
ar
X

iv
:1

30
1.

58
48

v3
 [

cs
.IT

]
28

 M
ar

 2
01

4
1

Decentralized Coded Caching Attains
Order-Optimal Memory-Rate Tradeoff

Mohammad Ali Maddah-Ali and Urs Niesen

Abstract

Replicating or caching popular content in memories distributed across the network is a technique to reduce peak
network loads. Conventionally, the main performance gain of this caching was thought to result from making part
of the requested data available closer to end users. Instead, we recently showed that a much more significant gain
can be achieved by using caches to create coded-multicasting opportunities, even for users with different demands,
through coding across data streams. These coded-multicasting opportunities are enabled by careful content overlap
at the various caches in the network, created by a central coordinating server.

In many scenarios, such a central coordinating server may not be available, raising the question if this
multicasting gain can still be achieved in a more decentralized setting. In this paper, we propose an efficient caching
scheme, in which the content placement is performed in a decentralized manner. In other words, no coordination
is required for the content placement. Despite this lack of coordination, the proposed scheme is nevertheless able
to create coded-multicasting opportunities and achieves arate close to the optimal centralized scheme.

I. INTRODUCTION

Traffic in content delivery networks exhibits strong temporal variability, resulting in congestion during
peak hours and resource underutilization during off-peak hours. It is therefore desirable to try to “shift”
some of the traffic from peak to off-peak hours. One approach to achieve this is to exploit idle network
resources to duplicate some of the content in memories distributed across the network. This duplication
of content is called content placement or caching. The duplicated content can then be used during peak
hours to reduce network congestion.

From the above description, it is apparent that the network operates in two different phases: a content
placement phase and a content delivery phase. In the placement phase, the network is not congested, and
the system is constrained mainly by the size of the cache memories. In the delivery phase, the network
is congested, and the system is constrained mainly by the rate required to serve the content requested
by the users. The goal is thus to design the placement phase such that the rate in the delivery phase is
minimized.

There are two fundamentally different approaches, based ontwo distinct understandings of the role of
caching, for how the placement and the delivery phases are performed.

• Providing Content Locally:In the first, conventional, caching approach, replication is used to make
part of the requested content available close to the end users. If a user finds part of a requested file in
a close-by cache memory, that part can be served locally. Thecentral content server only sends the
remaining file parts using simple orthogonal unicast transmissions. If more than one user requests
the same file, then the server has the option to multicast a single stream to those users.
Extensive research has been done on this conventional caching approach, mainly on how to exploit
differing file popularities to maximize the caching gain [1]–[7]. The gain of this approach is propor-
tional to the fraction of the popular content that can be stored locally. As a result, this conventional
caching approach is effective whenever the local cache memory is large enough to store a significant
fraction of the total popular content.

The authors are with Bell Labs, Alcatel-Lucent. Emails:{mohammadali.maddah-ali, urs.niesen}@alcatel-lucent.com
The material in this paper has been presented in part at the 51st Annual Allerton Conference on Communication, Control, and Computing,

Oct. 2013.

http://arxiv.org/abs/1301.5848v3

2

• Creating Simultaneous Coded-Multicasting Opportunities: In this approach, which we recently pro-
posed in [8], content is placed in order to allow the central server to satisfy the requests of several
users withdifferentdemands with asinglemulticast stream. The multicast streams are generated by
coding across the different files requested by the users. Each user exploits the content stored in the
local cache memory to enable decoding of its requested file from these data streams. Since the content
placement is performed before the actual user demands are known, it has to be designed carefully
such that these coded-multicasting opportunities are available simultaneously for all possible requests.
In [8], we show that this simultaneous coded-multicasting gain can significantly reduce network
congestion. Moreover, for many situations, this approach results in a much larger caching gain than
the one obtained from the conventional caching approach discussed above. Unlike the conventional
approach, the simultaneous coded-multicast approach is effective whenever the aggregateglobalcache
size (i.e., the cumulative cache available at all users) is large enough compared to the total amount
of popular content, even though there is no cooperation among the caches.

As mentioned above, the scheme proposed in [8], relies on a carefully designed placement phase in
order to create coded-multicasting opportunities among users with different demands. A central server
arranges the caches such that every subset of the cache memories shares a specific part of the content.
It is this carefully arranged overlap among the cache memories that guarantees the coded-multicasting
opportunities simultaneously for all possible user demands.

While the assumption of a centrally coordinated placement phase was helpful to establish the new
caching approach in [8], it limits its applicability. For example, the identity or even just the number of
active users in the delivery phase may not be known several hours in advance during the placement phase.
As another example, in some cases the placement phase could be performed in one network, say a WiFi
network, to reduce congestion in the delivery phase in another network, say a cellular network. In either
case, coordination in the placement phase may not be possible.

This raises the important question whether lack of coordination in the placement phase eliminates the
significant rate reduction promised by the simultaneous coded-multicast approach proposed in [8]. Put
differently, the question is if simultaneous coded-multicasting opportunities can still be created without a
centrally coordinated placement phase.

In this paper, we answer this question in the positive by developing a caching algorithm that creates
simultaneous coded-multicasting opportunities without coordination in the placement phase. More pre-
cisely, the proposed algorithm is able to operate in the placement phase with an unknown number of
users situated in isolated networks and acting independently from each other. Thus, the placement phase
of the proposed algorithm isdecentralized. In the delivery phase, some of these users are connected to a
server through a shared bottleneck link. In this phase, the server is first informed about the set of active
users, their cache contents, and their requests. The proposed algorithm efficiently exploits the multicasting
opportunities created during the placement phase in order to minimize the rate over the shared bottleneck
link. We show that our proposed decentralized algorithm cansignificantly improve upon the conventional
uncoded scheme. Moreover, we show that the performance of the proposed decentralized coded caching
scheme is close to the performance of the centralized coded scheme of [8].

These two claims are illustrated in Fig. 1 for a system with20 users and100 pieces of content. For
example, when each user is able to cache25 of the files, the peak rate of the conventional uncoded scheme
is equivalent to transmitting15 files. However, in the proposed decentralized coded scheme,the peak rate
is equivalent to transmitting only about3 files. By comparing this to the performance of the centralized
coded scheme, we can see that the rate penalty for decentralization of the placement phase of the caching
system is modest.

The remainder of this paper is organized as follows. SectionII formally introduces the problem setting.
Section III presents the proposed algorithm. In Section IV,the performance of the proposed algorithm is
evaluated and compared with the uncoded and the centralizedcoded caching schemes. In Section V, the
results are extended to other topologies of practical interest. Section VI discusses various implications of
the results.

3

0

5

10

15

20

0 25 50 75 100

M

R

uncoded
decentralized coded
centralized coded

Fig. 1. Performance of different caching schemes for a system with 20 users connected to a server storing100 files through a shared
bottleneck link. The horizontal axis is the size of the cachememory (normalized by the file size) at each user; the vertical axis shows the
peak rate (again normalized by the file size) over the shared link in the delivery phase. The dashed green curve depicts therate achieved by the
conventional uncoded caching scheme advocated in the priorliterature. The solid black curve depicts the rate achievedby the decentralized
coded caching scheme proposed in this paper. The dashed bluecurve depicts the rate achieved by the centralized coded caching algorithm
from the recent paper [8].

II. PROBLEM SETTING

To gain insight into how to optimally operate content-distribution systems, we introduce here a basic
model for such systems capturing the fundamental challenges, tensions, and tradeoffs in the caching
problem. For the sake of clarity, we initially study the problem under some simplifying assumptions,
which will be relaxed later, as is discussed in detail in Sections V and VI.

We consider a content-distribution system consisting of a server connected through an error-free1 shared
(bottleneck) link toK users. The server storesN files each of sizeF bits. The users each have access to
a cache able to storeMF bits for M ∈ [0, N]. This scenario is illustrated in Fig. 2.

users

caches

server

shared link

Fig. 2. Caching system considered in this paper. A server containing N files of sizeF bits each is connected through a shared link toK
users each with a cache of sizeMF bits. In the figure,N = K = 3 andM = 1.

The system operates in two phases: aplacementphase and adelivery phase. The placement phase

1Any errors in this link have presumably been already taken care of using error correction coding.

4

occurs when the network load is low. During this time, the shared link can be utilized to fill the caches
of the users. The main constraint in this phase is the size of the cache memory at each user. The delivery
phase occurs after the placement phase when the network loadis high. At this time, each user requests
one file from the server, which proceeds to transmit its response over the shared link. Given the output
of the shared link (observed by all users) and its cache content, each user should be able to recover its
requested file. The main constraint in this phase is the load of the shared link. The objective is to minimize
the worst-case (over all possible requests) load of the shared link in the delivery phase.

We now formalize this problem description. In the placementphase, each user is able to fill its cache as
an arbitrary function (linear, nonlinear, . . .) of theN files subject only to its memory constraint ofMF
bits with M ∈ [0, N]. We emphasize that the requests of the users are not known during the placement
phase, and hence the caching function is not allowed to depend on them.

In the delivery phase, each of theK users requests one of theN files and communicates this request
to the server. Letdk ∈ {1, . . . , N} be the request of userk ∈ {1, . . . , K}. The server replies to these
requests by sending a message over the shared link, which is observed by all theK users. LetR(d1,...,dK)F
be the number of bits in the message sent by the server. We impose that each user is able to recover its
requested file from the content of its cache and the message received over the shared link with probability
arbitrary close to one for large enough file sizeF . Denote by

R , max
d1,...,dK

R(d1,...,dK)

the worst-case normalized rate for a caching scheme.
Our objective is to minimize the rateR in order to minimize the worst-case network loadRF during

the delivery phase. Clearly,R is a function of the cache sizeMF . In order to emphasize this dependence,
we will usually write the rate asR(M). The functionR(M) expresses thememory-rate tradeoffof the
content-distribution system.

The following example illustrates the definitions and notations and introduces the uncoded caching
approach advocated in most of the prior literature. This uncoded caching scheme will be used as a
benchmark throughout the paper.

Example 1 (Uncoded Caching). Consider the caching problem withN = 2 files andK = 2 users each
with a cache of sizeM = 1. In the uncoded caching scheme, each of the two filesA andB are split
into two parts of equal size, namelyA = (A1, A2) andB = (B1, B2). In the placement phase, both users
cache(A1, B1), i.e., the first part of each file. Since each of these parts hassizeF/2, this satisfies the
memory constraint ofMF = F bits.

Consider now the delivery phase of the system. Assume that each user requests the same fileA, i.e.,
d1 = d2 = 1. The server responds by sending the file partA2 of size F/2 bits. Clearly, from their
cache content and the message received over the shared link,each user can recover the requested file
A = (A1, A2). The (normalized) rate in the delivery phase isR(1,1) = 1/2.

Assume instead that user one requests fileA and user two requests fileB, i.e.,d1 = 1 andd2 = 2. The
server needs to transmit(A2, B2) of sizeF bits to satisfy these requests, resulting in a rate in the delivery
phase ofR(1,2) = 1. It is easy to see that this is the worst-case request, and henceR = 1 for this scheme.

For generalN , K, andM , the uncoded scheme caches the firstM/N fraction of each of theN files.
Therefore, in the delivery phase, the server has to send the remaining1−M/N fraction of the requested
files. The resulting rate in the delivery phase, denoted byRU(M) for future reference, is

RU(M) , K · (1−M/N) ·min
{

1, N/K
}

.

For N = K = 2 andM = 1, this yieldsRU (1) = 1, as before.
As we will see, this conventional caching scheme can be significantly improved upon. In particular, see

Example 2 in Section III. ♦

One important feature of the uncoded scheme introduced in Example 1 is that it has adecentralized
placement phase. By that we mean that the cache of each user isfilled independently of other users. In

5

particular, the placement operation of a given user neitherdepends on the identity nor the number of other
users in the system. As a result, the users could, in fact, contact different servers at different times for the
placement phase. Having a decentralized placement phase isthus an important robustness property for a
caching system. This is discussed further in Sections III and V.

As was mentioned earlier, the system description introduced in this section makes certain simplifying
assumptions. In particular, we assume a system having a single shared broadcast link, with a cache at
each user, and we focus on worst-case demands, with synchronized user requests in the delivery phase.
All these assumptions can be relaxed, as is discussed in Sections V and VI.

III. A D ECENTRALIZED CODED CACHING ALGORITHM

We now present a new algorithm (referred to as decentralizedcoded caching in the following) for the
caching problem. In the statement of the algorithm, we use the notationVk,S to denote the bits of the file
dk requested by userk cached exclusively at users inS. In other words, a bit of filedk is in Vk,S if it
is present in the cache of every user inS and if it is absent from the cache of every user outsideS. We
also use the notation[K] , {1, 2, . . . , K} and [N] , {1, 2, . . . , N}.

The proposed algorithm consists of a placement procedure and two delivery procedures. In the placement
phase, we always use the same placement procedure. In the delivery phase, the server chooses the delivery
procedure minimizing the resulting rate over the shared link.

Algorithm 1 Decentralized Coded Caching
1: procedure PLACEMENT

2: for k ∈ [K], n ∈ [N] do
3: userk independently caches a subset ofMF

N
bits of file n, chosen uniformly at random

4: end for
5: end procedure

6: procedure DELIVERY(d1 , . . . , dK)
7: for s = K,K − 1, . . . , 1 do
8: for S ⊂ [K] : |S| = s do
9: server sends⊕k∈SVk,S\{k}

10: end for
11: end for
12: end procedure

13: procedure DELIVERY ’(d1 , . . . , dK)
14: for n ∈ [N] do
15: server sends enough random linear combinations of bits in file n for all users requesting it to

decode
16: end for
17: end procedure

Remark1: The ⊕ operation in Line 9 of Algorithm 1 represents the bit-wise XOR operation. All
elementsVk,S\{k} are assumed to be zero padded to the length of the longest element.

We illustrate the Algorithm 1 with a small example.

Example 2 (Decentralized Coded Caching). Consider the caching problem withN = 2 files A andB,
andK = 2 users each with a cache of sizeM ∈ [0, 2]. In the placement phase of Algorithm 1, each user
caches a subset ofMF/2 bits of each file independently at random, satisfying the memory constraint. As
a result, each bit of a file is cached by a specific user with probability M/2.

6

Let us focus on fileA. The actions of the placement procedure effectively partition file A into 4 subfiles,

A = (A∅, A1, A2, A1,2),

where, forS ⊂ {1, 2}, AS denotes the bits of fileA that are stored in the cache memories of users inS.
For example,A1,2 are the bits ofA available in the cache memories of users one and two, whereasA1

are the bits ofA available exclusively in the cache memory of user one.2

By the law of large numbers,

|AS | ≈ (M/2)|S|(1−M/2)2−|S|F

with probability approaching one for large enough file sizeF . Therefore, we have with high probability:
• |A∅|/F is approximately(1−M/2)2.
• |A1|/F and |A2|/F are approximately(M/2)(1−M/2).
• |A1,2|/F is approximately(M/2)2.

The same analysis holds for fileB.
We now consider the delivery phase in Algorithm 1. As we will see later (see Remark 6 below), for

the scenario at hand the first delivery procedure will be used. Assume that user one requests fileA and
user two requests fileB.

The iteration in Line 7 of Algorithm 1 starts withs = 2. By Line 8, this implies that we consider the
setS = {1, 2}. Observe that:

• The cache of user two containsA2, which is needed by user one. Hence,V1,2 = A2.
• The cache of users one containsB1, which is needed by user two. Hence,V2,1 = B1.

As a result, in Line 9 of Algorithm 1, the server transmitsA2⊕B1 over the shared link. User one can solve
for A2 from the received messageA2 ⊕ B1 and the cached subfileB1. User two can solve forB1 from
the messageA2 ⊕ B1 and the cached subfileA2. Therefore,A2 ⊕ B1 is simultaneously useful fors = 2
users. Thus, even though the two users request different files, the server can successfully multicast useful
information to both of them. We note that the normalized (byF) size ofA2 ⊕ B1 is (M/2)(1−M/2).

The second iteration in Line 7 is fors = 1. In this iteration, the server simply sendsV1,∅ = A∅ and
V2,∅ = B∅ in Line 8. Each of these transmissions is useful fors = 1 user and has normalized size
(1−M/2)2.

FromA2 computed in iteration one,A∅ received in iteration two, and its cache content(A1, A1,2), user
one can recover the requested fileA = (A∅, A1, A2, A1,2). Similarly, user two can recover the requested
file B.

Summing up the contributions fors = 2 and s = 1, the aggregate size (normalized byF) of the
messages sent by the server is

(M/2)(1−M/2) + 2(1−M/2)2.

This can be rewritten as
2 · (1−M/2) ·

1

M

(

1− (1−M/2)2
)

.

In particular, forM = 1, the rate of Algorithm 1 is3/4.
This compares to a rate ofRU (1) = 1 achieved by the uncoded caching scheme described in Example1

in Section II. While the improvement in this scenario is relatively small, as we will see shortly, for larger
values ofN andK, this improvement over the uncoded scheme can be large. ♦

Remark2 (Unknown Number of Users during Placement Phase): The placement procedure of Algo-
rithm 1 is decentralized, in the sense that the user’s caches are filled independentlyof each other. This
implies that neither the identity nor even the number of users sharing the same bottleneck link during the
delivery phase need to be known during the earlier placementphase.

2To avoid heavy notation, we writeA1,2 as shorthand forA{1,2}. Similarly, we writeV1,2 for V1,{2}.

7

This decentralization of the placement phase enables the content-distribution system to be much more
flexible than a centralized placement phase. This flexibility is essential. For example, in wireline networks,
some of the users may not request any file in the delivery phase. In wireless networks, users may move
from one network or cell to another, and hence might not even be connected to the same server in the
two phases. In either case, the result is that the precise number and identity of users in the delivery phase
is unknown in the placement phase. One of the salient features of the decentralized algorithm proposed
in this paper is that it can easily deal with these situations.

This flexibility is also crucial to deal with asynchronous user requests, as is explained in detail in
Section V-C. It is also a key ingredient to extending the coded-caching approach to scenarios with
nonuniform demands or with online cache updates, as is discussed further in Section VI and in the
follow-up works [9] and [10].

Remark3 (Greedy Coding Strategy): The first delivery procedure in Algorithm 1 follows agreedy
strategy. It first identifies and forms coded messages that are useful for alls = K users. In the next
iteration, it forms coded messages that are useful for subsets of s = K − 1 users. The iteration continues
until it identifies messages that are useful for onlys = 1 user.

Remark4 (Simplified Decision Rule): Algorithm 1 provides two delivery procedures. The general rule is
to choose the procedure which minimizes the resulting rate over the shared link. A simple alternative rule
to decide between these two procedures is as follows: ifM > 1, employ the first procedure; otherwise,
employ the second procedure. The performance loss due to this simpler rule can be shown to be small.3

Remark5 (Knowledge of Cache Contents): The delivery procedure in Algorithm 1 assumes that the
server knows which bits are cached at each user. In practice,each user will choose which bits to cache
using a random number generator. By communicating only the seed value of this random number generator
from the user back to the server, the server can reconstruct the cache contents of the user.

IV. PERFORMANCE ANALYSIS

We now analyze the performance of the proposed decentralized coded caching scheme given by
Algorithm 1. Section IV-A provides an analytic expression for the rate of Algorithm 1. Section IV-B
compares the proposed decentralized coded caching scheme with the decentralized uncoded caching
scheme from Example 1 (the best previously known decentralized caching scheme). Section IV-C compares
the proposed decentralized coded caching scheme with the optimal centralized caching scheme and the
caching scheme from [8] (the best known centralized cachingscheme).

A. Rate of Decentralized Coded Caching Scheme

The performance of decentralized coded caching is analyzedin the next theorem, whose proof can be
found in Appendix A.

Theorem 1. Consider the caching problem withN files each of sizeF bits and withK users each having
access to a cache of sizeMF bits with M ∈ (0, N]. Algorithm 1 is correct and, forF large enough,
achieves rate arbitrarily close to

RD(M) , K · (1−M/N) ·min

{

N

KM

(

1− (1−M/N)K
)

,
N

K

}

.

Remark6: We note that ifN ≥ K or M ≥ 1, then the minimum inRD(M) is achieved by the first
term so that

RD(M) = K · (1−M/N) ·
N

KM

(

1− (1−M/N)K
)

.

3In fact, the achievable rate with this simpler rule is still within a constant factor of the optimal centralized memory-rate tradeoff. This
follows from the proof of Theorem 2 with some minor modifications.

8

This is the rate of the first delivery procedure in Algorithm 1. SinceN ≥ K or M ≥ 1 is the regime of
most interest, the majority of the discussion in the following focuses on this case.

Remark7: Theorem 1 is only stated forM > 0. For M = 0 Algorithm 1 is easily seen to achieve a
rate of

RD(0) , min{N,K}.

We see thatRD(0) is the continuous extension ofRD(M) for M > 0. To simplify the exposition, we
will not treat the caseM = 0 separately in the following.

The rateRD(M) of Algorithm 1 consists of three distinct factors. The first factor isK; this is the rate
without caching. The second factor is(1−M/N); this is alocal caching gain that results from having part
of the requested file already available in the local cache. The third factor is aglobal gain that arises from
using the caches to create simultaneous coded-multicasting opportunities. See Example 2 in Section III
for an illustration of the operational meaning of these three factors.

B. Comparison with Decentralized Uncoded Caching Scheme

It is instructive to examine the performance of the proposeddecentralized coded caching scheme
(Algorithm 1) for large and small values of cache sizeM . For simplicity, we focus here on the most
relevant caseN ≥ K, i.e., the number of files is at least as large as the number of users, so that the rate
RD(M) of Algorithm 1 is given by Remark 6.

As a baseline, we compare the result with the uncoded cachingscheme, introduced in Example 1 in
Section II. This is the best previously known algorithm witha decentralized placement phase. ForN ≥ K,
the uncoded scheme achieves the rate

RU(M) = K · (1−M/N), (1)

which is linear with slope of−K/N throughout the entire range ofM .
1) SmallM : For small cache sizeM ∈ [0, N/K], the rate achieved by Algorithm 1 behaves approxi-

mately4 as

RD(M) ≈ K ·
(

1−
KM

2N

)

. (2)

In this regime,RD(M) scales approximately linearly with the memory sizeM with slope−K2/(2N):
increasingM by one decreases the rate by approximatelyK2/(2N). This is illustrated in Fig. 3.

Comparing (1) and (2), we have the following observations:
• Order-K Improvement in Slope:The slope ofRD(M) aroundM = 0 is approximatelyK/2 times

steeper than the slope ofRU(M). Thus, the reduction in rate as a function ofM is approximatelyK/2
times faster for Algorithm 1 than for the uncoded scheme. In other words, for smallM the scheme
proposed here makes approximatelyK/2 times better use of the cache resources: an improvement on
the order of the number of users in the system. This behavior is clearly visible in Fig. 1 in Section I.

• Virtual Shared Cache:Consider a hypothetical setting in which theK cache memories are collocated
and shared among allK users. In this hypothetical system, arising from allowing complete cooperation
among theK users, it is easy to see that the optimal rate isK · (1−KM/N). Comparing this to (2),
we see that, up to a factor2, the proposed decentralized coded caching scheme achievesthe same
order behavior. Therefore, this scheme is essentially ableto create a single virtually shared cache,
even though the caches are isolated without any cooperationbetween them.

4More precisely,RD(M) = K − K(K+1)
2N

M + O(M2), and by analyzing the constant in theO(M2) expression it can be shown that
this is a good approximation in the regimeM ∈ [0, N/K].

9

2) LargeM : On the other hand, forM ∈ [N/K,N] we can approximate5

RD(M) ≈ N/M − 1. (3)

In this regime, the rate achieved by Algorithm 1 scales approximately inversely with the memory size:
doublingM approximately halves the rate. This is again illustrated inFig. 3.

Comparing (1) and (3), we have the following observation:
• Order-K Improvement in Rate:In this regime, the rate of the proposed decentralized codedscheme

can be up to a factorK smaller than the uncoded scheme: again an improvement on theorder of the
number of users in the system. This behavior is again clearlyvisible in Fig. 1 in Section I.

0 N/K N

0

K

M

R

≈ K ·

(

1 −
KM

2N

)

≈ N/M − 1

Fig. 3. Memory-rate tradeoffRD(M) achieved by Algorithm 1 forN = 100 files andK = 5 users (see Theorem 1). The functionRD(M)
behaves approximately linearly forM ∈ [0, N/K] and behaves approximately asN/M − 1 for M ∈ [N/K,N] (both approximations are
indicated by dotted curves).

C. Comparison with Centralized Coded Caching Scheme

We have compared the performance of the proposed decentralized coded caching scheme to the uncoded
caching scheme, which is the best previously knowndecentralizedalgorithm for this setting. We now
compare the decentralized coded caching scheme to the rate achievable bycentralizedcaching schemes.
We start with an information-theoretic lower bound on the rate of any centralized caching scheme. We
then consider the rate of the best known centralized cachingscheme recently introduced in [8].

Theorem 2. Let RD(M) be the rate of the decentralized coded caching scheme given in Algorithm 1,
and letR⋆(M) be the rate of the optimal centralized caching scheme. For any number of filesN and
number of usersK and for anyM ∈ [0, N], we have

RD(M)

R⋆(M)
≤ 12.

The proof of Theorem 2, presented in Appendix B, uses an information-theoretic argument to lower
bound the rate of the optimal schemeR⋆(M). As a result, Theorem 2 implies thatno scheme (centralized,
decentralized, with linear caching, nonlinear caching, . ..) regardless of is computational complexity
can improve by more than a constant factor upon the efficient decentralized caching scheme given by
Algorithm 1 presented in this paper.

5Since(1−M/N)K ≤ (1− 1/K)K ≤ 1/e, we haveRD(M) = Θ(N/M − 1) in the regimeM ∈ [N/K,N], and the pre-constant in
the order notation converges to1 asM → N .

10

Remark8 (Optimality of Uncoded Prefetching and Linearly-Coded Delivery): Theorem 2 implies that
uncoded caching in the placement phase combined with greedylinear coding in the delivery phase is
sufficient to achieve a rate within a constant factor of the optimum.

We now compare the rateRD(M) of decentralized coded caching to the rateRC(M) of the best known
centralized coded caching scheme. In [8, Theorem 2],RC(M) is given by

RC(M) , K · (1−M/N) ·min

{

1

1 +KM/N
,
N

K

}

for M ∈ N
K
{0, 1, . . . , K}, and the lower convex envelope of these points for all remaining values of

M ∈ [0, N]. Fig. 1 in Section I compares the performanceRC(M) of this centralized coded caching
scheme to the performanceRD(M) of the decentralized coded caching scheme proposed here. Ascan be
seen from the figure, the centralized and decentralized caching algorithms are very close in performance.
Thus, there is only a small price to be paid for decentralization. Indeed, we have the following corollary
to Theorem 2.

Corollary 3. Let RD(M) be the rate of the decentralized coded caching scheme given in Algorithm 1,
and letRC(M) be the rate of the centralized coded caching scheme from [8].For any number of filesN
and number of usersK and for anyM ∈ [0, N], we have

RD(M)

RC(M)
≤ 12.

Corollary 3 shows that the rate achieved by the decentralized coded caching scheme given by Algo-
rithm 1 is at most a factor12 worse than the one of the best known centralized algorithm from [8]. This
bound can be tightened numerically to

RD(M)

RC(M)
≤ 1.6

for all values ofK, N , andM . Hence, the rate of the decentralized caching scheme proposed here is
indeed quite close to the rate of the best known centralized caching scheme.

It is instructive to understand why the decentralized scheme performs close to the centralized one. In
the centralized scheme, content is placed in the placement phase such that in the delivery phase every
message is useful for exactly1 + KM/N users. In the decentralized scheme, we cannot control the
placement phase as accurately. However, perhaps surprisingly, the number of messages that are useful for
about1+KM/N users is nevertheless the dominant term in the overall rate of the decentralized scheme.

More precisely, from the proof of Theorem 1 in Appendix A, we can write the rateRD(M) of the
decentralized coded scheme as a convex combination of the rateRC(M) of the centralized coded scheme:

RD(M) =

K
∑

s=0

RC(sN/K)p(s) (4)

with p(s) ≥ 0 and
∑K

s=0 p(s) = 1. The dominant term in this sum isRC(M) occurring ats = KM/N ,
as is illustrated in Fig. 4. This observation explains why the centralized and the decentralized schemes
have approximately the same rate.

V. EXTENSIONS

In this section, we extend the results presented so far to some important cases arising in practical
systems. In particular, we show how to handle networks with tree topologies in Section V-A, caches
shared by several users in Section V-B, and users with asynchronous requests in Section V-C.

11

RC(sN/K)

p(s)

RC(M)0

Fig. 4. Concentration of the rate terms in the convex combination (4) expressing the rate of the decentralized coded caching schemeRD(M)
around the rateRC(M) of the centralized coded caching scheme. The curves are for different values ofN ∈ {23, 24, . . . , 210} with K = N
andM =

√
N . Each curve depictsp(s) versusRC(sN/K) parametrized bys ∈ {0, 1, . . . ,K}.

A. Tree Networks

The basic problem setting considered so far considers usersconnected to the server through a single
shared bottleneck link. We showed that the rate of our proposed algorithm over the shared link is within
a constant factor of the optimum. Here we extend this result to more general networks with tree structure
(see Fig. 5).

u

v

Fig. 5. Network with tree structure. A server containingN files of sizeF bits each is connected through a tree-structured network toK
users each with a cache of sizeMF bits. Internal nodes of the tree represent routers. In this figure,N = K = 6, andM = 1. The proposed
placement and delivery procedures together with a routing algorithm achieves the order-optimal rate over every link(u, v) of the network.

Consider a directed tree network, oriented from the root to the leaves. The server is located at the
root of the tree, and users with their caches are located at the leaves. Each internal node of the network
represents a router. The router decides what to transmit over each of its outgoing links as a function of
what it received over its single incoming link from its parent.

We again assume that the system operates in two phases. In theplacement phase, the caches are
populated without knowledge of users’ future demands. In the delivery phase, the users reveal their
requests, and the server has to satisfy these demands exploiting the cached content.

For this network, we propose the following caching and routing procedures. For the placement phase,
we use the same placement procedure as in Algorithm 1. For thedelivery phase, we use the two delivery
procedures detailed in Algorithm 1, but with the simplified decision rule explained in Remark 4. In other

12

words, if M > 1, the server creates coded packets according to the first delivery procedure. IfM ≤ 1,
it uses the second delivery procedure and the server createslinear combinations of the bits of each file
without coding across different files.

It remains to describe the operations of the routers at the internal nodes of the tree. Each router operates
according to the following simple rule. The router at nodeu forwards a coded message over link(u, v)
if and only if that coded message is directly useful to at least one of the descendant leaves of nodev.
To be precise, let us assume thatM > 1 so that the server uses the first delivery procedure. Thus for
each subsetS ⊂ [K] of users, the server creates the coded message⊕k∈SVk,S\{k}. This coded message
is useful for all users inS and is completely useless for the remaining users. The router located at node
u forwards this coded message⊕k∈SVk,S\{k} over the link(u, v), if at least one of the descendants ofv
(including v itself if it is a leaf) is in the setS. A similar routing procedure is used forM ≤ 1.

The performance of this scheme is analyzed in Appendix C. We show there that, forM > 1, the rate
of this scheme over the link(u, v) is equal to

Kv · (1−M/N) ·
N

KvM

(

1− (1−M/N)Kv
)

, (5)

whereKv is the number of descendant leaves of nodev. For M ≤ 1, it is easy to see that the rate over
the link (u, v) is equal to

Kv · (1−M/N) ·min{1, N/Kv}. (6)

The rate over every link in the tree network can be shown to be within a constant factor of optimal.
To prove approximate optimality for edge(u, v), we consider the subtree rooted atv together withu and
the edge(u, v). We can then use the same bound used in Theorem 2 over this subtree, treating(u, v) as
the shared bottleneck link.

Remark9 (Universality and Separation of Caching and Routing): This result shows that, for tree-
structured networks, caching and routing can be performed separately with at most a constant factor
loss in performance compared to the optimal joint scheme. This means that the proposed placement and
delivery procedures are universal in the sense that they do not depend on the topology of the tree network
connecting the server to the caches at the leaves.

Example 3 (Universality). ConsiderK users connected to a server throughK orthogonal links (i.e., no
shared links). For this topology the optimal rate over each link can be achieved without coding. However,
it is easy to see that the proposed universal scheme achievesthe same optimal rate. Thus, depending on
the network topology, we may be able to develop simpler schemes, but the performance will be the same
up to a constant factor as the proposed universal scheme. ♦

Example 4 (Rate over Private Links). Consider the original scenario of users sharing a single bottleneck
link. As an example, assume we haveN = 2 files andK = 2 users as described in Example 2 in
Section III. Observe that a user does not need all messages sent by the server over the shared link in
order to recover its requested file. For example, in order to recover fileA, user one only needsA2 ⊕B1

andA∅. Thus, if a router is located right where the shared link splits into the two private links, it can
forward only these two messages over the private link to userone. By the analysis in this section, the
resulting normalized rate over the private link to user one is then

(M/2)(1−M/2) + (1−M/2)2 = 1−M/N.

We note that in the uncoded scheme the rate over each private link is also1 −M/N . Hence, we see
that by proper routing the rate over the private links for both the coded as well as the uncoded schemes
are the same. The reduction of rate over the shared link achieved by coding does therefore not result in
an increase of rate over the private links. This conclusion holds also for general values ofN , K, and
M . ♦

13

In this section, we have only considered tree networks with caches at the leaves. The general scenario,
in which caches are also present at internal nodes of the tree, is more challenging and is analyzed in
follow-up work [11].

B. Shared Caches

The problem setting considered throughout this paper assumes that each user has access to a private
cache. In this example, we evaluate the gain of shared caches. This situation arises when the cache memory
is located close to but not directly at the users.

We consider a system withK users partitioned into subsets, where users within the samesubset share
a common cache (see Fig. 6). For simplicity, we assume that these subsets have equal size ofL users,
whereL is a positive integer dividingK. We also assume that the number of filesN is greater than the
number of usersK. To keep the total amount of cache memory in the system constant, we assume that
each of the shared caches has sizeLMF bits.

Fig. 6. Users with shared caches. A server containingN files of sizeF bits each is connected through a shared link toK/L caches each
of sizeLMF bits. Each cache is shared amongL users. In the figure,K = N = 6 andL = 2.

We can operate this system as follows. DefineK/L super users, one for each subset ofL users. Run
the placement procedure of Algorithm 1 for theseK/L users with cache sizeLMF . In the delivery
phase, treat the (up to)L files requested by the users in the same subset as a single super file of sizeLF .
Applying Theorem 1 to this setting yields an achievable rateof6

RL
D(M) = K · (1− LM/N) ·

N

KM

(

1− (1− LM/N)K/L
)

.

Let us again consider the regimes of small and large values ofM of RL
D(M). For M ∈ [0, N/K], we

have
RL

D(M) ≈ K ·
(

1−
K + L

2N
M
)

.

Comparing this to the small-M approximation (2) ofRD(M) (for a system with private caches), we see
that

RL
D(M) ≈ RD(M),

i.e., there is only a small effect on the achievable rate fromsharing a cache. This should not come as a
surprise, since we have already seen in Section IV-B that, for small M , RD(M) behaves almost like a

6This can be derived fromRD(M) in Theorem 1 by replacingM by LM (since each cache has now sizeLMF instead ofMF),
replacingK by K/L (since there areK/L super users), and multiplying the result by an extra factor of L (since each super file isL times
the size of a normal file).

14

system in which allK caches are combined. Hence, there is no sizable gain to be achieved by having
collaboration among caches in this regime.

Consider then the regimeM > N/K. Here, we have

RL
D(M) ≈ N/M − L = K · (1− LM/N) ·

N

KM

and from (3)

RD(M) ≈ N/M − 1 = K · (1−M/N) ·
N

KM
.

The difference between the two approximations is only in thesecond factor. We recall that this second
factor represents the caching gain due to making part of the files available locally. Quite naturally, this
part of the caching gain improves through cache sharing, as alarger fraction of each file can be stored
locally.

C. Asynchronous User Requests

Up to this point, we have assumed that in the delivery phase all users reveal their requests simultaneously,
i.e., that the users are perfectly synchronized. In practice, however, users reveal their requests at different
times. In this example, we show that the proposed algorithm can be modified to handle such asynchronous
user requests.

We explain the main idea with an example. Consider a system with N = 3 files A,B,C, andK = 3
users. We split each file intoJ consecutive segments, e.g.,A = (A(1), . . . , A(J)) and similarly forB and
C. HereJ is a positive integer selected depending on the maximum tolerable delay, as will be explained
later. To be specific, we chooseJ = 4 in this example.

A(1)
A(2) A(3) A(4)

B(1) B(2) B(3) B(4)

C(1) C(2) C(3) C(4)

d1 d2 d3

∆2 ∆3

Fig. 7. The proposed scheme over segmented files can be used tohandle asynchronous user requests. In this example, each file is split into
four segments. Users two and three are served with a delay of∆2 and∆3, respectively.

In the placement phase, we simply treat each segment as a file.We apply the placement procedure of
Algorithm 1. For the delivery phase, consider an initial requestd1 from user one, say for fileA. The server
responds by starting delivery of the first segmentA(1) of file A. Meanwhile, assume that user two requests
file d2, sayB, as shown in Fig. 7. The server puts the request of user two on hold, and completes the
delivery ofA(1) for user one. It then starts to deliver the second segmentA(2) of A and the first segment
B(1) of B using the delivery procedure of Algorithm 1 for two users. Delivery of the next segmentsA(3)

andB(2) is handled similarly. Assume that at this point user three requests filed3, sayC, as shown in
Fig. 7. After completing the current delivery phase, the server reacts to this request by deliveringA(4),
B(3), andC(1) to users one, two, and three, respectively, using the delivery procedure of Algorithm 1 for
three users. The process continues in the same manner as depicted in Fig. 7.

We note that users two and three experience delays of∆2 and∆3 as shown in the figure. The maximum
delay depends on the size of the segments. Therefore, segment size, or equivalently the value ofJ , can
be adjusted to ensure that this delay is tolerable (while keeping the segment size large enough to ensure
that the law of large number applies as discussed in Example 2in Section III).

15

We point out that the number of effective users in the system varies throughout the delivery phase. Due
to its decentralized nature, the proposed caching algorithm is close to optimal for any value of users as
discussed in Remark 2. This is instrumental for the segmentation approach just discussed to be efficient.

VI. D ISCUSSION

A. Connection to Index and Network Coding

The caching problem considered in this paper is connected tothe index coding problem [12], [13] (or,
equivalently [14], to the network coding problem [15]). In the index coding problem, we are given a set
of K users and a set ofN files. Each of the users has access to a fixed subset of those files and requests
another fixed subset of the files. The goal is to broadcast the minimum number of bits to theK users in
order to satisfy all user requests.

From the above description, we see that forfixed content placement and forfixed user demands, the
caching problem considered in this paper induces an index coding problem in the delivery phase. Since
there areNK possible user demands, the delivery phase of the caching problem can thus be interpreted
as an exponential number of parallel index coding subproblems. To complicate matters, the index coding
problem itself does not admit a closed-form solution and is known to be computationally intractable in
general [16].

One contribution of this paper is thus the design of the placement phase such that all these exponentially
many index coding problems simultaneously have an efficientand closed-form solution.

B. Caching Random Linear Combinations is Inefficient

Caching random linear combinations of file segments is a popular prefetching scheme. In this example,
we argue that in some scenarios this form of caching can be quite inefficient.

To be precise, let us focus on a specific scenario withK users andN = K files, where each user
has sufficient cache memory to store half of the files, i.e.M = N/2 = K/2. According to Theorem 1,
Algorithm 1 achieves a rate of less than one, i.e.,RD(M) ≤ 1.

On the other hand, the rate achieved by caching of random linear combinations can be shown to be at
leastK/4, which is significantly larger thanRD(M) for large number of usersK. Indeed, assume that
user one requests fileA. Recall that each user has cachedF/2 random linear combinations of the bits
of file A. With high probability, these random linear combinations span aF/2-dimensional space at each
user and the subspaces of different users do not overlap. Forexample, consider users two and three. As
a consequence of this lack of overlap, these two users do not have access to a shared part of the fileA.
This implies that, in the delivery phase, the server cannot form a linear combination that is simultaneously
useful for three users. In other words, the server can form messages that are at most useful simultaneously
for up to two users. A short calculation reveals that then theserver has to send at leastFK/4 bits over
the shared link.

This inefficiency of caching random linear combinations canbe interpreted as follows. The placement
phase follows two competing objectives: The first objectiveis to spread the available content as much as
possible over the different caches. The second objective, is to ensure maximum overlap among different
caches. The system performance is optimized if the right balance between these two objectives is struck.
Caching random linear combinations maximizes the spreading of content over the available caches, but
provides minimal overlap among them. At the other extreme, the uncoded caching scheme maximizes the
overlap, but provides only minimal spreading of the content. As a consequence, both of these schemes
can be highly suboptimal.

C. Worst-Case Demands

Our problem formulation focuses on worst-case requests. Insome situation, this is the correct figure
of merit. For example, in a wireless scenario, whenever the delivery rate required for a request exceeds

16

the available link bandwidth, the system will be in outage, degrading user experience. In other situations,
for example a wireline scenario, excess rates might only incur a small additional cost and hence might
be acceptable. In such cases, the average rate is the right metric, especially when files have different
popularities. This is discussed further in [9].

D. Online Coded Caching

In practical scenarios, the set of popular files is time varying. To keep the caching algorithm efficient,
the cache contents have to be dynamically updated to track this variation. A popular scheme to update
the caches is to evict the least-recently used (LRU) file fromthe caches and replace it with a newly
requested one. This LRU eviction scheme is known to be approximately optimal for systems with a single
cache [17]. However, it is not efficient for networks with multiple caches as considered here. This problem
of online caching with several caches is investigated in [10]. The decentralized Algorithm 1 presented in
this paper turns out to be a crucial ingredient of the suggested online coded caching algorithm in [10].

APPENDIX A
PROOF OFTHEOREM 1

We first prove correctness. Note that, since there are a totalof N files, the operations in Line 3 of
Algorithm 1 satisfies the memory constraint ofMF bits at each user. Hence the placement phase of
Algorithm 1 is correct.

For the delivery phase, assume the server uses the first delivery procedure, and consider a bit in the
file requested by userk. If this bit is already cached at userk, it does not need to be sent by the server.
Assume then that it is cached at some (possibly empty) setT of users withk /∈ T . Consider the set
S = T ∪ {k} in Line 8. By definition, the bit under consideration is contained in Vk,S\{k}, and as a
consequence, it is included in the sum sent by the server in Line 9. Sincek ∈ S \ {k̃} for every other
k̃ ∈ S, userk has access to all bits inVk̃,S\{k̃} from its own cache. Hence, userk is able to recover the
requested bit from this sum. This shows that the first delivery procedure is correct.

The second delivery procedure is correct as well since the server sends in Line 15 enough linear
combinations of every file for all users to successfully decode. This shows that the delivery phase of
Algorithm 1 is correct.

It remains to compute the rate. We start with the analysis of the second delivery procedure. IfN ≤ K,
then in the worst case there is at least one user requesting every file. Consider then all users requesting file
n. Recall that each user requesting this file already hasFM/N of its bits cached locally by the operation
of the placement phase. An elementary analysis reveals thatwith high probability forF large enough at
most

F (1−M/N) + o(F)

random linear combinations need to be sent in Line 9 for all those users to be able to decode. We will
assume that the file sizeF is large and ignore theo(F) term in the following. Since this needs to be done
for all N files, the normalized rate in the delivery phase is

(1−M/N)N.

If N > K, then there are at mostK different files that are requested. The same analysis yieldsa
normalized rate of

(1−M/N)K.

Thus, the second procedure has a normalized rate of

R(M) = (1−M/N)min{K,N}

= K · (1−M/N) ·min{1, N/K} (7)

17

for M ∈ (0, N].
We continue with the analysis of the first delivery procedure. Consider a particular bit in one of the

files, say filen. Since the choice of subsets is uniform, by symmetry this bithas probability

q , M/N ∈ (0, 1]

of being in the cache of any fixed user. Consider now a fixed subset of t out of theK users. The probability
that this bit is cached at exactly thoset users is

qt(1− q)K−t.

Hence the expected number of bits of filen that are cached at exactly thoset users is

Fqt(1− q)K−t.

In particular, the expected size ofVk,S\{k} with |S| = s is

Fqs−1(1− q)K−s+1.

Moreover, forF large enough the actual realization of the random number of bits in Vk,S\{k} is in the
interval

Fqs−1(1− q)K−s+1 ± o(F)

with high probability. For ease of exposition, we will againignore theo(F) term in the following.
Consider a fixed value ofs in Line 7 and a fixed subsetS of cardinality s in Line 8. In Line 9, the

server sends
max
k∈S

|Vk,S\{k}| = Fqs−1(1− q)K−s+1

bits. Since there are
(

K
s

)

subsetsS of cardinalitys, the loop starting in Line 8 generates
(

K

s

)

Fqs−1(1− q)K−s+1

bits. Summing over all values ofs yields a total of

RD(M)F = F
K
∑

s=1

(

K

s

)

qs−1(1− q)K−s+1

= F
1− q

q

(

K
∑

s=0

(

K

s

)

qs(1− q)K−s − (1− q)K

)

= F
1− q

q

(

1− (1− q)K
)

bits being sent over the shared link. Substituting the definition of q = M/N yields a rate of the first
delivery procedure of

RD(M) = (N/M − 1)
(

1− (1−M/N)K
)

= K · (1−M/N) ·
N

KM

(

1− (1−M/N)K
)

(8)

for M ∈ (0, N].
Since the server uses the better of the two delivery procedures, (7) and (8) show that Algorithm 1

achieves a rate of

RD(M) = K · (1−M/N) ·min

{

N

KM

(

1− (1−M/N)K
)

, 1,
N

K

}

.

18

Using that
(1−M/N)K ≥ 1−KM/N,

this can be simplified to

K · (1−M/N) ·min

{

N

KM

(

1− (1−M/N)K
)

,
N

K

}

,

concluding the proof.

APPENDIX B
PROOF OFTHEOREM 2

Recall from Theorem 1 that

RD(M) = K · (1−M/N) ·min

{

N

KM

(

1− (1−M/N)K
)

,
N

K

}

.

Using that

(1−M/N)K ≥ 0

and

(1−M/N)K ≥ 1−KM/N,

this can be upper bounded as

RD(M) ≤ min
{

N/M − 1, K(1−M/N), N(1 −M/N)} (9)

for all M ∈ [0, N]. Moreover, we have from [8, Theorem 2]

R⋆(M) ≥ max
s∈{1,...,min{N,K}}

(

s−
s

⌊N/s⌋
M
)

. (10)

We will treat the cases0 ≤ min{N,K} ≤ 12 and min{N,K} ≥ 13 separately. Assume first that
0 ≤ min{N,K} ≤ 12. By (9),

RD(M) ≤ min{N,K}(1−M/N) ≤ 12(1−M/N),

and by (10) withs = 1,
R⋆(M) ≥ 1−M/N.

Hence
RD(M)

R⋆(M)
≤ 12 (11)

for 0 ≤ min{N,K} ≤ 12.
Assume in the following thatmin{N,K} ≥ 13. We consider the cases

M ∈

[

0,max{1, N/K}
]

,
(

max{1, N/K}, N/12
]

,
(

N/12, N
]

,

separately. Assume first that0 ≤ M ≤ max{1, N/K}. By (9),

RD(M) ≤ min{N,K}(1−M/N) ≤ min{N,K}.

19

On the other hand, by (10) withs = ⌊min{N,K}/4⌋,

R
⋆(M) ≥ s−

s2

1− s/N

M

N

≥ min{N,K}/4− 1−
(min{N,K})2/16

1−min{N,K}/(4N)

M

N
(a)

≥ min{N,K}
(

1/4− 1/13−
1/16

1− 1/4

)

≥ min{N,K}/12,

where in(a) we have used thatmin{N,K} ≥ 13 andM ≤ max{1, N/K}. Hence
RD(M)

R⋆(M)
≤ 12 (12)

for minN,K ≥ 13 and0 ≤ M ≤ max{1, N/K}.
Assume then thatmax{1, N/K} < M ≤ N/12. By (9),

RD(M) ≤ N/M − 1 ≤ N/M.

On the other hand, by (10) withs = ⌊N/(4M)⌋,

R⋆(M) ≥ s−
s2

1− s/N

M

N

≥ N/(4M)− 1−
N2/(16M2)

1− 1/(4M)

M

N

=
N

M

(

1/4−M/N −
1/16

1− 1/(4M)

)

(a)

≥
N

M

(

1/4− 1/12−
1/16

1− 1/4

)

= N/(12M),

where in(a) we have used thatM/N ≤ 1/12 and thatM > max{1, N/K} ≥ 1. Hence
RD(M)

R⋆(M)
≤ 12 (13)

for min{N,K} ≥ 13 andmax{1, N/K} < M ≤ N/12.
Finally, assume thatN/12 < M ≤ N . By (9),

RD(M) ≤ N/M − 1.

On the other hand, by (10) withs = 1,

R⋆(M) ≥ 1−M/N.

Hence,
RD(M)

R⋆(M)
≤

N/M − 1

1−M/N

= N/M

≤ 12 (14)

for min{N,K} ≥ 13 andN/12 < M ≤ N .
Combining (11), (12), (13), and (14) yields that

RD(M)

R⋆(M)
≤ 12

for all N , K, and0 ≤ M ≤ N .

20

APPENDIX C
PROOF OF(5) IN SECTION V-A

As is shown in Appendix A, forF large enough the actual realization of the random number of bits
in Vk,S\{k} is in the interval

Fqs−1(1− q)K−s+1 ± o(F)

with high probability, and whereq = M/N . As before, we will again ignore theo(F) term in the
following.

Recall that only a subset of coded messages generated in Line8 in Algorithm 1 pass through link
(u, v), namely only those⊕k∈SVk,S\{k} for which the subsetS has at least one element among leave
descendants of nodev. We splitS into S1 andS2 whereS1 is the subset of descendant leaves of node
v, andS2 , S \ S1. Denote the cardinalities ofS1 andS2 by s1 ands2, respectively, so thats = s1 + s2.
With this, only coded messages withs1 ≥ 1 are forwarded over link(u, v). The number of bits sent over
this link is then equal to

F

Kv
∑

s1=1

K−Kv
∑

s2=0

(

Kv

s1

)(

K −Kv

s2

)

qs1+s2−1(1− q)K−s1−s2+1

= F
Kv
∑

s1=1

(

Kv

s1

)

qs1−1(1− q)Kv−s1+1
K−Kv
∑

s2=0

(

K −Kv

s2

)

qs2(1− q)K−Kv−s2

= F

Kv
∑

s1=1

(

Kv

s1

)

qs1−1(1− q)Kv−s1+1

= F
1− q

q

(

1− (1− q)Kv
)

.

Substitutingq = M/N yields the desired result.

REFERENCES

[1] L. W. Dowdy and D. V. Foster, “Comparative models of the file assignment problem,”ACM Comput. Surv., vol. 14, pp. 287–313, June
1982.

[2] K. C. Almeroth and M. H. Ammar, “The use of multicast delivery to provide a scalable and interactive video-on-demand service,”
IEEE J. Sel. Areas Commun., vol. 14, pp. 1110–1122, Aug. 1996.

[3] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies for an on-demand video server,”Multimedia Syst., vol. 4,
pp. 112–121, June 1996.

[4] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman, “Placement algorithms for hierarchical cooperative caching,” inProc. ACM-SIAM
SODA, pp. 586–595, Jan. 1999.

[5] A. Meyerson, K. Munagala, and S. Plotkin, “Web caching using access statistics,” inProc. ACM-SIAM SODA, pp. 354–363, 2001.
[6] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for data placement problems,”SIAM J. Comput., vol. 38, pp. 1411–

1429, July 2008.
[7] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution networks,” inProc. IEEE INFOCOM, pp. 1–9,

Mar. 2010.
[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” arXiv:1209.5807 [cs.IT], Sept. 2012. To appear in IEEE Trans.

Inf. Theory.
[9] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,”arXiv:1308.0178 [cs.IT], Aug. 2013.

[10] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded caching,”arXiv:1311.3646 [cs.IT], Nov. 2013.
[11] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, “Hierarchical coded caching,”arXiv:1403.7007 [cs.IT], Mar. 2014.
[12] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD) for efficient broadcast of different supplementaldata to

caching clients,”IEEE Trans. Inf. Theory, vol. 52, pp. 2825–2830, June 2006.
[13] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side information,”IEEE Trans. Inf. Theory, vol. 57, pp. 1479–1494,

Mar. 2011.
[14] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between network coding and index coding,”arXiv:1211.6660 [cs.IT],

Nov. 2012.
[15] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,” IEEE Trans. Inf. Theory, vol. 46, pp. 1204–1216,

Apr. 2000.
[16] M. Langberg and A. Sprintson, “On the hardness of approximating the network coding capacity,”IEEE Trans. Inf. Theory, vol. 57,

pp. 1008–1014, Feb. 2011.

http://arxiv.org/abs/1209.5807
http://arxiv.org/abs/1308.0178
http://arxiv.org/abs/1311.3646
http://arxiv.org/abs/1403.7007
http://arxiv.org/abs/1211.6660

21

[17] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules,”Communications ACM, vol. 28, pp. 202–208,
Feb. 1985.

	I Introduction
	II Problem Setting
	III A Decentralized Coded Caching Algorithm
	IV Performance Analysis
	IV-A Rate of Decentralized Coded Caching Scheme
	IV-B Comparison with Decentralized Uncoded Caching Scheme
	IV-B1 Small M
	IV-B2 Large M

	IV-C Comparison with Centralized Coded Caching Scheme

	V Extensions
	V-A Tree Networks
	V-B Shared Caches
	V-C Asynchronous User Requests

	VI Discussion
	VI-A Connection to Index and Network Coding
	VI-B Caching Random Linear Combinations is Inefficient
	VI-C Worst-Case Demands
	VI-D Online Coded Caching

	Appendix A: Proof of Theorem ??
	Appendix B: Proof of Theorem ??
	Appendix C: Proof of (??) in Section ??
	References

