arXiv:1301.5848v3 [cs.IT] 28 Mar 2014

Decentralized Coded Caching Attains
Order-Optimal Memory-Rate Tradeoff

Mohammad Ali Maddah-Ali and Urs Niesen

Abstract

Replicating or caching popular content in memories digted across the network is a technique to reduce peak
network loads. Conventionally, the main performance gédithis caching was thought to result from making part
of the requested data available closer to end users. Insteacecently showed that a much more significant gain
can be achieved by using caches to create coded-multigagtimortunities, even for users with different demands,
through coding across data streams. These coded-mutigagiportunities are enabled by careful content overlap
at the various caches in the network, created by a centraticwiing server.

In many scenarios, such a central coordinating server maybaoavailable, raising the question if this
multicasting gain can still be achieved in a more decendlsetting. In this paper, we propose an efficient caching
scheme, in which the content placement is performed in ardedzed manner. In other words, no coordination
is required for the content placement. Despite this lackaafrdination, the proposed scheme is nevertheless able
to create coded-multicasting opportunities and achievedeaclose to the optimal centralized scheme.

I. INTRODUCTION

Traffic in content delivery networks exhibits strong tengdorariability, resulting in congestion during
peak hours and resource underutilization during off-pealr$y It is therefore desirable to try to “shift”
some of the traffic from peak to off-peak hours. One approactichieve this is to exploit idle network
resources to duplicate some of the content in memorieshuisdéd across the network. This duplication
of content is called content placement or caching. The dagdd content can then be used during peak
hours to reduce network congestion.

From the above description, it is apparent that the netwperates in two different phases: a content
placement phase and a content delivery phase. In the platghase, the network is not congested, and
the system is constrained mainly by the size of the cache mesadn the delivery phase, the network
is congested, and the system is constrained mainly by tkeereafuired to serve the content requested
by the users. The goal is thus to design the placement phabetlsat the rate in the delivery phase is
minimized.

There are two fundamentally different approaches, basetvordistinct understandings of the role of
caching, for how the placement and the delivery phases aferped.

« Providing Content Locallyin the first, conventional, caching approach, replicat®msed to make
part of the requested content available close to the end.user user finds part of a requested file in
a close-by cache memory, that part can be served locallyc&h&al content server only sends the
remaining file parts using simple orthogonal unicast trassions. If more than one user requests
the same file, then the server has the option to multicastglesstream to those users.
Extensive research has been done on this conventionalngcaaepproach, mainly on how to exploit
differing file popularities to maximize the caching gain-ff[4]. The gain of this approach is propor-
tional to the fraction of the popular content that can beestdocally. As a result, this conventional
caching approach is effective whenever the local cache memadarge enough to store a significant
fraction of the total popular content.

The authors are with Bell Labs, Alcatel-Lucent. Emafimiohammadali.maddah-ali, urs.nies@alcatel-lucent.com
The material in this paper has been presented in part at gteMsihual Allerton Conference on Communication, Contrald £omputing,
Oct. 2013.

http://arxiv.org/abs/1301.5848v3

« Creating Simultaneous Coded-Multicasting Opportunitiesthis approach, which we recently pro-
posed in[[8], content is placed in order to allow the centeaver to satisfy the requests of several
users withdifferentdemands with aingle multicast stream. The multicast streams are generated by
coding across the different files requested by the userd Eser exploits the content stored in the
local cache memory to enable decoding of its requested fita these data streams. Since the content
placement is performed before the actual user demands awenknt has to be designed carefully
such that these coded-multicasting opportunities ardadblaisimultaneously for all possible requests.
In [8], we show that this simultaneous coded-multicastimingcan significantly reduce network
congestion. Moreover, for many situations, this approasults in a much larger caching gain than
the one obtained from the conventional caching approaatusised above. Unlike the conventional
approach, the simultaneous coded-multicast approacfeistige whenever the aggregambal cache
size (i.e., the cumulative cache available at all usersangel enough compared to the total amount
of popular content, even though there is no cooperation gntloe caches.

As mentioned above, the scheme proposed in [8], relies orredutly designed placement phase in
order to create coded-multicasting opportunities amoregyrsusiith different demands. A central server
arranges the caches such that every subset of the cache memsloares a specific part of the content.
It is this carefully arranged overlap among the cache messdahat guarantees the coded-multicasting
opportunities simultaneously for all possible user demnsand

While the assumption of a centrally coordinated placemdrasp was helpful to establish the new
caching approach in [8], it limits its applicability. For @xple, the identity or even just the number of
active users in the delivery phase may not be known sevetaksho advance during the placement phase.
As another example, in some cases the placement phase aplerformed in one network, say a WiFi
network, to reduce congestion in the delivery phase in aratletwork, say a cellular network. In either
case, coordination in the placement phase may not be pessibl

This raises the important question whether lack of cootdinan the placement phase eliminates the
significant rate reduction promised by the simultaneousdeadulticast approach proposed in [8]. Put
differently, the question is if simultaneous coded-mual$itng opportunities can still be created without a
centrally coordinated placement phase.

In this paper, we answer this question in the positive by ld@ieg a caching algorithm that creates
simultaneous coded-multicasting opportunities withootrdination in the placement phase. More pre-
cisely, the proposed algorithm is able to operate in thegoemnt phase with an unknown number of
users situated in isolated networks and acting indepelydizotm each other. Thus, the placement phase
of the proposed algorithm idecentralizedIn the delivery phase, some of these users are connected to a
server through a shared bottleneck link. In this phase, ¢inees is first informed about the set of active
users, their cache contents, and their requests. The mo@bgorithm efficiently exploits the multicasting
opportunities created during the placement phase in ooderitimize the rate over the shared bottleneck
link. We show that our proposed decentralized algorithmsignificantly improve upon the conventional
uncoded scheme. Moreover, we show that the performancesgbrisposed decentralized coded caching
scheme is close to the performance of the centralized codlezh®e of [8].

These two claims are illustrated in Fig. 1 for a system vithusers andi00 pieces of content. For
example, when each user is able to caghef the files, the peak rate of the conventional uncoded scheme
is equivalent to transmitting5 files. However, in the proposed decentralized coded schérageak rate
is equivalent to transmitting only aboagtfiles. By comparing this to the performance of the centrdlize
coded scheme, we can see that the rate penalty for deceati@ of the placement phase of the caching
system is modest.

The remainder of this paper is organized as follows. Sedfieormally introduces the problem setting.
Section Il presents the proposed algorithm. In Sediiontié, performance of the proposed algorithm is
evaluated and compared with the uncoded and the centraledd caching schemes. In Sectioh V, the
results are extended to other topologies of practical ésteiSectiof V1 discusses various implications of
the results.

20

N — — uncoded
N — decentralized coded
N --- centralized coded

Fig. 1. Performance of different caching schemes for a systéth 20 users connected to a server storit@ files through a shared
bottleneck link. The horizontal axis is the size of the cante@mory (normalized by the file size) at each user; the vérégs shows the
peak rate (again normalized by the file size) over the shamkdn the delivery phase. The dashed green curve depictsatbechieved by the
conventional uncoded caching scheme advocated in the Iggmature. The solid black curve depicts the rate achidwedhe decentralized
coded caching scheme proposed in this paper. The dashea bt depicts the rate achieved by the centralized codetirgpalgorithm

from the recent paper [[8].

II. PROBLEM SETTING

To gain insight into how to optimally operate content-digition systems, we introduce here a basic
model for such systems capturing the fundamental chalgngmsions, and tradeoffs in the caching
problem. For the sake of clarity, we initially study the plei under some simplifying assumptions,
which will be relaxed later, as is discussed in detail in Bas{V and V].

We consider a content-distribution system consisting adraes connected through an error-flabared
(bottleneck) link toK users. The server storéé files each of sizd” bits. The users each have access to
a cache able to stor®/ I’ bits for M € [0, N]. This scenario is illustrated in Figl 2.

server

shared link

users
whes [1] [1

Fig. 2. Caching system considered in this paper. A servetaagiing N files of sizeF' bits each is connected through a shared linksto
users each with a cache of si2éF bits. In the figure N = K =3 and M = 1.

The system operates in two phasesplacementphase and alelivery phase. The placement phase

1Any errors in this link have presumably been already takee o using error correction coding.

occurs when the network load is low. During this time, therstdink can be utilized to fill the caches
of the users. The main constraint in this phase is the sizheotadche memory at each user. The delivery
phase occurs after the placement phase when the networkddagh. At this time, each user requests
one file from the server, which proceeds to transmit its respaver the shared link. Given the output
of the shared link (observed by all users) and its cache ngnéach user should be able to recover its
requested file. The main constraint in this phase is the lb#aecshared link. The objective is to minimize
the worst-case (over all possible requests) load of theeghlamk in the delivery phase.

We now formalize this problem description. In the placenm@mdse, each user is able to fill its cache as
an arbitrary function (linear, nonlinear, ...) of tié files subject only to its memory constraint &f F’
bits with M € [0, N]. We emphasize that the requests of the users are not knowmgdbe placement
phase, and hence the caching function is not allowed to departhem.

In the delivery phase, each of thi€ users requests one of theé files and communicates this request
to the server. Letl, € {1,..., N} be the request of usdr € {1,..., K}. The server replies to these
requests by sending a message over the shared link, whitiséswed by all thé< users. LetR(%dx)
be the number of bits in the message sent by the server. Wesertpat each user is able to recover its
requested file from the content of its cache and the messag&ed over the shared link with probability
arbitrary close to one for large enough file siZe Denote by

the worst-case normalized rate for a caching scheme.

Our objective is to minimize the rat® in order to minimize the worst-case network lo&d" during
the delivery phase. Clearly; is a function of the cache siz& F'. In order to emphasize this dependence,
we will usually write the rate ag:(M). The functionR(M) expresses thenemory-rate tradeofbf the
content-distribution system.

The following example illustrates the definitions and niotas and introduces the uncoded caching
approach advocated in most of the prior literature. Thisoded caching scheme will be used as a
benchmark throughout the paper.

Example 1 (Uncoded Caching Consider the caching problem with = 2 files and K’ = 2 users each
with a cache of size\/ = 1. In the uncoded caching scheme, each of the two filesnd B are split
into two parts of equal size, namely = (A;, A;) and B = (B4, Bs). In the placement phase, both users
cache(A,, By), i.e., the first part of each file. Since each of these partsshesr’/2, this satisfies the
memory constraint of\/ F' = F' bits.

Consider now the delivery phase of the system. Assume tludit @ser requests the same file i.e.,

d; = dy = 1. The server responds by sending the file pdstof size F//2 bits. Clearly, from their
cache content and the message received over the sharectdicli,user can recover the requested file
A = (A;, A;). The (normalized) rate in the delivery phasefis?) = 1/2.

Assume instead that user one requestsAilend user two requests filg, i.e.,d; = 1 andd; = 2. The
server needs to transniitly, B,) of size F' bits to satisfy these requests, resulting in a rate in thizetgl
phase ofR(?) = 1. It is easy to see that this is the worst-case request, ancklier- 1 for this scheme.

For generalN, K, and M, the uncoded scheme caches the fi5tNV fraction of each of theV files.
Therefore, in the delivery phase, the server has to sencethainingl — M /N fraction of the requested
files. The resulting rate in the delivery phase, denotedrpyM) for future reference, is

Ry(M) 2 K- (1—M/N)-min{1, N/K}.

For N = K =2 and M = 1, this yieldsRy (1) = 1, as before.
As we will see, this conventional caching scheme can befignily improved upon. In particular, see
Exampl€e 2 in SectionTll. O

One important feature of the uncoded scheme introduced amiple[1 is that it has decentralized
placement phase. By that we mean that the cache of each udexdsndependently of other users. In

particular, the placement operation of a given user neiflepends on the identity nor the number of other
users in the system. As a result, the users could, in factacbdifferent servers at different times for the
placement phase. Having a decentralized placement phaélsesi&n important robustness property for a
caching system. This is discussed further in Sections Idi[€n
As was mentioned earlier, the system description introducehis section makes certain simplifying

assumptions. In particular, we assume a system having #éessh@red broadcast link, with a cache at
each user, and we focus on worst-case demands, with symobdonser requests in the delivery phase.
All these assumptions can be relaxed, as is discussed ilS&8 and V].

1. A DECENTRALIZED CODED CACHING ALGORITHM

We now present a new algorithm (referred to as decentratipe@éd caching in the following) for the
caching problem. In the statement of the algorithm, we usentitationV, s to denote the bits of the file
d; requested by user cached exclusively at users $ In other words, a bit of filel, is in Vs if it
is present in the cache of every userSrand if it is absent from the cache of every user outsidéVe
also use the notatiofk] = {1,2,..., K} and[N] £ {1,2,..., N}.

The proposed algorithm consists of a placement procedurérandelivery procedures. In the placement
phase, we always use the same placement procedure. In ihergghase, the server chooses the delivery
procedure minimizing the resulting rate over the sharekl lin

Algorithm 1 Decentralized Coded Caching
1: procedure PLACEMENT
for k € [K],n € [N] do
userk independently caches a subset%f bits of file n, chosen uniformly at random
end for
end procedure

procedure DELIVERY(d1, ..., dk)
for s=K,K—1,...,1do
for SC [K]:|S]=sdo
server sendes Vi s\ (k)
10: end for
11: end for
12: end procedure

13: procedure DELIVERY'(d1, ..., dk)

14. for n € [N] do

15: server sends enough random linear combinations of bitsam ffbr all users requesting it to
decode

16: end for

17: end procedure

Remark1: The & operation in Line[P of Algorithni]l represents the bit-wise R@peration. All
elementsl;, s\ () are assumed to be zero padded to the length of the longestmtiem

We illustrate the Algorithni]l with a small example.

Example 2 (Decentralized Coded CachipgConsider the caching problem with = 2 files A and B,
and K = 2 users each with a cache of sizé € [0, 2]. In the placement phase of AlgoritHm 1, each user
caches a subset @ff F'/2 bits of each file independently at random, satisfying the oryneonstraint. As

a result, each bit of a file is cached by a specific user with gty 1//2.

Let us focus on filed. The actions of the placement procedure effectively partifile A into 4 subfiles,
A = (A(Z)u A17 A27 A1,2)7

where, forS C {1, 2}, As denotes the bits of filel that are stored in the cache memories of usesS.in
For example,A4, , are the bits ofA available in the cache memories of users one and two, wheteas
are the bits ofA available exclusively in the cache memory of user Bne.

By the law of large numbers,

[As| ~ (M/2)8(1 = M2 9 F

with probability approaching one for large enough file sizeTherefore, we have with high probability:

o |Ag|/F is approximately(1 — M/2)?.

« |Ai|/F and|A,|/F are approximately//2)(1 — M/2).

e |A15|/F is approximately(M/2)?,

The same analysis holds for filg.

We now consider the delivery phase in Algorithun 1. As we wdkdater (see Remafk 6 below), for
the scenario at hand the first delivery procedure will be ugsdume that user one requests fileand
user two requests filés.

The iteration in LinéJ7 of Algorithni 1 starts with = 2. By Line[8, this implies that we consider the
setS = {1,2}. Observe that:

« The cache of user two containk,, which is needed by user one. Hentg, = As.

« The cache of users one contaifts, which is needed by user two. Hendé,; = B;.

As aresult, in Liné B of Algorithri]1, the server transmits® B, over the shared link. User one can solve
for A, from the received message, & B; and the cached subfilB;. User two can solve fo3; from
the messagel, @ B; and the cached subfild,. Therefore,A, & B; is simultaneously useful fof = 2
users. Thus, even though the two users request differest file server can successfully multicast useful
information to both of them. We note that the normalized {Bysize of Ay & B, is (M/2)(1 — M/2).

The second iteration in Lingl 7 is for = 1. In this iteration, the server simply sen#fsy = Ay and
Vop = By in Line [8. Each of these transmissions is useful o= 1 user and has normalized size
(1 — M/2)>.

From A, computed in iteration oned, received in iteration two, and its cache contéat, A, ,), user
one can recover the requested file= (Ap, A, Ay, A;). Similarly, user two can recover the requested
file B.

Summing up the contributions for = 2 and s = 1, the aggregate size (normalized By of the
messages sent by the server is

(M/2)(1 — M/2) +2(1 — M/2)*.

This can be rewritten as 1
2-(1—-M/2)- M(l —(1—M/2)%).

In particular, forM = 1, the rate of Algorithni 1l is3/4.

This compares to a rate @& (1) = 1 achieved by the uncoded caching scheme described in Exdinple
in SectiorIl. While the improvement in this scenario is tiekly small, as we will see shortly, for larger
values of N and K, this improvement over the uncoded scheme can be large. O

Remark2 (Unknown Number of Users during Placement Pha3de placement procedure of Algo-
rithm [1 is decentralizedin the sense that the user’s caches are filled independeh#gach other. This
implies that neither the identity nor even the number of siséiaring the same bottleneck link during the
delivery phase need to be known during the earlier placemplease.

*To avoid heavy notation, we writd; » as shorthand fori;, »;. Similarly, we writeV4 » for V; (5.

This decentralization of the placement phase enables thiemidistribution system to be much more
flexible than a centralized placement phase. This flexyhsitessential. For example, in wireline networks,
some of the users may not request any file in the delivery phasgireless networks, users may move
from one network or cell to another, and hence might not everdnnected to the same server in the
two phases. In either case, the result is that the precisd@&uand identity of users in the delivery phase
is unknown in the placement phase. One of the salient featfréhe decentralized algorithm proposed
in this paper is that it can easily deal with these situations

This flexibility is also crucial to deal with asynchronouseusequests, as is explained in detail in
Section[V-C. It is also a key ingredient to extending the cbdaching approach to scenarios with
nonuniform demands or with online cache updates, as is siscufurther in Section VI and in the
follow-up works [9] and [[10].

Remark3 (Greedy Coding StrateyyThe first delivery procedure in Algorithi 1 follows greedy
strategy. It first identifies and forms coded messages tleauseful for alls = K users. In the next
iteration, it forms coded messages that are useful for ¢$silide = K — 1 users. The iteration continues
until it identifies messages that are useful for ogly 1 user.

Remark4 (Simplified Decision Ru)e Algorithm[1l provides two delivery procedures. The geneu is
to choose the procedure which minimizes the resulting re¢e the shared link. A simple alternative rule
to decide between these two procedures is as follows? it 1, employ the first procedure; otherwise,
employ the second procedure. The performance loss duedaithpler rule can be shown to be sniall.

Remark5 (Knowledge of Cache ContetsThe delivery procedure in Algorithinl 1 assumes that the
server knows which bits are cached at each user. In praea) user will choose which bits to cache
using a random number generator. By communicating onlyebkd salue of this random number generator
from the user back to the server, the server can reconstraatache contents of the user.

IV. PERFORMANCEANALYSIS

We now analyze the performance of the proposed decentlatbeled caching scheme given by
Algorithm [1. Section_IV-A provides an analytic expressiar the rate of Algorithn{]l. Section TViB
compares the proposed decentralized coded caching schémehe decentralized uncoded caching
scheme from Examplé 1 (the best previously known decemtiéliaching scheme). Sectlon IV-C compares
the proposed decentralized coded caching scheme with tacentralized caching scheme and the
caching scheme from [8] (the best known centralized cachatgme).

A. Rate of Decentralized Coded Caching Scheme

The performance of decentralized coded caching is analyz#te next theorem, whose proof can be
found in AppendixX’A.

Theorem 1. Consider the caching problem with files each of sizé" bits and with/K users each having
access to a cache of sizZd I bits with M € (0, N]. Algorithm[1 is correct and, foF' large enough,
achieves rate arbitrarily close to

KM 'K
Remark6: We note that ifNV > K or M > 1, then the minimum inR, (M) is achieved by the first

term so that
N

Rp(M) = K - (1= M/N)- = (1= (1= M/N)¥).

Ro(M) 2 K - (1— M/N) - mm{ia (1 - M/N)K) N}.

3In fact, the achievable rate with this simpler rule is stiithin a constant factor of the optimal centralized memaertradeoff. This
follows from the proof of Theorefl2 with some minor modificas.

This is the rate of the first delivery procedure in AlgorithinSince N > K or M > 1 is the regime of
most interest, the majority of the discussion in the follogvifocuses on this case.

Remark7: Theorenll is only stated fat/ > 0. For M = 0 Algorithm [1 is easily seen to achieve a
rate of
Rp(0) £ min{N, K}.

We see thatRp(0) is the continuous extension @ty (M) for M > 0. To simplify the exposition, we
will not treat the casel/ = 0 separately in the following.

The rateRp (M) of Algorithm[1 consists of three distinct factors. The firattor is K; this is the rate
without caching. The second factor(is— M /N); this is alocal caching gain that results from having part
of the requested file already available in the local cache. third factor is aglobal gain that arises from
using the caches to create simultaneous coded-multigaspiportunities. See Examglé 2 in Section Il
for an illustration of the operational meaning of these éhfi@ctors.

B. Comparison with Decentralized Uncoded Caching Scheme

It is instructive to examine the performance of the propodedentralized coded caching scheme
(Algorithm [1) for large and small values of cache si¥e For simplicity, we focus here on the most
relevant caséV > K, i.e., the number of files is at least as large as the numbesatuso that the rate
Rp(M) of Algorithm[I is given by Remark]6.

As a baseline, we compare the result with the uncoded cadthgme, introduced in Examglé 1 in
Sectiori ll. This is the best previously known algorithm wétldecentralized placement phase. For K,
the uncoded scheme achieves the rate

Ry(M) = K- (1= M/N), (1)

which is linear with slope of- K/N throughout the entire range af .
1) SmallM: For small cache sizd/ € [0, N/ K], the rate achieved by Algorithid 1 behaves approxi-
mately as oy
Rp(M) ~ K - (“W)' @)
In this regime,Rp(M) scales approximately linearly with the memory size with slope —K?2/(2N):
increasingM by one decreases the rate by approximaf€ly (2V). This is illustrated in Figll3.

Comparing[(ll) and_{2), we have the following observations:

. Order-K Improvement in SlopeThe slope ofRp (M) aroundM = 0 is approximatelyK’/2 times
steeper than the slope &%, (M). Thus, the reduction in rate as a functionidfis approximatelyi’/2
times faster for Algorithnill than for the uncoded scheme.theowords, for smallV/ the scheme
proposed here makes approximatély2 times better use of the cache resources: an improvement on
the order of the number of users in the system. This behawickearly visible in Fig[Il in Sectian |.

« Virtual Shared CacheConsider a hypothetical setting in which thecache memories are collocated
and shared among all users. In this hypothetical system, arising from allowingplete cooperation
among theK users, it is easy to see that the optimal rat&is(1 — KM /N). Comparing this to[(2),
we see that, up to a fact@; the proposed decentralized coded caching scheme achleeame
order behavior. Therefore, this scheme is essentially eblaeate a single virtually shared cache,
even though the caches are isolated without any cooperbétween them.

“More precisely,Rp(M) = K — K(fN“)M + O(M?), and by analyzing the constant in tii&M?) expression it can be shown that
this is a good approximation in the regimié < [0, N/K].

2) Large M: On the other hand, fod € [N/K, N] we can approximfe
Rp(M) =~ N/M —1. 3)

In this regime, the rate achieved by Algorithih 1 scales axiprately inversely with the memory size:
doubling M approximately halves the rate. This is again illustrate&im [3.
Comparing[(ll) and_{3), we have the following observation:
« Order-K Improvement in Raten this regime, the rate of the proposed decentralized cadadme
can be up to a factok” smaller than the uncoded scheme: again an improvement ardie of the
number of users in the system. This behavior is again cledsiple in Fig.[1 in SectiolI.

R
K

M

H—A Y

~K-(1- 5 ~N/M—1

Fig. 3. Memory-rate tradeofR p (M) achieved by Algorithni1l forV = 100 files andK = 5 users (see Theorem 1). The functifin (M)
behaves approximately linearly fae/ € [0, N/K] and behaves approximately 8/M — 1 for M € [N/K, N| (both approximations are
indicated by dotted curves).

C. Comparison with Centralized Coded Caching Scheme

We have compared the performance of the proposed deceattaloded caching scheme to the uncoded
caching scheme, which is the best previously knaveeentralizedalgorithm for this setting. We now
compare the decentralized coded caching scheme to thedfaivable bycentralizedcaching schemes.
We start with an information-theoretic lower bound on thte raf any centralized caching scheme. We
then consider the rate of the best known centralized cacsthgme recently introduced inl [8].

Theorem 2. Let Rp(M) be the rate of the decentralized coded caching scheme givédgorithm[1,
and let R*(M) be the rate of the optimal centralized caching scheme. Fgr mumber of filesV and
number of userds and for anyM € [0, N], we have

Rp(M)
R*(M)
The proof of Theorenmh]2, presented in Appendix B, uses an nmdtion-theoretic argument to lower
bound the rate of the optimal scheme(M). As a result, Theorem 2 implies thad scheme (centralized,
decentralized, with linear caching, nonlinear caching, regardless of is computational complexity
can improve by more than a constant factor upon the efficieoewtralized caching scheme given by
Algorithm [1 presented in this paper.

< 12.

®Since(1 — M/N)¥ < (1 —1/K)¥ < 1/e, we haveRp(M) = ©(N/M — 1) in the regimeM € [N/K, N], and the pre-constant in
the order notation converges toas M — N.

10

Remark8 (Optimality of Uncoded Prefetching and Linearly-Coded Reti): Theoren 2 implies that
uncoded caching in the placement phase combined with grieelyr coding in the delivery phase is
sufficient to achieve a rate within a constant factor of thenopm.

We now compare the rate, (M) of decentralized coded caching to the r&te(M) of the best known
centralized coded caching scheme.|[lh [8, Theorem2),M) is given by

A . 1 N
Rc(M)=K-(1—MJ/N) - mln{m, ?}

for M € %{0, 1,..., K}, and the lower convex envelope of these points for all remgivalues of
M € [0,N]. Fig.[1 in Sectiorl]l compares the performange(A/) of this centralized coded caching
scheme to the performande, (M) of the decentralized coded caching scheme proposed heramie
seen from the figure, the centralized and decentralizedmmg@igorithms are very close in performance.
Thus, there is only a small price to be paid for decentrabmatindeed, we have the following corollary
to TheoreniR.

Corollary 3. Let Rp(M) be the rate of the decentralized coded caching scheme givéigprithm[1,
and let R-(M) be the rate of the centralized coded caching scheme fromH8]any number of filesv
and number of user&” and for anyM € [0, N], we have

Rp(M)
Ro (M) =12

Corollary[3 shows that the rate achieved by the decentthlizeled caching scheme given by Algo-
rithm[1 is at most a factor2 worse than the one of the best known centralized algorittom f{8]. This
bound can be tightened numerically to

Rp(M)
Re (M) =10

for all values of K, N, and M. Hence, the rate of the decentralized caching scheme prdposre is
indeed quite close to the rate of the best known centralizethiing scheme.

It is instructive to understand why the decentralized sahg@erforms close to the centralized one. In
the centralized scheme, content is placed in the placentfeadepsuch that in the delivery phase every
message is useful for exactly+ K M/N users. In the decentralized scheme, we cannot control the
placement phase as accurately. However, perhaps sugbyisime number of messages that are useful for
aboutl + KM /N users is nevertheless the dominant term in the overall fatteecdecentralized scheme.

More precisely, from the proof of Theorelm 1 in Appendik A, wencwrite the rateR, (M) of the
decentralized coded scheme as a convex combination of tta&¢&/) of the centralized coded scheme:

Rp(M) = Rc(sN/K)p(s) (4)

with p(s) > 0 and Zfzop(s) = 1. The dominant term in this sum B+(M) occurring ats = KM/N,
as is illustrated in Figl14. This observation explains whg tientralized and the decentralized schemes
have approximately the same rate.

V. EXTENSIONS

In this section, we extend the results presented so far tcesomportant cases arising in practical
systems. In particular, we show how to handle networks wigke topologies in Section V3A, caches
shared by several users in Section V-B, and users with asyneobs requests in Sectién V-C.

11

T Rc(sN/K)
0 Re (M)

Fig. 4. Concentration of the rate terms in the convex contling4) expressing the rate of the decentralized codedimgathemelp (M)
around the ratéRc (M) of the centralized coded caching scheme. The curves aréfferetht values ofNV € {23 2%, ..., 2'°} with K = N
and M = +/N. Each curve depicts(s) versusRc(sN/K) parametrized by € {0,1,..., K}.

A. Tree Networks

The basic problem setting considered so far considers esensected to the server through a single
shared bottleneck link. We showed that the rate of our pregp@gorithm over the shared link is within
a constant factor of the optimum. Here we extend this resuttdre general networks with tree structure
(see Fig[h).

I

Fig. 5. Network with tree structure. A server containingfiles of size F' bits each is connected through a tree-structured netwotk to
users each with a cache of si2éF bits. Internal nodes of the tree represent routers. In thigdi, N = K = 6, and M = 1. The proposed
placement and delivery procedures together with a routiggrithm achieves the order-optimal rate over every ljnkv) of the network.

Consider a directed tree network, oriented from the rootht® leaves. The server is located at the
root of the tree, and users with their caches are locatedealetives. Each internal node of the network
represents a router. The router decides what to transmiteah of its outgoing links as a function of
what it received over its single incoming link from its patren

We again assume that the system operates in two phases. Iplabement phase, the caches are
populated without knowledge of users’ future demands. Ik delivery phase, the users reveal their
requests, and the server has to satisfy these demandstexptbie cached content.

For this network, we propose the following caching and mmifprocedures. For the placement phase,
we use the same placement procedure as in Algofithm 1. Fateleery phase, we use the two delivery
procedures detailed in Algorithid 1, but with the simplifieecision rule explained in Remalk 4. In other

12

words, if M > 1, the server creates coded packets according to the firstedelprocedure. I1fM < 1,
it uses the second delivery procedure and the server cria¢as combinations of the bits of each file
without coding across different files.

It remains to describe the operations of the routers at tteerial nodes of the tree. Each router operates
according to the following simple rule. The router at nadérwards a coded message over lifik v)
if and only if that coded message is directly useful to attlease of the descendant leaves of nade
To be precise, let us assume thdt > 1 so that the server uses the first delivery procedure. Thus for
each subsef C [K] of users, the server creates the coded messageVi s\(x. This coded message
is useful for all users ir5 and is completely useless for the remaining users. The réatated at node
u forwards this coded messagg.csVi s\ (1} over the link(u, v), if at least one of the descendants:of
(including v itself if it is a leaf) is in the setS. A similar routing procedure is used far < 1.

The performance of this scheme is analyzed in Appehdix C. N@gvshere that, forM/ > 1, the rate
of this scheme over the linkz, v) is equal to

N Ky
K, -(1—-M/N) KUM(l (1= M/N)"), (5)

where K, is the number of descendant leaves of noed&or M < 1, it is easy to see that the rate over
the link (u,v) is equal to

K, (1— M/N) min{l, N/K,}. (6)

The rate over every link in the tree network can be shown to lkirwa constant factor of optimal.
To prove approximate optimality for edde, v), we consider the subtree rootedvatogether withu and
the edge(u, v). We can then use the same bound used in Thebiem 2 over threesutseatingu, v) as
the shared bottleneck link.

Remark9 (Universality and Separation of Caching and Roujinghis result shows that, for tree-
structured networks, caching and routing can be perfornegdrately with at most a constant factor
loss in performance compared to the optimal joint schemés ifteans that the proposed placement and
delivery procedures are universal in the sense that theyotdldepend on the topology of the tree network
connecting the server to the caches at the leaves.

Example 3 (Universality). ConsiderK users connected to a server throughorthogonal links (i.e., no
shared links). For this topology the optimal rate over eaak ¢an be achieved without coding. However,
it is easy to see that the proposed universal scheme achisvesame optimal rate. Thus, depending on
the network topology, we may be able to develop simpler sesefout the performance will be the same
up to a constant factor as the proposed universal scheme. O

Example 4 (Rate over Private LinRs Consider the original scenario of users sharing a singléenatck
link. As an example, assume we hade = 2 files and K = 2 users as described in Example 2 in
Section[Ill. Observe that a user does not need all messagedgehe server over the shared link in
order to recover its requested file. For example, in ordeetover file A, user one only needsd, & B;
and Ay. Thus, if a router is located right where the shared linktsphto the two private links, it can
forward only these two messages over the private link to oser By the analysis in this section, the
resulting normalized rate over the private link to user aéen

(M/2)(1 — M/2)+ (1 — M/2)* =1~ M/N.

We note that in the uncoded scheme the rate over each priséiteslalsol — M/N. Hence, we see
that by proper routing the rate over the private links fortbtite coded as well as the uncoded schemes
are the same. The reduction of rate over the shared link aghiby coding does therefore not result in
an increase of rate over the private links. This conclusiold$ also for general values ¥, K, and
M. O

13

In this section, we have only considered tree networks waithes at the leaves. The general scenario,
in which caches are also present at internal nodes of the is@aore challenging and is analyzed in
follow-up work [11].

B. Shared Caches

The problem setting considered throughout this paper assuhat each user has access to a private
cache. In this example, we evaluate the gain of shared cathisssituation arises when the cache memory
is located close to but not directly at the users.

We consider a system witR™ users partitioned into subsets, where users within the sarbget share
a common cache (see Fig. 6). For simplicity, we assume thsetlsubsets have equal sizelofisers,
where L is a positive integer dividind{. We also assume that the number of fil€sis greater than the
number of userd(. To keep the total amount of cache memory in the system coinst@ assume that
each of the shared caches has dizé ' bits.

Fig. 6. Users with shared caches. A server contaiindjles of size F' bits each is connected through a shared linkt6L caches each
of size LM F hits. Each cache is shared amaohgusers. In the figureK = N =6 and L = 2.

We can operate this system as follows. Defii¢L super users, one for each subsetofisers. Run
the placement procedure of Algorithih 1 for the&& L users with cache sizé M F'. In the delivery
phase, treat the (up td) files requested by the users in the same subset as a singlefitipé size LF'.
Applying Theoreni 1l to this setting yields an achievable aife

RE(M) =K -(1—LM/N)- %(1 — (1 — LM/N)¥/E).
Let us again consider the regimes of small and large valued af R%(M). For M € [0, N/ K], we

have

K+L
M).
9N

Comparing this to the smally approximation[(R) ofk, (M) (for a system with private caches), we see
that

RE(M) ~ K - (1-

Rp(M) ~ Rp(M),

i.e., there is only a small effect on the achievable rate fedraring a cache. This should not come as a
surprise, since we have already seen in SedtionlIV-B thatsriwall A/, R,(M) behaves almost like a

®This can be derived fronRp (M) in Theorem[dl by replacing/ by LM (since each cache has now sizé/F instead of M F),
replacingK by K/L (since there ard(/L super users), and multiplying the result by an extra factak ¢since each super file i6 times
the size of a normal file).

14

system in which allK caches are combined. Hence, there is no sizable gain to hevadhby having
collaboration among caches in this regime.
Consider then the regim& > N/K. Here, we have

RE(M) zN/M—L:K(l—LM/Ny%
and from [(3)
Rp(M) zN/M—lzK-(l—M/N)-%.

The difference between the two approximations is only ingheond factor. We recall that this second
factor represents the caching gain due to making part of tbg &vailable locally. Quite naturally, this

part of the caching gain improves through cache sharing, lasgar fraction of each file can be stored
locally.

C. Asynchronous User Requests

Up to this point, we have assumed that in the delivery phdseseis reveal their requests simultaneously,
i.e., that the users are perfectly synchronized. In practiowever, users reveal their requests at different
times. In this example, we show that the proposed algorithmibe modified to handle such asynchronous
user requests.

We explain the main idea with an example. Consider a systeim Wi= 3 files A, B,C, and K = 3
users. We split each file intd consecutive segments, e.gh,= (A1, ..., AW)) and similarly for B and
C. HereJ is a positive integer selected depending on the maximunnaolle delay, as will be explained
later. To be specific, we choosk= 4 in this example.

A) A2) AB) A@

B B2 B®) BM®)

@) Cc(2) c®3) c®

Tt 1
d1 da2 ds

Fig. 7. The proposed scheme over segmented files can be ukaddie asynchronous user requests. In this example, eadh fiplit into
four segments. Users two and three are served with a delady, aind Ag, respectively.

In the placement phase, we simply treat each segment as &élapply the placement procedure of
Algorithm[1. For the delivery phase, consider an initialuestd; from user one, say for filel. The server
responds by starting delivery of the first segmafit of file A. Meanwhile, assume that user two requests
file dy, say B, as shown in Figl]7. The server puts the request of user twootth hnd completes the
delivery of A for user one. It then starts to deliver the second segméntof A and the first segment
BW of B using the delivery procedure of Algorithim 1 for two usersliday of the next segmentd®
and B® is handled similarly. Assume that at this point user threquests fileds, say C, as shown in
Fig.[7. After completing the current delivery phase, theveereacts to this request by delivering®,
BB, andC™ to users one, two, and three, respectively, using the dglimecedure of Algorithni]1 for
three users. The process continues in the same manner asedeipi Fig.[T.

We note that users two and three experience delays,@&nd A3 as shown in the figure. The maximum
delay depends on the size of the segments. Therefore, segmenor equivalently the value of, can
be adjusted to ensure that this delay is tolerable (whilgikeethe segment size large enough to ensure
that the law of large number applies as discussed in ExanpieS2ctionTI]).

15

We point out that the number of effective users in the systanes throughout the delivery phase. Due
to its decentralized nature, the proposed caching algorithclose to optimal for any value of users as
discussed in RemaiK 2. This is instrumental for the segnientapproach just discussed to be efficient.

VI. DISCUSSION
A. Connection to Index and Network Coding

The caching problem considered in this paper is connectégetindex coding problem [12], [13] (or,
equivalently [14], to the network coding problem [15]). Imetindex coding problem, we are given a set
of K users and a set ¥ files. Each of the users has access to a fixed subset of thasariterequests
another fixed subset of the files. The goal is to broadcast thenum number of bits to thé(users in
order to satisfy all user requests.

From the above description, we see that fised content placement and fdixed user demands, the
caching problem considered in this paper induces an inddinggroblem in the delivery phase. Since
there areN* possible user demands, the delivery phase of the cachirmepnocan thus be interpreted
as an exponential number of parallel index coding subprobléfo complicate matters, the index coding
problem itself does not admit a closed-form solution andnsvin to be computationally intractable in
general [[16].

One contribution of this paper is thus the design of the preere phase such that all these exponentially
many index coding problems simultaneously have an efficalt closed-form solution.

B. Caching Random Linear Combinations is Inefficient

Caching random linear combinations of file segments is a lpogpuefetching scheme. In this example,
we argue that in some scenarios this form of caching can ke mefficient.

To be precise, let us focus on a specific scenario viithusers andV = K files, where each user
has sufficient cache memory to store half of the files, ie= N/2 = K /2. According to Theorem]1,
Algorithm[1 achieves a rate of less than one, if&y(M) < 1.

On the other hand, the rate achieved by caching of randorarlic@mbinations can be shown to be at
least K'/4, which is significantly larger thati (M) for large number of user&’. Indeed, assume that
user one requests fild. Recall that each user has cachB® random linear combinations of the bits
of file A. With high probability, these random linear combinatiopars af’/2-dimensional space at each
user and the subspaces of different users do not overlapeXaonple, consider users two and three. As
a consequence of this lack of overlap, these two users doawet &iccess to a shared part of the file
This implies that, in the delivery phase, the server canmiwhfa linear combination that is simultaneously
useful for three users. In other words, the server can forissages that are at most useful simultaneously
for up to two users. A short calculation reveals that thenstieer has to send at leaSt</4 bits over
the shared link.

This inefficiency of caching random linear combinations baninterpreted as follows. The placement
phase follows two competing objectives: The first objecis/éo spread the available content as much as
possible over the different caches. The second objectv® ensure maximum overlap among different
caches. The system performance is optimized if the righariza between these two objectives is struck.
Caching random linear combinations maximizes the sprgadincontent over the available caches, but
provides minimal overlap among them. At the other extrerne,uncoded caching scheme maximizes the
overlap, but provides only minimal spreading of the conté# a consequence, both of these schemes
can be highly suboptimal.

C. Worst-Case Demands

Our problem formulation focuses on worst-case requestsoine situation, this is the correct figure
of merit. For example, in a wireless scenario, whenever #lwaty rate required for a request exceeds

16

the available link bandwidth, the system will be in outagegr&ding user experience. In other situations,
for example a wireline scenario, excess rates might onlyrimcsmall additional cost and hence might
be acceptable. In such cases, the average rate is the right,nespecially when files have different
popularities. This is discussed further in [9].

D. Online Coded Caching

In practical scenarios, the set of popular files is time vagyiTo keep the caching algorithm efficient,
the cache contents have to be dynamically updated to traskvémiation. A popular scheme to update
the caches is to evict the least-recently used (LRU) file fitbvn caches and replace it with a newly
requested one. This LRU eviction scheme is known to be ajpedrly optimal for systems with a single
cachel[17]. However, it is not efficient for networks with riplle caches as considered here. This problem
of online caching with several caches is investigated ir}.[IBe decentralized Algorithiin] 1 presented in
this paper turns out to be a crucial ingredient of the suggeshline coded caching algorithm in [10].

APPENDIX A
PROOF OFTHEOREM[I

We first prove correctness. Note that, since there are a ¢6tal files, the operations in Lingl 3 of
Algorithm [1 satisfies the memory constraint &f 7' bits at each user. Hence the placement phase of
Algorithm[1 is correct.

For the delivery phase, assume the server uses the firsedelwocedure, and consider a bit in the
file requested by usek. If this bit is already cached at uskr it does not need to be sent by the server.
Assume then that it is cached at some (possibly empty)/sef users withk ¢ 7. Consider the set
S = T U {k} in Line [8. By definition, the bit under consideration is conéal in V} s\(x;, and as a
consequence, it is included in the sum sent by the serverria[Ri Sincek € S\ {k} for every other
k € S, userk has access to all bits if; ¢ 7, from its own cache. Hence, usgris able to recover the
requested bit from this sum. This shows that the first defiyepcedure is correct.

The second delivery procedure is correct as well since tineesesends in Lind_15 enough linear
combinations of every file for all users to successfully acoThis shows that the delivery phase of
Algorithm[1 is correct.

It remains to compute the rate. We start with the analysis©@fsecond delivery procedure. M < K,
then in the worst case there is at least one user requesiimng &e. Consider then all users requesting file
n. Recall that each user requesting this file alreadyh&&/ N of its bits cached locally by the operation
of the placement phase. An elementary analysis revealsmittathigh probability for F' large enough at
most

F(1—M/N)+ o(F)

random linear combinations need to be sent in Lihe 9 for ak¢husers to be able to decode. We will
assume that the file siz€ is large and ignore the(F") term in the following. Since this needs to be done
for all V files, the normalized rate in the delivery phase is

(1 — M/N)N.

If N > K, then there are at mogst different files that are requested. The same analysis yields
normalized rate of
(1-M/N)K.

Thus, the second procedure has a normalized rate of

R(M) = (1 — M/N)min{K, N}
— K-(1— M/N)-min{l, N/K} (7)

17

for M e (0, N].
We continue with the analysis of the first delivery proced@ensider a particular bit in one of the
files, say filen. Since the choice of subsets is uniform, by symmetry thishag probability

q= M/N € (0,1]

of being in the cache of any fixed user. Consider now a fixedetudi$ out of the K" users. The probability
that this bit is cached at exactly thoseisers is

¢'(1—g)" "
Hence the expected number of bits of filehat are cached at exactly thosesers is
Fg'(1—¢)" .
In particular, the expected size b} s\(x; with |S| = s is
Fqs—1(1 _ q)K—s-i-l.

Moreover, forF' large enough the actual realization of the random numberitsfib Vj s\(x) is in the
interval
Fqs—l(l _ q)K—s-I-l + O(F)

with high probability. For ease of exposition, we will agagmore theo(F') term in the following.
Consider a fixed value of in Line[7 and a fixed subsef of cardinality s in Line [8. In Line[9, the
server sends
r,?gg(‘vk,S\{k” — Fqs—l(l o q)K—s—l-l

bits. Since there ar(af) subsetsS of cardinality s, the loop starting in Lin€]8 generates

K s— —s
<S)Fq 1(1—(])K +1

bits. Summing over all values ofyields a total of

Rp(M)F = Fé (f:) £)

= F% (i (IS{) Fl—g) " —(1- Q)K>

bits being sent over the shared link. Substituting the defimiof ¢ = M /N yields a rate of the first
delivery procedure of

Rp(M) = (N/M —1)(1 - (1 — M/N)*)
N K
= K- (1= M/N) - = (1 = (1= M/N)) (8)
for M € (0, N].
Since the server uses the better of the two delivery proesdif) and[(8) show that Algorithid 1
achieves a rate of
N

Rp(M)=K-(1 —M/N)-min{KM

o . N
(1—(1—M/N)),1,?}.

18

Using that
(1—-M/N)X >1—KM/N,

this can be simplified to

-

K-(l—M/N)-min{ (1—(1—M/N)K),%},

concluding the proof.

APPENDIX B
PROOF OFTHEOREM[2

Recall from Theorem]1 that

=

Ro(M) = K - (1 — M/N)- min{%(l ~ (1 - M/N)F), g}-

Using that
(1—M/N)* >0
and
(1—-M/N)® >1— KM|/N,
this can be upper bounded as
Rp(M) <min{N/M —1,K(1 — M/N),N(1 - M/N)} 9)
for all M € [0, N]. Moreover, we have from_[8, Theorem 2]

s
(M) > - — M. 1
RH(M) = se{l,...r,?nziln}iN,K}} (S |N/s|) (10)

We will treat the case® < min{N, K} < 12 and min{N, K'} > 13 separately. Assume first that
0 <min{N, K} < 12. By (9),

Rp(M) < min{N, K}(1 — M/N) < 12(1 — M/N),

and by [(10) withs =1,
R*(M)>1— M/N.

Hence

<12 (11)
for 0 < min{N, K} < 12.
Assume in the following thaiin{ N, K'} > 13. We consider the cases

[O,max{l,N/K}],
M e ¢ (max{1, N/K}, N/12],
(N/12, N,

separately. Assume first that< M < max{1, N/K}. By (@),
Rp(M) <min{N, K}(1 — M/N) < min{N, K}.

19

On the other hand, by (10) with= |min{N, K}/4],
2 M

R*(M) > s — i
(M)zs -3 N

> min{N,K}/4—1—

(min{N, K})?/16 M
1 —min{N,K}/(4N) N

(;;) min{ N, K} (1/4 —1/13 - 1 1_/11(;4>

> min{N, K}/12,
where in(a) we have used thahin{/N, K} > 13 and M < max{1, N/K}. Hence
Rp(M
Rl @
for min N, K > 13 and0 < M < max{1, N/K}.
Assume then thathax{1, N/K} < M < N/12. By (9),
Rp(M) < N/M —1< N/M.

On the other hand, by (10) with= | N/(4M)],

2
R0 2
N2/(16M?) M
= N/(M) = 1= 1—1/(4M) N
N 1/16
B M(1/4_M/N_ 1— 1/(4M)>
@ N 1/16
= M(1/4_1/12_ 1—1/4)
= N/(12M),
where in(a) we have used that//N < 1/12 and that)/ > max{1, N/K} > 1. Hence
Rp(M)
R (3) <12 (13)

for min{N, K} > 13 andmax{1, N/K} < M < N/12.
Finally, assume thatv/12 < M < N. By (9),

Rp(M) < N/M — 1.
On the other hand, by (10) with= 1,
R*(M) >1— M/N.
Hence,
Rp(M) < N/M —1
R(M) —1—M/N
= N/M
<12 (14)

for min{N, K} > 13 and N/12 < M < N,
Combining [11), [(IR),[(13), and_(1L4) yields that
Rp(M)
R*(M)

<12
forall N, K, and0 < M < N.

20

APPENDIX C
PROOF OF(B) IN SECTION[V-A]

As is shown in AppendixA, forF' large enough the actual realization of the random numbeiitsf b
in Vi.s\{x} is in the interval
Fqs—l(l _ q)K—s-I-l + O(F)

with high probability, and whergg = M/N. As before, we will again ignore the(F') term in the
following.

Recall that only a subset of coded messages generated in8LineAlgorithm [1 pass through link
(u,v), namely only thosebycsVi s\(ry for which the subsetS has at least one element among leave
descendants of node We splitS into S; and S, whereS; is the subset of descendant leaves of node
v, andS, = S\ S;. Denote the cardinalities &, and S, by s; ands,, respectively, so that = s, + s,.
With this, only coded messages with > 1 are forwarded over linKu, v). The number of bits sent over
this link is then equal to

K—-K
F s1+s2—1 1 _ K—s1—so+1
Sy ()
K. K—-K
- - —s (K- K s —Ky—s
FZ()sl (L=t (.)q2(1—Q)K o

s1=1 s2=0
K”U
— F Z () S1— 1(1 _ q)KU_Sl“Fl
s1=1
1 B K”U
—F—1(1— (11— ™).
q
Substitutingg = M/N yields the desired result.
REFERENCES
[1] L. W. Dowdy and D. V. Foster, “Comparative models of the fidssignment problemACM Comput. Suryvol. 14, pp. 287-313, June

1982.
[2] K. C. Almeroth and M. H. Ammar, “The use of multicast deliy to provide a scalable and interactive video-on-demasrdice,”
IEEE J. Sel. Areas Commurvol. 14, pp. 1110-1122, Aug. 1996.
[3] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batghgolicies for an on-demand video servekultimedia Syst.vol. 4,
pp. 112-121, June 1996.
[4] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placetredgorithms for hierarchical cooperative caching,”Hroc. ACM-SIAM
SODA pp. 586-595, Jan. 1999.
[5] A. Meyerson, K. Munagala, and S. Plotkin, “Web cachingngsaccess statistics,” iRroc. ACM-SIAM SODApp. 354-363, 2001.
[6] I. Baev, R. Rajaraman, and C. Swamy, “Approximation aifpons for data placement problem&IAM J. Comput.vol. 38, pp. 1411
1429, July 2008.
[7] S.Borst, V. Gupta, and A. Walid, “Distributed cachingyatithms for content distribution networks,” Froc. IEEE INFOCOM pp. 1-9,
Mar. 2010.
[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits ofaang,” larXiv:1209.5807 [cs.IT] Sept. 2012. To appear in IEEE Trans.
Inf. Theory.
[9] U. Niesen and M. A. Maddah-Ali, “Coded caching with noifonm demands,’arXiv:1308.0173 [cs.IT] Aug. 2013.
[10] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Onlireded caching,arXiv:1311.3646 [cs.IT]Nov. 2013.
[11] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and Sg@avi, “Hierarchical coded cachingdrXiv:1403.7007 [cs.IT]Mar. 2014.
[12] Y. Birk and T. Kol, “Coding on demand by an informed soeirlSCOD) for efficient broadcast of different supplemerntata to
caching clients,1EEE Trans. Inf. Theoryvol. 52, pp. 2825-2830, June 2006.
[13] Z.Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Indegding with side information,IEEE Trans. Inf. Theoryol. 57, pp. 1479-1494,

Mar. 2011.

[14] M. Effros, S. El Rouayheb, and M. Langberg, “An equivale between network coding and index codirarXiv:1211.6660 [cs.IT]
Nov. 2012.

[15] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Netwonformation flow,” IEEE Trans. Inf. Theoryvol. 46, pp. 1204-1216,
Apr. 2000.

[16] M. Langberg and A. Sprintson, “On the hardness of apipnating the network coding capacityeEEE Trans. Inf. Theoryvol. 57,
pp. 1008-1014, Feb. 2011.

http://arxiv.org/abs/1209.5807
http://arxiv.org/abs/1308.0178
http://arxiv.org/abs/1311.3646
http://arxiv.org/abs/1403.7007
http://arxiv.org/abs/1211.6660

21

[17] D. D. Sleator and R. E. Tarjan, “Amortized efficiency @tlupdate and paging rulesCommunications ACMvol. 28, pp. 202—-208,
Feb. 1985.

	I Introduction
	II Problem Setting
	III A Decentralized Coded Caching Algorithm
	IV Performance Analysis
	IV-A Rate of Decentralized Coded Caching Scheme
	IV-B Comparison with Decentralized Uncoded Caching Scheme
	IV-B1 Small M
	IV-B2 Large M

	IV-C Comparison with Centralized Coded Caching Scheme

	V Extensions
	V-A Tree Networks
	V-B Shared Caches
	V-C Asynchronous User Requests

	VI Discussion
	VI-A Connection to Index and Network Coding
	VI-B Caching Random Linear Combinations is Inefficient
	VI-C Worst-Case Demands
	VI-D Online Coded Caching

	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of (??) in Section ??
	References

