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A Novel Coordinated Connection Access Control

and Resource Allocation Framework
for 4G Wireless Networks

Chao Yang and Scott Jordan, Member, IEEE

Abstract—In the academic literature on cellular network design,
resource allocation algorithms often attempt to maximize total
utility or throughput over a short time period, and connection ac-
cess control often admits arrivals if and only if there are sufficient
resources. In this paper, we investigate how connection access
control and resource allocation can be coordinated to jointly
achieve maximum total utility. We propose a decomposition in
which resource allocation maximizes long-term average utility
for each system state, and connection access control maximizes
long-term average utility over all system states. We discuss the
resulting interface and give examples of algorithms that satisfy this
decomposition and interface. Simulation results illustrate that the
optimal connection access control policy may block applications
with relatively low average utility per unit rate even when capacity
is available, and that coordinated connection access control and
resource allocation can outperform uncoordinated approaches.

Index Terms—Connection access control, coordination, resource
allocation.

I. INTRODUCTION

ERETOFORE, connection access control (CAC) and re-

source allocation (RA) have been designed to accomplish
different goals in cellular networks. Resource allocation algo-
rithms typically attempt to maximize the total utility of all active
users, €.g., the total number of voice users or the total throughput
of data users. In contrast, connection access control algorithms
typically admit a new connection if and only if it is believed that
capacity is available to ensure acceptable performance. Thus,
while RA focuses on utility, CAC typically ignores utility and
merely focuses on capacity.

Here, we investigate how CAC and RA can be coordinated to
both focus on utility. There is ample reason to believe that coor-
dination of CAC and RA could be beneficial. First, the volume
of data traffic on 4G networks has surpassed that of voice, and
video is quickly becoming the dominant traffic class by volume.
It is expected that voice, data, and video will all be impor-
tant revenue generators. Whereas the first three generations of
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cellular networks segregated capacity for voice and data appli-
cations, future networks will transmit all applications over the
Internet Protocol (IP) and thereby share capacity among all ap-
plication classes. Multiplexing of traffic classes with different
quality-of-service (QoS) requirements presents a challenge to
CAC and RA. When capacity was segregated, CAC and RA
for voice could both focus on maximizing the number of voice
users, and CAC and RA for data could both focus on maxi-
mizing throughput. In contrast, when capacity is shared, it no
longer is meaningful for CAC to admit a new connection if and
only if it is believed that capacity is available to ensure accept-
able performance since such an admit decision for a voice call
may result in an unacceptably high marginal decrease in utility
for active data and video connections. Instead, we suggest that
CAC should also focus on maximizing utility.

Second, orthogonal frequency-division multiplexing
(OFDM) is used in 4G networks. The total bandwidth is divided
into a set of orthogonal narrowband subcarriers. Different users'
channels on a particular subcarrier are often uncorrelated due to
independent fading. Thus, OFDM systems often adaptively al-
locate subcarriers among multiple users based on instantaneous
channel information [1]. The benefit of this approach increases
with the number of users per cell. However, if too many users
are admitted, the performance of each user decreases. Thus,
coordinated CAC and RA may be particularly beneficial in
OFDM systems.

There is a great deal of research literature on uncoordinated
resource allocation and connection access control for cellular
networks. Resource allocation algorithms usually attempt to
maximize total throughput (see, e.g., [2]-[5]) or total utility
(see, e.g., [6]-[9]). In some cases, the allocation attempts to sat-
isfy the QoS requirements of the application, e.g., a minimum
rate requirement for voice applications. Connection access
control has typically depended upon the application type. For
voice, CAC usually admits a new call if and only if there are
available resources (see, e.g., [10]-[12]). In contrast, data ap-
plications are often treated as not having any QoS requirement,
and thus not requiring any CAC. CAC for video applications
has been less addressed and remains an open problem.

However, there is little research literature on coordinated re-
source allocation and connection access control for cellular net-
works. A number of papers propose a weak type of coordination
in which CAC admits voice users subject to available capacity
and RA attempts to maximize the total utility of data users sub-
ject to performance constraints on voice users, see, e.g., [13].

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



YANG AND JORDAN: COORDINATED CONNECTION ACCESS CONTROL AND RESOURCE ALLOCATION FRAMEWORK FOR 4G

Other papers propose coordination by treating the goal as one
of maximizing sum throughput of voice and data subject to QoS
requirements, see, e.g., [14].

The existing RA and CAC algorithms have several obvious
drawbacks. First, RA principally focuses on instantaneous or
short-term throughput or utility. These algorithms typically do
not attempt to maximize long-term performance. Second, CAC
algorithms often simply admit users if there is sufficient ca-
pacity (see, e.g., [10]-[14]). However, the utility seen by each
user is often a function of the number of active users, and admit-
ting an arrival may cause a decrease in the total system utility. In
addition, in systems with multiple classes of users, admitting an
arrival of one class may result in a forced blocking in the near fu-
ture of a user of a different class that may have resulted in higher
utility or revenue. Third, the goals of current CAC and RA al-
gorithms are different. The goal of CAC is often to evaluate
if there are enough resources to admit arrivals. In contrast, the
goal of RA is usually to maximize instantaneous or short-term
throughput or total utility. Cooperation between CAC and RA
is limited, and the system may not achieve long-term optimal
performance.

Here, we propose coordinated CAC and RA on the basis of
user utility. First, we suggest a joint optimization of long-term
average user utility over both CAC and RA policies. We define
the utility as the function of average rate within certain time
window. This guarantees that CAC and RA have the same goal.
Due to the high complexity of an exhaustive search for the op-
timal solution, we then propose a decomposition into separate
CAC and RA problems, which make the cooperation between
CAC and RA simple and efficient. Whereas traditional RA in
the literature typically attempts to maximize total utility over a
relatively short time period (see, e.g., [6]-[9]), we propose that
RA should attempt to maximize the long-term average utility
for each system state, where the state is defined as number of ac-
tive applications of each class. Whereas traditional CAC in the
literature typically admits new connections if and only if there
are available resources, we propose that CAC should attempt to
maximize the long-term average utility over all system states.

We discuss the resulting interface between RA and CAC. The
RA module evaluates the feasible region and the average total
utility of each state and passes this information to the CAC
module. Based on this information, the CAC module selects
the admission policy, and based on this policy, decides whether
to admit an arrival of each user class. Then, the CAC module
passes the admission decision to the RA module, completing
the feedback loop.

We also give examples of RA and CAC algorithms that satisfy
this decomposition and interface. We show how stochastic dy-
namic programming can be used to find the optimal CAC policy.
The optimal admission decision thus takes into account poten-
tial future utility. Using numerical examples, we illustrate that
the optimal policy may not be to admit an arrival if there are
sufficient resources and may block applications with relatively
low average utility per unit rate even when capacity is available.

The rest of this paper is as follows. In Section II, we define
a user's channel, rate, and utility. In Section III, we formulate a
joint CAC and RA problem and propose a decomposition into
separate CAC and RA problems. In Section IV, we provide an

1329

implementation example to explain how to evaluate the average
utility of each state and how to use stochastic dynamic program-
ming to design an connection access control policy. Finally, in
Section V, the performance of our framework is illustrated by
numerical simulation results.

II. SYSTEM MODEL

We consider a single-cell downlink OFDM system with V
subcarriers. The bandwidth B of each subcarrier is assumed to
be less than the coherence bandwidth of the channel so that the
channel response can be considered flat. The rate of user k& on
subcarrier n at time ¢ is

H 2
Pkt (Prn,t) = Blog, <1 + Prnot %)

where pg ,, + is the power allocated, |Hy, ., | is the composite
channel gain, ¢? is the noise power, and I is the interference
power. The channel gain |Hy, ,, ;| = a3 , 7kt PLg . is com-
posed of fast fading ai’n’t that changes signiﬁcantly in sequen-
tial time periods, slow fading and shadowing <. ; whichthat
changes little in sequential time periods but may change sig-
nificantly during a few seconds, and path loss PLj ; that de-
pends on user position and changes significantly during tens of
seconds.! Fast fading on different subcarriers is assumed to be
independent to each other. The total rate of user % at time ¢ is
the sum of the user's rate over all subcarriers

N

Rk,t: E Tkmnt-

n=1

Assume there are L classes of applications. Each application
class is associated with a utility function U;. We propose that
users measure the satisfaction of applications by the average
rate achieved within a time window W7, rather than by the in-
stantaneous rate. The size of W; is determined by the applica-
tion—e.g., for video applications, W; should correspond to sev-
eral group-of-pictures, and for voice applications, W; should be
tens of milliseconds (the minimum time scale over which hu-
mans can perceive differences in voice quality).

Denote the application of user k& by b, = I, and user k's
average rate at time ¢ within the most recent window W}, by
Sk = fft:t—ka Ry, - /Wy, dr. User utility is thus a function
of average rate Uy, (Sk ). We wish to consider elastic applica-
tions (e.g., data) modeled by concave utility, semi-elastic appli-
cations (e.g., video) modeled by sigmoid utility, and inelastic
applications (e.g., voice) modeled by step utility; examples of
each are shown in Fig. 1.

The QoS requirement of an application is modeled by a min-
imum rate S,’)k . Elastic applications do not have any rate require-
ment, SO S{)k = (. The minimum rate of an inelastic application
corresponds to the location of the step. For semi-elastic appli-
cations, the utility generated per unit rate is maximized at tan-

Here, we assume perfect instantaneous channel estimation, and that the mod-
ulation and coding achieve the capacity of the channel. Consideration of the ef-
fects of imperfect channel estimation, delayed channel estimation, and the par-
ticular modulation and coding scheme is important, but is outside the scope of
this paper. In particular, analysis of adaptive modulation and coding (see, e.g.,
[15]) in conjunction with our approach would be interesting.
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Ubk Uk Ubk
- > S, - » S,
Sh ! Spi '
Elastic Inelastic Semi-elastic
Fig. 1. Utility function.
TABLE I and RA problems and discuss the resulting interface between
NOTATION CAC and RA.

Notation Description . Lo
N umber of subcarriors A. Joint CAC and RA Optimization Problem
B subcarrier bandwidth ‘ We begin by consideration of the policy spaces for CAC and
P downlink power of base station
¢ current time RA. For CAC, we assume that departures are never blocked, so
L discretized variable notation that the policy space can be written as
Aty time slot length
t time slot number, t* = [t/Ats] G={g=1(g1,92,---,9z): ¢ €{0,1}, 1 =1,...,L}
M number of slices in the partition of combined

pathloss and shadowing where g; = 0 (resp. g; = 1) denotes that an arrival of class !
L number of application classes . ..
W, length of time window of class { application  should be blocked .(resp. admitted). We call a user active if the
by, the application class of user k user has been admitted to the system and has not yet departed.
Uty utility function of user k Denote the time of the jth event (arrival or departure) by ¢(4),
S, minimum rate requirement of user k and the set of active users at time ¢ by
Vi, t> Yk, t shadowing of user k&
PLy ¢ ,PLy ¢ pathloss of user k

Dktr Ykt Pien Y™
af’,,n,t’ af’,,n
|Hk,n,t|2’ |Hk,n,tL|2
Phynts Phyn,tts Doy,
I and o2

Tk,n,t
Ry, ¢, Ry 1o

Skt Skt Sk S
L

Hi
Xe, s AU™
By and my

X

g
G, Gx
QCAC’ QRA

A, A*

combined pathloss and shadowing of user k&
fast fading of user k

composite channel fading of user k
allocated power to user k on subcarrier n
interference power and noise power

rate of user k on subcarrier n

rate of user k at time ¢, at slot ¢*

average rate of user k£ within preceding time
window

power price

average rate price

intensity of arrival and departure process.
The state of the network

CAC policy

CAC policy space

CAC and RA policy

feasible region

gent point S; = argmaxs, Us,/S,. Thus, it is reasonable
to assume that a compression algorithm would be designed on
the assumption that the average rate is maintained above this

threshold.2

Arrivals of applications of class [ are assumed form indepen-

dent Poisson processes with intensity /3;, and the duration of
connections of class [ are assumed to be independent and ex-
ponentially distributed with mean 1/7;. Our notation is summa-
rized in Table I.

III. JOINT FRAMEWORK
In this section, we first formulate a joint CAC and RA
problem. Then, we propose a decomposition into separate CAC

2Alternatively, one might assume that the inflection point is a reasonable
threshold.

D; = {k|user k is active at time ¢}.

For each arrival event j, the CAC policy is given by gl) =
{ gy ), géﬂ ), g(LJ) }. The state of the network is represented by
avectorx = {21, %, ...,2p  where 2; is the number of active
class-! applications; the state just after event j is denoted by

<) — {asgj), x(Qj), cees a:(LJ)} The CAC policy, denoted by
QCAC _ i) (X(J‘—l))

thus decides on admission of a connection on the basis of
the state immediately before the connection's arrival. The RA
policy, denoted by

QRA = {pk.n,t | ‘Hk:,n,r

2, Vk,n, 7 <tand X(j)}

assigns powers to each user and subcarrier at each time ¢ on the
basis of each user's historical channels and on the current state.

We now turn to the desired optimization metric. It is common,
in both multiclass connection access control problems and re-
source allocation problems, to consider efficiency and/or fair-
ness. In connection access control, efficiency is often defined in
terms of a weighted sum of admitted connections of the traffic
classes, or equivalently as a weighted sum of blocking probabil-
ities of traffic classes (see, e.g., [16]-[18]). In contrast, fairness
is often defined either as admitting all connections subject to
performance constraints or as equalizing blocking probabilities
of the traffic classes (see, e.g., [19]-[21]). Efficiency and fair-
ness are often viewed as a tradeoff, and hence some approaches
try to balance the two goals (see, e.g., [22]).

Similarly, in resource allocation, efficiency is often defined
in terms of a weighted sum of throughput of throughput of the
traffic classes (see, e.g., [3] and [23]), whereas fairness is often
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defined as equalizing throughput of connections or of traffic
classes (see, e.g., [24] and [25]). Again, these are often viewed
as a tradeoff, and some approaches try to balance them (see,
e.g., [26] and [27]). Some papers adopt the concept of utility,
which can be a function of any performance metric including
throughput. One advantage of utility is that it can be a nonlinear
function of the performance metric, and can thus represent more
complex goals than maximization of weighted throughput.

Resource allocation algorithms intended that use utility typ-
ically attempt to maximize the total utility of all active users
during a short time period (see, e.g., [6]-[9]), and connection
access control algorithms typically admit a new connection if
and only if it is believed that capacity is available to ensure ac-
ceptable performance (see, e.g., [10]-[14]). Such uncoordinated
RA and CAC has several disadvantages. First, if RA focuses on
short-term performance, then long-term utility is not necessarily
maximized. Second, in traditional CAC algorithms, the goal is
to admit as many users as possible if there is enough capacity.
However, this algorithm is suboptimal since the expected utility
from the new arrival may well be less than the decrease in utility
of current users resulting from their decrease in average future
rate. Moreover, when residual capacity is low and a relatively
low-paying application class arrives, admitting the new arrival
may cause the system to lose the chance to admit a future arrival
of a higher-paying user. Finally, the goals of RA and CAC are
different, and the lack of cooperation limits long-term perfor-
mance. We thus propose that both RA and CAC should focus
on long-term user utility. By focusing on utility, CAC and RA
have the same goal. When residual capacity is low and a rela-
tively low-paying application class arrives, CAC can cooperate
with RA to judge whether it is optimal to block the arrival with
the hope that a higher-paying application may arrive soon.

There are several options for this metric. Whereas tradi-
tional RA in the literature typically attempts to maximize total
utility over a relatively short time period, we propose that
RA should attempt to maximize the long-term average utility
for each system state. Define the duration of state x() as
At = ¢+ _ () Denote the average utility per unit time
of state x) by

LG+
A . 1
Unee (x9, 0000) = / S Us, Sk )i
1) RED:

Note that this metric thus averages utility over different time
periods in which the state is the same, as opposed to maximizing
short-term throughput.

Whereas traditional CAC in the literature typically admits
new connections if and only if there are available resources, we
propose that CAC should attempt to maximize the long-term av-
erage utility over all system states. The joint connection access
control and resource allocation problem is thus

J
1 L .
im — (3) (7 (7)
o % 8 51y 2 Vo (3. at) at
]:

where J denotes the total number of events.

The same optimization metric is thus used by both CAC
and RA. When a new user arrives, CAC does not make an
admission decision based only on current available capacity; it
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will cooperate with RA to evaluate both current and long-term
utility. It is worth noting that the policy of admitting all users
and maximizing total throughput is a special case in which
g (xU"1) =1vx0U~Y and W; = 1, Uy (Sk ¢) = Ry s VL.

This formulation, however, requires the joint determination
of the optimal CAC and RA policies. An exhaustive search
among all possible CAC and RA policies within the joint policy
space is almost certainly infeasible. In Section III-B, we thus
attempt to decompose the problem into separate CAC and RA
problems. The challenge is to formulate decomposed problems
that retain the desired coordination and that can be implemented
using a simple interface between the two modules.

B. Decomposition and Interface

We start with resource allocation. Traditional resource allo-
cation focuses on one period of time and optimizes system per-
formance during this period. We argue that resource allocation
should attempt to maximize the long-term average utility for
each system state, i.e., there should be a RA policy for each
state x. In an infinite length of time period, state x occurs during

time
T(x) = U

{jSJ:x(j):x}

[t(j),t(j“)) _

The average utility of state x over an infinite time period is thus

1
T, = lim —— E b
L avg (X) JlTrcElo |T(X)| / L by (Skqt)dt

T(x) kED:

where | | denotes cardinality.

For each state x, resource allocation should maximize long-
term average utility, and the resource allocation problem can be
written as

Usvs(x) = mict U (30

N
s.t. Z Zpk,n,t <P vt € T(x)

keD; n=1
Pkon.t >0 Yk € Dt,n, t e T(X)
Sk > S,  VkED;, teT(x) )

where P is the base station's downlink transmission power.

We define the feasible region A as the set of states for which
there exists a resource allocation that satisfies the constraints
in (1)

A = {x : 3Q™* which can solve problem (1)} .

We turn next to connection access control. While RA attempts
to maximize the long-term average utility for each state, CAC
should attempt to maximize the long-term average utility over
all states. The major question is the following: Does CAC need
detailed knowledge of the RA algorithm, or can it treat RA as a
black box? The literature does not provide a clear answer to this
question. To strengthen the modularity of the decomposition, we
propose that CAC should treat RA as a black box and exchange
a minimal set of information. The question remains as to what
information will suffice. Does CAC need to know the power and
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Aand U (x),
VxeA

Fig. 2. Joint CAC and RA flowchart.

subcarrier allocation? The resulting QoS? The utility earned as
a function of time? We propose that CAC only needs to know A,
the feasible region, and {U,y.(x) Vx € A}, the set of average
utilities earned in each state by the resource allocation policy.
Does RA need to know the history of arrivals and departures?
We propose that RA only needs to know the current state. The
resulting interface is illustrated in Fig. 2.

Based on this interface, the decomposed CAC problem be-
comes one of choosing an admission policy that maximizes
long-term average utility over the entire feasible region

i U (XU)) A )

max lim t(1+1

In summary, the RA module determines the feasible region
A and estimates the maximum average utility of each state
Usavg (x{9)), either by estimating utility as a function of the
channel distribution or by direct observation of the real system.
With this information, the CAC module can determine the op-
timal admission policy. Both of these roles can be done offline.
Then online, when a user arrives, the CAC module determines
whether to admit merely using a lookup based on state, and the
RA module determines power and subcarrier allocation based
on the current state and the current set of channel gains.

Cooperation is thus instilled between CAC and RA by sharing
the same optimization metric of long-term average utility. The
CAC and RA modules can treat each other as black boxes and
communicate limited information via a simple interface. This
decomposition provides flexibility to design CAC and RA poli-
cies separately and also reduces complexity.

IV. IMPLEMENTATION

In this section, we give examples of RA and CAC algo-
rithms that satisfy the decomposition and interface proposed
in Section IIl. This implementation will provide methods to
estimate Uavg(x) and to use stochastic dynamic programming
to determine the optimal CAC policy.

A. Resource Allocation

Whereas the model above assumed continuous time, in real
systems, resources are allocated during each time-slot [28].
We thus would like to formulate a discrete-time version of
the RA problem. Define At, as the duration of a time-slot,
t = [t/At,], t0r = [tU)/At,], and [t0)) tUTL4) a5
{t1#9)» <+ < ¢+ Y Then, the set of time-slots in which
the system is in state x is

T'x)= U

{jg.]:x(ﬂ:x}

[t(jw’ tu+1>,b)

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 23, NO. 4, AUGUST 2015

and the discretized average utility is

Uabvg( ) JToo |TL ‘ Z Z Ubk(sk,#)

x) k€D

where S};_tL = Ef—L:tb—Wk+1 Rkﬂ—b /I’Vk.

Denote the total number of active users while in state x by
K(x)= Zlel ;. In different epochs j within 7 (x), the total
number of users is the same, but the active user set D;. may be
different. This makes it difficult to calculate I an( x). Thus, for
each state x, we propose to consider a fixed set of users over
an infinite length of time. For simplicity of notation, for each
state x, we renumber the users from 1 to K (x) = EZL:1 2y and
restart time from 1 to 73 and we therefore drop the x from
K(x).

Denote the power allocation by p = {pk,n, Yk, n,t'}.
Each subcarrier can be allocated to at most one user, thus de-
note the feasible set of power and subcarrier allocations by A =
{p s.t. ¥t*,n, prne > 0 for at most one user k}. The dis-
cretized maximum average utility in state x is then

U;vg( ) - gleai/i( :ZTL Z Z Ubk Sk t’

tr=1k=1
K N
s.t. Z Zpk’n,ﬂ <P V' Prne > 0VE,n,t*
k=1n=1
Spp > 8h Ykt 3)

We solve a dual problem by introducing a set of intermediate
variables d = {dj, s, Vk,¢'} as bounds on the achieved rates,
ie., Sk > dpy VE,t'. The Lagrange is

F(d,p, A\, p) = ZZUbk (dk,t0)
ti=1k=1
+ZZ>\L# (Sk —di ) +Z/ltb<P Zzpknﬂ>
tr=1 k=1 tr=1 k=1n=1

4)

where dj, o > Sz,;k’ A={ g, VE,1 < ¢t* < T*} are the La-
grangian multipliers associated with the rate constraints which
are interpreted as rate prices [29], and g = {uf,1 < ¢ <
T*} are the Lagrangian multipliers associated with the power
constraints.

However, knowing the channel information for all 1 < ¢ <
T* is impractical, and we propose to estimate Uavg(x) using
the channel distribution. Define a random variable ak repre-
senting fast fading for user £ on subcarrier n, whose distribu-
tion is presumed known; denote a? = {7, ,, Vk,n}. Combine
slow fading, shadowing, and path loss for user & into a single
random variable %, whose distribution is presumed known; de-
note 4 = {9, Vk}. It will be helpful to think of the power allo-
cations as random variables py, ,, and the achieved average rates
as random variables S}, that are functions of the random vari-
ables a2 and % and of the resource allocation policy. Denote
the set of shadowing and path losses for all users except user &

3We also presume that each user has been in the system since time #* =
—(Wh,, — 2), so that S s is defined at #* = 1.
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by ¥, = {¥;, vk # k}. We assume that the distribution of
combined slow fading and shadowing %}, is independent of k.
AsT" T

K T K

Z ZUbk Sk tL —> ZEQ2,‘¢'Ubk(Sk)'

k=1t+=1 k=1

Partition the domain of 1 into M slices, with the lower
bound of slice m denoted by w("”). Denote the probability of
slice m by ¢, = Pr(¢x = (™). When in slice m denote
the power allocated to user & on subcarrier 72 by pk ) and the
average rate of user k by Sk ™) The optimal policy p is then
given by set of Lagrangian multipliers for each user denoted by
{)\ém), vk, m}. The optimization problem (3) thus becomes

K M

Z Z Uy, ( a2,¢,k5;gm)) I

{A““) Vk m} i T1m

K M N

S YD By (P an < P

k=1m=1n=1
Easy S > Sh

T3

Ui (%) =

Yk, m. 5)
The derivation is in Appendix I. The discretized feasible region
is

A= {x .3 {A,gm),Vk,'m} which can solve problem (5)}.

This optimization problem can be solved using a subgra-
dient algorithm. The resulting complexity is polynomial in the
number of users K.

B. Connection Access Control

It remains to formulate and solve a discrete-time version
of problem (2). With the discretized feasible region, the CAC
policy space becomes

Gx={geG:g=0ifx+e €A}

where e; is a vector of zeros, except for one for the /th compo-
nent. The CAC policy QA€ = g (x(7~1)) must decide on
admission of a connection on the basis of the state immediately
before the connection's arrival.

The state x) is a continuous-time Markov chain. It can be
converted into a discrete-time Markov chain via standard uni-
formization techniques [30, pp. 110, 209] as follows. The ex-
pected time in state x7) under policy g is

(®) : AL @
I/x g = . s
S B+ At
and a bound on these expected times is
1 1
7 R At (7
’VZZL—I(/BZ +Zm) Ats-‘

where 7; is the maximum number of class-/ applications in the
network that can be calculated by allocating all the resources to
class-I applications. The embedded discrete-time Markov chain
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transition probabilities are given by

xmux(g), I=1,...,L, ifx'=x—¢
Bigivx(g), I=1,...,L, ifx' =x+e¢
0, else.

Pxx’ =

An equivalent discrete-time problem is

1A, .
7 ZUan (X(j)> .

max lim

QCAC Jtoo

The optimal CAC policy can then be determined using sto-

chastic dynamic programming. The corresponding value itera-
tion algorithm [30, p. 210] is

Z P (g)Vi1 (X,)

(1 i) o)

where i denotes the iteration number, V;(x) denotes the ex-
pected return of state x, and X’ is a possible next state.

In summary, the offline portion of the CAC module uses
stochastic dynamic programming to determine the optimal
connection control policy; this is then used online to decide
upon admissions. Upon admitted arrivals or departures, the
CAC module passes the new state x to the RA module. Offline,
the RA module uses problem (5) to determine a set of rate
prices {)\( Yk, m}; users in the same slice m using the same
application ! will face identical rate prices, denoted A
These rate prices can be used online to allocate power and sub—
carriers based on the current state and the current set of channel
gains using interpolation; if by = I, then an interpolated rate
price can be set to

)\(l,m) _ ()\(l,m) _)\(l.m—l))
(m)

Vi(x) = max {U;vg(x) +

g€Gx

®

.%’ lf qpnl < 'wk,t" < qun—l’
M or g < M
)\(l,m) _ ()\(l,m+1) _/\(l,m))
Y et _,(/J(m)

if g e > Pt

The complexity of the stochastic dynamic programming
problem is not easy to express in terms of the size of the
problem. The number of iterations required is discussed in
Section V. However, this portion is completed offline, and the
online calculation is very simple.

T —p(mTI) )

C. Analysis of CAC Policy

In this section, we characterize the near-optimal CAC policy
for a special case of two classes of applications. There is a large
amount of academic literature on CAC policies in various types
of networks. A small proportion of these papers have succeeded
at providing a characterization of the CAC policy that maxi-
mizes a specified metric among a specified class of policies.
Foschini ef al. [31] considered a system with two classes of
applications requiring identical amounts of a shared single re-
source type. It proved that the policy that maximizes average
revenue, among the class of coordinate convex policies, con-
sists of a threshold on one of the application classes. Ross and
Tsang [32] considered systems with two classes of applications
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that may require different amounts of a shared single resource
type. It proved under certain conditions that the policy that max-
imizes average revenue, among the class of coordinate convex
policies, may consist of a threshold on one or both of the appli-
cation classes. Altman et al. [33] considers both a more general
class of policies (Markov policies) and a more general class of
single resource systems (with two or more classes of applica-
tions sharing a single type of resource). It proves that sometimes
the optimal application classes can be ordered in terms of when
it is optimal to admit them.

However, almost all of the literature characterizes optimal
policies only in systems with a single type of resource. In the
model considered in this paper, there are two types of resources:
power and subcarriers. Jordan and Varaiya [34] considered sys-
tems with multiple classes of applications that may require dif-
ferent amounts of multiple types of resources. It proved that the
policy that maximizes average revenue, among the class of coor-
dinate convex policies, has a certain type of threshold structure.

However, in all of these CAC policy characterizations, the re-
source requirement is fixed during the duration of a connection,
whereas in the model considered in this paper the resource re-
quirement varies during the connection.

It appears to be very difficult to characterize the optimal CAC
policy in systems with multiple application classes sharing mul-
tiple resources, particularly when resource requirements vary
during the connection. We thus consider an approximated ver-
sion of the optimization problem as follows. Remove the ceiling
function from the expected time in state x) in (6) and from
its corresponding bound in (7). This approximation allows the
maximization in the value iteration (8) to be replaced by a term
that depends on whether V;_1(x + €;) > V;_1(x)

Vi(x) = Vi1 (%) + Uy (%)
L
+ > fam [Via(x—e) = Vi1(x)]
1=1
+ 31 (Vici(x+e) > Vio1(x))
Vici(x+ @) = Vi (%]} ©)
where the terms including V;_;(x — ¢;) are included only if
2; > 0 and the terms including V;_; (x + €;) are included only
ifx+e¢ € A~

This simplification makes it possible to provide a character-
ization of the optimal CAC policy for a special case of two
classes of applications.

Theorem 1: If: 1) there are L = 2 classes of applications;
2) the feasible region A* is a rectangle {{x1, x5) such that 0 <
21 < 1,0 < 22 < Zy}; and 3) U;vg(x) is monotonically
increasing with 2; for all fixed x3, then the CAC policy that
satisfies (9) always admits class-1 arrivals while inside the fea-
sible region.

The proof is given in Appendix II. An immediate corollary
of Theorem 1 is that if there are L = 2 classes of applications,
if the feasible region A" is a rectangle {(x1, z3) such that 0 <
21 < F1,0 < @y < Za}, and if U;vg (x) is monotonically in-
creasing with both z; and 1, then the CAC policy that satisfies
(9) admits all arrivals while inside the feasible region.

It is worth noting that the condition that the feasible region
A* is a rectangle cannot be ignored. In Section V, we give an
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example in which the other conditions in the theorem are satis-
fied but the feasible region is not a rectangle, and show that the
optimal policy is not as simply characterized.

V. SIMULATION RESULTS

In this section, we examine the performance of the proposed
decomposition via simulation. We assume there are N = 1000
subcarriers, with each subcarrier occupying a bandwidth of B
= 10 kHz. The base station's downlink transmission power for
all applications is 46 dBm. The path loss, including the antenna
gain, is [28]

Je

PLj, =128.1 + 37.6log 10(¢;) + 211og 10 <%> — 15dB

where (; is the distance from the user to the base station and
fe = 2000 MHz is the central frequency. The shadowing fol-
lows a lognormal distribution with mean value 0 dB and vari-
ance 10 dB [28]. The domain of vy, = -y, PLy is partitioned
into M = 35 slices. Fast fading a7 , follows an Exponential
distribution with mean value 1. The duration of one time-slot
is At, = 1 ms [35], and fast fading is generated every three
time-slots independent of previous fading.

Users move at a constant speed of 10 km/h with direction
determined by a random walk [36] through a hexagonal cell with
intersite distance equal to 750 m. If users stay in the cell for a
long period of time and/or if users' speed is high enough, these
users are approximately uniformly distributed in a donut around
the base station from ¢ = 0.01 km to { = 0.25 km.

We consider three types of applications: inelastic (voice),
elastic (data), and semi-elastic (video). However, for purposes
of illustration, in Sections V-A-V-C, we consider dynamic
sharing of only two classes of applications at a time. The total
system resources (power and subcarriers) are thus assumed to
be statically partitioned between the two classes of focus and
the remaining unmodeled classes.

A. Two Semi-Elastic Classes

We first focus on dynamic sharing of system resources be-
tween two classes of semi-elastic (video) applications. We pre-
sume that 40% of system resources are allocated to these two
classes, i.e., N = 400 subcarriers and P = 42 dbm downlink
power. Noise plus interference o + I = 7.6232 x 10723 mW.
The time window over which utility is evaluated is W) = W, =
133 slots, corresponding a common choice for the length of one
group of pictures in MPEG4. The utility function for a class-
application is

wwmo—{W“wf’l if S < 57
7 Sk + )3, else

where Sy ;. is also expressed in units of 100 kb/s, a1 = 4/5 *
(2/5)1/3/(12/5)%, by = —2,¢1 = 4/5, ST = 240 kbrs,
ay = (5/6)1/3/25, by = —25/6, ¢, = 1, S = 500 kb/s. Both
utility functions are sigmoid [29]; we set the minimum rate re-
quirements to the rate at the maximum average utility, which
is given by S7 = 300 kb/s and S§ = 625 kb/s. The arrival
processes are Poisson processes with intensities 3 = 1/12/s
and B8, = 1/30/s, respectively, and the connection durations
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Fig. 3. Feasible region and CAC policy for two semi-elastic classes.

are exponentially distributed with means 1/7; = 180 s and
1/ns = 300 s, respectively.

We use the value iteration algorithm to determine the connec-
tion access control policy. We set V,(x) = U;vg(x). The algo-
rithm converges after 380 iterations to within 1e — 4. The fea-
sible region and optimal coordinated connection access control
policy are shown in Fig. 3. The cell can admit ; = 11 class-1
applications, T2 = 7 class-2 applications, or a bit less than a
linear combination of the two. In general, class-1 applications
are preferred since they generate a higher average utility per
unit rate at their minimum rate, i.e., Uy (S7)/5] > Ua(S%)/55.
When the state is on or above the upper boundary of the feasible
region, the optimal CAC policy is to block all arrivals. When
the state is far from the upper boundary, the optimal policy is to
admit all arrivals. In a zone near the boundary as illustrated, the
optimal policy is to admit only class-1 arrivals. As a result, the
system will never enter a state with zzo > 4.

In this scenario, it is worth noting that U;vg (x) is monoton-
ically increasing with both 2; and 23 over the entire feasible
region. If the feasible region was rectangular, then Theorem 1
would lead one to expect that the optimal policy would admit
all arrivals while inside the feasible region. The region in which
the optimal policy admits only class-1 arrivals comes from the
nonrectangular shape of the feasible region.

We would like to compare the coordinated connection access
control (CCAC) policy to the other two policies. The first alter-
nate policy is a traditional connection access control (TCAC)
policy that admits arrivals if and only if there are sufficient re-
sources to guarantee QoS constraints

Vx,q =0ifx+e & A, g; =1 otherwise
i.e., that admits all users in all states inside the feasible region.

The second alternate policy is one that admits arrivals if
and only if there are sufficient resources to guarantee QoS
constraints and if the average utility in the state if admitted is
higher than the average utility in the current state

¥x, g =0ifx+e &€ Aor ifU;vg(x—i- e) < U;Vg(x)

g1 =1 otherwise.

We call this policy greedy connection access control (GCAC).
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TABLE II
AVERAGE UTILITY FOR TWO SEMI-ELASTIC CLASSES

TCAC | GCAC | CCAC

Utility 27.32 27.32 32.49

Blocking probability of type 1 | 64% 64% 32%
Blocking probability of type 2 | 56% 56% 81%
Total Utility of type 1 14.78 14.78 23.72
Total Utility of type 2 12.54 12.54 8.77

Clearly, the coordinated policy CCAC should perform at least
as well as the greedy policy GCAC since it takes into account
not only the average utility of the state if admitted, but also the
expected utility earned in all future states. One may also expect
that the greedy policy GCAC should outperform the traditional
policy TCAC since it will block arrivals that decrease the cur-
rent average utility ﬁ;vg(x).

To compare the CCAC, GCAC, and TCAC policies, we sim-
ulate 40 min of arrivals and departures; the resulting average
utility under each policy is shown in Table II. In this scenario,
arrivals always result in an increase in the current average utility
U;va (x), and thus the greedy policy GCAC is identical to the
traditional policy TCAC. Under the TCAC policy and heavy
load, the two application types experience similar blocking
probabilities; the differences are due to the different bandwidth
requirements of the applications and small differences in the
discrete shape of the state space boundary. However, as noted
above, the optimal coordinated policy CCAC blocks class-2
arrivals when the residual capacity is low. As a result, under
CCAC the system spends a substantially greater portion of
time near the highest utility state (11, 0) than it does under
TCAC, and thus CCAC achieves a much higher average utility
than TCAC and GCAC. The increase in utility is due to a
reduction in the blocking probability for type-1 applications
and a corresponding increase in blocking probability for type-2
applications. This may be viewed by some as unfair, reflecting
the tension between fairness and efficiency discussed above.

We also examine how well each policy adheres to the QoS
constraints. To do this, we focus on the outermost four slices,
m = 32 to 35, which experience the lowest average rates. In
Table III, we give the minimum average rate of all users in the
given slice within each application class. We observe that each
policy maintains average rates above the QoS requirement S}
(300 kb/s for class 1, 625 kb/s for class 2) for all users.

Finally, we investigate the influence of the arrival rates of
the two application classes on the connection access control
policies. We consider four sets of arrival rates, of which two
represent lighter loads and two heavier loads than used above.
The optimal coordinated connection access control policy under
each set of arrival rates is shown in Fig. 4. The feasible region
remains the same, and class-1 applications remain preferred.
When the load is very light (e.g., 31 = 1/20, 82 = 1/40)
the optimal policy is to admit arrivals whenever the state upon
admitting the arrival would remain in the state space, i.e., the
TCAC policy. For light to heavy loads, as before there is a zone
within the state space within which the optimal policy is to admit
only class-1 arrivals. However, the location and size of this zone
varies with the arrival rates. As the arrival rates increase, the
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TABLE 111
MINIMUM AVERAGE RATE (kb/s) FOR TWO SEMI-ELASTIC CLASSES

. TCAC GCAC CCAC
Slice number — — — — — —
avg ST avg S3 avg ST avg S avg ST avg S5
m = 32 504 756 504 756 529 753
m = 33 486 696 486 696 489 27
m =34 445 661 445 661 476 729
m = 35 409 641 409 641 479 635
8 3g]| —®—CcAC
4 —&— TCAC/GCAC
B=1/20, B=1/40 364 set 1: []/:]/‘20‘/?::]/40 P
5 o ﬁ/:1/17,/z’-::l/35 set 2: f=1/17, B=1/35
E - ,_,_ﬂ,:”g B=120 34| set3: p=112, p=1130 e
ﬂ/:] A, /;:1 " z set4: f=19, p=1120 =
" : 2 5 324 set5: 1B, pI8 4
= g i
) g 2 30
2 ; 284
26
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Fig. 4. Feasible region and CAC policy for two semi-elastic classes under var-
ious sets of arrival rates.

zone expands, resulting in fewer class-2 arrivals being admitted.
This occurs because the increased number of class-1 arrivals al-
lows the system to be more selective about which arrivals to
admit, as it becomes more likely that class-1 arrivals along will
keep the system relatively busy.

In Fig. 5, the total utility under these four sets of arrival rates
and the original set of arrival rates are illustrated for each policy.
As before, the TCAC and GCAC policies are identical. The
total utility is the sum of individual utilities that depend on the
achieved rates. When arrival rates increase, although the av-
erage number of terms in the sum increases due to more active
users, the utility per user decreases since more users compete for
the same resources. A well-designed connection access policy
ensures that the increase in the number of active users domi-
nates the decrease in the utility per users. Here, all three poli-
cies are well designed in this sense since they block arrivals if
it would place the state outside the feasible region. Therefore,
the total utility increases with arrival rates under all three poli-
cies. However, the difference between the total utility earned
by the CCAC policy and the other policies increases with the
arrival rates, reflecting the increased benefit of the additional
complexity of CCAC under heavier loads.

B. Elastic and Semi-Elastic Classes

We next focus on dynamic sharing of system resources be-
tween one class of elastic applications (e.g., FTP) and one class
of semi-elastic applications (video). As above, we presume that
40% of system resources are allocated to these two classes, i.e.,
N = 400 subcarriers and P = 42 dbm downlink power, and
that noise plus interference ¢? + I = 7.6232 x 10722 mW.
The time window over which utility is evaluated remains W5 =

Set of Arrival Rates

Fig. 5. Total utility under various sets of arrival rates.

133 slots for the video traffic, but is increased to W; = 300 slots
for the FTP traffic since it is elastic. The class-1 application is
elastic with utility function

Ur(Skp) =12 % (Sppe +1)75 — 1.2

where Sy is expressed in units of 100 kb/s. The class-2
application is semi-elastic with the same utility function
as the class-1 application in Section V-A. The arrival pro-
cesses are Poisson processes with intensities 57 = 1/5/s
and B, = 1/15/s, respectively, and the connection durations
are exponentially distributed with means 1/n; = 600 s and
1/ns = 180 s, respectively.

Because there is no minimum rate requirement for elastic
applications, there is no hard limit on the total number of ac-
tive users running elastic applications. However, we observe
that deployed systems often limit the number of active data
users per cell, and thus we set an upper limit ; = 200. The
limit is assumed to be independent of the number of active
video users, and thus the feasible region is rectangular. The
limit on the number of active video users remains T = 11 as
in Section V-A. The value iteration algorithm converges after
1890 iterations to within 1e — 3. The feasible region is shown
in Fig. 6.

The average utility ﬁ;vg(x) is monotonically increasing with
x; for all fixed z. Thus by Theorem 1, the optimal policy al-
ways admits class-1 arrivals.

However, the average utility ﬁ;vg(x) is not monotonic with
x4 for all fixed 1, and thus the optimal policy does not always
admit class-2 arrivals. In this scenario, the feasible region can
be partitioned as illustrated in Fig. 7; in the region below the
curve, U;vg (x) is monotonically increasing with x, for fixed
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Fig. 7. Regions of monotonicity.
TABLE 1V
AVERAGE UTILITY FOR ELASTIC AND SEMI-ELASTIC CLASSES
TCAC | GCAC | CCAC
Utility | 89.73 94.42 98.42

z1, and in the region above the curve, U;vg(x) is monotoni-
cally decreasing with 2 for fixed x;. The optimal coordinated
connection access control policy is shown in Fig. 6. It admits
all class-1 arrivals while inside the feasible region (as guaran-
teed by Theorem 1), but only admits class-2 arrivals when the
state is below the threshold illustrated. This optimal admission
threshold is different than the partition based on the average
utility U;vg(x). A more detailed investigation of the form of
the optimal policy is presented in Appendix III.

To compare the CCAC, GCAC, and TCAC policies, we
simulate 30 min of arrivals and departures; the resulting av-
erage utility under each policy is shown in Table IV. Because
class-2 arrivals result in a decrease in the current average
utility F;vg (x) when the state is above the curve in Fig. 7, the
greedy policy GCAC outperforms the traditional policy TCAC.
However, the coordinated policy CCAC outperforms GCAC
by placing the threshold at a slight different location than the
curve.

Finally, we examine how well each policy adheres to the QoS
constraints. As above, we focus on the outermost four slices,
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TABLE V
MINIMUM AVERAGE RATE (IN kb/s) FOR ELASTIC AND SEMI-ELASTIC CLASSES

Slice number | Avg S3* of | Avg ST* of | Avg S3* of
TCAC GCAC CCAC
m = 32 346 331 353
m =33 325 326 313
m = 34 313 306 305
m =35 296 286 287

m = 32 to 35, which experience the lowest average rates. Re-
call that the elastic class-1 applications do not have a QoS re-
quirement. In Table V, we give the minimum average rate of
all class-2 users in the given slice. Unlike the scenario with two
semi-elastic classes, in this scenario we observe that users in
the furthest slice from the base station experience an average
rate below their QoS requirement (300 kb/s) under each of the
three policies. This causes outage for some users far from the
base station. Such outage can be addressed by adding an outage
constraint that can be efficiently enforced by adding an outage
price to the rate price; see [37] for details.

C. Elastic and Inelastic Classes

Our last scenario focuses on dynamic sharing of system re-
sources between one class of elastic applications (e.g., FTP) and
one class of inelastic applications (voice). Since these are two
popular classes, we presume that 80% of system resources are
allocated to these two classes, i.e., N = 800 subcarriers and P
= 45 dbm downlink power, and that noise plus interference
o + T = 7.8288 * 1072 mW. The time window over which
utility is evaluated remains W; = 300 slots for the FTP traffic
and is set to a short W5 = 10 slots for the voice traffic since
it is inelastic. The class-1 application is elastic with the same
utility function given in Section V-B. The class-2 application is
inelastic with utility function

1.5, if Sp4 > 32kb/s
Us(Ski) = {07 clse
where Sy, 4 is expressed in units of 100 kb/s. The arrival pro-
cesses are Poisson processes with intensities 81 = 1/4/s and
B2 = 1/3/ s respectively, and the connection durations are Ex-
ponentially distributed with means 1/1; = 100 s and 1/72 =
300 s, respectively.

As in the previous scenario, because there is no minimum
rate requirement for elastic applications, we set an upper limit
Z1 = 200, independent of the number of active voice users, and
thus the feasible region is rectangular. The limit on the number
of active voice users remains T = 140. The value iteration
algorithm converges after 5160 iterations to within 1e — 3. The
feasible region is shown in Fig. 8.

The average utility U;vg (x) is monotonically increasing with
both x; and x5, and thus the optimal policy admits all arrivals
while in the feasible region. The coordinated policy CCAC is
thus identical to the TCAC and GCAC policies. The resulting
average utility (from a 30-min simulation) is shown in Table VI.

Finally, we examine how well each policy adheres to the QoS
constraints. As above, we focus on the outermost four slices,
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Fig. 8. Feasible region and CAC for semi-elastic and inelastic classes.

TABLE VI
AVERAGE UTILITY FOR ELASTIC AND INELASTIC CLASSES
TCAC | GCAC | CCAC
Utility | 237.28 | 237.28 | 237.28
TABLE VII
MINIMUM AVERAGE RATE (IN kb/s) FOR ELASTIC AND INELASTIC CLASSES
Slice number | Avg ST* of | Avg S3* of | Avg SI* of
TCAC GCAC CCAC
m = 32 32.9 32.9 329
m = 33 32.7 32.7 32.7
m = 34 32.2 32.2 322
m =35 32.3 32.3 323

m = 32 to 35, which experience the lowest average rates. Re-
call that the elastic class-1 applications do not have a QoS re-
quirement. In Table VII, we give the minimum average rate of
all class-2 users in the given slice. We observe the policy main-
tains average rates above the QoS requirement of 32 kb/s for
voice users.

VI. CONCLUSION

We have investigated how connection access control and
resource allocation can be coordinated so that both focus on
utility. Whereas previous resource allocation proposals have
principally focused on maximizing instantaneous or short-term
throughput or utility, and connection access control algorithms
often simply admit users if there is sufficient capacity, here
we have proposed that CAC and RA should both focus on
maximizing long-term average utility.

We have found that joint CAC and RA can be decomposed
into separate CAC and RA modules that treat each other as
black boxes, and that the interface simply consists of an ex-
change of information about feasible states, current state, and
average utilities in each state. This allows the RA module to
maximize the long-term average utility for each system state,
and the CAC module to maximize the long-term average utility
over all system states. This decomposition provides flexibility
in the design of the CAC and RA policies.
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We also gave examples of RA and CAC algorithms that sat-
isfy this decomposition and interface. The RA module deter-
mines a set of rate prices for each application based on a user's
combined slow fading, shadowing, and path loss and uses these
rate prices to allocate power and subcarriers. The CAC module
uses stochastic dynamic programming to determine the optimal
admission policy.

Simulation showed that the optimal CAC policy may block
applications with relatively low average utility per unit rate even
when capacity is available. This preferential treatment by appli-
cation can result in much higher average utility while continuing
to satisfy QoS constraints.

APPENDIX I

This appendix provides the derivation of (5). The first-order
conditions for (4) result in an optimal power allocation

[ Bhew o1\
Phyn,te = peeIn2 | Hppope K

and that subcarrier n should be allocated to the user

(10)

arg m:mx Dy e

(11)
where

~ +

3 B>\kt‘ HkntL 2

Bppp = s B |log e [Tkt
kot k.t {002 <C/ltb n2 o2+171

BXk‘tL 0'2 + I *
— U — 3
e ln2 |Hk’n7tl

where App = Z’:—!‘f*l Ai.ro /Wg. The bound on the
achieved rate is

dj v+ = max {S{)k,arg max [Us, (i) /T — Moy
kgt
(12)

The fluctuations in fast fading will average out during time
window W, , whereas fluctuations in slow fading, shadowing,
and path loss will not. Thus, we propose basing the average rate
price me on a user's combined path loss and shadowing, i.e.,
Xk;ﬁ should be a function of vy, denoted A (vk ). Furthermore,
we propose using this average price to determine the bound d, 4«
by replacing Ay ¢ in (12) A4 so that they vary on the same
timescale.

User k's achieved rate Si depends not only on its v/, but
also upon other users' 4 _;, and on all users' fast fading. Since
fast fading will largely average out within time window W, ,
the expectation over @ can be brought inside the utility func-
tion without loss of accuracy. Other users' shadowing and path
losses affect the resource allocation through determination of
the power price pik 4+, but consideration of them in determina-
tion of the resource allocation policy { g (¥x), Vk} is too com-
plex; thus, we also bring ¢ _,, inside the utility function. Then

K K

Y Eor yUs, (k) = ) By Un(Baz g _, Sk)-
k=1 k=1
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Similarly, the total power can be written as a statistical av-

erage over an infinite time horizon

ZZZP’W“ %ZE% ZEa2,¢ pk.n)-

t'=1k=1n=1

The QoS requirement can be written as
Sk,tL > Sll,k Vk,t" — Ea27¢7ksk(¢k) > Sll)k, Vk,@[‘k.

We partition v, into M slices. This leads to the quantized
optimization problem (5).

APPENDIX II

This appendix gives the proof for Theorem 1.

Lemma: If V;(x) is monotonically increasing with x; for
fixed 22, then Vi1 (x) is monotonically increasing with 21 for
fixed x2.

Proof: Using (9), we can express V;+1(x) as

V;Jrl (X) - ‘/l(x) + U;vg (X)

+ vy [Vi(x — e1) — Vi(x)]

+raans [Vi(x — e2) —
b
+1(Vi(x+eq) > Vi(x))
VB Vil + 1) — Vi)
£ 1(Vilx + e2) > Vi)
v [Vi(x + 2) — Vi(x)]
d

Vi(x)]

where the terms including V;(x — e;) are included only if z; > 0
and the terms including V;(x +e;) are included only if x+ ¢; €
A*. Similarly, denote the corresponding terms in V1 (x + e7)
by a', b, d.

We wish to show that if V; (x+e1)—V;(x) > 0, then V;H(
e1) — Viy1(x) > 0. By the hypothesis, the terms a and o' are
negative. Also, the terms ¢, ¢, d, and d’ are positive if they exist.
Consider V;1(x + e1) — V;11(x) in two cases: x2 > 0 and
€Ty — 0.

Case 1: x5 > 0: The number of terms in the difference de-
pends on whether terms a, b, ¢, and/or d are included in V1 (%),
and similarly whether terms o', b, ¢/, and/or d' are included in
Viy1(x+eq). Since 223 > 0, V11 (x) includes term b, and thus
Vit1(x+eq) includes term b'. We will examine the situation in
which V; 11 (x) contain only terms b, ¢ and d, and Vi1 (x + e1)
contains only terms a’ and term ¥, i.e., V;;1(x) only includes
positive terms ¢ and d, and V; 1 (x + e1) only includes negative
term a. In this situation, the difference is

Visi(x +e1) — Vi (x)
= [ —v((z1+Dm + 22 + )] Vi(x + e1) = Vi(x)]
+ [Tsx + €1) = Uiy ()]
+vrons [Vi(x + e — ex) — Vi(x — e2)]

— By [Vi(x +e2) — Vi(x)] .
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Since V;11(x) contains term d and V; 1 (x + e1) does not
contain term d’, it means V;(x + e1) > Vi(x + e; + e2) >
Vi(x + e3). Thus

Visi(x +e1) = Vig1(x)
> 1 =v((z1+Dm +a2m2 + 5)] [Vi(x + e1) — Vi(x)]
+ [Tisx + €1) = Uiy ()]
+vzan [Vi(x+e1 —ex) — Vi(x — e3)]
—vBz [Vi(x +e1) — Vi(x)]
= [1-v((z1+D)m+zome+B1+52)] [Vi(x+er) - Vi(x)]

+ [T+ €1) = Uiy ()]
+vzan [Vi(x+e1 —ex) — Vi(x —e3)].

Each term in brackets is greater than zero, and thus
Viji(x + e1) — Viy1(x) > 0. In situations where V;;(x)
and/or V; 1 (x + e} ) contain different terms, it can be similarly
shown that V; 1 (x + e1) — Viy1(x) > 0.

Case 2: o = 0: We will examine the situation in which
V;+1(x) contains only terms ¢ and d, and V; 1 (x +e;) contains
only term a'. In this situation, the difference is

Vigr(x +e1) — Vipa(x)

= [0 v (e + Vm + 8] Vi(x + e1) — Vi(x)]
T+ 01) = Ta (9] = 8 Vi + ) — Vi(x)
> (1w (@1 + D+ 80)) Vi(x + ex) — Vi(x)]
T+ €1) = Ta (09| = 8 Vil + €1) — Vi(x)
=[1—v{(z1s+ 1)nu + b1+ B2)] [Vilx + e1) — Vi(x)]

+ [Telx +e1) = Ty ()]

Each term in brackets is greater than zero, and thus
Viji(x + e1) — Viy1(x) > 0. In situations where V1 (x)
and/or V; 1 (x + e} ) contain different terms, it can be similarly
shown that V1 (x + e1) — Vi;1(x) > 0. ]

We can prove Theorem 1 by mathematical induction. For the
base case, we set V(x) = U;Vg( ). Since, Uavg( X) is mono-
tonically increasing with z; for fixed 5, so is V;(x). The induc-
tion step has been proven by Lemma 1. Thus, V,,,(x) is mono-
tonically increasing with z; for fixed 2:5. It follows that the cor-
responding CAC policy always admits class-1 arrivals while in-
side the feasible region.

APPENDIX III

This appendix explores the form of the optimal policy for
the scenario in Section V for elastic and semi-elastic classes.
To gain some insight, consider a rectangular feasible region
{(21,22) suchthat 0 < 27 < Z,0 < z3 < Z3} on which
average utility U ijg(x) is: 1) monotonically increasing with
21; 2) monotonically increasing with £, on 0 < 25 < a; and
3) monotonically decreasing with 25 on a < x5 < Z». This ex-
ample satisfies the hypothesis for Theorem 1, and thus the CAC
policy that satisfies (9) always admits class-1 arrivals while in-
side the feasible region.

It is straightforward to prove that V;(x) is monotonically in-
creasing with 222 on 0 < x5 < a, and thus the iteration ¢ CAC
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policy also admits class-2 arrivals on 0 < x2 < a while inside
the feasible region.

It remains to determine the iteration z policy ona < x4 < Zs.
Onl <z <ZT1,a < 29 < o

Viri(x+e2) — Vija(x)
=[1—v(zim+ (x2+ L)z + B1)] [Vix + e2) —
+ U (x + €2) = Uy (%)
+veimp [Vi(x+ e —eq) —
v [Vi(x) - Vi(x — e2)
+v3 [Vilx+es+ey)—

Vi(x)]
Vi(x —e1)]

]
Vix+e1)]. (13)

Each term in brackets is negative, and thus the iteration ¢ policy
blocks class-2 arrivals in this subset of the state space.

On the boundary between the two regions of monotonicity, it
is a more complex situation. On 0 < 27 < Z; and 23 = a,
the value iteration can still be written as (13). However, the
term vaanz[Vi(x) — Vi(x — e2)] is now positive. The iteration
1 policy may thus either admit or block class-2 arrivals on the
boundary between the two regions of monotonicity. As the iter-
ation number increases, the boundary between the two regions
of monotonicity may also move. Thus, while the optimal policy
is likely to be a threshold policy, the threshold is likely to change
from the initial boundary.

In the scenario with one elastic and one semi-elastic class,
we see a similar phenomenon. The average utility Uavg( x)
is: 1) monotonically increasing with 27; 2) monotonically
increasing with x, below the curve; and 3) monotonically
decreasing with 2, above the curve. The optimal policy is a
threshold policy, but the threshold differs slightly from the
curve.
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