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Abstract—We investigate the performance of distributed least-
mean square (LMS) algorithms for parameter estimation over
sensor networks where the regression data of each node are
corrupted by white measurement noise. Under this condition,
we show that the estimates produced by distributed LMS
algorithms will be biased if the regression noise is excluded
from consideration. We propose a bias-elimination technique
and develop a novel class of diffusion LMS algorithms that can
mitigate the effect of regression noise and obtain an unbiased
estimate of the unknown parameter vector over the network.
In our development, we first assume that the variances of
the regression noises are knowna-priori. Later, we relax this
assumption by estimating these variances in real-time. We analyze
the stability and convergence of the proposed algorithms and
derive closed-form expressions to characterize their mean-square
error performance in transient and steady-state regimes. We
further provide computer experiment results that illustra te the
efficiency of the proposed algorithms and support the analytical
findings.

Index Terms—diffusion adaptation, bias-compensated LMS,
distributed parameter estimation, network optimization

I. I NTRODUCTION

ONE of the critical issues encountered in distributed
parameter estimation over sensor networks is the dis-

tortion of the collected regression data by noise, which occurs
when the local copy of the underlying system input signal
at each node is corrupted by various sources of impairments
such as measurement or quantization noise. This problem
has been extensively investigated for the case of single-node
processing devices [2]–[17]. These studies have shown that
if the deleterious effect of the input noise is not taken into
account, the parameter estimates so obtained will be inaccurate
and biased. Various practical solutions have been suggested
to mitigate the effect of the input measurement noise or to
remove the bias from the resulting estimates [5]–[17]. These
solutions, however, may no longer leads to optimal results in
sensor networks with decentralized processing structure where
the data measurement and parameter estimation are performed
at multiple processing nodes in parallel and with cooperation.

For networking applications, a distributed total-least-squares
(DTLS) algorithm has been proposed that is developed using
semidefinite relaxation and convex semidefinite programming
[18]. This algorithm mitigates the effect of white input noise
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by running a local TLS algorithm at each sensor node and
exchanging the locally estimated parameters between the
nodes for further refinement. The DTLS algorithm computes
the eigendecomposition of an augmented covariance matrix at
every iteration for all nodes in the network, and is therefore
mainly suitable for applications involving nodes with powerful
processing abilities. In a follow up paper, the same authors
proposed a low-complexity DTLS algorithm [19] that uses an
inverse power iteration technique to reduce the computational
complexity of the DTLS while demanding lower communica-
tion power.

In recent years, several classes of distributedadaptive
algorithms for parameter estimation over networks have been
proposed, including incremental [20]–[23], consensus [24]–
[27], [27]–[30], and diffusion algorithms [31]–[42]. Incremen-
tal techniques require the definition of a cyclic path over the
nodes, which is generally an NP-hard problem; these tech-
niques are also sensitive to link failures. Consensus techniques
require doubly-stochastic combination policies and, whenused
in the context of adaptation with constant step-sizes, can lead
to unstable behavior even if all individual nodes can solve the
inference task in a stable manner [38]. In this work, we focus
on diffusion strategies because they have been shown to be
more robust and to lead to a stable behavior regardless of the
underlying topology, even when some of the underlying nodes
are unstable [38].

A bias-compensated diffusion-based recursive least-squares
(RLS) algorithm has been developed in [43] that can obtain
unbiased estimates of the unknown system parameters over
sensor networks, where the regression data are distorted by
colored noise. While this algorithm offers fast convergence
speed, its high computational complexity and numerical insta-
bility may be a hindrance in some applications. In contrast,the
diffusion LMS algorithms are characterized by low complexity
and numerical stability. Motivated by these features, in this
paper, we investigate the performance of standard diffusion
LMS algorithms [31]–[33] over sensor networks where the
input regression data are corrupted by additive white noise. To
overcome the limitations of these algorithms, as exposed by
our analysis under this scenario, we then propose an alternative
problem formulation that leads to a novel class of diffusion
LMS algorithms, which we call bias-compensated diffusion
strategies.

More specifically, we first show that in the presence of
noisy input data, the parameter estimates produced by standard
diffusion LMS algorithms are biased. We then reformulate this
estimation problem in terms of an alternative cost function
and develop bias-compensated diffusion LMS strategies that
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can produce unbiased estimates of the system parameters. The
development of these algorithms relies on a bias-elimination
strategy that assumes prior knowledge about the regression
noise variances over the network. The analysis results show
that if the step-sizes are within a given range, the algorithms
will be stable in the mean and mean-square sense and the
estimated parameters will converge to their true values. Finally,
we relax the known variance assumption by incorporating a
recursive approach into the algorithm to estimate the variances
in real-time.

In summary, the contributions of this article are: a) per-
formance evaluation of standard diffusion LMS algorithms in
networks with noisy input regression data; b) development
of a novel class of diffusion LMS strategies that are robust
under this condition; c) presentation of a recursive estimation
approach to obtain the regression noise variances without
using the second order statistics of the data; d) derivationof
conditions under which the proposed algorithms are stable in
the mean and mean-square sense; e) characterization of their
mean-square deviation (MSD) and excess mean-square error
(EMSE) in transient and steady-state regimes; and f) validation
of theoretical findings through numerical simulations of newly
proposed algorithms for parameter estimation over sensor
networks.

The remainder of the paper is organized as follows. In the
next section, we formulate the problem and discuss the effects
of input measurement noise on the performance of diffusion
LMS over sensor networks. In Section III, we propose bias-
compensated diffusion LMS algorithms along with a recursive
estimation of the regression noise variance. In Section IV,
we analyze the stability and convergence behavior of the
developed algorithms, and obtain conditions under which the
algorithms are stable in the mean and mean-square sense. We
present the computer experiment results in Section VI, and
conclude the paper in Section VII.

Notation: Matrices are represented by uppercase fonts,
vectors by lowercase fonts. Boldface letters are reserved for
random variables and normal letters are used for determinis-
tic variables. Superscripts(·)T and (·)∗, respectively, denote
transposition and conjugate transposition. SymbolsTr(·) and
ρ(·) denote the trace and spectral radius of their matrix argu-
ment. The operatorE[·] stands for statistical expectation, and
λk(·) denotes thek-th eigenvalue of its matrix argument. The
Kronecker product is denoted by⊗, and theblock Kronecker
products[44] is denoted by⊗b. The operator diag{·} converts
its argument list into a (block) diagonal matrix. The operator
col{·} performs a vertical stacking of its arguments while
vec(·) is the standard vectorization for matrices. The symbol
bvec(·) is the block vectorization operator that transforms a
block-partitioned matrix into a column vector [44].

II. PROBLEM STATEMENT

Consider a collection ofN sensor nodes distributed over
a geographical area and used to monitor a physical phe-
nomenon characterized by some unknown parameter vector
wo ∈ CM×1. As illustrated in Fig. 1, at discrete-timei ∈ N,
each nodek ∈ {1, 2, · · · , N} collects noisy samples of

the system input and output denoted byzk,i ∈ C1×M and
dk(i) ∈ C, respectively. These measurement samples can be
expressed as:

zk,i = uk,i + nk,i (1)

dk(i) = uk,iw
o + vk(i) (2)

where uk,i ∈ C1×M , nk,i ∈ C1×M , and vk(i) ∈ C,
respectively, denote the regression data vector, the inputmea-
surement noise vector, and the output measurement noise1.

Assumption 1. The random variables in data model (1)-(2)
satisfy the following conditions:

a) The regression data vectors are independent and iden-
tically distributed (i.i.d.) over time and independent
over space, with zero-mean and covariance matrix
Ru,k = E[u∗

k,iuk,i] > 0.
b) The regression noise vectorsnk,i are Gaussian, i.i.d. over

time and independent over space, with zero-mean and
covariance matrixRn,k = E[n∗

k,ink,i] = σ2
n,kI.

c) The output noise samplesvk(i) are i.i.d. over time and
independent over space, with zero-mean and variance
σ2
v,k.

d) The random variablesuk,i, nℓ,j andvp(m) are indepen-
dent for all k, ℓ, p, i, j, andm.
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Fig. 1: Measurement model for nodek.

The linear model (1)-(2) differs from those used in previous
works on distributed estimation, such as [23], [31], [33]. In
these references, it is assumed that the actual regression vector
uk,i is available at each nodek. There are many practical
situations, however, where the nodes only have access to noisy
measurements of the regression data. We use relation (1) to
model such disturbance in the regressors, and to investigate the
effect of the noise processnk,i on the distributed estimation
of wo. To better understand the effect of this noise, we first
examine the behavior of a centralized estimation solution
under this condition and then explain how the resulting effect
carries over to distributed approaches.

In centralized estimation, nodes transmit their measurement
data {zk,i,dk(i)}Nk=1 to a central processing unit. In the
absence of measurement noise, i.e.,nk,i = 0, the central pro-
cessor can estimate the unknown parameter vectorwo by, e.g.,
minimizing the following mean-square error (MSE) function

1We use parentheses to refer to the time indices of scalar variables, such
asdk(i), and subscripts to refer to time indices of vector variables, such as
zk,i.



[45]:

Ju(w) =

N∑

k=1

E|dk(i)− uk,iw|2. (3)

Let us introducerdu,k , E[dk(i)u
∗
k,i] and denote the sums of

covariance matrices and cross-covariance vectors over theset
of nodes by:

Ru =

N∑

k=1

Ru,k, rdu =

N∑

k=1

rdu,k. (4)

It can be verified that under Assumption 1, the solution of (3)
is:

wo = R−1
u rdu. (5)

Now consider the recovery of the unknown parameter vector
wo for the noisy regression system described by (1) and (2).
Since the regression noisenk,i is independent ofuk,i and
dk(i), we have

Rz,k , E[z∗k,izk,i] = Ru,k + σ2
n,kI (6)

rdz,k , E[dk(i)z
∗
k,i] = rdu,k. (7)

Considering these relations and now minimizing the global
MSE function

Jz(w) =

N∑

k=1

E|dk(i)− zk,iw|2 (8)

with uk,i in (3) replaced byzk,i in (8), we arrive at the biased
solution

wb =
(
Ru + σ2

nI
)−1

rdu (9)

where

σ2
n =

N∑

k=1

σ2
n,k. (10)

Let us define the bias implicit in solution (9) as
b = wo − wb. To evaluateb, we may use the following identity,
which holds for square matricesX1 andX2 provided thatX1

andX1 +X2 are both invertible [46]:

(X1 +X2)
−1 = X−1

1 − (I +X−1
1 X2)

−1X−1
1 X2X

−1
1 . (11)

Here Ru and (Ru + σ2
n I) are invertible, and therefore, we

obtain:
(
Ru + σ2

n I
)−1

= R−1
u − σ2

n(I + σ2
nR

−1
u )−1R−2

u . (12)

Considering this expression and relation (9), the bias resulting
from the minimum MSE estimation at the fusion center can
be expressed as:

b = σ2
n(I + σ2

nR
−1
u )−1R−1

u wo. (13)

In the absence of regressor noise, it has been shown in
previous studies that the parameter estimates obtained from
standard diffusion LMS strategies approach the minimizer of
the network global MSE function [33]. This also holds in noisy
regression applications for diffusion LMS developed basedon
the global cost (8), meaning that the estimates generated by
standard diffusion LMS algorithms will eventually approach
(9). As shown by (13), this solution is biased and deviates

from the optimal estimate byb. This issue will become more
explicit in our convergence analysis in Section IV-A.

In sequel, we explain how by forming a suitable objective
function, the bias can be compensated in both centralized and
distributed LMS implementations.

III. B IAS-COMPENSATEDLMS ALGORITHMS

In our development, we initially assume that the regression
noise variances,{σ2

n,k}Nk=1, are known a-priori. We later
remove this assumption by estimating these variances in real-
time. In networks with centralized signal processing structure,
one way to obtain the unbiased optimal solution (5) is to search
for a global cost function whose gradient vector is identical to
that of cost (3). It is straightforward to verify that the following
global cost function satisfies this requirement:

J(w) =
( N∑

k=1

E|dk(i)− zk,iw|2
)
−
( N∑

k=1

σ2
n,k‖w‖2

)
. (14)

Remark 1. In bias-compensation techniques for single-node
adaptive algorithms, including [12], [13], [16], the authors
first apply a least squares (LS) or minimum MSE procedure
to obtain an estimate of the unknown parameter vector. The
resulting estimate consists of the desired solution along with
an additive bias term. The bias, which is normally expressed
in terms of the second order statistics of the regression data
and the input and output measurement noises, is removed from
the solution by subtraction. In the proposed technique in this
paper, we start by considering bias removal one step earlier,
meaning that we design a convex objective function such that
its unique stationary point leads to an unbiased estimate.
From this respect, our approach is mostly inspired from the
derivation of the modified LMS and RLS algorithms in [8],
[15]. However, these algorithms still assume the knowledge
of the ratio of input-to-output noise variances in their update
equations.

The derivation of distributed algorithms will be made easier
if we can decouple the network global cost function and write
it as sum of local cost functions that are formed using the
local data. The global cost (14) already has such a desired
form. For this to become more explicit, we express (14) as:

J(w) =
N∑

k=1

Jk(w) (15)

whereJk(w) is the cost function associated with nodek and
is given in terms of local datadk(i) zk,i, i.e.,

Jk(w) = E|dk(i)− zk,iw|2 − σ2
n,k‖w‖2. (16)

Remark 2. Under Assumption 1, the Hessian matrix of (16) is
positive definite, i.e.,∇2

wJk(w) > 0, hence,J(w) is strongly
convex [47].

Below, we first comment on the centralized LMS algorithm
that solves (14), and then elaborate on how to develop the
unbiased distributed counterparts.



A. Bias-Compensated Centralized LMS Algorithm

To minimize (15) iteratively, a centralized steepest descent
algorithm [45] can be implemented as:

wi = wi−1 − µ
[ N∑

k=1

∇Jk(wi−1)
]∗

(17)

whereµ > 0 is the step-size, and∇Jk(w) is a row vector
representing the gradient ofJk with respect to the vectorw.
Computing the gradient vectors from (16) leads to:

wi = wi−1 + µ

N∑

k=1

(
rdz,k −Rz,kwi−1 + σ2

n,kwi−1

)
. (18)

In practice, the momentsRz,k and rdz,k are usually unavail-
able. We, therefore, replace these moments by their instan-
taneous approximationsz∗k,izk,i and z∗k,idk(i), respectively,
and obtain the bias-compensated centralized LMS algorithm:

wi = wi−1 + µ
N∑

k=1

(
z∗k,i[dk(i)− zk,iwi−1] + σ2

n,kwi−1

)
.

(19)
In Section V, we propose an adaptive scheme to estimate the
variances of the regression noise required in the above central-
ized LMS algorithm as well as in its distributed counterpart
derived below.

B. Bias-Compensated Diffusion LMS Strategies

There exist different distributed optimization techniques
that can be applied on (14) to findwo [31], [33], [48]. We
concentrate on diffusion strategies [31], [33] because they
endow the network with real-time adaptation and learning
abilities. In particular, diffusion optimization strategies lead to
distributed algorithms that can estimate the parameter vector
wo and track its changes over time [31], [33], [37], [49].
Here, we briefly explain how diffusion LMS algorithms can
be developed for parameter estimation in systems with noisy
regression data. The main step in the development of these
algorithms is to reformulate the global cost (14) and represent
it as a group of optimization problems of the form:

min
w

{ ∑

ℓ∈Nk

cℓ,k

(
E|dℓ(i)− zℓ,iw|2 − σ2

n,ℓ‖w‖2
)

+
∑

ℓ∈Nk\{k}

bℓ,k‖w − wo‖2
}
.

(20)

where Nk is the set of nodes with which nodek shares
information, including nodek itself. The nonnegative scalars
{cℓ,k} are the entries of a right-stochastic matrixC ∈ RN×N

which satisfy

cℓ,k = 0 if ℓ /∈ Nk, and
N∑

k=1

cℓ,k = 1. (21)

The scalars{bℓ,k} are scaling coefficients that will end up
being incorporated into the combination coefficients{aℓ,k}
that appear in the final statement (23) of the algorithm below.
The first term in the objective function (20) is the modified

mean-squared function incorporating the noise variances of
neighboring nodesℓ ∈ Nk. This part of the objective is based
on the same strategy as in the above centralized objective
function for bias removal. The second term in (20) is in fact a
constraint that forces the estimate of the nodek to be aligned
with the true parameter vectorwo. Sincewo is not known
initially, it will be alternatively substituted by an appropriate
vector during the optimization process. One can use the cost
function (20) and follow similar arguments to those used in
[33], [37], [49] to arrive at the bias-compensated adapt-then-
combine (ATC) LMS strategy (Algorithm 1). Due to space
limitations, these steps are omitted.

Algorithm 1 : ATC Bias-Compensated Diffusion LMS

ψk,i = wk,i−1 − µk

∑

ℓ∈Nk

cℓ,k
[
∇̂Jℓ(wk,i−1)

]∗
(22)

wk,i =
∑

ℓ∈Nk

aℓ,kψℓ,i (23)

In this algorithm,µk > 0 is the step-size at nodek, the vectors
ψk andwk,i are the intermediate estimates ofwo at nodek,
and the stochastic gradient vector is computed as:

[
∇̂Jℓ(wk,i−1)

]∗
=−

[
z∗ℓ,i

(
dℓ(i)− zℓ,iwk,i−1

)

+ σ2
n,ℓwk,i−1

]
. (24)

which is an instantaneous approximation to gradient of (16).
Moreover, the nonnegative coefficientsaℓ,k are the elements
of a left-stochastic matrixA ∈ RN×N satisfying

aℓ,k = 0 if ℓ /∈ Nk, and
∑

ℓ∈Nk

aℓ,k = 1. (25)

To run the algorithm, we only need to select the coefficients
{cℓ,k, aℓ,k}, which can be computed based on any combination
rules that satisfy (21) and (25). One choice to compute the
entries of matrixA is:

aℓ,k =
σ−2
n,ℓ∑

ℓ∈Nk
σ−2
n,ℓ

and ak,k = 1−
∑

ℓ∈Nk\k

aℓ,k. (26)

This rule implies that the entryaℓ,k is inversely proportional
to the regressor noise variance of nodeℓ. Other left-stochastic
choices forA are possible, including those that take into
account both the noise variances and the degree of connectivity
of the nodes [39].

By reversing the order of the adaptation and combination
steps in Algorithm 1, we can obtain the following combine-
then-adapt (CTA) diffusion strategy. As we will show in

Algorithm 2 : CTA Bias-Compensated Diffusion LMS

ψk,i−1 =
∑

ℓ∈Nk

aℓ,kwℓ,i−1 (27)

wk,i = ψk,i−1 − µk

∑

ℓ∈Nk

cℓ,k
[
∇̂Jℓ(ψk,i−1)

]∗
(28)



the analysis, the proposed ATC and CTA bias-compensated
diffusion-LMS, in average, will converge to the unbiased
solution (5) even when the regression data are corrupted by
noise. In comparison, the estimate of the previous diffusion
LMS strategies such as one proposed in [33] will be biased
under such condition.

Remark 3. In the proposed ATC algorithm, each nodek re-
ceives{uℓ,i,dℓ(i), σ

2
n,ℓ} from its neighbors in the adaptation

step, andψℓ,i in the combination step, whereℓ ∈ Nk. In total,
it will receive (2M + 2)|Nk| scalar data from its neighbors.
To reduce the communication overhead of the network, one
solution is to chooseC = I. Doing so, we can reduce the
amount of exchanged data at each nodek to M |Nk| while
maintaining almost similar performance results, as evidenced
in Section VI. Note that the amount of information exchange
in this case will be equal to that of the standard ATC diffusion
LMS in [33]. This conclusion is also valid for the proposed
CTA Algorithm 2.

IV. PERFORMANCEANALYSIS

In this section, we analyze the convergence and stability of
the proposed ATC and CTA bias-compensated diffusion LMS
algorithms by viewing them as special cases of a more general
diffusion algorithm of the form:

φk,i−1 =
∑

ℓ∈Nk

a
(1)
ℓ,kwℓ,i−1 (29)

ψk,i = φk,i−1 − µk

∑

ℓ∈Nk

cℓ,k
[
∇̂φJℓ(φk,i−1)

]∗
(30)

wk,i =
∑

ℓ∈Nk

a
(2)
ℓ,kψℓ,i (31)

where {a(1)ℓ,k} and {a(2)ℓ,k} are non-negative real coefficients
corresponding to the(ℓ, k)-th entries of left-stochastic matrices
A1 andA2, respectively, which have the same properties as
A. Different choices forA1 andA2 corresponds to different
operation modes. For instance,A1 = I and A2 = A
correspond to ATC whereasA1 = A and A2 = I generate
CTA. For mathematical tractability, in our analysis, we assume
that the variances of the regression noises, i.e.,σ2

n,k, over the
network are knowna-priori.

We define the local weight-error vectors asw̃k,i = wo −
wk,i, ψ̃k,i = wo − ψk,i and φ̃k,i = wo − φk,i, and form the
global weight-error vectors, by stacking the local error vectors,
i.e.:

φ̃i = col{φ̃1,i, φ̃2,i, . . . , φ̃N,i} (32)

ψ̃i = col{ψ̃1,i, ψ̃2,i, . . . , ψ̃N,i} (33)

w̃i = col{w̃1,i, w̃2,i, . . . , w̃N,i}. (34)

We also define the block variables:

gi = CT col{z∗
ℓ,iv1(i), . . . ,z

∗
N,ivN(i)} (35)

Ri = diag
{

∑

ℓ∈Nk

cℓ,k (z
∗
ℓ,izℓ,i − σ

2
n,ℓI), k = 1, · · · , N

}

(36)

Pi = diag
{

∑

ℓ∈Nk

cℓ,k (z
∗
ℓ,inℓ,i − σ

2
n,ℓI), k = 1, · · · , N

}

(37)

M = diag
{

µ1IM , · · · , µNIM
}

(38)

and introduce the following extended combination matrices:

A1 = A1 ⊗ IM , A2 = A2 ⊗ IM , C = C ⊗ IM . (39)

Using these definitions and update equations (29)-(31), it can
be verified that the following relations hold:

φ̃i−1 = AT
1 w̃i−1

ψ̃i = φ̃i−1 −M(gi −Piω
o +Riφ̃i−1)

w̃i = AT
2 ψ̃i (40)

whereωo = 1 ⊗wo. From the set of equations given in (40),
it is deduced that the network error vectorw̃i evolves with
time according to the recursion:

w̃i = Biw̃i−1 −AT
2 Mgi +AT

2 MPiω
o (41)

where the time-varying matrixBi is defined as:

Bi = AT
2 (I −MRi)AT

1 . (42)

A. Mean Convergence and Stability

Tacking the expectation of both sides of (41) and consider-
ing Assumption 1, we arrive at:

E[w̃i] = B
(
E[wi−1]

)
(43)

where in this relation:

B , E[Bi] = AT
2 (I −MR)A1

T (44)

R , E[Ri] = diag
{

∑

ℓ∈Nk

cℓ,k Ru,ℓ, k = 1, · · · , N
}

. (45)

To obtain (43), we used the fact thatE[A2
TMgi] = 0 because

vk,i is independent ofzk,i andE[vk(i)] = 0. Moreover, we
haveE[P i] = 0 becauseE[z∗ℓ,inℓ,i] = σ2

n,ℓI. According to
(43),limi→∞ E‖w̃i‖ → 0 if B is stable ( i.e., whenρ(B) < 1).
In fact, becauseρ(A1) = ρ(A2) = 1 andR > 0 choosing the
step-sizes according to:

0 < µk <
2

ρ
(∑

ℓ∈Nk
cℓ,kRu,ℓ

) (46)

guaranteesρ(B) < 1. We omit the proof. The similar ar-
gument can be found in [49] and [35]. We summarize the
mean-convergence results of the proposed bias-compensated
diffusion LMS in the following.

Theorem 1. Consider an adaptive network that operates using
diffusion Algorithms 1 or 2 with the space-time data (1)
and (2). In this network, if we assume that the regressors
noise variances are known or perfectly estimated, the mean
error vector evolves with time according to (43). Furthermore,
Algorithms 1 and 2 will be asymptotically unbiased and stable
provided that the step-sizes satisfy (46).

Remark 4. In networks with noisy regression data (1), the
estimates generated by the previous diffusion LMS strategies
such as the ones proposed in [33], [49] are biased, i.e,
E[w̃i] 6= 0 as i → ∞. This can be readily shown if we remove
σ2
n,k from (36) and (37). In this scenario, (43) will be stable

if

0 < µk <
2

ρ
(∑

ℓ∈Nk
cℓ,k

(
Ru,ℓ + σ2

n,ℓIM
)) . (47)



Then, for sufficiently small step-sizes, satisfying (47), it can
be verified that the estimate of the standard diffusion LMS
deviates from the network optimal solutionωo by:

lim
i→∞

E[w̃i] = (INM − B′)−1AT
2 MP ′ωo (48)

where

B′ , AT
2 (INM −MR′)AT

1 (49)

R′ , diag
{ ∑

ℓ∈Nk

cℓ,k
(
Ru,ℓ + σ2

n,ℓIM
)
, k = 1, · · · , N

}
(50)

P ′ , diag
{ ∑

ℓ∈Nk

cℓ,k σ
2
n,ℓIM , k = 1, · · · , N

}
. (51)

As it is clear from (48), the bias is created by the regression
noise{nk,i} only, whereas the noise{vk(i)} has no effect on
generating the bias.

B. Mean-Square Convergence and Stability

To study the mean-square performance of the proposed
algorithms, we first follow the energy conservation arguments
of [33], [45] and determine a variance relation that is suitable
in the current context. The relation can be obtained in the
limit, as i → ∞, by computing the expectation of the weighted
squared norm of (41) under Assumption 1:

E‖w̃i‖2Σ =E

(
‖w̃i−1‖2Σ′

)
+ E[g∗iMA2ΣAT

2 Mgi]

+ E[ωo∗
P

∗
iMA2ΣAT

2 MPiω
o] (52)

where‖x‖2Σ = x∗Σx andΣ ≥ 0 is a weighting matrix that we
are free to choose. Note that (52) is obtained by eliminating
the following terms:

E[(AT
2 Mgi)

∗ΣAT
2 (I −MRi)A1

TΣw̃i−1] = 0 (53)

E[(AT
2 (I −MRi)A1

T w̃i−1)
∗ΣAT

2 Mgi] = 0 (54)

E[(AT
2 MPiw

o)∗ΣAT
2 (I −MRi)A1

T w̃i−1] = 0 (55)

E[(AT
2 (I −MRi)A1

T w̃i−1)
∗ΣAT

2 MPiw
o] = 0. (56)

These terms are zero firstly, becausew̃i−1 is independent of
gi, Pi andRi under Assumption 1 [50], and secondly, since
the proposed algorithms are unbiased,E[w̃i] is zero for large
i, if the step-sizes are chosen as in (46).

In relation (52), we have:

Σ
′ = Bi

∗ΣBi. (57)

It follows from Assumption 1 that̃wi−1 andRi are indepen-
dent of each other so that

E

(
‖w̃i−1‖2Σ′

)
= E‖w̃i−1‖2E[Σ′]. (58)

Substituting this expression into (52), we arrive at:

E‖w̃i‖2Σ = E‖w̃i−1‖2Σ′ +Tr[ΣAT
2 MGMA2]

+ Tr[ΣAT
2 MΠMA2] (59)

where
Σ′ = E[B∗

i
ΣBi]. (60)

In equation (59)G = E[gig
∗
i ], which using (35) is given by

(see Appendix A):

G = CT diag
{

σ
2
v,1(Ru,1 + σ

2
n,1I), . . . , σ

2
v,N(Ru,N + σ

2
n,NI)

}

C.

(61)

In relation (59),Π = E[P iω
oωo∗P

∗
i ] and its(k, j)-th block

is computed as (see Appendix B):

Πk,j =
∑

ℓ

cℓ,kcℓ,j

{
σ2
n,ℓ‖wo‖2

(
Ru,ℓ + σ2

n,ℓI
)

+ (β − 1)σ4
n,ℓw

owo∗
}

(62)

whereβ = 2 for real-valued data andβ = 1 for complex-
valued data. If we introduceσ = bvec(Σ) andσ′ = bvec(Σ′)
then we can writeσ′ = Fσ where

F = E[BT

i
⊗b B

∗
i ] (63)

Considering these definitions, the variance relation in (59) can
be rewritten more compactly as:

E‖w̃i‖2σ =E‖w̃i−1‖2Fσ + γTσ (64)

where we are using the notation‖x‖2σ as a short form for
‖x‖2Σ, and where

γ = bvec(AT
2 MGTMA2 +AT

2 MΠTMA2). (65)

To computeF , we expandΣ′ from (60) to get:

Σ′ =A1

(
A2ΣAT

2 −RMA2ΣAT
2 −A2ΣAT

2 MR
)
AT

1

+ E[A1R
∗
iMA2ΣAT

2 MRiAT
1 ]. (66)

The last term in (66) depends onM2 and can, therefore, be
neglected for small step-sizes. As a result, we obtain

F ≈ (A1 ⊗b A1)(I − I ⊗b RM−RTM⊗b I)(A2 ⊗b A2).
(67)

We can also derive a more compact expression to compute
F . To this end, we first note that the last term in (66) can be
expressed as:

E[A1R
∗
iMA2ΣAT

2 MRiAT
1 ] = E[A1R∗MA2ΣAT

2 MRAT
1 ]

+O(M2) (68)

Now by substituting (68) into (66) and ignoring the remaining
terms that depend onM2, under the small step-size condition,
we arrive at:

F ≈ BT ⊗b B∗ (69)

We now proceed to show the stability of the algorithm in
the mean-square error sense, as follows. Using (64), we can
write:

lim
i→∞

E‖w̃i‖2σ = lim
i→∞

E‖w̃−1‖2Fi+1σ + γT

∞∑

j=0

F jσ. (70)

As it is evident from this expression, the proposed algorithms
will be stable in the mean-square sense ifF is stable. From
(69), we deduce thatF will be stable ifB is stable. According
to our mean-convergence analysis, the stability ofB is guar-
anteed if (46) holds. Therefore, the step-size condition (46) is
sufficient to guarantee the stability of the algorithms bothin
the mean and mean-square sense.



C. Mean-Square Steady-State Performance

To obtain mean-square error (MSE) steady state expressions
for the network, we leti go to infinity and use expression (64)
to write:

lim
i→∞

E‖w̃i‖2(I−F)σ = γTσ. (71)

By definition, the MSD and EMSE at each nodek are
respectively computed as:

ηk = lim
i→∞

E‖w̃k,i‖2, ζk = lim
i→∞

E‖w̃k,i‖2Ru,k
. (72)

The MSD and EMSE of the nodes can be retrieved from the
network error vector̃wi by writing:

ηk = lim
i→∞

E‖w̃i‖2{diag(ek)⊗I}
(73)

ζk = lim
i→∞

E‖w̃i‖2{diag(ek)⊗Ru,k}
(74)

whereek is a canonical basis vector inRN with entry one at
position k. From (71) and (73), we can obtain the MSD at
nodek, for k ∈ {1, 2, · · · , N}:

ηk = γT (I −F)−1bvec(diag(ek)⊗ IM ). (75)

In the same manner, we compute the EMSE at nodek as:

ζk = γT (I −F)−1bvec
(
diag(ek)⊗Ru,k

)
. (76)

The network MSD and EMSE are defined as the average of
MSD and EMSE values over the network, i.e.,

η =
1

N

N∑

k=1

ηk, ζ =
1

N

N∑

k=1

ζk. (77)

D. Mean-Square Transient Behavior

We use (64) to obtain an expression for the mean-square
behavior of the algorithm in transient-state. In this expression,
if we substitutewk,−1 = 0, ∀k ∈ {1, · · · , N}, we obtain:

‖w̃i‖2σ = ‖wo‖2Fi+1σ + γT

i∑

j=0

F jσ. (78)

Writing this recursion fori−1, and subtract it from (78) leads
to:

‖w̃i‖2σ = ‖w̃i−1‖2σ + ‖wo‖2Fi(I−F)σ + γTF iσ. (79)

By replacing σ with σmsdk
= bvec

(
diag{ek} ⊗ IM ) and

σemsek = bvec
(
diag{ek} ⊗ Ru,k) and usingwk,−1 = 0, we

arrive at the following two recursions for the evolution of MSD
and EMSE over time:

ηk(i) = ηk(i− 1) − ‖wo‖Fi(I−F)σmsdk
+ γ

TF i
σmsdk

(80)

ζk(i) = ζk(i− 1)− ‖wo‖Fi−1(I−F)σemsek
+ γ

TF i−1
σemsek .

(81)

The MSD and EMSE of the network can be computed either
by averaging the nodes transient behavior, or by substituting

σmsd =
1

N
bvec(IMN ) (82)

σemse =
1

N
bvec

(
diag{Ru,1, · · · , Ru,N}

)
(83)

in recursion (79). We summarize the mean-square analysis
results of the algorithms in the following:

Theorem 2. Consider an adaptive network operating under
bias-compensated diffusion Algorithm 1 or 2 with the space-
time data (1) and (2) that satisfy Assumption 1. In this network,
if we assume that the regressors noise variances are known or
perfectly estimated and nodes initialize at zero, then the MSD
and EMSE of each nodek evolve with time according to (80)
and (81) and the network MSD and EMSE follow recursions:

η(i) = η(i − 1)− ‖wo‖Fi(I−F)σmsd
+ γTF iσmsd

ζ(i) = ζ(i− 1)− ‖wo‖Fi−1(I−F)σemse
+ γTF i−1σemse

whereσmsd, andσemse are defined in (82) and (83) andF is
given by (63). Moreover, if the step-sizes are chosen to satisfy
(46), the network will be stable, converge in the mean and
mean-square sense and reach the steady-state MSD and EMSE
characterized by (77).

V. REGRESSIONNOISE VARIANCE ESTIMATION

In the proposed algorithms, each node still needs to have
the regression noise variances,{σ2

n,ℓ}Nk

k=1, to evaluate the

stochastic gradient vector,̂∇Jℓ. In practice, such information
is rarely available and normally obtained through estimation.
A review of previous works reveals that the regression noise
variances can be either estimated off-line [43], or in real-time
when the unknown parameter vector,wo, is being estimated
[51], [52]. For example, in the context of speech analysis,
they can be estimated off-line during silent periods in between
words and sentences [43]. In some other applications, these
variances are estimated during the operation of the algorithm
using the second-order moments of the regression data and the
system output signal [51], [52]. In what follows we propose
an adaptive recursive approach to estimate the regression noise
variances without using the second order moments of the data.

The variance of the regression noise at each node is classi-
fied as local information and, hence, it can be estimated from
the node’s local data. When the regression data at nodek is not
corrupted by measurement noise (i.e.,zk,i = uk,i), and when
the node operates independent of all other nodes to estimate
wo by minimizingE|dk(i)−uk,iw|2, the minimum attainable
MSE can be expressed as [45]:

Jmin , σ2
d,k − r∗du,kR

−1
u,krdu,k. (84)

Under noisy regression scenarios where nodek operates inde-
pendently to minimize the cost (16), the minimum achievable
cost will still be (84). To verify this, we note from Remark
2 that sinceJk(w) is positive definite and, hence, strongly
convex, its unique minimizer under Assumption 1 will bewo.
Therefore, substitutingwo into (16) will give its minimum,
i.e.:

min
w

Jk(w) = E|dk(i)− zk,iwo|2 − σ2
n,k‖wo‖2

= σ2
d,k − r∗du,kR

−1
u,krdu,k (85)

= Jmin. (86)

We use this result to estimate the regression noise variance
σ2
n,k at each nodek.
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Fig. 2: Network topology used in the simulations.

Now, let us introduce

ek(i) , dk(i)− zk,iwk,i−1 (87)

where wk,i−1 is the weight estimate from ATC diffusion
(which would be replaced byψk,i−1 for CTA diffusion).
ConsideringJk(wk,i−1), for sufficiently small step-sizes and
in the limit when the weight estimate is close enough towo,
it holds that:

E|ek(i)|2 − σ2
n,k‖wo‖2 ≈ Jmin. (88)

From (2) and (84), it can be verified thatJmin = σ2
v,k, and

hence from (88), we can write:

E|ek(i)|2 ≈ σ2
v,k + σ2

n,k‖wo‖2. (89)

In this relation,σ2
v,k, can be ignored ifσ2

n,k‖wo‖2 ≫ σ2
v,k.

Under such circumstances, if we assume‖wo‖2 6= 0, which
is true for systems with at least one non-zero coefficient, then
the variance of the regression noise can be obtained by:

σ2
n,k ≈ E|ek(i)|2

‖wo‖2 . (90)

Since, in (90),E|ek(i)|2 and the unknown parameter,wo, are
initially unavailable, we can estimateσ2

n,k using the following
relations as the latest estimates of these quantities become
available, i.e.,

fk(i) = αfk(i− 1) + (1− α)|ek(i)|2 (91)

σ2
n,k(i) =

fk(i)

‖wk,i‖2
(92)

where0 ≪ α < 1 is a smoothing factor with nominal values
in the range of[0.95, 0.99].

Assumption 2. The regression noise variance,σ2
n,k, and

the output measurement noise,σ2
v,k, satisfy the following

inequality

σ2
n,k‖wo‖2 ≫ σ2

v,k. (93)

Under this assumption, the regressor noise variance at each
nodek can be adaptively estimated via (91) and (92) using
the data samplesek(i) andwk,i−1 supplied from the bias-
compensated LMS iterations.

TABLE I: Network signal and noise power profile

Parameters
Node k σ2

v,k Tr(Ru,k) σ2
n,k

1 0.0230 0.3000 0.0170
2 0.0020 0.7500 0.0970
3 0.0160 0.5250 0.0620
4 0.0040 0.4250 0.0570
5 0.0420 0.6000 0.0600
6 0.0400 0.6500 0.0730
7 0.0120 1.0000 0.0560
8 0.0120 0.7750 0.0860
9 0.0310 0.7250 0.0250
10 0.0280 0.6750 0.0490
11 0.0350 0.6500 0.0680
12 0.0500 0.6000 0.0760
13 0.0090 0.2750 0.0600
14 0.0340 0.3500 0.0150
15 0.0290 0.6250 0.0160
16 0.0280 0.9250 0.0490
17 0.0020 0.3250 0.0830
18 0.0080 0.8750 0.0370
19 0.0410 0.2500 0.0170
20 0.0460 0.8000 0.0160

VI. SIMULATION RESULTS

In this section, we present computer experiments to illustrate
the efficiency of the proposed algorithms and to verify the
theoretical findings. We evaluate the algorithm performance
for known regressor noise variance and with adaptive noise
variance estimation. We consider a connected network with
N = 20 nodes that are positioned randomly on a unit
square area with maximum communication distance of0.4 unit
length. The network topology is shown in Fig. 2. We choose
A1 = I, computeA2 using the relative-variance rule (26)
and choose the matrixC according to the metropolis criterion
[31], [49]. In the plots, we useArel andCmet to refer to this
particular choice ofA2 andC. The network data are generated
according to model (1) and (2). The aim is to estimate the
system parameter vectorwo = [1, 1]T/

√
2 over the network

using the proposed bias-compensated diffusion algorithms. In
all our experiments, the curves from the simulation resultsare
drawn from the average of500 independent runs.

We choose the step-sizes asµk = 0.05, and setwk,−1 =
[0, 0]T , for all k. We adopt Gaussian distribution to generate
vk(i), nk,i anduk,i. The covariance matrices of the regression
data and the regression noise are of the formRu,k = σ2

u,kIM ,
andσ2

n,kIM , respectively. The network signal and noise power
profile, are given in Table I.

a) Transient MSE Results with Perfect Noise Variance
Estimation: In Fig. 3, we demonstrate the network transient
behavior in terms of MSD and EMSE for the proposed
diffusion LMS algorithm, standard diffusion LMS algorithm
[33] and the non-cooperative mode of the proposed algorithm.
Note that A2 = I and C = I correspond to the non-
cooperative network mode of the proposed algorithm, where
each node runs a stand alone bias-compensated LMS. As the
results indicate, the performance of the cooperative network
with Cmet andArel exceeds that of the non-cooperative case by
12 dB. We also observe that the proposed algorithm outper-
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form the standard diffusion LMS [33] by more that 12dB.
It is interesting to note that the non-cooperative algorithm
outperforms the standard diffusion LMS by about 1dB.

We also present the EMSE and MSD of some randomly
chosen nodes in Fig. 4. In particular, we plot the EMSE
learning curves of nodes4 and 18 and the MSD learning
curves of nodes5 and15. We observe that the MSD curves of
the chosen nodes are identical. Since the algorithm is unbiased,
this implies that these nodes have reached agreement about
the unknown network parameter,wo. As we will show in the
steady-state results, all nodes over the network almost reach
agreement. We note that, in all scenarios, there is a good
agreement between simulations and the analysis results.

b) Steady-State MSE Results with Perfect Noise Variance
Estimation: The network steady-state MSD and EMSE are
shown in Figs. 5 and 6. From these figures, we observe that
there is a good agreement between simulations and analytical
findings. In addition, we consider the case when nodes only
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Fig. 5: Network steady-state MSD for different combination matri-
ces.
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exchange their intermediate estimates (i.e., whenC = I).
It is seen that the MSD performance of the algorithm with
Cmet is 1dB superior than that withC = I. We also observe
that the performance discrepancies between nodes in terms of
MSD is less than0.5dB for cooperative scenarios, while in
the non-cooperative scenario it is more than5dB. This shows
agreement in the network in spite of different noise and energy
profiles at each node. Note that the fluctuations in EMSE over
the network are due to differences in energy level in the nodes’
input signals, but this does not preclude the cooperating nodes
from reaching a consensus in the estimated parameters.

c) MSE Results of the Algorithm with Adaptive Noise
Variance Estimation:We compare the transient and steady-
state behavior of the bias-compensated diffusion LMS with
known regressor noise variance and adaptive noise variance
estimation. For this experiment, we consider the same net-
work topology and noise profile as above. However, the
unknown parameter vector to be estimated, in this case, is
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Fig. 10: The estimated and true value of the regression noise
variance,σ2

n,k, over the network.

wo = 215 + 2j15, where 1M is a M × 1 column vector
with unit entries. The network energy profile is chosen as
Tr(Ru,k) = 20Tr(σ2

n,kI). Using these choices, Assumption
2 will be satisfied. We setα = 0.99 andµk = 0.01 for all k.

Figs. 7 and 8 show the steady-state EMSE and MSD of
the network for these two cases. The steady-state values are
obtained by averaging over the last 200 samples after initial
convergence. We observe that the performance of the proposed
bias-compensated LMS algorithm with adaptive noise variance
estimation is almost identical to that of the ideal case with
known noise variances.

Fig. 9 illustrates the tracking performance of the bias-
compensated diffusion LMS algorithm for these two cases for
a sudden change in the unknown parameterwo and compares
the results with that of the standard diffusion LMS algorithm
given in [33]. The variation in the unknown parameter vector
occurs at iterationi = 550 when wo changes to2wo.
Similar conclusion as in Fig. 7 and 8 can be made for the
proposed algorithms with known and estimated regression
noise variances. We also observe that the proposed algorithms
outperform the standard diffusion LMS [33] by nearly 10dB
in steady-state.

Fig. 10 illustrates the results of regression noise variance
estimation in the steady state. In this experiment, we observe
that for i ≥ 350, E[σ2

n,k(i)] → σ2
n,k. This indicates that the

proposed adaptive estimation strategy for computation of the
nodes’ regression noise variance over the network works well.

VII. C ONCLUSION

We developed bias-compensated diffusion LMS strategies
for parameter estimation over sensor networks where the re-
gression data are corrupted with additive noise. The algorithms
operate in a distributed manner and exchange data via single-
hop communication to save energy and communication re-
sources. The proposed algorithms estimate the regression noise
variances and use them to remove the bias from the estimate.
In the analysis, it has been shown that the proposed bias-
compensated diffusion algorithms are unbiased and converge



in the mean and mean-square error sense for sufficiently
small step-sizes. We carried out computer experiments that
confirmed the effectiveness of the algorithms and support the
analytical findings.

APPENDIX A
COMPUTATION OFG

This can be computed by substitutingg(i) from (35) into
G = E[gig

∗
i ] , as a result:

G =CTE



z∗1,iv1(i)

. . .

z∗N,ivN(i)


 [v∗1(i)z1,i, . . . ,v

∗
N(i)zN,i]C (94)

The (k, j)-th block of the above matrix can be computed as:

[G]k,j =
{

0, k 6= j

σ2
v,k(Ru,k + σ2

n,kI), k = j
(95)

and (61) follows.

APPENDIX B
COMPUTATION OFΠ

We rewriteΠ as:

Π = E[PiΩP
∗
i ] (96)

whereΩ = ωoωo∗. The(k, j)-th block ofΠ can be computed
as:

Πk,j =E
∑

ℓ

∑

m

cℓ,kcm,j(z
∗
ℓ,inℓ,i − σ2

n,ℓI)

× Ωkj(n
∗
m,izm,i − σ2

n,mI) (97)

We use (1) to replacezℓ,i andzm,i:

Πk,j = E
∑

ℓ

∑

m

cℓ,kcm,j(u
∗
ℓ,inℓ,i + n

∗
ℓ,inℓ,i − σ2

n,ℓI)Ωkj

× (n∗
m,ium,i + n

∗
m,inm,i − σ2

n,mI) (98)

This leads to:

Πk,j =
∑

ℓ

∑

m

cℓ,kcm,jE[u
∗
ℓ,inℓ,iΩkjn

∗
m,ium,i] (99)

+
∑

ℓ

∑

m

cℓ,kcm,jE[n
∗
ℓ,inℓ,iΩkjn

∗
m,in

∗
m,i]

−
∑

ℓ

∑

m

cℓ,kcm,jE[σ
2
n,ℓΩkjn

∗
m,inm,i] (100)

If we assume that the regression{uk,i} and noise{nk,i}
are zero mean circular Gaussian complex-valued vectors with
uncorrelated entries, then:

E[u∗
ℓ,inℓ,iΩkjn

∗
m,ium,i] =

{
0 ℓ 6= m

σ2
n,ℓTr(Ωkj)Ru,ℓ ℓ = m

(101)

E[n∗
ℓ,inℓ,iΩkjn

∗
m,inm,i] ={

σ2
n,ℓΩkjσ

2
n,m ℓ 6= m

βσ2
n,ℓΩkjσ

2
n,m + σ2

n,ℓI Tr(Ωkjσ
2
n,ℓI) ℓ = m

(102)

and
E[σ2

n,ℓIΩkjn
∗
m,inm,i] = σ2

n,ℓΩkjσ
2
n,m (103)

We note that
Ωk,j = wo

k w
o
j
∗ (104)

wherewo
j = wo

k, ∀ k, j ∈ {1, 2, . . .N}. Therefore,

Ωℓk = Ωmn, ∀ℓ, k,m, n ∈ {1, 2, · · · , N} (105)

andTr(Ωkj) = ‖wo‖2. As a result:

Πk,j =
∑

ℓ

cℓ,kcℓ,j

{
σ2
n,ℓ‖wo‖2

(
Ru,ℓ + σ2

n,ℓI
)

+ (β − 1)σ4
n,ℓw

owo∗
}

(106)
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