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Abstract—We investigate the performance of distributed least-
mean square (LMS) algorithms for parameter estimation over

sensor networks where the regression data of each node are

corrupted by white measurement noise. Under this condition

we show that the estimates produced by distributed LMS
algorithms will be biased if the regression noise is excludk
from consideration. We propose a bias-elimination technige

and develop a novel class of diffusion LMS algorithms that ca

mitigate the effect of regression noise and obtain an unbiasl

estimate of the unknown parameter vector over the network.
In our development, we first assume that the variances of
the regression noises are knowre-priori. Later, we relax this

assumption by estimating these variances in real-time. Weralyze

the stability and convergence of the proposed algorithms ah

derive closed-form expressions to characterize their measquare

error performance in transient and steady-state regimes. W

further provide computer experiment results that illustrate the

efficiency of the proposed algorithms and support the analytal

findings.

Index Terms—diffusion adaptation, bias-compensated LMS,
distributed parameter estimation, network optimization

|I. INTRODUCTION

by running a local TLS algorithm at each sensor node and
exchanging the locally estimated parameters between the
nodes for further refinement. The DTLS algorithm computes
the eigendecomposition of an augmented covariance madtrix a
every iteration for all nodes in the network, and is therefor
mainly suitable for applications involving nodes with pafud
processing abilities. In a follow up paper, the same authors
proposed a low-complexity DTLS algorithm [19] that uses an
inverse power iteration technique to reduce the computatio
complexity of the DTLS while demanding lower communica-
tion power.

In recent years, several classes of distributathptive
algorithms for parameter estimation over networks havenbee
proposed, including incremental [20]-[23], consensusH{24
[27], [27]-[30], and diffusion algorithms [31]-[42]. Inemen-
tal techniques require the definition of a cyclic path over th
nodes, which is generally an NP-hard problem; these tech-
nigues are also sensitive to link failures. Consensus tquks
require doubly-stochastic combination policies and, whssd
in the context of adaptation with constant step-sizes, ead |
to unstable behavior even if all individual nodes can sohee t

NE of the critical issues encountered in distributehference task in a stable manner [38]. In this work, we focus
parameter estimation over sensor networks is the dign diffusion strategies because they have been shown to be

tortion of the collected regression data by noise, whichuecgc more robust and to lead to a stable behavior regardless of the
when the local copy of the underlying system input signa@inderlying topology, even when some of the underlying nodes
at each node is corrupted by various sources of impairmegt® unstable [38].

such as measurement or quantization noise. This problenn bias-compensated diffusion-based recursive leastregua
has been extensively investigated for the case of singe-nqRLS) algorithm has been developed in [43] that can obtain
processing devices [2]-{17]. These studies have shown th@abiased estimates of the unknown system parameters over
if the deleterious effect of the input noise is not taken inteensor networks, where the regression data are distorted by
account, the parameter estimates so obtained will be imatecu colored noise. While this algorithm offers fast convergenc
and biased. Various practical solutions have been sugfesipeed, its high computational complexity and numericabins

to mitigate the effect of the input measurement noise or Kjlity may be a hindrance in some applications. In contrthst,
remove the bias from the resulting estimates [5]-[17]. €hegliffusion LMS algorithms are characterized by low compigxi

solutions, however, may no longer leads to optimal results &nd numerical stability. Motivated by these features, iis th

sensor networks with decentralized processing structherev

paper, we investigate the performance of standard diffusio

the data measurement and parameter estimation are pedform@ls algorithms [31]-[33] over sensor networks where the

at multiple processing nodes in parallel and with coopenati
For networking applications, a distributed total-leagtiares

input regression data are corrupted by additive white ndise
overcome the limitations of these algorithms, as exposed by

(DTLS) algorithm has been proposed that is developed usipgr analysis under this scenario, we then propose an aliesna
semidefinite relaxation and convex semidefinite progrargmiproblem formulation that leads to a novel class of diffusion

[18]. This algorithm mitigates the effect of white input sei

A short preliminary version of this work was presented in Egropean
Signal Processing Conference (EUSIPCO), Aug. 2012 [1].
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LMS algorithms, which we call bias-compensated diffusion
strategies.

More specifically, we first show that in the presence of
noisy input data, the parameter estimates produced byasténd
diffusion LMS algorithms are biased. We then reformulats th
estimation problem in terms of an alternative cost function
and develop bias-compensated diffusion LMS strategies tha
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can produce unbiased estimates of the system parameters.thie system input and output denoted by; € C'*¥ and
development of these algorithms relies on a bias-eliminatid, (i) € C, respectively. These measurement samples can be
strategy that assumes prior knowledge about the regressispressed as:

noise variances over the network. The analysis results show

that if the step-sizes are within a given range, the algorith Zhi = Wk + N (1)

will be stable in the mean and mean-square sense and the di (1) = up;w° + vi(i) (2)
estimated parameters will converge to their true valueslyi,

we relax the known variance assumption by incorporatingvéhere uy; € CM, n,; € C>M, and vi(i) € C,
recursive approach into the algorithm to estimate the naga respectively, denote the regression data vector, the imeat

in real-time. surement noise vector, and the output measurement’noise

¢ In summar;l/, the COfntI’IbU;IOHdS d('):f th.'s aLr'It\|/|cISe T‘re:_‘? pe_f&ssumption 1. The random variables in data model (1)-(2)
ormance evaluation of standard diffusion algorithms 'satisfy the following conditions:

networks with noisy input regression data; b) development ) . ]
of a novel class of diffusion LMS strategies that are robus® The regression data vectors are independent and iden-

under this condition; c) presentation of a recursive edtina tically distributed (i.i.d.) over time and independent
approach to obtain the regression noise variances without OVer SPace, with zero-mean and covariance matrix
using the second order statistics of the data; d) derivaifon Rk = E[uk,iukvi] > 0.

conditions under which the proposed algorithms are stable i?) The regression noise vectans, ; are Gaussian, i.i.d. over
the mean and mean-square sense; €) characterization of thei fime and independent over space, with zero-mean and
mean-square deviation (MSD) and excess mean-square error Sovariance matrixk,, , = E[nj ;n | = okl

(EMSE) in transient and steady-state regimes; and f) vatida C) The output noise samples; (i) are i.i.d. over time and

of theoretical findings through numerical simulations ofvlye ingdependent over space, with zero-mean and variance
proposed algorithms for parameter estimation over sensor %v.k: ] )
networks. d) The random variablesy ;, n, ; andv,(m) are indepen-

The remainder of the paper is organized as follows. In the dentforallk.£,p.q, j, andm.

next section, we formulate the problem and discuss thetsffec

of input measurement noise on the performance of diffusion

LMS over sensor networks. In Section Ill, we propose bias-

compensated diffusion LMS algorithms along with a recusiv w°

estimation of the regression noise variance. In Section 1V,

we analyze the stability and convergence behavior of the i

developed algorithms, and obtain conditions under whieh th input noise

algorithms are stable in the mean and mean-square sense. We

present the computer experiment results in Section VI, and

conclude the paper in Section VII. Fig. 1: Measurement model for node
Notation: Matrices are represented by uppercase fonts,

vectors by lowercase fonts. Boldface letters are reserged f

random variables and normal letters are used for determini§,q |inear model (1)-(2) differs from those used in previous
tic variables. Superscripts)” and (-)*, respectively, denote s on distributed estimation, such as [23], [31], [33]. |

transposition and conjugate transposition. Symhials) and  yhese references, it is assumed that the actual regressitorv

p(-) denote the trace and spectral radius of their matrix arg: . is available at each node. There are many practical

ment. The operatdE[-] stands for statistical expectation, andjyations, however, where the nodes only have access gy noi

A () denotes thé:-th eigenvalue of its matrix argument. Theaaqurements of the regression data. We use relation (1) to
Kronecker product is denoted by, and theblock Kronecker 4| sych disturbance in the regressors, and to investigat

products[44] is_ de_noted by, Th_e operator di_ag} CONVertS oftact of the noise process; ; on the distributed estimation
its argument list into a (block) diagonal matrix. The operat ot ;o Tq petter understand the effect of this noise, we first

col{-} performs a vertical stacking of its arguments whilg,»nine the behavior of a centralized estimation solution

veq(-) is the standard vectorization for matrices. The symbgh e this condition and then explain how the resultingaffe
bvec() is the block vectorization operator that transforms @, o< over to distributed approaches.

block-partitioned matrix into a column vector [44].

physical parameter

sensor node k output noise

w,

N

In centralized estimation, nodes transmit their measunéme
data {zx,,dy(i)}4_, to a central processing unit. In the
Il. PROBLEM STATEMENT absence of measurement noise, i8,, = 0, the central pro-

Consider a collection ofV sensor nodes distributed over>o0r “&" estimate t_he unknown parameter vectdy, €.g.,
. i : minimizing the following mean-square error (MSE) function
a geographical area and used to monitor a physical phe-
nomenon characterized by some unknown parameter vectqr

. . . . . We use parentheses to refer to the time indices of scalaables, such
Mx1 !
w? € C - As illustrated in Fig. 1, at discrete-timec N, 54, (5), and subscripts to refer to time indices of vector varigbtesh as

each nodek € {1,2,---,N} collects noisy samples of z, ;.



[45]: from the optimal estimate b¥. This issue will become more
N , 9 explicit in our convergence analysis in Section IV-A.
Ju(w) = ZEW’C(’) = g w]”. 3 In sequel, we explain how by forming a suitable objective
k=1 function, the bias can be compensated in both centralizdd an
Let us introduce4, 1. = E[dy(i)uj ;] and denote the sums ofdistributed LMS implementations.
covariance matrices and cross-covariance vectors ovesethe

of nodes by: I1l. BIAS-COMPENSATEDLMS ALGORITHMS
N N
In our development, we initially assume that the regression
Ru = ZRu,ka Tdu = Zrdu,k- 4 . . P 2 N y . 9
Pt Pt noise var|ances,~{crn7k}k:1, are knowna-priori. We later

o _ . remove this assumption by estimating these variances In rea
It can be verified that under Assumption 1, the solution of @?me In networks with centralized signal processing strte
IS: one way to obtain the unbiased optimal solution (5) is todear
for a global cost function whose gradient vector is iderntioa
Now consider the recovery of the unknown parameter vectéiat of cost (3). Itis straightforward to verify that thelfaing
we for the noisy regression system described by (1) and (8Jobal cost function satisfies this requirement:
Since the regression noisey, ; is independent ofu;; and

w® =R rau. (5)

u

N N
dy(i), we have J(w) = (Y Eldk() - ziiwl?) = (3 o2 llwl?). (14)
R.x £ E[z} 25| = Rugk + 0o 1 (6) h=1 =1
g g 2 Eldy.(i)2],;] = Tdu,- (7) Remark 1. In bias-compensation techniques for single-node

adaptive algorithms, including [12], [13], [16], the auth®
Considering these relations and now minimizing the globgfst apply a least squares (LS) or minimum MSE procedure
MSE function to obtain an estimate of the unknown parameter vector. The
N resulting estimate consists of the desired solution aloith w
J.(w) = Z]E|dk(i) -zl (8) an additive bias term. The bias, which is normally expressed
k=1 in terms of the second order statistics of the regressioma dat
with ;. ; in (3) replaced by ; in (8), we arrive at the biased and the input and output measurement noises, is removed from
solution the solution by subtraction. In the proposed technique ia th
wb = (Ru + ail)_lmu (9) Paper, we start by considering bias removal one step earlier
meaning that we design a convex objective function such that
where N its unique stationary point leads to an unbiased estimate.
o2 = Zai.k' (10) From this respect, our .approach is mostly inspired frqm the
= derivation of the modified LMS and RLS algorithms in [8],
S[15]. However, these algorithms still assume the knowledge
of the ratio of input-to-output noise variances in their ape
equations.

Let us define the bias implicit in solution (9) a
b = w°® — w’. To evaluaté, we may use the following identity,
which holds for square matrice’; and X, provided thatX;
and X, + X, are both invertible [46]: The derivation of distributed algorithms will be made easie
1 . 1o 1ol 1 if we can decouple the network global cost function and write
(X1 +X)7 =X = ([ 4+ X7 X2) " X XXy (11) ¢ 49 sum of local cost functions that are formed using the

Here R, and (R, + o2 I) are invertible, and therefore, welocal data. The global cost (14) already has such a desired
obtain: form. For this to become more explicit, we express (14) as:

R,+021)  =R;'—o2(I+02R;) 'R (12) al
( ) J(w) =" Ji(w) (15)
Considering this expression and relation (9), the biasltiagu k=1

from the minimum MSE estimation at the fusion center canh g is th ¢ funci iated with nod@nd
be expressed as: where J,(w) is the cost function associated with noken

is given in terms of local datdy, (i) z, i.e.,
b=o2(I+02R; ) 'R, u®. (13)

Jip(w) = Eldk (i) — ziw]* — o, j[lw]]*. (16)
In the absence of regressor noise, it has been shown in

previous studies that the parameter estimates obtainea fr
standard diffusion LMS strategies approach the minimier
the network global MSE function [33]. This also holds in nois
regression applications for diffusion LMS developed based
the global cost (8), meaning that the estimates generated bBelow, we first comment on the centralized LMS algorithm
standard diffusion LMS algorithms will eventually apprbacthat solves (14), and then elaborate on how to develop the
(9). As shown by (13), this solution is biased and deviatembiased distributed counterparts.

Remark 2. Under Assumption 1, the Hessian matrix of (16) is
Bositive definite, i.e.V2 Ji(w) > 0, hence,J(w) is strongly
convex [47].



A. Bias-Compensated Centralized LMS Algorithm mean-squared function incorporating the noise variandes o
To minimize (15) iteratively, a centralized steepest desce'€ighboring nodeg € Ay This part of the objective is based
algorithm [45] can be implemented as: on the same strategy as in the above centralized objective
function for bias removal. The second term in (20) is in fact a

constraint that forces the estimate of the néd®e be aligned
with the true parameter vectar®. Since w° is not known
) _ ) initially, it will be alternatively substituted by an apgroate
where . > 0 is the step-size, an¥.Ji(w) is & row vector yector during the optimization process. One can use the cost
representing the gradient of, with respect to the vectan.  fynction (20) and follow similar arguments to those used in
Computing the gradient vectors from (16) leads to: [33], [37], [49] to arrive at the bias-compensated adaptth

N combine (ATC) LMS strategy (Algorithm 1). Due to space

w; = w;_1 + “Z (sz,k — R, w1+ Ui,sz‘—l)- (18) limitations, these steps are omitted.

k=1
In practice, the moment®. , andr,. ; are usually unavail- Algorithm 1 : ATC Bias-Compensated Diffusion LMS
able. We, therefore, replace these moments by their instan-

N
w; = W;_1 — M[Z VJy (wi—l)} (17)
k=1

taneous approximations; ;zy; and z;,,dx (i), respectively, Vrs = Whio1 — ik Y cok[Ve(wri1)]” (22)
and obtain the bias-compensated centralized LMS algorithm LEN,
N Wi = Y ankty, (23)
w; = w;—1 + MZ (Zzyi[dk(i) — zpiwi-1] + Uiﬂkwi—l)- LEN;,
k=1
(19)

In Section V, we propose an adaptive scheme to estimate {R&his algorithm,u;, > 0 is the step-size at node the vectors
variances of the regression noise required in the aboveatent,,, andw,; are the intermediate estimateswof at nodet,
ized LMS algorithm as well as in its distributed COUnterpagnd the St(,)chastic gradient vector is Computed as:

derived below. . .
[VJe(wi,io1)]” == [27:(de(i) — zowpi—1)

B. Bias-Compensated Diffusion LMS Strategies + Ui,zwk,i—l]- (24)

There exist different distributed optimization technigueypich is an instantaneous approximation to gradient of .(16)
that can be applied on (14) to find” [31], [33], [48]. We \qreover, the nonnegative coefficients;, are the elements
concentrate on diffusion strategies [31], [33] becausey thg . |aft-stochastic matrixd c RVNXN safisfying
endow the network with real-time adaptation and learning
abilities. In particular, diffusion optimization straieg lead to agr = 0if £ ¢ N, and Z apr = 1. (25)
distributed algorithms that can estimate the parametetovec LEN,

w® and track its changes over time [31], [33], [37], [49]T0 run the algorithm, we only need to select the coefficients

Here, we briefly explain how diffusion LMS algorithms can, . T
. o . Jes i, a0k}, which can be computed based on any combination
be developed for parameter estimation in systems with noi Q{ ’

regression data. The main step in the development of thes es that satisfy (21) and (25). One choice to compute the

. . Ehtries of matrixA is:
algorithms is to reformulate the global cost (14) and regmes )
it as a group of optimization problems of the form: Op

Qg = ﬁ and app=1- Z ar. (26)
min{ Z ek (E|d2(l) — zgw|® — UZ,ZHU’HQ) _ _ ée}_\[k " o N _
Y den, This rule implies that the entry, ;. is inversely proportional
to the regressor noise variance of ndd®ther left-stochastic
+ Z bg,k||w—w°|2}. choices for A are possible, including those that take into
LEN\{k} account both the noise variances and the degree of conitectiv

(20) of the nodes [39].

where V, is the set of nodes with which node shares By r_eversing the order of the aqlaptation angl combingtion
steps in Algorithm 1, we can obtain the following combine-

information, including node: itself. The nonnegative scalars oo . .
{cex) are the entries of a right-stochastic matfixe RN *N then-adapt (CTA) diffusion strategy. As we will show in

which satisfy

N Algorithm 2 : CTA Bias-Compensated Diffusion LMS
Cz_’k:Oif€¢Nk, and ZC@JQZI. (21)
k=1 Yri1 = Z A kW, i—1 (27)
The scalars{b, } are scaling coefficients that will end up LENK
being incorporated into the combination coefficiefts ;. } Wi = Py — Mk Z C“W\Jf(’pk,i_l)r (28)
that appear in the final statement (23) of the algorithm below LEN;

The first term in the objective function (20) is the modified




the analysis, the proposed ATC and CTA bias-compensatatt introduce the following extended combination matrices
diffusion-LMS, in average, will converge to the unbiased - - -

solution (5) even when the regression data are corrupted byA1 =A®hy, A=Ay, C=C®Lv. (39)
noise. In comparison, the estimate of the previous diffusidJsing these definitions and update equations (29)-(31prnit c
LMS strategies such as one proposed in [33] will be biasbé verified that the following relations hold:

under such condition.

) &)i—l = Ailpﬁ’i—l
Re_mark 3. In the p2roposed ATC a_llgonthm_, each nokieef ;= ¢y — M(g; — Pi® + Rid;_1)
ceives{uy,;, d(i),0;, ,} from its neighbors in the adaptation i e
step, andy, ; in the combination step, whefec ;. In total, w; = Ay 9, (40)

it will receive (2M + 2)|N;| scalar data from its neighbors. wherew? — 1 ® w°. From the set of equations given in (40),

To reduce the communication overhead of the network, of€s deduced that the network error vectar, evolves with
solution is to choos&' = I. Doing so, we can reduce thetime according to the recursion:

amount of exchanged data at each nddéo M|N}| while B ~ . . )
maintaining almost similar performance results, as evikeh w; = Biw;—1 — Ay Mg; + A MPiw (41)
in Section VI. Note that the amount of information exchangghere the time-varying matri$; is defined as:
in this case will be equal to that of the standard ATC diffasio T T
LMS in [33]. This conclusion is also valid for the proposed Bi= Ay (I = MRi)A; (42)
CTA Algorithm 2.
A. Mean Convergence and Stability
IV. PERFORMANCEANALYSIS Tacking the expectation of both sides of (41) and consider-

In this section, we analyze the convergence and stability i@ Assumption 1, we arrive at:

the p_roposed A_TC_and CTA blas-co_mpensated diffusion LMS Efibs] = B(]E[wi_l]) (43)
algorithms by viewing them as special cases of a more general
diffusion algorithm of the form: where in this relation:
Bri = Y ayhwei (29) BLE[B)] = Af (I - MR)A," (44)
(N, - R 2 E[Ri] = diag{ 3 con Ru k=1, 7N}_ (45)
Vi = Prjio1 — Mk Z Cok [V¢Je(¢k7i_1)} (30) LEN,
LEN; To obtain (43), we used the fact tHa4,” Mg,] = 0 because
Wy = Z afﬁ% (31) wy,; is independent ok ; andE[vy(i)] = 0. Moreover, we
LEN;, have E[P;] = 0 becauseE|[z} ,n,;] = o2 ,I. According to

1) @) ] . . (43),lim; s E|jw;|| — 0 if Bis stable (i.e., whep(B) < 1).
where {am_} and {a,;} are non-negative real c_oefﬂmgnt n fact, becausg(A;) = p(As) = 1 andR > 0 choosing the
corresponding to th&/, k)-th entries of left-stochastic matrices, ; . ;

; . .~ ~“step-sizes according to:

Ay and A, respectively, which have the same properties as
A. Different choices for4; and A, corresponds to different 0 <y < 2
operation modes. For instancel; = [ and A, = A P(de,\/k Ce,kRu,z)
correspond to ATC wheread; = A and A, = I generate
CTA. For mathematical tractability, in our analysis, welass
that the variances of the regression noises, ¢:¢,,, over the
network are knowra-priori.

We define the local weight-error vectors as.; = w® — _ . _
Wi, Py ; = w® — 1, and g, ; = w° — ¢, ;, and form the Theorem 1.Consider an adaptive network that operates using

global weight-error vectors, by stacking the local erractoes, diffusion Algorithms 1 or 2 with the space-time data (1)

(46)

guarantee(B) < 1. We omit the proof. The similar ar-
gument can be found in [49] and [35]. We summarize the
mean-convergence results of the proposed bias-compdnsate
diffusion LMS in the following.

ie.: and (2). In this network, if we assume that the regressors
- - - noise variances are known or perfectly estimated, the mean
¢, = CO|{¢>1,ia Doir-- - ¢N,i} (32)  error vector evolves with time according to (43). Furthermo
P, = oWy ;o ) (33) Algorithms 1 and 2 will be asymptotically unbiased and stabl
W; = cO{ v ;, Wy, ..., Wy ). (34) provided that the step-sizes satisfy (46).

We also define the block variables: Remark 4. In networks with noisy regression data (1), the

T . , . , estimates generated by the previous diffusion LMS stregegi
g; = C col{zp,v1(i),...,zN,vN (i)} (35)

such as the ones proposed in [33], [49] are biased, i.e,
Ri = diag{ Z con (2020 —on D) k=1, ,N} (36) E[w;] # 0 asi — oo. This can be readily shown if we remove

LeNG, 0721,1@ from (36) and (37). In this scenario, (43) will be stable
P = diag{ 3 con (zhanei — o2 D) k=1, ,N} @7) if )
LEN), 0 < pg < (47)

M =diag{paln, - unIn} (38) p(ZéeNk co g (Rue + Ui,gIM))



Then, for sufficiently small step-sizes, satisfying (4f7}an
be verified that the estimate of the standard diffusion LMSQ — Tdia

2 2 2 2
. . . vi1(Rui+opal),...,00 N(RuNn +o0,n1)C.
deviates from the network optimal solutiati by: g{a 1(Rus+onal) oo (B +omy )}

(61)
. ~ —1 4T o
ili,rf)lo Elwi] = (Iny = B')~ Ay MP'w (48) I relation (59),11 = E[P;w°w*P;] and its (k, j)-th block
is computed as (see Appendix B):

where
B 2 AT (Iny — MR AT (49) Oy, = ZCz,kCz,j{Cfﬁ,szOHQ(Ru,E +op 1)
4
I A g 2 -1....
R’ £ diag| %ZN:’C cer(Rue+ 0% Ing) k=1, N | (50) + (- Dot wrur) (62)
P4 diag{ Z copol Iy, k=1,--- ,N}. (51) Where3 = 2 for real-valued data ang = 1 for complex-
LeN, ’ valued data. If we introduce = bvec(X) ando’ = bvec(X')

L
As it is clear from (48), the bias is created by the regressiotnen we can writey’ = Fo where

noise{ny_;} only, whereas the noisgv; (i)} has no effect on F =E[B] @, B;] (63)

generating the bias. L i . o
Considering these definitions, the variance relation ir) (&

- be rewritten more compactly as:
B. Mean-Square Convergence and Stability ) ) .
To study the mean-square performance of the proposed Ellwill; =Ellwi-1lz, +7" 0 (64)
algorithms, we first follow the energy conservation arguteenyhere we are using the notatidx||2 as a short form for
of [33], [45] and determine a variance relation that is dléa l|lz||2, and where

in the current context. The relation can be obtained in the T - T T
limit, asi — oo, by computing the expectation of the weighted 7 = bvec(Ay MGT MAz + Ay MIT" MA;). (65)

squared norm of (41) under Assumption 1: To computeF, we expand’ from (60) to get:
B3 =E (1o 3 ) + Elgi MATAT M| ¥ =i (AZ AL~ RMASAL — AT AT MR) AT
+E[w’ P]MA DA MPiw] (52) + EA R MASAT MR AT, (66)

where||z[|3, = 2*Sz andX > 0 is a weighting matrix that we The Jast term in (66) depends oit? and can, therefore, be
are free to choose. Note that (52) is obtained by eliminatimgglected for small step-sizes. As a result, we obtain
the following terms: F o (A @ AT — T @ RM — RTM @ 1) (As @4 As).
E[(AT Mg,) S AL (T — MR) A S, 1] =0 (53) (67)
E[(AT(I - MR) AT w;_1)* S AT Mg;] =0 (54) We can also derive a more compact expression to compute
E[(AL MP;uw°)* SAT (I — MR) A Twi_1] (55) F. To this end, we first note that the last term in (66) can be
[ 6

0 expressed as:
E[(AT (I — MR) A @, 1) S AT MPw®] = 0.  (56) . . . ,
_ o E[ A1 R MAZA; MR AT ] = E[ATR* MAZA; MRAT]
These terms are zero firstly, because ; is independent of

2
g;, P; andR; under Assumption 1 [50], and secondly, since +OM") (68)
the proposed algorithms are unbiasBfp;] is zero for large Now by substituting (68) into (66) and ignoring the remadnin

i, if the step-sizes are chosen as in (46). terms that depend a2, under the small step-size condition,
In relation (52), we have: we arrive at:
Y = B;*YB;. (57) F~BT®,B* (69)
It follows from Assumption 1 thatv;_; andR; are indepen-  We now proceed to show the stability of the algorithm in
dent of each other so that the mean-square error sense, as follows. Using (64), we can
. _ write:
E (1113 ) = Blldi s (58) .
; SN2 — T ~ 2 T j
Substituting this expression into (52), we arrive at: Jim Ellwg]; = him Ellw_1[|Fe, +7 > Flo. (10)
7=0
SN2 - 2 T
Ellwils = Elwills +Trm2“42 MGM A, As it is evident from this expression, the proposed algaorith
+ Tr[EA; MIIMA,] (59) will be stable in the mean-square senseFifis stable. From
(69), we deduce thak will be stable if 5 is stable. According
where t - lysis, the stability30& guar-
s = E[BrEB,]. (60) 0 our mean-convergence analysis, y3ai g

anteed if (46) holds. Therefore, the step-size conditid) {g
In equation (59)5 = Elg,g;], which using (35) is given by sufficient to guarantee the stability of the algorithms bioth
(see Appendix A): the mean and mean-square sense.



C. Mean-Square Steady-State Performance in recursion (79). We summarize the mean-square analysis
To obtain mean-square error (MSE) steady state expressié#Rults of the algorithms in the following:

for the network, we let go to infinity and use expression (64)Theorem 2. Consider an adaptive network operating under
to write: bias-compensated diffusion Algorithm 1 or 2 with the space-
time data (1) and (2) that satisfy Assumption 1. In this netwo

if we assume that the regressors noise variances are known or
By definition, the MSD and EMSE at each node are perfectly estimated and nodes initialize at zero, then ti8bM
respectively computed as: and EMSE of each node evolve with time according to (80)
and (81) and the network MSD and EMSE follow recursions:

. (i) =n(i —1) — [Jw’|
The MSD and EMSE of the nodes can be retrieved from the . _ o
- ting: (i) = ¢l — 1) — flwe
network error vectotv; by writing:
(73) whereo 54, andoemse are defined in (82) and (83) and is
given by (63). Moreover, if the step-sizes are chosen tefgati
(74) (46), the network will be stable, converge in the mean and
mean-square sense and reach the steady-state MSD and EMSE
wheree, is a canonical basis vector IR" with entry one at characterized by (77).
position k. From (71) and (73), we can obtain the MSD at
nodek, for k € {1,2,--- |N}: V. REGRESSIONNOISE VARIANCE ESTIMATION

- -2 _ AT
ilirgoEleH(lf]:)a 7o (71)

e = lim Ellwy | G = lim Ellwgl%, . (72)
i—00 1—00 »

Fi(I-F)omsd + ’7T]:i0—msd

Fil(I=F)0emse + VT‘Fiilo'cmsc
_ T -2
e = il—lgoloEHWl”{dlaqek)@I}

RT 012 .
Ce = Z.lggoEH’UZ”{maqek)@Ru,k}

e =27 (I — F) bvec(diag(er) ® Inr). (75) In the pro_posed_algorithms, each j(l/ode still needs to have
the regression noise variance§;, ,};;, to evaluate the
stochastic gradient vector,J. In practice, such information
Ge=~T(I - ‘F)*lbvec(diaqek) ® Ru,k). (76) s rarely available and normally obtained through estiorati
i A review of previous works reveals that the regression noise
The network MSD and EMSE are defined as the average @friances can be either estimated off-line [43], or in t&ak
MSD and EMSE values over the network, i.e., when the unknown parameter vectar’, is being estimated
1 N 1 Y [51], [52]. For example, in the context of speech analysis,
=5 Z M, (= N Z Ch- (77)  they can be estimated off-line during silent periods in leetw
k=1 k=1 words and sentences [43]. In some other applications, these
. ) variances are estimated during the operation of the alguorit
D. Mean-Square Transient Behavior using the second-order moments of the regression data and th
We use (64) to obtain an expression for the mean-squasestem output signal [51], [52]. In what follows we propose
behavior of the algorithm in transient-state. In this esgien, an adaptive recursive approach to estimate the regressisa n

In the same manner, we compute the EMSE at nods:

if we substitutew, _; =0, Vk € {1,--- , N}, we obtain: variances without using the second order moments of the data
i The variance of the regression noise at each node is classi-
Jwi]|? = || %, +~7 Zp‘a_ (78) fied as local information and, hence, it can be estimated from

= the node’s local data. When the regression data at hasleot

corrupted by measurement noise (i#8,,; = ux;), and when

Writing this recursion for —1, and subtract it from (78) Ieadsthe node operates independent of all other nodes to estimate

to: w® by minimizing E|d (i) — u ;w|?, the minimum attainable
lwill2 = [lws—ll5 + |wl|%:(;_ 7y, + 7" F'o.  (79) MSE can be expressed as [45]:
By replacingo with o, = bvec(diag{ek} ® Ip) and Jinin = O’dQ,k - szkR;}J'du,k- (84)

Temse, = bvec(diag{ek} ® Ryx) and usingwy, 1 = 0, W& ynder noisy regression scenarios where nbaperates inde-
arrive at the follovymg .two recursions for the evolution oSia pendently to minimize the cost (16), the minimum achievable
and EMSE over time: cost will still be (84). To verify this, we note from Remark
_ 2 that sinceJ;(w) is positive definite and, hence, strongly
Mk (8) = nk (i = 1) = [w°ll i (1 F)opa, + 7  Flomsdy (80) convex, its unique minimizer under Assumption 1 will beé.
Ge(i) = Guli = 1) = 10° i1 (1 Fyoame, AT F 7 Gemnser - Therefore, substitutingv® into (16) will give its minimum,
(81) l.e.:
The MSD and EMSE of the network can be computed either ~ min Je(w) = Eldy (i) — zi,w°> — ol [Jw
by averaging the nodes transient behavior, or by substiuti

0H2
1 = Ug,k - r;u,kR;}grdu,k (85)
Omsd = NbVeC(IMN) (82) = Jmin- (86)

83) We use this result to estimate the regression noise variance

1
emse — —b di u, 1" S
o I vec(diag{ Ru,1 Run}) gfm at each nodé.



TABLE [: Network signal and noise power profile

ool Parameters

osl Nodek | oo, Tr(Ru,k) oz
1 0.0230| 0.3000 | 0.0170
o 2 0.0020| 0.7500 | 0.0970
osr 3 0.0160| 0.5250 | 0.0620
> o5} 4 0.0040| 0.4250 | 0.0570
04 5 0.0420| 0.6000 | 0.0600
0al 6 0.0400| 0.6500 | 0.0730
ol 7 0.0120| 1.0000 | 0.0560
8 0.0120| 0.7750 | 0.0860
& 9 0.0310| 0.7250 | 0.0250
% oz o o8 o8 1 10 0.0280| 0.6750 | 0.0490
z 11 0.0350| 0.6500 | 0.0680
Fig. 2: Network topology used in the simulations. 12 0.0500| 0.6000 | 0.0760

13 [ 0.0090 0.2750 | 0.0600
141 0.0340] 0.3500 | 0.0150
15 100290 0.6250 | 0.0160
16 [ 00280 0.9250 | 0.0490

NI 17 [ 0.0020| 0.3250 | 0.0830
ex(i) = di(i) = Zriwpim (87) 18 [ 0.0080| 0.8750 | 0.0370
10 [ 0.0410 0.2500 | 0.0170
20 [ 0.0460 | 0.8000 | 0.0160

Now, let us introduce

where wy ;—; is the weight estimate from ATC diffusion
(which would be replaced byp, ;, ; for CTA diffusion).
ConsideringJy, (wg,;—1), for sufficiently small step-sizes and
in the limit when the weight estimate is close enoughuty
it holds that: VI. SIMULATION RESULTS

In this section, we present computer experiments to ikdstr
the efficiency of the proposed algorithms and to verify the

From (2) and (84), it can be verified thdf,, = o2, and theoretical findings. We evaluate the algorithm perforneanc

Ele(i)]* — o klw’* & Junin- (88)

hence from (88), we can write: for known regressor noise variance and with adaptive noise
variance estimation. We consider a connected network with
Elex(i)]* ~ o7 + 02w’ (89) N = 20 nodes that are positioned randomly on a unit

square area with maximum communication distana& ofinit
In this relation,o? ,, can be ignored it , [w®||*> > o7 . |ength. The network topology is shown in Fig. 2. We choose
Under such circumstances, if we assufne?||* # 0, which 4, = 1, compute A> using the relative-variance rule (26)
is true for systems with at least one non-zero coefficie®in thand choose the matri’ according to the metropolis criterion
the variance of the regression noise can be obtained by: [31], [49]. In the plots, we usele and Ciet to refer to this
Elex ()2 particu!ar choice ofd; andC'. The networl_< da}ta are ggnerated
K~ W (90) according to model (1) and (2). The aim is to estimate the
system parameter vectar® = [1,1]”/y/2 over the network
Since, in (90)E|ex(i)|? and the unknown parametes?, are using the proposed bias-compensated diffusion algorithms
initially unavailable, we can estimatéh,C using the following all our experiments, the curves from the simulation resadés
relations as the latest estimates of these quantities becainawn from the average &i00 independent runs.

2
O,

available, i.e., We choose the step-sizes as = 0.05, and setw;, _; =
N . B 12 [0,0]T, for all k. We adopt Gaussian distribution to generate
Fili) = O‘fk(l_ D)+ (1 —alex(®)] (1) v (i), i ; anduy, ;. The covariance matrices of the regression

o2 (i) = Fi(i) (92) data and the regression noise are of the fétp, = Uz,kIM’
" w2 ando? , Iy, respectively. The network signal and noise power

where0 < a < 1 is a smoothing factor with nominal valuesprome’ are giyen in Table 1. ) ) )
in the range 0f0.95,0.99]. a) Transient MSE Results with Perfect Noise Variance

Estimation: In Fig. 3, we demonstrate the network transient
Assumption 2. The regression noise variancer,fhk, and behavior in terms of MSD and EMSE for the proposed
the output measurement noise; ,, satisfy the following diffusion LMS algorithm, standard diffusion LMS algorithm
inequality [33] and the non-cooperative mode of the proposed algorithm
Ui,k”on2>>U12;,k- (93) Note that A, = I and C = I correspond to the non-
cooperative network mode of the proposed algorithm, where
Under this assumption, the regressor noise variance at eaelch node runs a stand alone bias-compensated LMS. As the
node k can be adaptively estimated via (91) and (92) usingsults indicate, the performance of the cooperative ngtwo
the data samples (i) and wy ;1 supplied from the bias- with Cnet and Are| €xceeds that of the non-cooperative case by
compensated LMS iterations. 12 dB. We also observe that the proposed algorithm outper-



_20 T
+  EMSE, Simulation, proposed diffusion LMS i 9
----- EMSE, Theory, proposed diffusion LMS ol Q"Q 6 \ ]
Vv MSD, Simulation, proposed diffusion LMS b o I “ Q K4 v
& = = = MSD, Theory, proposed diffusion LMS | oal t *Q\ 1 " \ ,Q \ Q-Q 9~<>
E EY —&— EMSE, Simulation, non-cooperative = ’ 6’ d 9 Qo ; . B
2 3 P+ EMSE, Simulation, standard diffusion LMS [33] | .| o, 2(’" '\Q‘ o ]
& < ® ' =0~ MSD, Simulat?on, non—coope_rati\{e =) — = =ACpo Simulation b
= -1 d MSD, Simulation, standard diffusion LMS [33] | | 2]
& o} = -28F o Arel' Cmel‘ Theory ]
— 4 [
@ 2 0, e < ] A CL Simulation
= 9¢00006 0000600000 % 30t b 1
2 =2 S O A _,C=l, Theory
5 T Y SRR TR T e o rel
Z 3 J § b == A,=1, C=1, Simulation i
~ .y @ O Ayl Cal, Theory
-3 W VN AT G AT G NTVY _aal i
-4 **i R e S R R VR g b CLMM_H_Q_Q
_3d# -t 808 oF a0 80 BB 8- 8-0- 8
A 1 1 1 1 1 1 1 1 1 1
4 i i i i i i i
100 200 300 400 509 §00 700 800 900 1000 1100 2 4 6 8 10 12 14 16 18 20
Time i Node k

Fig. 3: Convergence behavior of the proposed bias-compensa . : . N .
diffusion LMS, standard diffusion LMS and non-cooperati#IS fe% 5: Network steady-state MSD for different combination matri

algorithms.

-25 T
9\ -?’ A4 —O\ \,« ‘\ ¢

R O MSD, Simulation, node 5 B ; “« N ‘o K4 . I ’
_ MSD, 'Ifheory., node 5 H Q — . AuC Simulation ; 1 2 R
o -1 ©  MSD,Simulation, node 15 1 = 3 J el ~met 9 i, AN
= ' MSD,Theory, node 15 = ; O  Ag Cpep Theory 2 o d
2 -1 B EMSE,Simulation, node 18 | : 1 = A, C=1, Simulation e
= | @\ .  |=-— EMSE, Theory, node 18 b=
i -2 ¢ EMSE,Simulation, node 4 8 B, O A C=l Theory |
E = = = EMSE,Theory, node 4 I = C=l, A=1, Simulation
A 2 % 9 c=l, A=l Theory
Z Z
= -3 ]
g g
9 n
<}
Z

k>>>—>—>v>>>>b~»—>->>
V*Q-o-o-o-ooo 800699000

100 200 300 400 500 600 700 800 900 1000
Time @ Node k

Fig. 6: Network steady-state EMSE for different combination ma-
Fig. 4. MSD learning curves of nodesand15 and EMSE learning yices.
curves of noded and 18.

form the standard diffusion LMS [33] by more that 12dB.
It is interesting to note that the non-cooperative algomith -2
outperforms the standard diffusion LMS by about 1dB. -
We also present the EMSE and MSD of some randomly
chosen nodes in Fig. 4. In particular, we plot the EMSE
learning curves of noded and 18 and the MSD learning z
curves of nodes and15. We observe that the MSD curves of = -3d
the chosen nodes are identical. Since the algorithm is sabja cf; _32
this implies that these nodes have reached agreement ab(iut_3
the unknown network parameter?. As we will show in the
steady-state results, all nodes over the network almoshrea
agreement. We note that, in all scenarios, there is a good -3
agreement between simulations and the analysis results. a
b) Steady-State MSE Results with Perfect Noise Variance 4 1
Estimation: The network steady-state MSD and EMSE are 2 4 6 8 10 12 14 16 18 20
shown in Figs. 5 and 6. From these figures, we observe that Node k
there is a good agreement between simulations and anzhlyt o9 7: Steady-state network EMSE with known and estimated

ressor noise variances.
findings. In addition, we consider the case when nodes onTe

Theory B
=0~ Unknown variance, simulation
¢ Known variance, simulation

i

i i

i

i
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—3¥— Estimated Noise Variance
1 =0~ True Noise Variance

Theory

+=0= " Unknow variance, simulation
¢ Known variance, simulation

Noise Variance Magnitude

2 4 6 8 10 12 14 16 18 20
Node k
Node k Fig. 10: The estimated and true value of the regression noise

Fig. 8: Steady-state network MSD with known and estimated regre¥ariance,o % &, over the network.
sor noise variances.

w® = 215 + 2515, wherel,; is a M x 1 column vector
with unit entries. The network energy profile is chosen as
Tr(Rux) = 20Tr(o7 ;. 1). Using these choices, Assumption
2 will be satisfied. We sat: = 0.99 and u;, = 0.01 for all k.

Figs. 7 and 8 show the steady-state EMSE and MSD of
the network for these two cases. The steady-state values are
obtained by averaging over the last 200 samples after linitia
convergence. We observe that the performance of the prdpose
bias-compensated LMS algorithm with adaptive noise vagan
estimation is almost identical to that of the ideal case with
known noise variances.

Fig. 9 illustrates the tracking performance of the bias-
compensated diffusion LMS algorithm for these two cases for

— Proposed with unknown variance

30 = =~ Proposed with known variance | a sudden change in the unknown parameterand compares
== Standard diffusion LMS [33] . . . .
. ‘ ‘ ‘ ‘ ‘ ‘ the results with that of the standard diffusion LMS algarith
B 200 400 600 800 1000 1200 given in [33]. The variation in the unknown parameter vector
Time ¢ . . . ° °
occurs at iterationi = 550 when w® changes to2w°.
Fig. 9: EMSE Tracking performance with known and estimateimilar conclusion as in Fig. 7 and 8 can be made for the
regressor noise variances. proposed algorithms with known and estimated regression

noise variances. We also observe that the proposed algarith
o ) ) ) outperform the standard diffusion LMS [33] by nearly 10dB
exchange their intermediate estimates (i.e., wiien= I). jn steady-state.
It is seen that the MSD performance of the algorithm with Fig 10 jllustrates the results of regression noise vaganc
Cier is 1dB superior than that witl’ = I. We also observe gstimation in the steady state. In this experiment, we oleser
that the performance discrepancies between nodes in tdrmg@ for; > 350, E[o2 . (i)] — o2 ,. This indicates that the
MSD is less thar0.5dB for cooperative scenarios, while iNproposed adaptive estimation stfategy for computatiorhef t

the non-cooperative scenario it is more thatB. This shows npodes’ regression noise variance over the network workbs wel
agreement in the network in spite of different noise andgner

profiles at each node. Note that the fluctuations in EMSE over
the network are due to differences in energy level in the sode
input signals, but this does not preclude the cooperatimigso We developed bias-compensated diffusion LMS strategies
from reaching a consensus in the estimated parameters. for parameter estimation over sensor networks where the re-
c) MSE Results of the Algorithm with Adaptive Noisgression data are corrupted with additive noise. The alyos

Variance Estimation:We compare the transient and steadyeperate in a distributed manner and exchange data via single
state behavior of the bias-compensated diffusion LMS witiop communication to save energy and communication re-
known regressor noise variance and adaptive noise variasoarces. The proposed algorithms estimate the regressisa n
estimation. For this experiment, we consider the same ne&riances and use them to remove the bias from the estimate.
work topology and noise profile as above. However, tHe the analysis, it has been shown that the proposed bias-
unknown parameter vector to be estimated, in this case,c@mpensated diffusion algorithms are unbiased and coeverg

VIl. CONCLUSION



in the mean and mean-square error sense for sufficierdyd

small step-sizes. We carried out computer experiments that

confirmed the effectiveness of the algorithms and suppert %e note that

analytical findings.

APPENDIXA
COMPUTATION OFG

This can be computed by substitutigg:) from (35) into
G =Elg,g;] , as a result:
z;,ivl(i)

¢ =C"E [vi(i)z14,...,vN()2zNi]C (94)

z?\/,z‘”N(i)
The (k, j)-th block of the above matrix can be computed as:

0, k#j

(G5 = 02 (Ry + crfl_’kl), k=

E[o (IQuny, i) = o7 (Qijon (103)
Qk,j = wy wi* (104)

wherew§ = wy, Vk,j € {1,2,... N}. Therefore,
ka:ana V€7k1m1n6{1127"' 7N} (105)

and Tr(Qg;) = ||w°||?. As a result:

My => Cé,kce,j{fffl,ellwollz (Rue+0p (1)
J4

+ (8= Doi v} (106)
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and (61) follows.

APPENDIXB
COMPUTATION OFII

We rewritell as:

(1]

(2]

Il = E[P.QP}] (96)

whereQ) = w°w?*. The (k, j)-th block of IT can be computed
as:

* 2
i j =B > conem,;(27mei — oo 1)
Y4 m

(31
(4

97) [l

2
X ij (n:n,isz' - Un,ml)
We use (1) to replace,; and z,, ;:

2
Wy =E> > concmj(uj mei+njmnei — oo ),
l m

(6]

(7]

X (M iWimi + Moy M i — afmnl) (98)
This leads to: (8]
H;“j = Z Z Cg,kchE[uzi’ng’iij nrn,iumJ] (99) [9]

¢ m
+ Z Z Cé,kcm,jE[”Ziné,iij ni‘nmi‘m] [10]
¢ m

x 11
=S5 conem E02 Qi ] (200) B
L m
If we assume that the regressidm, ;} and noise{ny;} (2l
are zero mean circular Gaussian complex-valued vectolrs wit
uncorrelated entries, then: (13]

0 {+m
E[uzing_,iijn:mum_’i] = 9 7& [14]
O'n,ZTI‘(ij)Ru_’g {=m
(101)
E[nj 10 i Qi m ] = el
o O m (102) 1!

Bo? [ Qujon  +0n I Tr(Qjo? 1)
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