, p2, qos, M2, F»), corresponding to RE sets, s
and R, with Ry N Ry = 0.

Output: A D2FA corresponding to the RE sét; U Ro

Initialize D3 to an empty BFA;

Initialize queue as an empty queue;

queue.push ({goy, go,));

u = (U, us) := queue.pop();
Q3 := Qs U {u};

foreachc € ¥ do

1
2
3
4 while queue not emptydo
5
6
7
8

if nxt ¢ Q3 A nxt ¢ queue then queue.push (nxt);
Add (u,c) — nxt transition tops;

L nxt := (87 (U1, ¢), d5(Uz, ¢));

]\/[3([]) = JWl(ul) U A"IQ(UQ);
F3(u) := Fi ndDef St at e(u);
Remove transitions fou from p3 that are in common with; (u);
foreachu € Q3 do
newDptr := Fi ndDef St at e(u);
if (newDptr # F3(u)) A (newDptr Mu > F3(u) Mu) then
L F5(u) := newDptr;

16

Reset all transitions fon in p3 and then remove ones that are in
common with F’3 (u);

19 return Dsg;

, gm) be the list of states on the deferment chain from

1) x (m + 1) — 1 pairs and pick the pair that is i®; and
has the most transitions in common withg, ¢o). The idea
behind the best match method is that it is not always true that
(P> qo) M (P> qy) = (Po; o) N (Pati, qy+j) fori+j>0.For
instance we can havey Mpy < pg M p3, which would mean
{po, q0) M (p2,q0) < {(Po,qo) M (p3,qo). In such cases, the ”
first match method will not find the pair along the defermerit
chains with the most transitions in common withy, o). In
Figure 2(d), all the selecteH (u) also correspond to the best;
match method. It is difficult to create a small example where
first match and best match differ.
When adding the new state to Ds, it is possible that
,Some Stafte pairs along the deferment cha}ins that were ﬂolfi C:thoSt:avif, ;(ailjlyv?i:)l) be the list of states on the deferment chain from
in @3 while finding the deferred state far will later on be 1 to the root inDy;
added toQ3. This means that after all the states have beé&n te‘tgqgh:rggt’ o
added toQ)s3, the deferment for: can potentially be improved. for 2= 110 L+ fn’) do
Thus, after all the states have been added, for each state*w 31;?(;{<va>qé—éi)|}(_max(°vz —m) < i< min(l, 2))A
again find a deferred state. If the new deferred state isrbette if'S % 0 then retur argmax, g ((v1, va) M v);
than the old one, we reset the deferment to the new defersed retwum (vy,v2);
state. Algorithm 1 shows the pseudocode for tHE® merge
algorithm with the first match method for choosing a deferred
state. Note that we use and (uy, u,) interchangeably to spanning tree as the root state. After choosing the root
indicate a state in the mergedPA D3 wherew is a state in) . .
) . for each tree, all the edges in the spanning tree are directed
Qs3, andu; andusy are the states i); and Q-, respectively, . .
that statex corresponds to. towards the root,.glvmg the defermentt pointer for eachestat
o) One subtle point of this algorithm is that there are many
C. Original D*FA construc%)n for one RE cases where multiple edges can be added to the spanning tree.
DQ?:Zf?cr)? g;ihcgé nz)er:geoptiﬁ? \\/Ivvr?icfr:r?/\t/enzjusse} q Ciﬁntitt;ult\:ltDZ pecifically, Kruskal’s algorithm always chooses the edgk w
o . . o 5 . e maximum weight from the remaining edges. Since there
prellmmary version .Of this baper, 1S the”PA con.st.ructlon are only 256 possible edge weights, there often are multiple
algorlthm_proposeq in [9] which is _based on _the_ originaFA . edges with the same maximum weight. Meinetsl. use the
construction _algonthm proposgd n [71. This IS an eﬁe‘m'vfollowing tie breaking order among edges having the current
algorithm which we now describe in more detail. aximum weight
The first step is to build the Space Reduction Graph (SRéS]: '))
a complete graph where the vertices represent DFA stated) Edges that have a self-looping state as one of their end
and the weight of each SRG edge is the number of common_ Points are given the highest priority.
transitions between its end points in the DFA. Meinets 2) Next, priority is given to edges with higher sum of
al. note that for real world RE sets, the distribution of edge ~ degrees (in the current spanning tree) of their end
weights in the SRG is bimodal, with edge weights typically ~ Vertices.
either very small € 10) or very large & 180). They chose
to omit low (< 10) weight edges from the SRG which therD. Improved BFA construction for one RE
produced a forest with many distinct connected componentsWe now offer an improved algorithm for constructing a
They then construct a maximum spanning forest of the SR FA for one RE. This algorithm is similar to that of Meiners
using Kruskal's algorithm. et al’s algorithm [9]. The difference is we modify and extend
The next step is to choose a root state for each connecthd tie-breaking strategy as follows.
component of the SRG. For this, Meinegs al. choose self- For each state, we store a valueleg’(u), which is initially
looping states to be root states. A state seHf-looping state set to0. During Kruskal's algorithm, when an edge= (u, v)
if it has more than halfife. 128) of its transitions looping is added to the current spanning trdeg’(u) is incremented
back to itself. Each component of the SRG has at most obg 2 if level(u) < level(v); otherwise it is incremented by
self-looping state. For components that do not have a self-Recall thatevel(u) is the length of the shortest string that
looping state, they choose one of the states in the centertalfes the DFA from the start state to stateWe similarly

updatedeg’ (v). Then we use the following tie breaking order V. D?FA MERGEALGORITHM PROPERTIES

among edges having the current maximum weight. A. Proof of Correctness
1) Edges that have a self-looping state as one of their endrhe D?’FA merge algorithm exactly follows the UCP con-
points are given the highest priority. struction to create the states. So the correctness of the un-
2) Next, priority is given to edges with higher sumdfg’ derlying DFA follows from the the correctness of the UCP
of their end vertices. construction.
3) Next, priority is given to edges with higher difference Theorem V.1 shows that the merged?Aa is also well
between the levels of their end vertices. defined (no cycles in deferment forest).

The sum of degrees of end vertices is used for tie breakiEgmma Vi
in order to prioritize states that are already highly coteec -
However, we also want to prioritize connecting to states
lower levels, so we uséeg’ instead of just the degree. Using Proof: If (u1,us) = (v1,v2) then the lemma is trivially
the difference between levels of end points for tie breakirtgue. Otherwise, let(uq,us) — (w1, w2) — (v1,v2) be the
also prioritizes states at a lower level. This helps reduceferment chain inD;. When selecting the deferred state
the deferment depth and the’EA size for RE sets whose for (ui,u,), D2FA Merge always choose a state that cor-
D2?FAs have a higher average deferment depth. We obseresponds to a pair of states along deferment chainsufor
in our experiments section that the improved algorithm doesd w, in D; and D-, respectively. Therefore, we have that
outperform the original algorithm. (u1, ug)—(wi, wa) = ur—»wy A ug—ws. By induction on the
length of the deferment chain and the fact that theelation
is transitive, we get our result. []

In the D’PFA D3 = D2FAMerg€ Dy, Ds),

E<;l 1, Ug)—{V1, V) = U1 A Ug—>»V3.

E. D?FA construction for RE seR

We now have methods for constructing dFAA given one
RE and merging two BFAs into one BFA. We combine these Theorem V.1. If D2FAs D, and D, are well defined, then the
methods in the natural way to build one’?BA for a set of D?FA D3 = D2FAMergd Dy, Ds) is also well defined.
REs. That is, we first build a fFA for each RE inR. We e)
then merge the EFAs together using a balanced binary tree Pr(_)of. S!nce D, and D, are well defined, there_ are no
structure to minimize the worst-case number of merges thcéltCles In the!r defermgnt forests.. NQW assume thgis not
any RE experiences. We do use two different variations of o P” defined,l.e. there is a cyc!e In its deferment forest. Let
D2FAMerge algorithm. For all merges except the final merg u1, uz) and (v, v) be two distinct states on the cycle. Then,
we use the first match method for settidfu). When doing we have that
the final merge to get the final2PA, we use the best match
method for setting” (). It turns out that using the first match
method results in a better deferment forest structure in thging Lemma V.1 we get
D2FA, which helps when the TFA is further merged with
other D*FAs. The local optimization achieved by using the (U101 A ug—v2) A (v1—>u1 A va—>uz)
best match method only helps when used in the final merge. i.e. (u1—v1 A vi—ui) A (ug—»vg A va—>usg)

(w1, ug)=»(v1,v2) A (v1,v2)—(ur, ug)

F. Optional Fin_al Compression Algorithm Since (uy, uz) # (v1,v2), we haveu; # vy V ug # vy Which
When there is no bound on the deferment depth (see Sﬁﬁplies that at least one ab; or D, has a cycle in their

tion V-B), the original FFA algorithm proposed in [7] results deferment forest which is a contradiction. -
in a D?FA with smallest possible size because it runs Kruskal's

algorithm on a large SRG. OurPA merge algorithm results B
in a slightly larger BFA because it uses a greedy approach’
to determine deferment. We can further reduce the size of W
D2FA produced by our algorithm by running the followin

Limiting Deferment Depth

Since no input is consumed while traversing a deferred
o gnsition, in the worst case, the number of lookups needed
) : 5 0 process one input character is given by the depth of the
compression algorithm on the”BA produced by the EFA deferment forest. As previously proposed, we can guaramtee

merge algorithm. worst case performance by limiting the depth of the defetmen
We construct an SRG and perform a maximum weigtﬁ rest P y J P

spanning tree construction on the SRG, but we only add edge]stOr a stateu; of a DEFA D, the deferment deptiof v
1 1 1

to the SRG that have the potential to reduce the size of the : . .
D2FA. More specifically, letz andv be any two states in the Henoted ag(uy), is the length of the maximal deferment chain

= . in Dy from u, to the root.¥(D;) = max,cq, ¢¥(v) denotes
i(;uigevr;teiljarl:[A. We_ Oily add thFedge ;Zgu’v) E;:;e}?RG the deferment depth oD, (i.e. the depth of the deferment
i ght w(c) is > min(ul F(u), v 1 F(v). Here, F(u) (oo (2N
is the deferred state of in the current BFA. As a result,
very few edges are added to the SRG, so we only need to itamma V.2. In the D’)FA D3 = D2FAMerg€ D, D),
Kruskal's algorithm on a small 2SRG. This saves both spa&€u;, us) € Qs, ¥((u1, u2)) < (u1) + ¥ (uz).
and time compared to previous’BA construction methods.] B B
However, this compression step does require more time and Proqf. Let wg”“ﬁ? T d. It 7’.&(?.1’.“'2'» tf 0, éhen
space than the TFA merge algorithm because it does constru f“’z.‘ﬂ IS a root an € lemma IS fnvially true. 0, we
an SRG and then runs Kruskal's algorithm on the SRG. considerd > 1 and assume the lemma is true for all states

with ¢ < d. Let (u1, ug)—(w1, wa)—(v1,v2) be the deferment consider states with a lower level. Specifically, we replaue
chain in Ds. Using the inductive hypothesis, we have 24 with the following:

¢(<w1’ wa)) < h(w1) + Y(ws) S = {(pi, q2—s) | (max(0,z — m) < i < min(l, 2))A

' ' ((Ps, gz—i) € Q3) A (level((v1,v2)) > level((pi, q=—:)))}
Given (uj,us) # {(wy,ws), we assume without loss of

generality thatu; # w;. Using Lemma V.1 we get that For states for which no candidate pairs are found, we just
u—»w;. Thereforey(wy) < (u;) — 1. Combining the above, search through all states i3 that are at a lower level for
we gety((ug, uz)) = Y ((wy, wa))+1 < (wy)+1p(wa)+1 < the deferred state. In practice, this search through all the
(W(uy) — 1) + Plug) + 1 < p(ur) + ¥ (us). m States needs to be done for very few states becaus&FAD

Lemma V.2 directly gives us the following Theorem. Dy and D, have the back-pointer property, then almost all

the states in BFAs D5 have the back-pointer property. As
Theorem V.2. If D3 = D2FAMerggD;, D), thenW(Ds3) < wjith fimiting maximum deferment depth, we only apply this
U(D1) + ¥(Dy).

restriction when performing the final merge of tw@mAs to
For an RE sefR, if the initial D2FAs haveW = d, in the create the final EFA.

worst case, the final merged?BA corresponding toR can o)

have¥ = d x [R|. Although Theorem V.2 gives the value of2-_Algorithmic Complexity e _

U in the worst case, in practical casd@g,Ds) is very close to The time complexity of the original fFA algorithm pro-

. d in [7] isO(n?(log(n) + |X|)). The SRG ha)(n?)
max(¥(D;),¥(D3)). Thus the deferment depth of the finaP9S€ LN :
merged IﬁlFA is u25ually not much higher thad edges, and)(|X]) time is required to add each edge to the

Let ©2 denote the desired upper bound n To guarantee SRC andO(log(n)) time is required to process each edge

W(D3) < ©Q, we modify theFi ndDef Stat e subroutine in the SRG during the maximum spanning tree routine. The

in Algorithm 1 as follows: When selecting candidate pairtajme2 complexity of th_e BFA algorith_m proposed in [15] is
for the deferred state, we only consider states with . (7" |%])- Each state is compared wifh(n) other states, and

Specifically, we replace line 24 with the following ea_l(fﬂ C(t).mparisonlre(iuire?(\m) timebZFAM lqorithm t
S = {(por o) [(max(0, 2 — m) < i < min(l, 2))A e time complexity of our new erge algorithm to

merge two BFAs isO(n¥;¥,|X|), wheren is the number of

(pir g=—3) € Q) A (U ({pir ¢=—4)) < D)} states in the merged?PA, and¥; and ¥, are the maximum

When we do the second pass (lines 14-19), we may increasderment depths of the two input?BAs. When setting the
the deferment depth of nodes that defer to nodes that deferment for any state: = (uy,ug), in the worst case
readjust. We record the affected nodes and then do a thihé algorithm compareéu;,us) with all the pairs along the
pass to reset their deferment states so that the maximurh deggferment chains of; andwus, which are at most®; and ¥,
bound is satisfied. In practice, this happens very rarely. in length, respectively. Each comparison requitésy:|) time.

When constructing a fFA with a given bound?, we first In practice, the time complexity ©(n|X|) as each state needs
build D2FAs without this bound. We only apply the boufid to be compared with very few states for the following three
when performing the final merge of two?BAs to create the reasons. First, the maximum deferment deptis usually very

final D?FA. small. The largest value o among our 8 primary RE sets
in Section VI is7. Second, the length of the deferment chains
C. Deferment to a Lower Level for most states is much smaller than The largest value

In [15], the authors propose a technique to guarantee @haverage deferment depth among our 8 RE sets i.54.
amortized cost of2 lookups per input character withoutFinally, many of the state pairs along the deferment chai@s a
limiting the depth of the deferment tree. They achieve tlyis ot reachable in the mergedBA. Among our 8 RE sets, the
having states only defer to lower level states where thd tEve |argest value of the average number of comparisons needed is
any stateu in a DFA (or D’FA), denotedevel(u), is defined 1.47.
as the length of the shortest string that ends in that stede(f When merging all the BFAs together for an RE set
the start state). More formally, they ensure that for altesta R, the total time required in the worst case would be
u, level(u) > level(F(u)) if u# F(u). We call this property O (n¥, ¥, || log(|R|)). The worst case would happen when
the back-pointerproperty. If the back-pointer property holdsthe RE set contains strings and there is no state explosion. |
then every deferred transition taken decreases the lev@leof this case, each mergecd®EA would have a number of states
current state by at leadt Since a regular transition on anroughly equal to the sum of the sizes of théFAs being
input character can only increase the level of the curretestmerged. When there is state explosion, the la&EADmerge
by at mostl, there have to be fewer deferred transitions takefould be the dominating factor, and the total time would just
on the entire input string than regular transitions. Thieegi be O(n¥,0,|3|).
an amortized cost of at most transitions taken per input When modifying the D2FAMerge algorithm to maintain
character. back-pointers, the worst case time would®g:?||) because

2
In order to guarantee the BA D; has the back- \e would have to compare each state withn) other states

E?'Qéeéefp rSotpaetrté/, S\Gvgm%etir:]%rm &;émrlﬁg :rln gg Iu%agg?fotfmé%% none of the candidate pairs are found at a lower level than

when we wanted to limit the maximum deferment deptfihe state. In practice, this search needs to be done for very
When selecting candidate pairs for the deferred state, we oféw states, typically less that?s.

10

The worst case time complexity of the final compressioexpression matching. Smalldr and () mean that fewer de-
step is the same as that of Kumetr al’s D?FA algorithm, ferment transitions that process no input characters rebd t
which isO(n?(log(n) +|X|)), since both involve computing atraversed when processing an input string. O4FAMERGE
maximum weight spanning tree on the SRG. However, becawssgnificantly outperforms the other algorithms. Finallye w
we only consider edges which improve upon the existingeasure the space and time required by the algorithm to build
deferment forest, the actual size of the SRG in practice tise final automaton. Again, our BBAMERGE significantly
typically linear in the number of nodes. In particular, foet outperforms the other algorithms. When comparing the per-
real-world RE sets that we consider in the experiments@gcti formance of BFAMERGE with another algorithm4 on a
the size of the SRG generated by our final compression s@gpen RE or RE set, we define the following quantities to
is on average 100 times smaller than the SRG generateddaynpare them: transition increase iSHAMERGE D’FA size
Kumar et al’s algorithm. As a result the optimization step- A D2FA size) divided byA D2FA size, transition decrease
requires much less memory and time compared to the original(A D?FA size - FFAMERGE DPFA size) divided byA
algorithm. D?FA size, average (maximum) deferment depth ratid igv-
erage (maximum) deferment depth divided byFBMERGE

. . . average (maximum) deferment depth, space ratid ispace
In this section, we evaluate the effectiveness of our alg ge () b b P

. . . Vi D’FAMERGE , i 0 ild ti
rithms on real-world and synthetic RE sets. We con&derethr%&ﬁiﬂ ?;/ WFAMERGGEStF))ua:Iczjeti?nned time ratio Js build time

var!an:s gz?:uAngE'?Ggirhge alg_orl';hm. we d_enote tf(\;Br:am Since we have a newIPPAMERGE algorithm, we needed
variant a » tiS varlant Uses our improve to rerun our experiments. We ran them on faster processors

E%giHCt'onoTégorgh? for Orlﬁ REE:' AThe ot;hert.two vlarla_?r':s han in our conference version, so all of the algorithms repo
ergevid, which uses the construction algontnm o, -)jer processing times than before. One interesting note

?n [9] to bgilq DFA fof each R.E and was used eXCIUSiV6|¥s that while the new BFAMERGE performs better than
in the preliminary version of this paper, ailtfFAMergeOpt D?FAMergeOld, the running times are essentially the same.

, which applies our final compression algorithm after rugnin 3) Measuring SpaceWhen measuring the required space

BzEﬁMER?E't_We <|:om_[t)rz?re our algo(;ithmsg‘llg:lf&i (:Ligina}or an algorithm, we measure the maximum amount of mem-
construction algorithm proposed in [@) a ory required at any point in time during the construction and

optimizes transition compression and théF construction then final storage of the automaton. This is a difficult qugnti
algorlthm proposed in .[1$A.CKPTR that enforces the back- to measure exactly; we approximate this required space for
pointer property described in Section V-C. each of the algorithms as follows. For’PAMERGE and
A. Methodology D2FAMergeOld, the dominant data structure is th&B. For
1) Data Sets: Our main results are based on eight rea D?FA, the transitions for each state can be stored as pairs
RE sets, four proprietary RE sets C7, C8, C10, and C6®8input character and next state id, so the memory required
from a large networking vendor and four public RE set® store a BFA is calculated as- (#transitions) x 5 bytes.
Bro217, Snort 24, Snort31, and Snort 34, that we partitiddowever, the maximum amount of memory required while
into three groups, STRING, WILDCARD, and SNORT, basedinning *FAMERGE may be higher than the final?BA
upon their RE composition. For each RE set, the numbsize because of the following two reasons. First, when mgrgi
indicates the number of REs in the RE set. The STRING Rizo D?FAs, we need to maintain the two inpuPAs as well
sets, C613 and Bro217, contain mostly string matching REss the output BFA. Second, we may create an intermediate
The WILDCARD RE sets, C7, C8 and C10, contain mostlgutput D*FA that has more transitions than needed; these
REs with multiple wildcard closures ‘.*. The SNORT REextra transitions will be eliminated once alPPA states are
sets, Snort24, Snort31, and Snort34, contain a more diveegkled. We keep track of the worst case required space for
set of REs, roughly 40% of which have wildcard closures. Taur algorithm during BFA construction. This typically occurs
test scalability, we use Scale, a synthetic RE set congistin when merging the final two intermediate’? EA to form the
26 REs of the form /+¢,0123456. * ;789! #%&/, where final D?FA.
¢, andc; are the 26 uppercase and lowercase alphabet letterd=or ORIGINAL, we measure the space required by the
Even though all the REs are nearly identical differing omly iminimized DFA and the SRG. For the DFA, the transitions
the character after the two .*'s, we still get the full mulii@- for each state can be stored as an array of Eiagith each
tive effect where the number of states in the correspondiagray entry requiring four bytes to hold the next state id: Fo
minimum state DFA roughly doubles for every RE added. the SRG, each edge requires 17 bytes as observed in [15].
2) Metrics: We use the following metrics to evaluate thé his leads to a required memory for building théHfa of
algorithms. First, we measure the resultingFB size (# = |Q| x |3| x 4 + (#edges in SRG) x 17 bytes.
transitions) to assess transition compression perforeddar For D’FAMergeOpt, the space required is the size of the
D2FAMERGE algorithm typically performs almost as wellfinal D2FA resulting from the merge step, plus the size of the
as the other algorithms even though it builds up thié® SRG used by the final compression algorithm. The sizes are
incrementally rather than compressing the final minimurtestacomputed as in the case ofPAMERGE and ORIGINAL.
DFA. Second, we measure the the maximum deferment depth-or BACKPTR, we consider two variants. The first variant
() and average deferment depth)(in the D’FA to assess builds the minimized DFA directly from the NFA and then
how quickly the resulting BFA can be used to perform regularsets the deferment for each state. For this variant, no SRG is

VI. EXPERIMENTAL RESULTS

11

needed, so the space required is the space needed for the tin-weight edges from the SRG so that the deferment forest
imized DFA which is|Q| x |X| x 4 bytes. The second varianthas many shallow deferment trees instead of one deep tree.
goes directly from the NFA to the finalAPA; this variant uses This is particularly effective for the WILDCARD RE sets and,
less space but is much slower as it stores incomplete ti@msitto a lesser extent, the SNORT RE sets. For the STRING RE
tables for most states. Thus, when computing the defermeets, the SRG is fairly dense, S6EPAMERGE has a smaller
state for a new state, the algorithm must recreate the coenpladvantage relative to ORIGINAL.
transition tables for each state to determine which has et m (4) D?’FAMERGE produces FA with only slightly more
common transitions with the new state. For this variant, weansitions than ORIGINAL, particularly on the RE sets
assume the only space required is the space to store the fthat need transition compression the mo€n average,
D2FA which is= (#transitions) x 5 bytes even though more D2FAMERGE produces BFA with roughly 11% more transi-
memory is needed at various points during the computatidions than ORIGINAL does. EFAMERGE works best when
We also note that both implementations must perform the NFB#ate explosion from wildcard closures creates DFA comose
to DFA subset construction on a large NFA which means evefi many similar repeating substructures. This is precisely
the faster variant runs much more slowly thahFBMERGE. when transition compression is most needed. For example, fo
4) Correctness:We tested correctness of our algorithmshe WILDCARD RE sets that experience the greatest state
by verifying the final FA is equivalent to the correspondingexplosion, BFAMERGE only has 1% more transitions than
DFA. Note, we can only do this check for our RE sets whei@RIGINAL. On the other hand, for the STRING RE sets,
we were able to compute the corresponding DFA. Thus, VBPBFAMERGE has, on average, 22% more transitions. For
only verified correctness of the final?BA for our eight real this group, ORIGINAL needed to build a very large SRG and
RE sets and the smaller Scale RE sets. thus used much more space and time to achieve the improved
B. D2FAMERGE versus ORIGINAL transition compression. Furthermore, transition congoesis
We first compare BFAMERGE with ORIGINAL that op- typically not needed for such RE sets as all string matching
timizes transition compression when both algorithms have UREs can be placed into a single group and the resulting DFA
limited maximum deferment depth. These results are showndan be built.
Table | for our 8 primary RE sets. Table Il summarizes these In summary, BFAMERGE achieves its best performance
results by RE group. We make the following observations. relative to ORIGINAL on the WILDCARD RE sets (except
(1) D2FAMERGE uses much less space than ORIGINAtar space used for construction of the!fA) and its worst
On average, BFAMERGE uses 1500 times less memory thaperformance relative to ORIGINAL on the STRING RE sets
ORIGINAL to build the resulting BFA. This difference is (except for space used to construct tiféB). This is desirable
most extreme when the SRG is large, which is true for ttas the space and time efficientPAMERGE is most needed
two STRING RE sets and Snort24 and Snort34. For thege RE sets like those in the WILDCARD because those RE
RE sets, BFAMERGE uses between 1422 and 4568 timesets experience the greatest state explosion.
less memory than ORIGINAL. For the RE sets with relatively (5) Improvement of BFAMERGE over BFAMergeOld.
small SRGs such as those in the WILDCARD and Snort3WUsing our improved algorithm to build the initial ZBAs
D?FAMERGE uses between 35 and 231 times less space thigaults in significant reduction in the final size of the
ORIGINAL. D2FA produced by the BFA merge algorithm. On average,
(2) D*!FAMERGE is much faster than ORIGINADn av- D?FAMergeOld produces a iFA 8.2% larger than that pro-
erage, BFAMERGE builds the BFA 155 times faster than duced by BFAMERGE.
ORIGINAL. This time difference is maximized when theC. Assessment of Final Compression Algorithm
deferment chains are shortest. For exampléFAMERGE We now assess the effectiveness of our final compression
only requires an average @05 msec and0.09 msec per algorithm by comparing EFAMergeOpt to ORIGINAL and
state for the WILDCARD and SNORT RE sets, respective))?’FAMERGE. As expected EFAMergeOpt produces aiPA
so D’FAMERGE is, on averag@47 and142 times faster than that is almost as small as that produced by ORIGINAL; on
ORIGINAL for these RE sets, respectively. For the STRIN@verage, the number of transitions increases by only 0.4%.
RE sets, the deferment chains are longer, $6AMERGE There is a very small increase for WILDCARD and SNORT
requires an average 06f67 msec per state, and is, on averagdecause ORIGINAL also considers all edges with weight
35 times faster than ORIGINAL. in the SRG, whereas IFAMergeOpt does not use edges with
(3) D’!FAMERGE produces #FA with much smaller av- weight < 10. There is a significant benefit to not using these
erage and maximum deferment depths than ORIGINAh. low weight SRG edges; the deferment depths are much higher
average, BFAMERGE produces BFA that have average for the D?FA produced by ORIGINAL when compared to the
deferment depths that are 6.4 times smaller than ORIGINAR?FA produced by BFAMergeOpt.
and maximum deferment depths that are 4.4 times smallefThe final compression algorithm of 2BAMergeOpt does
than ORIGINAL. In particular, the average deferment depttequire more resources than are required BYFAMERGE.
for D2FAMERGE s less than 2 for all but the two STRINGIn some cases, this may limit the size of the RE set
RE sets, where the average deferment depths are 2.15 BRBAMergeOpt can be used for. However, as explained earlier,
2.69. Thus, the expected number of deferment transitionsRBFAMERGE performs best on the WILDCARD (which has
be traversed when processing a lengthtring is less tham. the most state explosion) and performs the worst on the
One reason BFAMERGE works so well is that it eliminates STRING (which has the no or limited state explosion). So the

12

ORIGINAL D2FAMERGE
RE set Def. depth RAM Time Def. depth RAM | Time
States | # Trans Avg. | Max. (MB) (s) # Trans Avg. [Max. | (MB) (s)
Bro217 6533 9816 3.90 8 179.3 | 1194 11737 | 2.15 5 0.13 3.2
C613 | 11308 21633 | 4.38 11 | 1042.7 | 326.0 26709 | 2.69 7 0.23 9.7
C7 | 24750 | 205633 | 16.38 27 47.4 | 397.7 | 207540 | 1.14 3 1.07 0.9
Cc8 3108 23209 8.60 14 4.9 14.5 23334 | 1.14 2 0.14 0.2
C10 14868 96793 | 16.39 26 255 | 1410 97296 | 1.18 3 0.52 0.6
Snort24 | 13886 38485 | 9.67 18 861.2 | 299.2 39409 | 1.56 4 0.32 0.2
Snort31 | 20068 70701 | 9.17 16 298.5 | 244.3 92284 | 2.00 6 1.29 2.6
Snort34 | 13825 40199 | 10.95 18 795.2 | 309.9 43141 | 1.38 5 0.27 1.8
TABLE |
PERFORMANCE DATA OFORIGINAL AND D2FAMERGE
u D?FAMergeOld D2FAMergeOpt
RE set Def. depth RAM | Time Def. depth RAM Time
States | # Trans Avg. | Max. | (MB) (s) # Trans Avg. | Max. | (MB) (s)
Bro217 6533 12325 | 2.16 5 0.10 3.2 9816 | 2.44 7 2.64 99.2
C613 11308 34991 | 2.54 7 0.29 9.7 21633 | 3.04 8 7.48 | 940.4
Cc7 24750 | 208564 | 1.14 3 1.07 0.9 207540 | 1.14 3 2.49 45.7
Cc8 3108 24604 | 1.14 2 0.14 0.2 23334 | 1.14 2 0.32 1.0
C10 | 14868 99124 | 1.17 3 0.53 0.6 97296 | 1.17 2 1.61 14.8
Snort24 | 13886 44883 | 1.56 4 0.35 0.2 38601 | 1.57 4 2.67 19.9
Snort3l | 20068 | 94339 | 1.97 6| 086 | 26| 70780 | 2.17 8 | 1561 | 59.1
Snort34 | 13825 | 45642 | 1.38 5| 028| 1.8 | 40387 | 1.42 8 | 260 | 14.2
TABLE Il
PERFORMANCE DATA OFD2FAMERGEOLD AND D2FAMERGEOPT.
D?FAMergeOld DZFAMERGE D?FAMergeOpt
RE set group Trans | Def. depth ratio| Space| Time Trans | Def. depth ratio| Space| Time Trans | Def. depth ratio| Space | Time
increase [Avg. Max. ratio ratio | increase| Avg. Max. ratio ratio | increase | Avg. Max. ratio ratio
All 20.1% 6.5 4.4 | 1388.6 | 154.5 10.8% 6.4 4.4 | 1499.8 | 1545 0.4% 6.0 3.7 1131 9.4
STRING 44.0% 25 2.0 | 2667.0 35.4 21.5% 2.4 2.0 | 2994.8 35.4 0.0% 2.2 1.6 103.5 0.8
WILDCARD 3.0% | 12.1 8.8 42.7 | 246.6 1.0% | 12.1 8.8 42.8 | 246.6 1.0% | 12.1 10.0 16.8 | 10.8
SNORT 21.3% 6.3 4.0 | 1882.3 | 141.8 13.3% 6.3 4.0 | 1960.3 | 141.8 0.0% 6.0 3.0 | 2158 | 137
TABLE Il
COMPARING D?FAMERGEOLD, D2FAMERGE AND D2FAMERGEOPT WITH ORIGINAL.
. =1 Q=2 Q=14
final compression algomhm IS Only needed for and is most RE set groug Trans| Avg. def. [Trans| Avg. def. [Trans| Avg. dptr
beneficial for RE sets with limited state explosion. Finaiixe - gdle;) dep(t)thaﬂO 7%62; dep(t)hgraﬂo Adze;; 'enlfgﬂo
. . . 0 . B 0 . . (] .
observe that BFAMergeOpt requires on average 113 tllmes STRING| 90.0%| 06 |925% 06 |755%| o9
less RAM than ORIGINAL, and, on average, runs 9 times |WILDCARD |89.3%| 0.8 |59.0%| 1.1 0.0% | 2.0
SNORT| 94.0% 0.7 91.0% 0.8 63.0% 1.4

faster than ORIGINAL.

D. D?FAMERGE versus ORIGINAL with Bounded Maximum c DQFAMERGI;—ABLE(;/RIGWAL
Deferment Depth OMPARING WITH GIVEN MAXIMUM

We now compare BFAMERGE and ORIGINAL when they DEFERMENT DEPTH BOUNDS OFL, 2AND 4.
impose a maximum deferment depth bouiadof 1, 2, and that D*>FAMERGE has a larger average deferment depth
4. Because time and space do not change significantly, wian ORIGINAL except for the WILDCARD whem is 1
focus only on number of transitions and average defermeifit2. What this means is that?BAMERGE has more states
depth. These results are shown in Table IV. Note that fesat defer to at least one other state than ORIGINAL does.
these data sets, the resulting maximum depthypically is This leads to the lower number of transitions in the final
identical to the maximum depth bouritt the only exception D2FA. Overall, for @ = 1, D?FAMERGE produces BFA
is for D’FAMERGE and(2 = 4; thus we omit the maximum with roughly 91% fewer transitions than ORIGINAL for all
deferment depth from Table IV. Table V summarizes thRE set groups. Fof) = 2, D2FAMERGE produces BFA
results by RE group highlighting how much better or worsgith roughly 59% fewer transitions than ORIGINAL for the
D’FAMERGE does than ORIGINAL on the two metrics ofWILDCARD RE sets and roughly 92% fewer transitions than
number of transitions and average deferment depth ORIGINAL for the other RE sets.

Overall, ’FAMERGE performs very well when presented
a bound®. In particular, the average increase in the numb&r D?FAMERGE versus BACKPTR
of transitions for BFAMERGE with Q equal to1, 2 and We now compare BFAMERGE with BACKPTR which
4, is only 131%, 20% and 1% respectively, compared toenforces the back-pointer property described in Sectidd. V-
D2FAMERGE with unbounded maximum deferment deptiVe adapt BFAMERGE to also enforce this back-pointer
Stated another way, when?BAMERGE is required to have property. The results for all our metrics are shown in Table V
a maximum deferment depth of 1, this only results in slightifor our 8 primary RE sets. We consider the two variants of
more than twice the number of transitions in the resultingACKPTR described in Section VI-A3, one which constructs
D2FA. The corresponding values for ORIGINAL a3¢21%, the minimum state DFA corresponding to the given NFA
1216% and 197%. and one which bypasses the minimum state DFA and goes

These results can be partially explained by examiulirectly to the BFA from the given NFA. We note the second
ing the average deferment depth data. Unlike in the uwmariant appears to use less space th&FAMERGE. This
bounded maximum deferment depth scenario, here we $eepartially true since BACKPTR creates a smallef AR

13

ORIGINAL D?FAMERGE
Trans Avg. def. depth # Trans Avg. def. depth

Q=1 Q=21 Q=4]Q=1]0=2]0=4 | Q=1 Q=21 Q=4[0=11] Q=21 Q=4
Bro217 698229 | 296433 | 52628 | 0.62 1.18 2.09 50026 15087 11757 | 1.00 1.83 2.15
C613 | 1204831 | 507613 | 102183 | 0.62 1.17 2.16 | 154548 | 51858 27735 | 1.00 194 | 264
C7 | 2044171 | 597544 | 206814 | 0.71 1.24 | 2.07 | 215940 | 208044 | 207540 | 0.97 1.13 1.14

C8 206897 40411 23261 | 0.77 1.32 2.51 24090 23334 23334 | 0.98 1.14 1.14
C10 | 1105160 | 325536 | 97137 | 0.75 131 2.39 | 101556 | 97326 97296 | 0.98 1.18 1.18
Snort24 | 1376779 | 543378 | 106211 | 0.66 1.25 2.39 68906 42176 39409 | 0.99 1.47 1.56
Snort31 | 2193679 | 1102693 | 405785 | 0.62 111 2.08 | 208136 | 119810 | 95496 | 1.00 1.52 1.97
Snort34 | 1357697 | 559255 | 85800 | 0.66 1.19 2.17 57187 44607 43231 | 1.00 1.34 1.38

RE
set

TABLE IV
PERFORMANCE DATA FORORIGINAL AND D2FAMERGE GIVEN MAXIMUM DEFERMENT DEPTH BOUNDS OF1, 2AND 4.
BACKPTR D?FAMERGE with back-pointer
RE # Trans |_Del.depth | RAM [Time | RAMZ2 | Tme2 | . T Def depth | RAM | Time
set Avg. | Max. | (MB)) | (vB) (s) Avg. | Max. | (MB) ()
Bro2l7 | 11247 | 2.61 6 | 638 | 88.08| 005]| 273.95| 13567 | 2.33 6 013 | 6.24
C613 | 26222 | 250 5| 11.04 | 5591 | 0.13| 971.45| 33777 | 2.30 5| 025 10.78
C7 | 217812 | 594 | 13 | 2417 | 277.80| 1.04 | 1950.00 | 219684 | 1.15 4| 112] 451
C8 | 34636 | 2.44 8| 304| 1261| 017| 27.76| 35476 | 1.20 4| 019| 069
C10 | 157139 | 2.13 7| 1452 | 96.86| 0.75| 47654 | 158232 | 1.21 4| 080 | 11.94
Snort24 | 46005 | 8.74 | 17 | 1356 | 70.95| 0.22 | 1130.00 | 58273 | 1.62 8 | 041 47.77
Snort31 | 82809 | 2.87 8 | 19.60 | 109.56 | 0.39 | 1110.00 | 124584 | 1.74 6| 129| 361
Snort34 | 46046 | 7.05 | 14 | 1350 | 9419 | 022 | 983.98| 51557 | 1.42 5| 030]| 6.06
TABLE VI

PERFORMANCE DATA FOR BOTH VARIANTS OFBACKPTR AND D2FAMERGEWITH THE BACK-POINTER PROPERTY

than ’FAMERGE. However, we underestimate the actu®RIGINAL and D’FAMERGE, we add one RE at a time
space used by this BACKPTR variant by simply assuming ifsom Scale until the space estimate to build th&R goes
required space is the final?BA size. We ignore, for instance, over thelGB limit. For ORIGINAL, we are able only able to
the space required to store intermediate complete tablesadd 12 REs; the final BFA has397, 312 states and requires
to perform the NFA to DFA subset construction. Table Vlbver 71 hours to compute. As explained earlier, we include
summarizes these results by RE group displaying ratios thie SRG edges in the RAM size estimate. If we exclude
many of our metrics that highlight how much better or worsthe SRG edges and only include the DFA size in the RAM
D?FAMERGE does than BACKPTR. size estimate, we would only be able to add one more RE
Similar to D’FAMERGE versus ORIGINAL, we find that before we reach th@éGB limit. For D’FAMERGE, we are
D?FAMERGE with the backpointer property performs welhble to addl9 REs; the final BFA hass0, 216, 064 states and
when compared with both variants of BACKPTR. Specificallyequires only 77 minutes to compute. This data set highdight
with an average increase in the number of transitions tife quadratic versus linear running time of ORIGINAL and
roughly 18%, BFAMERGE runs on average 19 times fasteD>?FAMERGE, respectively. Figure 3 shows how the space and
than the fast variant of BACKPTR and 143 times faster thaime requirements grow for ORIGINAL and?PAMERGE as
the slow variant of BACKPTR. For space,?PAMERGE RE’s from Scale are added one by one until 19 have been
uses on average almost 30 times less space than the &dded.
variant of BACKPTR and on average roughly 42% more o0

Memory required to build

space than the second variant of BACKPTR. Furthermore, ;o e - "
D?FAMERGE creates BFA with average deferment depth z //Z/ "
2.9 times smaller than BACKPTR and maximum defermené) // "
depth 1.9 times smaller than BACKPTR. As was the casé [.~ _ .* ORIGINAL o
with ORIGINAL, D°’FAMERGE achieves its best performance *'{ _ .+ PIRAMERGE =
relative to BACKPTR on the WILDCARD RE sets and its °®% 4 & & 10 12 1 1 1 2
worst performance relative to BACKPTR on the STRING FREs
RE sets. This is desirable as the space and time efficien-oos Time aued o oo
D?FAMERGE is most needed on RE sets like those in the“igzgg vl
WILDCARD because those RE sets experience the greatestiow el .
state explosion. H 10 v e
RE set rou] o] e T e S T Spaee T2 =
Al | 17.9%| 2.9 19] 304 193] 0.7| 1425 001 L
STRING| 25.0%| 1.1 10| 47.3| 97| 05| 67.0 2 4 6 8 10 12 14 16 18 2
WILDCARD | 1.3%| 3.0 23| 185| 29.3| 09| 1708 #RES
SNORT| 29.7%| 4.0 21| 31.1| 158 0.5| 164.5
TABLE VII Fig. 3. Memory& time for ORIGINAL’s D?FA and >FAMERGE’s D?FA.
COMPARING D2FAMERGEWITH BOTH VARIANTS OF BACKPTR. VIl. CONCLUSIONS

F. Scalability results In this paper, we propose a novel Minimize then Union

Finally, we assess the improved scalability FHFAMERGE framework for constructing EFAs using FA merging. Our
relative to ORIGINAL using the Scale RE set assumingpproach requires a fraction of memory and time compared to
that we have a maximum memory size of 1 GB. For botturrent algorithms. This allows us to build much largéFBs

14

than was possible with previous techniques. Our algorithize] M. Alicherry, M. Muthuprasanna, and V. Kumar, “High spepattern

naturally supports frequent RE set updates. We conducte
experiments on real-world and synthetic RE sets that veri@g

d matching for network ids/ips,” irProc. 2006 IEEE International Con-

ference on Network Protocols leee, 2006, pp. 187-196.

] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalablechitecture

our claims. For example, our algorithm requires an average for high-throughput regular-expression pattern matchirglGARCH
of 1500 times less memory anth0 times less time than the
original D?FA construction algorithm of Kumaet al. We

also provide an optimization postprocessing step thatymesl [25] S. Kong, R. Smith, and C. Estan, “Efficient signature miighwith

D?FAs that are essentially as good as those produced by the
original D?FA construction algorithm; the optimization step

Computer Architecture New2006.

[24] M. Becchi and P. Crowley, “Efficient regular expressiemaluation:

Theory to practice,” inrProc. ACM/IEEE ANCS2008.

multiple alphabet compression tables,Rroc. 4th Int. Conf. on Security
and privacy in communication netowrks (SecureComnfCM Press,
2008, p. 1.

requires on average 113 times less memory and 9 times I@8$ M. Becchi and S. Cadambi, “Memory-efficient regular exgsien search
time than the original BFA construction algorithm.

(1]

(2]
(3]

(4]

(5]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

(23]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

M. Roesch, “Snort: Lightweight intrusion detection faetworks,” in
Proc. 13th Systems Administration Conference (LISA), USEsoci-
ation, November 1999, pp. 229-238.

“Snort,” http://www.snort.org/.

V. Paxson, “Bro: a system for detecting network intrugler real-time,”
Computer Networksvol. 31, no. 23-24, pp. 2435-2463, 1999. [Online].
Available: citeseer.ist.psu.edu/paxson98bro.html

R. Sommer and V. Paxson, “Enhancing bytelevel networkusitn
detection signatures with context,” ifroc. ACM Conf. on Computer
and Communication Securjt2003, pp. 262—-271.

J. E. Hopcroft, R. Motwani, and J. D. Ulimamtroduction to Automata
Theory, Languages, and ComputatiorAddison-Wesley, 2000.

J. E. Hopcroft,The Theory of Machines and Computationfcademic
Press, 1971, ch. An nlogn algorithm for minimizing the statea finite
automaton, pp. 189-196.

S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. Turriak
gorithms to accelerate multiple regular expressions matcfungieep
packet inspection,” ifProc. SIGCOMM 2006, pp. 339-350.

S. Kumar, J. Turner, and J. Williams, “Advanced algorithrasfast and
scalable deep packet inspection,”fmoc. IEEE/ACM ANCS2006, pp.
81-92.

C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Ligast regular
expression matching using small tcams for network intrusidedi®en

and prevention systems,” iRroc. 19th USENIX Security Symposium [36]

Washington, DC, August 2010.

S. Kumar, B. Chandrasekaran, J. Turner, and G. Varght&3asing
regular expressions matching algorithms from insomnia, arapesid
acalculia,” inProc. ACM/IEEE ANCS2007, pp. 155-164.

R. Smith, C. Estan, and S. Jha, “Xfa: Faster signature mragcwith
extended automata,” iRroc. IEEE Symposium on Security and Privacy
2008, pp. 187-201.

R. Smith, C. Estan, S. Jha, and S. Kong, “Deflating the laiggh fast
and scalable deep packet inspection with extended finitenzath,” in
Proc. SIGCOMM 2008, pp. 207-218.

M. Becchi and P. Crowley, “A hybrid finite automaton foragtical deep
packet inspection,” ifProc. CoNext2007.

——, “Extending finite automata to efficiently match pedrepatible
regular expressions,” iRroc. ACM CoNEXT2008, article Number 25.
——, “An improved algorithm to accelerate regular exgiea evalua-
tion,” in Proc. ACM/IEEE ANCS2007.

A. V. Aho and M. J. Corasick, “Efficient string matchingn aid to
bibliographic search,Communications of the ACMol. 18, no. 6, pp.
333-340, 1975.

N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Datristic
memory-efficient string matching algorithms for intrusion déte,” in
Proc. IEEE Infocom2004, pp. 333—-340.

I. Sourdis and D. Pnevmatikatos, “Pnevmatikatos: Fasjel-scale string
match for a 10gbps fpga-based network intrusion detectisteny;” in
Proc. Int. on Field Programmable Logic and Applicatiorz003, pp.
880-889.

L. Tan and T. Sherwood, “A high throughput string matcharchitecture
for intrusion detection and prevention,” iRroc. 32nd Annual Int.
Symposium on Computer Architecture (ISC2005, pp. 112-122.

F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packettern-
matching using TCAM,” inProc. 12th IEEE Int. Conf. on Network
Protocols (ICNP) 2004, pp. 174-183.

J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, and B.-T. KitA, multi-
gigabit rate deep packet inspection algorithm using tcamProc. IEEE
GLOBECOM 2005.

using state merging,” ifProc. INFOCOM |IEEE, 2007.

F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz, “Fasd
memory-efficient regular expression matching for deep pacisgiec-
tion,” in Proc. ACM/IEEE Symposium on Architecture for Networking
and Communications Systems (ANCX)06, pp. 93-102.

L. Yang, R. Karim, V. Ganapathy, and R. Smith, “Fast, memeificient
regular expression matching with NFA-OBDDs omputer Networks
vol. 55, no. 55, pp. 3376-3393, 2011.

R. Sidhu and V. K. Prasanna, “Fast regular expressiorchivad using
fpgas,” in Proc. IEEE Symposium on Field-Programmable Custom
Computing Machines FCCM2001, pp. 227-238.

C. R. Clark and D. E. Schimmel, “Efficient reconfigurablgiocircuits
for matching complex network intrusion detection patterns,Proc.
Field-Programmable Logic and Application2003, pp. 956—959.

——, “Scalable pattern matching for high speed netwdiiksProc. 12th
Annual |IEEE Symposium on Field-Programmable Custom Cadntput
Machines (FCCM) Washington, DC, 2004.

I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams fiiesit and
high-speed nids pattern matching,”Rmoc. Field-Programmable Custom
Computing Machings2004.

A. Mitra, W. Najjar, and L. Bhuyan, “Compiling PCRE to FRGor
accelerating SNORT IDS,” iffroc. ACM/IEEE ANCS2007.

J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Immpéatation
of a content-scanning module for an internet firewall,”"Rroc. |IEEE
Field Programmable Custom Computing Machin2803.

A. Bremler-Barr, D. Hay, and Y. Koral, “Compactdfa: Geitestate
machine compression for scalable pattern matching,Prac. |IEEE
INFOCOM leee, 2010, pp. 1-9.

Y. Liu, L. Guo, M. Guo, and P. Liu., “Accelerating DFA cstruction
by hierarchical merging,” ifProc. IEEE 9th Int. Symposium on Parallel
and Distributed Processing with Applicatign2011.

Jignesh Patel Jignesh Patel is currently a Ph.D.
student in the Department of Computer Science
and Engineering at Michigan State University. His
research interests include algorithms, networking,
and security.

Alex X. Liu received his Ph.D. degree in computer
science from the University of Texas at Austin in
2006. He received the IEEE & IFIP William C.
Carter Award in 2004 and an NSF CAREER award
in 2009. He received the Withrow Distinguished
Scholar Award in 2011 at Michigan State University.
His research interests focus on networking, security,
and dependable systems.

Eric Torng Eric Torng received his Ph.D. degree in
computer science from Stanford University in 1994.
He is currently an associate professor and graduate
director in the Department of Computer Science
and Engineering at Michigan State University. He
received an NSF CAREER award in 1997. His re-
search interests include algorithms, scheduling, and
networking.

