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Campaigning in Heterogeneous Social Networks:
Optimal Control of SI Information Epidemics

Kundan Kandhway and Joy Kuri

Abstract—We study the optimal control problem of maximizing
the spread of an information epidemic on a social network.
Information propagation is modeled as a Susceptible-Infected
(SI) process and the campaign budget is fixed. Direct recruitment
and word-of-mouth incentives are the two strategies to accelerate
information spreading (controls). We allow for multiple controls
depending on the degree of the nodes/individuals. The solution
optimally allocates the scarce resource over the campaign dura-
tion and the degree class groups. We study the impact of the
degree distribution of the network on the controls and present
results for Erdős-Ŕenyi and scale free networks. Results show
that more resource is allocated to high degree nodes in the
case of scale free networks but medium degree nodes in the
case of Erd̋os-Ŕenyi networks. We study the effects of various
model parameters on the optimal strategy and quantify the
improvement offered by the optimal strategy over the static
and bang-bang control strategies. The effect of the time varying
spreading rate on the controls is explored as the interest level
of the population in the subject of the campaign may change
over time. We show the existence of a solution to the formulated
optimal control problem, which has non-linear isoperimetric
constraints, using novel techniques that is general and canbe
used in other similar optimal control problems. This work may
be of interest to political, social awareness, or crowdfunding
campaigners and product marketing managers, and with some
modifications may be used for mitigating biological epidemics.

Index Terms—Erdős-Ŕenyi Networks, Information Epidemics,
Non-linear Programming, Optimal Control, Scale Free Networks,
Social Networks, Susceptible-Infected (SI).

I. I NTRODUCTION

POLITICAL campaigners, crowdfunders and product mar-
keting managers are using social networks increasingly to

influence individuals. The size of the online social networks—
in addition to the (old) human network where two individuals
interacting in day-to-day life are connected via a link—is in-
creasing day by day, which gives campaigners an opportunity
to mold the opinion of many individuals. Information (e.g.
awareness of newly launched or upcoming products or services
like smartphones, video games, satellite TV plans, movies etc;
ideologies of political candidates) spreads through networks in
a manner similar to pathogens on human networks, leading to
“information epidemics”. The campaigners’ goal is to ‘infect’
as many individuals as possible with the message by the
campaign deadline, respecting her budget constraints. Money
and manpower are scarce resources that need to be utilized
judiciously over the duration of the campaign, to achieve
optimal results. Such a resource allocation problem leads
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to the ‘optimal control’ formulation—maximize an objective
functional by adjusting a control which affects the system
evolution.

We address the above resource allocation problem to max-
imize the fraction of nodes in a social network that are aware
of the information. Individuals communicate the information
to their neighbors (through Twitter tweets, Facebook posts,
exchange of ideas when two individuals interact in face-to-
face meetings etc.), giving rise to an information epidemic.
The campaigner can influence this information spreading in
two ways: (i) By directly recruiting individuals from the
population at some cost by adjusting adirect recruitment
control (advertisements in mass media announcing discounts
on products). (ii) By accelerating message spreading by incen-
tivizing individuals who already have the message to spread
more, by adjusting aword-of-mouth control, e.g.announcing
referral rewards in the form of discounts, coupons or cash-
backs for introducing a friend to a product or service. Word-
of-mouth incentives may be announced by emailing current
customers, which will encourage them to put in a good word
for the company.

Resource limitations prevent the campaigner from commu-
nicating the information to the whole population. Not only
is the timing of the direct recruitment and word-of-mouth
incentives a crucial factor in determining the extent of infor-
mation spreading, but also the resource distribution among
different types of individuals and strategies. For example,
individuals with large numbers of links are known to be
influential spreaders [1], and more resources may be spent
on them.

Justification for using the Susceptible-Infected (SI) model:
We choose to model the information epidemic as the SI
process (where a fixed fraction,α < 1, of infected in-
dividuals spread the information in the absence of any
word-of-mouth control), over other possibilities such as
the Susceptible-Infected-Susceptible (SIS) and Susceptible-
Infected-Recovered (SIR) processes. The SI process has been
used in previous studies as a preferred model for information
propagation (e.g.[2]). It is suitable to model situations where
people who have ever received a message do not forget it
during the campaign period and depending upon the level of
word-of-mouth incentive, spread the message via their links.
Such a situation may be encountered in marketing of a durable
product (e.g.latest version of smartphones or computer games)
or services requiring memberships (e.g. mobile-phone and
satellite TV services) where the campaign duration is of the
same order as the life of the product. In these cases, the contact
details of the customers are always available with the company,
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which can incentivize their customers with varying levels of
word-of-mouth control to turn them into active spreaders.
Thus, the word-of-mouth incentive changes the fraction of
active spreaders among the infected.

Infected individualsrecoverin the SIR process or fall back
to the susceptible state in the SIS process. SIS processes may
be suitable to model marketing of consumables. SIR processes
may be suitable for situations where individuals will stop
spreading the message after random amounts of time and the
campaign duration is large compared to the ‘recovery’ time
(e.g. a situation arising in multi-level marketing, where an
individual, although still a member, has become inactive).

The framework developed in this paper can be used in
situations where only direct recruitment control can be applied,
as well as those in which both direct recruitment and word-
of-mouth controls can be applied. The former is suitable for
modeling political campaigns, campaigns for spreading aware-
ness of a social cause, movie promotion etc. The latter model
is suitable for the product marketing as well as campaigns
for crowdfunding. Crowdfunding refers to micro-funding in
forms of loans, donations, equity purchases or pre-ordering of
products yet to be produced, through the Internet and online
social networks such as Facebook, Twitter, LinkedIn etc. [3].

A. Related Work and Our Contributions

Devising strategies for epidemic prevention has been a
subject of interest in many studies (e.g. [4, 5]). Our work
is different in that thetheory of optimal controlis used.
The literature on optimal control of disease and computer
virus epidemics, in a homogeneously mixed population, is
plentiful [6, 7, 8, 9].Our work is different from the previous
literature on optimal control of epidemics in two aspects:
First, we consider information epidemics, which arerequired
to be disseminated; this seems to have attracted less atten-
tion compared to biological and computer virus epidemics,
which need to be curbed.Secondly and more importantly, we
consider a population ofnetworked individuals. We note that
networks play an important role in information dissemination,
as individuals rarely interact randomly with others in society
(as homogeneous mixing assumes); and even if they do, they
seldom trust those unknown to them. Most people interact and
trust a small group of individuals (‘small’ compared to total
population size) who are their ‘neighbors’ and share a link
with them in the network.

Many of the papers above consider a homogeneously mixed
population, and the ones which do not [10], present results
for the case where individuals are divided into a maximum
of two degree classes only. In contrast, we consider almost
three hundred degree classes in this study. Unlike the previous
literature, this allows us tostudy the effect of network topology
(Power Law, Erd̋os-Ŕenyi) on control of information dissemi-
nation in networks.Moreover in contrast to [10], we formulate
the optimal control problem with a fixed budget constraint.

A recent study [11] has formulated the optimal epidemic
prevention problem for the network case, where mean field
equations are written for each node of the network instead of
each degree class, the approach taken in this study. However,

[11] computed the optimal solution only for a five node
network and proposed heuristics for larger networks.

The works on rumor spreading on technological and social
networks with known topologies [12, 13] are similar in spirit
to the problem considered here. However, the aim there
was to compute maximum number of communication rounds
required to disseminate a piece of information to almost all
the nodes, following fixed communication strategies. Nodes
may either ‘Pull’ the message from their neighbors, ‘Push’ the
information to them or do both. Finding the optimal message
spreading strategy was not considered in those works.

The authors in [14, 15, 16] and [17] maximized information
and security patch dissemination through optimal control on
social and computer networks respectively, but considered
homogeneously mixed population. Similarly, the author in
[18] used impulse control to maximize the information spread
in a homogeneously mixed population, assuming the Daley-
Kendall and Maki-Thompson models, which are different from
the Susceptible-Infected model assumed in this paper. The
authors in [19] devised optimal pricing and advertisement
strategies for new products without considering the epidemic
message propagation, as is the case in this paper.

A unique aspect of an information epidemicis that the
interest level of people in talking about the subject of the
campaign may undergo a gradual change over the campaign
duration (e.g.,decreasing interest for a model of a smartphone
or a version of a software or computer game as they grow
old; or increasing interest level of people to talk about the
upcoming elections). Thus, the spreading rate of an infor-
mation epidemic may vary during the campaign duration.
This differentiates it from biological epidemics, where the
spreading rate is constant.We have captured this phenomenon
in this work, which differentiates it from the previous literature
on disease and information epidemics.For some applications
like crowdfunding, the spreading rate is not expected to change
over time.

Another contribution of this work is toshow the existence of
a solution to optimal control problems with a budget constraint
under non-linear costs of applying controls.Previous studies
on biological epidemics on homogeneously mixed populations
(e.g. [6, 7]) have considered non-linear cost functions (on
controls); however they considered a linear combination of
the cost and the reward reaped by the application of controls
to the system, and minimized thenet cost. In contrast, we
have explicit budget constraints. [14] does not have a network
structure, although the authors have formulated a problem with
an explicit budget constraint. [10] has a network structure, but
does not have explicit budget constraints.

Notice that the cost incurred by application of controls is
often non-linear in controls in practical applications, asargued
in [7]. This motivates us to formulate the problem with a non-
linear cost structure. Of course, this is also a generalization of
the linear cost structure that has been assumed widely in earlier
literature. Once we have an explicit budget with non-linear
costs, the standard theorems (by Filippov and Cesari [20]) for
showing the existence of a solution are not applicable (because
the system is now non-linearly influenced by the control) and
hence new techniques for showing the existence of a solution
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are required.
Apart from considering a network structure and an explicit

budget constraint for the first time in this paper,we have
tailored the classical Susceptible-Infected model to capture
information spreading.In particular, unlike a biological epi-
demic, information spreading is voluntary. We have captured
this by introducing a parameterα to represent the fraction of
the infected population that chooses to be spreaders. Word-
of-mouth control encourages slightly unwilling people to act
as spreaders, increasing the effectiveα. A similar control was
considered in [17] in a four state model for a homogeneously
mixed population.

Our results show considerable improvement in the final
fraction of the infected population (people who are aware
of the topic), when compared to a static and bang-bang
control strategies, that respect the same budget constraints. The
improvements, as expected, are very substantial compared to
the no control (campaign) strategy.

II. T HE SYSTEM MODEL AND PROBLEM FORMULATION

Individuals in the target population are organized into a
static network (or a graph). The degree of a node (individual) is
the number of neighbors the node in the network is connected
to. The nodes are grouped into different classes. All the nodes
with degreek are said to be in the degree classk. The set of
all possible degree classes (or degrees) is denoted byK. Thus,
k ∈ K = {Kmin, ...,Kmax}, Kmin and Kmax denote the
minimum and maximum degrees of the nodes in the network.
There are a total of|K| degree classes where|K| denotes
the cardinality of the setK. Let the size of the network be
N and the number of nodes in the degree classk ∈ K

be Nk, so that
∑

k∈K
Nk = N . Our formulation works for

networks with an arbitrarydegree distribution, pk. The degree
distribution of a network is defined as the probability mass
function, pk of the degreesk of the nodes in the network,
∑

k∈K
pk = 1. For a network, the empirical degree distribution

is, pk = Nk/N, k ∈ K [21].
Uncontrolled System: We model the Susceptible-Infected

information epidemic by the ‘degree based compartmental
model’. These models are most accurate on configuration
model networks. These networks lack correlation in the way
nodes are connected to one another, in the sense that a half
edge of a given node is equally likely to be connected to any
other half edge in the network. Also, being a mean field model,
degree based compartmental model requires population sizeN
to be large.

The campaigner is interested in spreading a message in the
population connected via the network. The process starts at
time t = 0 and the campaign deadline ist = T . The nodes
in the network are classified into two categories—susceptible
and infected. A susceptible node is yet to receive the message
and an infected node already has it. Infected nodes are further
classified into active (spreaders) and non-active nodes. Only
α < 1 fraction of the infected population is interested in
transmitting the message further (active or spreaders). Thus,
a newly infected node chooses to become a spreader with a
probability α. Effective fraction of spreaders in the infected

population can be changed by the level of the word-of-mouth
incentive (discussed later).

Let the numbers of susceptible and infected nodes at time
0 ≤ t ≤ T , in the degree classk ∈ K be Sk(t) and
Ik(t) respectively; and,sk(t) = Sk(t)/Nk, ik(t) = Ik(t)/Nk.
Then, the fractions of susceptible and infected nodes in the
network at timet is given by s(t) =

∑

k∈K
pksk(t) and

i(t) =
∑

k∈K
pkik(t) respectively withs(t) + i(t) = 1 and

sk(t) + ik(t) = 1, ∀ k ∈ K.
The population consists mostly of the susceptibles att = 0,

except for a small fractioni0, of nodes which act as the seed
for information dissemination. We assumeik(0) = i0, ∀k ∈
K. The message is passed probabilistically due to susceptible–
spreader contact. At timet, a susceptible node acquires the
message from a spreader at a rateβ(t), t ∈ [0, T ]. In other
words, in a small intervaldt at time t, a ‘susceptible’ node
changes its state to ‘infected’ due to a single susceptible–
spreader link with a probabilityβ(t)dt.

The degree based compartmental model makes an approx-
imation that all the nodes in the degree classk behave in
exactly the same way [22, Sec. 17.10.2] [21, Sec. 9.2]. We
first evaluate the probability that a tagged susceptible node of
degreek will change to infected state in a small intervaldt at
time t. For the configuration model, the neighbor degree dis-
tribution, which is the probability that we will find a neighbor
of degreek if we follow an edge of any node in the network, is
rk = kpk/k̄ (details are in Appendix A). Herēk =

∑

k∈K
kpk

is average degree of the network. Note thatrk is not simply
pk, one cannot reach a node with degree zero by following an
edge even ifp0 6= 0. Since the node in question is susceptible
and the neighbor is infected (and active), so the neighbor
must have acquired the information from somewhere else. So
the quantity of interest here is ‘excess degree distribution’,
which discounts the edge (of the neighbor) due to the tagged
susceptible node we are situated at. Excess degree distribution
is given byqk = rk+1 = (k+1)pk+1/k̄. Note that,qKmax

= 0.
The mean number of active neighbors around the tagged

susceptible node of degreek, who can potentially pass the
information to it, isk

∑

l∈K
(αil(t)ql). Thus the tagged sus-

ceptible node will switch to infected state with a probability1

1 − (1 − β(t)dt)k
∑

l∈K
(αil(t)ql) ≃ β(t)k

∑

l∈K
(αil(t)ql)dt.

Since the fraction of susceptible nodes in degree classk
at time t is sk(t), the total increase in the fraction of
infected nodes in degree classk in interval dt is given by
sk(t)β(t)k

∑

l∈K
(αil(t)ql)dt [22, Sec. 17.10.2, adapted for

time varyingβ(t)]. Thus, the rate of change of infected nodes
in degree classk in the uncontrolled SI epidemic is:

i̇k(t) = β(t)ksk(t)
∑

l∈K

(αil(t)ql); k ∈ K.

Admissible Controls: To control the above system, we
use the direct recruitment and word-of-mouth control signals
which are defined next. We denote theM -dimensional direct
recruitment vector control function byu = (u1, ..., uM ). The
valueum(t), 1 ≤ m ≤ M , denotes the rate of direct recruit-
ment, at timet, carried out by the campaigner in the group

1It is 1 minus the probability that none of the neighbors pass the informa-
tion. Information flow from the neighbors is assumed independent.
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m of degree classes, denoted byKm = {k̃m−1 + 1, ..., k̃m},
Kmin − 1 = k̃0 < k̃1 < ... < k̃M = Kmax. Through direct
recruitment control, the campaigner taps the pool of available
susceptible nodes and converts them into infected (α fraction
of those who get infected are spreaders). This can be done,
for example, by placing advertisements in the mass media.

The purpose of havingM control functions and dividing
degree classes intoM groups is to control each group with
one control, thereby identifying groups which are important
to target at any given time. Fig. 1a shows a small network
with 5 nodes:a to e, with degree sequence:2, 3, 4, 2, 1. Thus
K = {1, 2, 3, 4} and empirical degree distribution:p1 = p3 =
p4 = 1/5, p2 = 2/5. If we decide to haveM = 2, we may
chooseK1 = {1, 2},K2 = {3, 4}. Thus nodesa, d, e will be
controlled withu1 andb, c with u2. Fig. 1b shows an example
of grouping a network with|K| = 295 degree classes into
M = 3 groups. We emphasize that even though degree classes
are grouped into fewer groups for the purpose of controlling
them, we will still capture information diffusion dynamicsat
a finer level with differential equations for each of the|K|
classes.

(a) (b)

Fig. 1: (a) An example graph. Each filled oval represents a node. (b)
An example of dividing a network with minimum degreeKmin = 6
and maximum degreeKmax = 300 into M = 3 three degree class
groups. Each square represents a degree class.

The set of all admissible direct controls is defined in the
following. Let Ψ be the set of all equicontinuous functions
over[0, T ], i.e., |σ(t)−σ(t̂)| ≤ CΨ(ǫ), for t, t̂ ∈ [0, T ]; |t−t̂| ≤
ǫ, ∀σ ∈ Ψ with CΨ(ǫ) → 0 as ǫ → 0 [23, Sec. 1.6]. Then,

um ∈ Um , {σ ∈ Ψ : 0 ≤ σ(t) ≤ umax, ∀t ∈ [0, T ]}, (1)

and,u = (u1, ..., uM ) ∈ U ,
M
×

m=1
Um. (2)

Practical considerations will require each of theum(t) to be
continuous and bounded (maximum allowed direct control is
umax) at all timest. We make a slightly stricter assumption
that the functions inΨ are equicontinuous (i.e. the sameCΨ(ǫ)
works for all the functions inΨ and it is independent oft)
as it aids in showing existence of a solution to the optimal
control problem (6) (will be discussed later). This assumption
is not too strict and is milder than, for example, assuming
differentiability of functions.

The word-of-mouth control affects the fraction of spreaders
in the infected population and is denoted byv = (v1, ..., vM ).
The valuevm(t), 1 ≤ m ≤ M , denotes the rate at which
word-of-mouth incentives are handed out, at timet, in the
mth group of degree classes,Km, defined above. The set of

all admissible word-of-mouth controls is defined as:

v = (v1, ..., vM ) ∈ V ,
M
×

m=1
Vm (3)

where,vm ∈ Vm , {σ ∈ Ψ : 0 ≤ σ(t) ≤ vmax, ∀t ∈ [0, T ]}.
(4)

Here, vmax is the maximum allowed word-of-mouth control
signal and the setΨ was defined above.

Controlled System: The objective (reward) functional
for the optimal control problem is chosen to be,J =
∑

k∈K
pkik(T ). For applications like political/social aware-

ness/crowdfunding campaigns and product marketing, consid-
ered in this paper; we want to maximize the final number
(fraction) of individuals who have received the message by
the end of the campaign,i.e. at t = T . We do not care about
the evolution history,ik(t), 0 < t < T ; this motivates such
a choice forJ . In addition, we assume that the resources at
our disposal for applying the control signals are fixed. The
budget constraint is captured in Eq. (6d), whereB denotes
the combined budget for both types of controls.

Rationale for the budget constraint (6d):The functions
bm(.) andcm(.) capture the instantaneous cost of applying the
direct recruitment and the word-of-mouth controls in the group
m and are continuous, non-negative and increasing functions
in their arguments for1 ≤ m ≤ M (more effort incurs more
cost). Also,gm =

∑

k∈Km
pk denotes the fraction of the whole

population in groupm. The instantaneous resource consump-
tion for the direct control strategy is

∑M

m=1 gmbm(um(t)).

For the word-of-mouth control, the resource is spent when
an active node demonstrates that it has successfully influ-
enced a susceptible. Denote bȳs(t) the average fraction
of susceptible nodes around a given node. Thens̄(t) =
∑

k∈K
rksk(t), where rk = kpk/k̄ is the neighbor de-

gree distribution defined earlier. Given that we are in group
m, the probability of picking up an active node of de-
greek and a susceptible neighbor is(pk/gm)αik(t)s̄(t). In
a small intervaldt, the susceptible neighbor will convert
to infected with probability(pk/gm)ik(t)s̄(t)αvm(t)β(t)dt
due to application of word-of-mouth control. So the aver-
age word-of-mouth resource consumed fork neighbors is
kcm(vm(t))(pk/gm)ik(t)s̄(t)αvm(t)β(t)dt. Aggregating the
resource consumption over all degree classes in groupm and
then aggregating over all groups we get the instantaneous rate
of resource consumption for word-of-mouth strategy as

M
∑

m=1

✟✟gmcm(vm(t))s̄(t)αvm(t)β(t)
∑

k∈Km

{

pk

✟✟gm
kik(t)

}

. (5)

Define īm(t) ,
∑

k∈Km
kik(t)pk. Thus we get Eq. (6d)

by aggregating the resource expenditure over the complete
campaign horizon. The constraint Eq. (6d) is written from the
perspective of a single (typical) node in the network; so,B
must be interpreted as a per-node expected budget.
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The optimal control problem can now be stated as:

max
u∈U,v∈V

J =
∑

k∈K

pkik(T ), (6a)

s.t.: i̇k(t) = β(t)sk(t)k






M∑

p=1

∑

l∈Kp

qlil(t)α(1 + vp(t))
︸ ︷︷ ︸

word-of-mouth






+ um(t)sk(t)
︸ ︷︷ ︸

direct recruitment

; ∀k ∈ Km, 1 ≤ m ≤ M, (6b)

ik(0) = i0; k ∈ K, (6c)
∫ T

0

M∑

m=1

{

gmbm(um(t)) +

αvm(t)β(t)cm(vm(t))̄im(t)s̄(t)
}

dt = B. (6d)

As stated earlier,i0 is the seed for the epidemic. Since,sk(t) =
1− ik(t), 0 ≤ t ≤ T, k ∈ K, so we have|K| =

∑M
m=1 |Km|

state variables (and not2|K|). Also, α(1 + vm(t)) ≤ 1, ∀t ∈
[0, T ]. To satisfy this condition, we chooseα andvmax such
that,α(1 + vmax) ≤ 1.

DefineBfull as the resource required to run the campaign
with full intensity throughout the campaign horizon. It is worth
noting that the interesting case occurs when0 < B < Bfull.
In this case, the solution to the problem allocates the limited
resource over the campaign period. We will not consider cases
whereB > Bfull in this paper. For the cases considered,
notice that it will never be optimal to underutilize the budget,
hence we have put equality (instead of the inequality≤) in
Eq. (6d) without loss of generality.

In Problem (6), depending on the application and situation,
the campaigner can decide upon the number of direct and
word-of-mouth controls,M , she wants to apply and the degree
classes in themth group,Km, they would target. Also, in some
cases, it may not be feasible to apply word-of-mouth control.
For such cases, we setvm ≡ 0, 1 ≤ m ≤ M .

We emphasize the implication of the factorα and the word-
of-mouth control in our model (biological SI epidemics have
α = 1, i.e., every infected individual is a potential spreader).
Irrespective of the value ofα used (0 < α ≤ 1), message prop-
agation is always probabilistic whenever individuals interact,
depending upon whether or not the topic of interest came up
during the meeting. In our model, onlyα fraction of infected
individuals ‘try’ to spread the message; the rest of them are
uninterested to begin with, and do not attempt spreading. Even
the non-spreading infected individuals have the message, so
a higher level of word-of-mouth control may convert some
of them to spreaders (which is a reasonable model) and
when word-of-mouth incentive subsides, such individuals may
again become uninterested (non-spreaders). Advertising for a
product, or advocating for a (risky) crowdfunding investment
means putting personal reputation at stake, so the level of
word-of-mouth incentive is an important factor influencingthe
spreading behavior of an individual. Note that the classical
Susceptible-Infected-Recovered model will not capture this
phenomenon because once recovered, individuals willnever
spread the message. This makes the SI model (withα) more
suitable for the applications considered in this paper.

III. E XISTENCE OF ASOLUTION

The proof of the existence of a solution to an optimal control
problem is of practical importance because sometimes even
reasonable looking problems do not admit their extrema; see
examples 1.1 and 1.2 in [20, Chap. III, Sec. 1]. The usual
method to show the existence of a solution to an optimal
control problem is to use Filippov/Cesari’s existence theorem
[20, Chap. III, Sec. 2 and 4]. However, they are only applicable
to systems where the controls affect the system linearly. Due
to the isoperimetric constraint (6d), for non-linearbm(.) and
cm(.), neither of the theorems is applicable in our case.
This observation is based on the fact that, in the equivalent
formulation of Problem (6), Eq. (6d) can be replaced by:

ḣ(t) =

M
∑

m=1

{

gmbm(um(t)) + αvm(t)β(t)cm(vm(t))̄im(t)s̄(t)
}

;

h(0) = 0, h(T ) = B;

which has, for non-linearbm(.) and cm(.), a non-linear de-
pendence on the controls. Note that this is the standard way
of handling the isoperimetric constraints in optimal control
problems. Due to the non applicability of the standard Fil-
ippov/Cesari existence theorems, we show the existence of a
solution to the formulated problem using first principles.

We detail the steps to show the existence of a solution to
Problem (6). We make use of the ‘Extreme Value Theorem’
[24, Theorem 4.16] to show the existence. It says that a
continuous function on a compact space attains its supremum
at some point in the compact space. The steps involved are
as follows (Theorem III.1): (i) We first define a compact set
W using the set of admissible controlsU × V (defined in
(2) and (3)) and the isoperimetric constraint (6d). (ii) We then
show that the functionalJ defined in (6a) is continuous at all
elements of that compact space,(u,v) ∈ W . (iii) Then we
show that the constraint differential equation (6b), (6c) has a
solution at all elements(u,v) ∈ W , thus the constraint is
satisfied for all elements of the compact spaceW .

Let i(t) =
(

iKmin
(t), ..., iKmax

(t)
)

denote the state vari-
able vector. The right hand side (RHS) of equation (6b) is
denoted byfk(i(t), t) (note that(u,v) is a function of t).
Let f(i(t), t) =

(

fKmin
(i(t), t), ..., fKmax

(i(t), t)
)

. In this
section we use 1-norm for vectors. However, the result holds
for any p-norm due to equivalence of vectorp-norms,p ≥ 1
[25].

Lemma III.1. The functionf(i(t), t) is Lipschitz continuous
in i(t).

Proof: Notice that,

|f(i(t), t)− f (̂i(t), t)| =
∑

k∈K

|fk(i(t), t)− fk (̂i(t), t)|

≤
∑

k∈K

∣
∣
∣
∣
β(t)kα

[

(1− ik(t))
M∑

m=1

∑

l∈Km

qlil(t)(1 + vm(t))

− (1− îk(t))

M∑

m=1

∑

l∈Km

ql îl(t)(1 + vm(t))
]
∣
∣
∣
∣

+
∑

k∈K

|um(t) (sk(t)− ŝk(t))|
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≤ umax|i − î|

+ βmaxKmaxα
∑

k∈K

∣
∣
∣
∣

M∑

m=1

∑

l∈Km

(

ql(1 + vm(t))(il(t)− îl(t))

− ql(1 + vm(t))
(
il(t)ik(t)− îl(t)̂ik(t)
︸ ︷︷ ︸

ilik−il îk+ilîk−îl îk

))
∣
∣
∣
∣

≤ umax|i − î|+ βmaxK
2
maxα(1 + vmax)|i− î|

+ βmaxK
2
maxα(1 + vmax)|i − î| × 2.

Thus, |f(i(t), t) − f (̂i(t), t)| ≤ C|i(t) − î(t)| which estab-
lishes Lipschitz continuity off(i(t), t) in i(t) ∀ (u,v) ∈
U × V .

Lemma III.2. If ĩ(t) is a solution of the system of ODEs (6b)
and (6c), theñi(t) is a continuous function of(u,v) ∈ U×V .

Proof: The continuity of̃i(t) can be shown by using the
‘Theorem on Continuous Dependence’ [26, pg. 145] of the
solution of an ordinary differential equation on the vectorfield
on the RHS. The theorem on continuous dependence states that
if ĩ(t), t ∈ [0, T ] is a solution of (6b),(6c); then givenǫ there
exist δ such that

∣

∣̃i(t) − î(t)
∣

∣ < ǫ, whenever
∣

∣f(i(t), t) −

f̂(i(t), t)
∣

∣ < δ, for t ∈ [0, T ]. Here î(t) is the solution of
a perturbed version of (6b),(6c),i̇k(t) = f̂k(i(t), t), ∀k ∈
K, where (u,v) in f(i(t), t) is perturbed to(û, v̂) to get
f̂(i(t), t).

Notice that,

|f(i(t), t)− f̂(i(t), t)| =
∑

k∈K

|fk(i(t), t)− f̂k(i(t), t)|

≤
∑

k∈K

∣
∣
∣
∣
∣
β(t)sk(t)kα

M∑

m=1

∑

l∈Km

qlil(t) (vm(t)− v̂m(t))

∣
∣
∣
∣
∣

+
∑

k∈K

|sk(t) (um(t)− ûm(t))|

≤ βmaxK
2
maxα|v − v̂|+Kmax|u− û|,

where, maximum valuesβmax for β(t), Kmax for k, 1 for
sk(t), 1 for ik(t), and 1 forqk are used in the last step (note
that the excess degree distribution,qk, is a probability mass
function which is non-negative and sums to 1). So when,

|v − v̂|+ |u− û| ≤
δ

max{βmaxK2
maxα,Kmax}

we have,|f − f̂ | ≤ δ ⇒ |̃i(t) − î(t)| ≤ ǫ, ∀t ∈ [0 T ]; which
establishes the continuity of̃i(t) in (u,v).

The ‘Theorem on Continuous Dependence’ also requires
Lipschitz continuity off(.) in the state variable vectori(t),
which follows from Lemma III.1.

Define W ′ , {(u,v) :
∫ T

0

∑M

m=1{gmbm(um(t)) +
αvm(t)β(t)cm(vm(t))̄im(t)s̄(t)}dt = B}, where gm =
∑

k∈Km
pk, īm(t) =

∑

k∈Km
kik(t)pk and s̄(t) =

∑

k∈K
(kpk/k̄)sk(t). Mean degree of the network is repre-

sented byk̄ and ik(t)’s are the solution to the initial value
problem (IVP) (6b), (6c).

Lemma III.3. The setW is compact, whereW , W ′ ∩
(U × V ).

Note that the setW consists of all controls inU × V for
which the budget constraint (6d) is satisfied.

Proof: Step I: The setsU andV are compact:Note that
Um in (1) andVm in (4) are equicontinuous and equibounded
sets and hence precompact (Arzela-Ascoli Theorem [23, The-
orem 1.6.3]). In addition,Um andVm are closed by definition.
HenceUm andVm are compact sets. Now,U andV being
cross products of finite number of compact sets are compact
(Tychonoff’s Theorem [27, Page 392]).

Step II: The setW ′ is closed: From Lemma III.2, the
solution to the IVP (6b), (6c) is a continuous function of
(u,v) ∈ U × V . Thus, īm(t) and s̄(t) are continuous
functions of (u,v) ∈ U × V . Also, bm(), cm() are con-
tinuous in their arguments, henceW ′ can be expressed as
W ′ = {(u,v) : η(u,v) = B}, whereη(.) is a continuous
function in its arguments. Using standard techniques in real
analysis, we can showW ′ is closed. Let{(un,vn)} be a
sequence such that(un,vn) ∈ W ′ ∀n ∈ Z

+, the set of
non-negative integers. Let the limit point of the sequence
be (ū, v̄). Then, η(ū, v̄) = η(limn→∞ un, limn→∞ vn) =
limn→∞ η(un,vn) = limn→∞ B = B. Third to last equality
follows from the fact thatη(.) is continuous in its arguments.
Thus the limit point lies inW ′, which meansW ′ is closed.

Step III: The setW is compact:The product of compact sets
U×V is compact (Tychonoff’s Theorem [27, Page 392]). The
intersection of closed and compact setsW ′ ∩ (U ×V ) , W

is compact [24, Page 38].

Theorem III.1. There exist optimal control signals(u∗,v∗) ∈
U ×V and the corresponding solutionsi(t) to the IVP (6b),
(6c) such that(u∗,v∗) ∈ argmax

(u,v)∈U×V

{J(u,v)} in Problem

(6).

Proof: In light of the discussion earlier in the section, this
theorem can be proved in three steps:

Step I: The setW is compact:Lemma III.3.
Step II: Initial value problem (6b),(6c) has a solution for

any (u,v) ∈ W : The solution to the initial value problem
(6b),(6c) (aggregated for allk ∈ K) exists becausef(i(t), t)
is Lipschitz continuous ini(t) ∀ (u,v) ∈ U × V ⊇ W [28,
pg. 185]. Lipschitz continuity follows from Lemma III.1.

Step III: The functionalJ =
∑

k∈K
pkik(T ) in (6a) is

continuous at all(u,v) ∈ W : From Lemma III.2, if i(t)
is the solution of IVP (6b), (6c), theni(T ) = i(t)|t=T is
continuous in(u,v) ∈ U × V . But W is a compact subset
of U × V .

IV. SOLUTION VIA NON-LINEAR PROGRAMMING

Once we have established the existence of a solution to
Problem (6), we proceed to calculate it. We solved Problem
(6) by using algorithms that are available to solve optimal
control problems by converting them into discrete non-linear
optimization problems [29]. Matlab’s non-linear optimization
solverfmincon() is used to solve the discretized version of
Problem (6). The function solves the constrained non-linear
optimization problems and requires the objective functionand
the constraints as inputs. We brief the discretization steps in
the following.

The campaign duration[0, T ] is sampled atN+1 equidistant
time-points, such thatt0 = 0 andtN = T . Let ik(tn), um(tn)
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andvm(tn) be the values of the state and control variables at
those instances,n = 0, 1, ..., N ; and let∆t = t1 − t0 = ... =
tN − tN−1. The idea is to keepN large enough to achieve
the desired accuracy and compute the values ofum(tn) and
vm(tn), ∀n, ∀m using the optimization routine.

Objective function: The objective to be maximized is
∑

k∈K
pkik(tN ). However, to evaluate this, we need to solve

the initial value problem (IVP) (6b) and (6c). We do so by
following Heun’s method [30, Sec. 1.1] to solve the IVP. The
global error due to discretization is bounded byO(∆t2) for
this method.

Let the right hand side of Eq. (6b) be denoted byfk(i(t), t),
wherei(t) is vector of allik(t); notice thatsk(t) = 1− ik(t)
andum(t), vm(t) are just functions oft. At the initial time-
point,ik(t0) = i0, ∀k. The value ofik(tn) for 1 ≤ n ≤ N , for
a givenk, is computed using both the left and right derivatives
as follows:

ik(tn) =ik(tn−1) +
∆t

2

[

fk
(
i(tn−1), tn−1

)

+

approximate right derivative
︷ ︸︸ ︷

fk

(

i(tn−1) + ∆tfk
(
i(tn−1), tn−1

)

︸ ︷︷ ︸

approximation ofi(tn)

, tn

)]

.

The valuei(tN ), at the last time-point is used in the objective
function.

Constraints:The following constraints are fed as inputs to
the routine:

1) The inequality constraints,um(tn) ≥ 0, vm(tn) ≥ 0,
um(tn) ≤ umax, vm(tn) ≤ vmax, ∀n, ∀m.

2) The budget constraint (6d) leads to the equality
constraint:

∑N

n=1

∑M

m=1

{

gmbm(um(tn)) +

αvm(tn)β(tn)cm(vm(tn))̄im(tn)s̄(tn)
}

∆t − B = 0.

Here gm =
∑

k∈Km
pk, īm(tn) =

∑

k∈Km
kik(tn)pk,

and s̄(tn) =
∑

k∈K
(kpk/k̄)sk(tn). Values of

ik(tn), ∀n, ∀k, are obtained from the computation
above andsk(tn) = 1− ik(tn).

The computation in the optimization routine is initialized
with some initial guess forum(tn) and vm(tn), ∀n, ∀m
and the routine refines it until the stopping criteria are met.
The functionfmincon() uses a combination of factors, like
change in the objective function value, change in the valuesof
the variables being optimized, magnitude of the gradient etc.
to decide the stopping criteria.

We have used Heun’s method over other possibilities such as
Euler and Runge-Kutta methods. For reasonable values ofN
(so that the number of optimization variables is not too large),
Euler’s method was numerically unstable for certain parameter
values (e.g. high β). This is so because Euler’s method is
only O(∆t) accurate. The Runge-Kutta method requires the
value of the optimization variables at2 × N time points for
N point discretization [30, Sec. 1.1]. Although more accurate
for small systems (with small values ofM ), the memory and
execution time requirements (in the optimization routine)for
larger systems will increase non-linearly, which makes itsuse
unsuitable. Heun’s method offers a compromise between these
factors (accuracy and memory requirement/execution time)
and works well in practice.

V. NETWORKS USED IN THISSTUDY
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Fig. 2: Cumulative degree distribution and degree distribution (inset)
(defined in Sec. II) of the networks used in this paper.

We have used degree distributions from three networks
to demonstrate the results. The first one is an Erdős-Rényi
network, which is known to have a Poisson degree distri-
bution. The probability of finding a node with degreek is,
pk = e−λλk/k!, ∀k ∈ K, whereλ is the mean degree in the
network andk! denotes the factorial of the integerk. The other
two are scale free networks, which are known to follow the
power law degree distribution,pk = ck−γ , ∀k ∈ K, wherec is
a properly chosen scalar to normalize the degree distribution to
1. Hereγ is the exponent of the power law and lies between2
and3 for most real networks (including social networks) [22].
Hence we have chosenγ = 2 and γ = 3 for the two scale
free networks used in this study. We name the networks ER,
PL2 and PL3 in the rest of the paper.

The three networks are chosen such that the mean degrees
for all three of them are almost the same. They cannot be made
exactly the same because the minimum and maximum degrees
for the networks are discrete quantities. The minimum and
maximum degrees for the scale free networks areKPL2

min = 6,
KPL2

max = 300, KPL3
min = 13, KPL3

max = 300, which yield the
mean degree for the two networks ask̄PL2 = 22.47, k̄PL3 =
24.03. The mean degree for the Erdős-Rényi network is set to
k̄ER = λ = 23.60, with minimum and maximum degrees as
KER

min = 1, KER
max = 60.

The maximum degrees for both the scale free networks are
the same, so that the hubs (which will aid in information
spreading) have similar degrees in both the cases. We preferred
to keep the mean degree the same for all the three networks
because, for any given (large) size, all three of them will have
(almost) the same number of links. Thus, none of the networks
will have a statistical advantage in spreading the information,
which propagates through the links of the network. The
probability distribution and density functions of the degrees
of the three networks are shown in Fig. 2.

VI. RESULTS AND DISCUSSIONS

In this section, we first explain the values for the model pa-
rameters and validate the degree based compartmental model
for the SI process for configuration model networks. Then
we present the results demonstrating the importance of timing
the incentives properly, and identify the degree classes which
are more useful to target for maximum spreading. Then we
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study the effect of various model parameters on the reward
functional, J and compare the optimal strategy with static
and bang-bang control strategies. In the static control strategy,
the direct and word-of-mouth controls are implemented at
κ ≤ 1 times the maximum allowed value in all degree classes.
The value ofκ is selected so that this strategy respects the
same budget constraint as the optimal control strategy. In
the bang-bang strategy, direct and word-of-mouth controlsare
implemented in all degree classes at the maximum strength
till the resource lasts. As will be seen in this section, control
strengths are strongest in the early stages of the campaign and
gradually subside; this motivates the bang-bang strategy.

A. Default Model Parameters and Validation of Degree Based
Compartmental Model
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Fig. 3: Validation of the degree based compartmental model for an
SI epidemic on104 node configuration model networks. We average
over 20 simulations.α = 1, β = 0.12, i0 = 0.01.

Model Parameters:Unless otherwise stated, the model pa-
rameters are set to the following values for the results reported
in the rest of this section. The fraction of infected nodes
(relative to the total population) at the start of the epidemic,
i0, is set to0.01. The small value ofi0 implies that we have
started campaigning at the early stages of the epidemic.

The campaign deadline and spreading rate together decide
the extent of spreading in the uncontrolled system. We have
normalized the campaign deadline toT = 1 and the spreading
rate is set toβ = 0.12 (for cases where the spreading rate
is constant over the campaign period). We choose such a
value of β because it leads to low to moderate spreading in
the uncontrolled system (i(T ) = 0.040, 0.058 and 0.126 for
ER, PL3 and PL2 networks respectively, fori0 = 0.01), the
situation which would require campaigning.

The value ofα, the fraction of the infected population
interested in further spreading the message is set to0.5. The
maximum value of direct control is set toumax = 0.12, equal
in magnitude to the spreading rate, irrespective of whether
word-of-mouth control is used or not. The maximum value for
the word-of-mouth control is set tovmax = 0.5; thus, we can
only increase the fraction of spreaders by a maximum of50%
by applying word-of-mouth control, which seems reasonable.

The functions deciding the cost of applying the direct
and word-of-mouth controls are,bm(u(t)) = b̂mu2(t) and
cm(v(t)) = dĉmv2(t), with b̂m = ĉm = 1, ∀m. That is,
the default value of convincing all the degree class groups

(captured bŷbm andĉm) is the same. The parameterd captures
the relative cost of using word-of-mouth control over direct
control and is set to0.5.

The budget,B is set tou2
max×T/8, which is one-eighth of

the value of the resource spent if direct control is used at full
intensity and no word-of-mouth control is used throughout the
campaign duration (for̂bm = ĉm = 1, ∀m). This corresponds
to the scarce resource case, which is likely to be encountered
in most real situations. We are not interested in cases where
the resource is so abundant that maximum control strength
can be applied throughout the campaign duration. All the
computations are carried out by discretizing the campaign
duration into 51 time points.

Model Validation:The comparison between system evolu-
tions, captured byi(t) =

∑

k∈K
ik(t)pk, produced by the SI

epidemic process simulated on configuration model networks,
and that produced by differential equations from degree based
compartmental models are shown in Fig. 3. The simulation
results are averaged over 20 runs on networks of size104

for all three types of networks—ER, PL3 and PL2. We see
an excellent match between simulation and degree based
compartmental model. To construct a configuration model
network, sample the degree of all104 nodes frompk, k ∈ K.
Then select a half edge of any node and pair it with any other
half edge available in the network. Self and multiple loops can
occur, but their density goes to zero for large networks [22].
Also, if the last half edge is left unpaired, it is ignored.

B. Timing the Incentives and Important Degree Classes

1) Constant Spreading Rate,β(t) = β: For this result,
the degree classes are divided into three groups (M = 3),
each targeted by a direct and a word-of-mouth control. For
a given network, nodes in degree classesKmin to k̃1 are
assigned to the first group, those in degree classesk̃1 + 1 to
k̃2 are assigned to the second group andk̃2 + 1 to Kmax

are assigned to the third group, such that
∑k̃1

k=Kmin
pk ≈

∑k̃2

k=k̃1+1
pk ≈

∑Kmax

k=k̃2+1
pk ≈ 1/3. Thus, the three groups

are selected such that roughly one-third of the nodes fall in
each of the groups for all the three networks. This approach
of creating the three groups remains the same in the rest of
the paper. This is just an example of forming groups that is
used to demonstrate results in this paper. Our method works
for any disjoint collection of degree classes grouped to form
Km’s. The degree classes are grouped only for the purpose
of controlling the network, information diffusion dynamics
is still captured with |K| equations, as suggested by Eq.
(6b). Following this approach, groups in the ER network
have degree classesKER

1 = {1, ..., 21}, KER
2 = {22, ..., 25},

K
ER
3 = {26, ..., 60}; PL3 network: KPL3

1 ={13,14,15},
K

PL3
2 ={16,...,21}, KPL3

3 ={22,...,300}; and PL2 network:
K

PL2
1 ={6,7,8}, KPL2

2 ={9,...,15}, KPL2
3 ={16,...,300}.

Shapes of the direct and word-of-mouth optimal control
signals for ER, PL3 and PL2 networks and the corresponding
rates at which resource is allocated in each of the three
groups are shown in Fig. 4. To plot the resource alloca-
tion rate in groupm, we have plottedgmbm(um(t)) and
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αvm(t)β(t)cm(vm(t))̄im(t)s̄(t) over time for direct and word-
of-mouth controls (as derived in (5)). The word-of-mouth
control is representative of the cash-back or discount on
membership renewals, announced for present customers if they
introduce a friend to the service/product. The corresponding
resource allocation rate is akin to the rate at which money is
spent due to announcement of such cash-backs. As seen from
the figure, for all three networks, both direct and word-of-
mouth controls have larger strength at the early stages of the
epidemic and they gradually decay. This is so because for the
SI epidemic, early infection aids in faster propagation of the
epidemic, hence the reward for an intense control, in-spiteof
the higher costs, is worthwhile.

As seen from the resource allocation rate plots (Figs. 4d, 4e,
4f), when all the degree classes are equally costly to influence,
for PL3 and PL2 networks (which are more heterogeneous
than the ER network), the highest group (m = 3) is most im-
portant in the optimal strategy (which assigns highest resource
for both types of controls to them; at least at the beginning
stages in the case of direct controls, and always for the word-
of-mouth controls). For the ER network, the medium group
(m = 2) attracts the most investment, which makes them
the most important group for information spreading (more
important than even the highest group, which is somewhat
surprising). The group with highest degree classes is next most
important, followed by the group with lowest degrees classes,
which is as expected. The percentages of total (direct plus
word-of-mouth) resource taken up by low, medium and high
groups in the case of ER are 21%, 47%, 32%; for PL3: 8%,
29%, 63%; and PL2: 5%, 17%, 78% respectively.

Explanation of this (‘surprising’) bahavior:Information
diffuses through edges in the network. We calculate the mean
degree of nodes in the given network and given degree class
group using k̄m =

∑

k∈Km
(kpk)/

∑

k∈Km
pk. The values

for ER are k̄ER
1 = 18.3, k̄ER

2 = 23.5, k̄ER
3 = 28.9. For

PL3: k̄PL3
1 = 13.9, k̄PL3

2 = 18.0, k̄PL3
3 = 40.1. And,

for PL2: k̄PL2
1 = 6.8, k̄PL2

2 = 11.3, k̄PL2
3 = 48.5. Thus

we see that the highest groups in heterogeneous networks
(PL2 and PL3) have disproportionate advantage in terms
of the number of links/edges to other nodes. Although this
aids in both spreading and receiving information, targeting
low/medium group nodes early on in the campaign is not
useful because a randomly chosen node in them will most
likely be a part of a collection of nodes connected to other
low/medium group nodes and is most likely away from a hub.
In PL2/PL3 networks, hubs (high degree nodes) are connected
to low/medium degree nodes, but the rest of low/medium
group nodes connect among themselves and the information
penetrates slowly there. Later on in the campaign when we
have exhausted high group nodes, it makes sense to target
medium and low group nodes.

On the other hand, connectivity is more uniform in the
ER network. Nodes in the highest group will be able to get
information from medium and lower group nodes. In addition,
directly targeting medium and lower groups increases the
fraction of infected nodes in these groups, thus having a direct
effect on increase in the objective (reward) functional (net
fraction of infected nodes at the deadline).

The resource allocation rate plots (Figs. 4d, 4e, 4f) also
show that: (i) The word-of-mouth strategy assumes increas-
ing importance with network heterogeneity (PL2>PL3>ER).
The percentages of total resource allocated to word-of-mouth
strategies (all 3 groups combined) for PL2, PL3 and ER
networks are 44%, 28% and 19% respectively. The more het-
erogeneous the network, the more hubs it has, thus more word-
of-mouth resource is allocated to the highest group to infect
the nodes attached to the hubs (see the curves corresponding
to m = 3 in the figures for PL2, PL3 networks). The ER
network does not have a group with distinct advantage in terms
of degrees, so the word-of-mouth resource allocation is low.
(ii) The more heterogeneous the network, the more disparity
there is in the allocated resources for high, medium and low
groups for both control strategies. Thus, high degree nodesin
more heterogeneous networks have more relative importance
than their counterparts in less heterogeneous networks.

To achieve the above resource allocation, the optimal strat-
egy uses controls as shown in Figs. 4a, 4b and 4c. The
direct controls follow the same trend as the corresponding
resource allocation rate curves; however, the word-of-mouth
controls show different trends. For the ER network, more
word-of-mouth rewards (the controls in form of cash-backs,
for example) are announced for the medium group, followed
by the low and then the highest group. For the heterogeneous
networks, highest reward is announced in medium group,
followed by high and low groups. Since the highest group has
more nodes around it, the resource spent due to the group’s
cash-back claims is more than that of the other groups in
the heterogeneous network. More rewards are announced in
the medium group to incentivize their members for strong
spreading to their neighbors, as there are fewer neighbors in
the group.

Table I gives an idea of the time taken to solve the optimal
control problem for various networks for the parameter values
chosen in Sec. VI-A. Note that this time is dependent on
the values chosen for the parameters (which is true for any
numerically solved optimization problem).

TABLE I: Time taken (in sec, on a machine with Intel quard-core i3-
2100 CPU @ 3.10 GHz, 4 GB RAM, and running a 64 bit operating
system) to solve Problem (6) for various networks for different values
of M (averaged over 10 runs) when[0, T ] is discretized toN = 51
time points.

M = 1 M = 2 M = 3 M = 4 M = 5 M = 10
ER 8.50 45.96 77.99 185.68 284.38 1002.75
PL3 12.25 85.52 143.33 244.34 341.58 1217.80
PL2 12.36 94.64 169.42 251.97 395.72 1222.33

2) Time Varying Spreading Rate:To capture the varying
interest level of the population in talking about the subject of
the campaign, we have modeled the spreading rate as a time
varying quantity. In this section we demonstrate the effectof
time-varying spreading rate on the optimal control strategy.
We have chosen linearly decreasing and linearly increasing
time varyingβ(t) for illustration, defined as:

β1(t) = βM × (1 − t/T ), 0 ≤ t ≤ T,

β2(t) = βM × t/T, 0 ≤ t ≤ T.
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(a) Controls, ER,β(t) = β, ∀t.
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(c) Controls, PL2,β(t) = β, ∀t.
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(d) Resource allocation, ER,β(t) = β, ∀t.
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(e) Resource allocation, PL3,β(t) = β, ∀t.
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Fig. 4: Controls and resource allocation rate forM = 3 for the case of constant spreading rate. Parameter values:T = 1, β = 0.12,
i0 = 0.01, α = 0.5, umax = 0.12, vmax = 0.5, b̂m = ĉm = 1 ∀m, B = u2

maxT/8, d = 0.5.
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(a) Controls, PL3,↓ β1(t).
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(b) Controls, PL3,↑ β2(t).

0 0.2 0.4 0.6 0.8 1

10
−5

10
−4

10
−3

time

in
st

an
ta

ne
ou

s 
re

so
ur

ce
 a

llo
ca

tio
n

 

 

 

 

PL3 direct m=1
PL3 direct m=2
PL3 direct m=3

PL3 wom m=1
PL3 wom m=2
PL3 wom m=3

(c) Resource allocation, PL3,↑ β2(t).

Fig. 5: Resource allocation rate forM = 3 for the case of time varying spreading rate. Parameter values: T = 1, i0 = 0.01, α = 0.5,
umax = 0.12, vmax = 0.5, b̂m = ĉm = 1 ∀m, B = u2

maxT/8, d = 0.5.

A decreasingβ1(t) may be encountered in product promotion
campaigns (e.g.smartphones), where the interest of the popu-
lation in the version of the product decreases as it grows old.
An increasingβ2(t), on the other hand, may be encountered
in cases such as poll campaigns, where people are more and
more interested in the subject as the polling day approaches.

The controls for the PL3 network for decreasingβ1(t) are
shown in Fig. 5a, and controls and resource allocation rate
curves for increasingβ2(t) are shown in Figs. 5b and 5c
respectively. Here,βM = 0.24 and degree classes are divided
into three groups as in Sec. VI-B1. The graphs for other cases
showed similar trends and are omitted for brevity. Points to
note are:

(i) The word-of-mouth and direct controls are always strong
in the beginning stages of the campaign (in-spite of the high

costs they incur due to their strength) for both decreasing
and increasing spreading rate profiles. More infected nodes
at beginning of the campaign leads to more information
dissemination in the case of SI process (where there is no
recovery like SIR). The word-of-mouth resource allocation
(in Fig. 5c) follows the trend, because of slow conversion of
susceptibles to infected due to word-of-mouth strategy early
on in the campaign (because of low values ofβ2(t) in early
stages).

(ii) The importance of the degree class groups in spreading
the epidemic is the same as in Sec. VI-B1 for ER and PL2/PL3
networks. Thus, the earlier result is reconfirmed, that is, the
order of importance for the ER network is: medium degrees>
high degrees> low degrees, and that for the PL2/PL3 network
is: high degrees> medium degrees> low degrees (omitted
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graphs showed the same trend).

C. Effect of the Budget

In the rest of this paper we assume a constant spreading rate.
Fig. 6 studies the effect of the budget on the reward functional
J , for M = 10, for all three networks and compares it with
static and bang-bang strategies. To divide the degree classes
into M = 10 groups, we use the approach similar to that
in Sec. VI-B, where degrees were sequentially allotted to the
groups, with each group having about one-tenth of the total
fraction of the nodes. This approach of creating ten groups
remains the same for the rest of the paper.

From the figures we conclude that (for the parameter values
used) the heterogeneous networks (PL2 and PL3) benefit more
from the application of the optimal control strategy compared
to the ER network, with respect to the static control strategy
(concluded from the percentage improvement data in Fig. 6).
The trend is also roughly true for bang-bang control. The
benefit for heterogeneous networks is more because we are
still in the regime of low infection and there are untapped
susceptible nodes closer to hubs which will benefit from
increasing the resource. This does not happen for the case
of the ER network. Increase in resource benefits the optimal
strategy more than the non-optimal strategies, leading to this
trend.

Also, the performance benefits are more for the low and in-
termediate budgets than for the high budgets. This is expected
because at higher budget values, the optimal, static and bang-
bang controls are increasingly similar in shape and all of them
tends to saturate to the maximum allowed value.

From this figure (and results in the rest of the paper) we
see that static strategy outperforms the bang-bang strategy.
Although the bang-bang strategy puts the control effort at the
most productive stage (beginning of the campaign), the strong
intensity incurs more cost (due to the convex cost structure
assumed in this section). Compared to the static strategy, the
bang-bang strategy is able to exert less total control effort
for the same value of budget. It turns out that this trade-off
(productive time vs. total effort) is working in favor of the
static strategy.

D. Effect of Changing the Relative Cost of Word-of-mouth
Controls

The effect of varying the relative cost of using word-
of-mouth control, which is captured by parameterd in the
function cm(v(t)) = dĉmv2(t), is studied in Fig. 7. Results
show that increase in the price of word-of-mouth controls hurts
the PL2 network more than the ER network (as suggested
by the relative improvement over non-optimal strategies data).
The optimal strategy tries to adjust for high costs by allocating
more resource to direct controls, so the advantage gained over
non-optimal strategies has an increasing trend, but doing so
hurts the PL2 network, which uses the word-of-mouth strategy
more extensively than the ER network (seen in Sec. VI-B).
Hence the percentage improvement curve for PL2 is lower
than that for ER.

E. Effect of the Spreading Rate

Fig. 8 shows the effect of varying the spreading rateβ on the
reward functionalJ . The optimal control strategy gives notable
improvement (say≥ 10%) over the non optimal strategies
only for a window of low and intermediate values ofβ (exact
window depends on the network used). When the spreading
rate is too high, the static or bang-bang strategies will not
perform too badly compared to the optimal control strategy.

The figures also reveal that the relative advantage of the
optimal and static campaigning strategies over the no cam-
paigning strategy decreases as the spreading rate increases.
At higher spreading rates, we are able to reach a greater
fraction of the population even without campaigning and hence
the importance of campaigning (optimal or static/bang-bang)
decreases.

Examining the right part of the three figures carefully, we
see that at higher spreading rates, the fraction of population
reached through optimal campaigning is more for the ER and
PL3 networks than the PL2 network (in-spite of the fact that
PL2 has heavier tail,i.e., more hubs with larger degrees). This
also happens for the case of no campaigning (or no control
case, see also Fig. 3). This is because of the way the networks
are chosen. From Fig. 2, PL3 has a minimum degree of 13 and
PL2 has minimum degree of 6; about 60% of the nodes in PL2
have degree of 13 or less (the minimum degree of PL3). We
know that an epidemic spreads through the edges, so reaching
the low degree nodes, which constitute a significant portionof
PL2, is more difficultat higher levels of infection. Although
some low degree nodes are connected to hubs, but low degree
nodes are large in number, and the rest of them which are
away from hubs and connected to other low degree nodes,
are penetrated slowly. However, this effect is not seen at low
levels of infection (low values ofJ) because we mostly infect
the nodes close to the hubs.

F. Effect of the Cost of Influencing Various Target Groups

We study the effect of changing the cost of influencing
and incentivizing the target groups, for the case when the
degree classes are divided intoM = 2 groups. We change
this cost by changing the weighting parametersb̂m and ĉm in
the functionsbm() andcm() defined in Sec. VI-A. The results
are shown in Fig. 9. The weighting parameters for the group
containing lower degree classes,b̂1 and ĉ1 are fixed to 1, and
b̂2 = ĉ2 are varied. As the skewness in the costs increases,
the advantage obtained by the optimal control strategy over
the non-optimal strategies also increases. This is so because
the optimal strategy starts allocating more resource to the
cheaper group. Since high degree classes are more important
for spreading in the case of PL2 and PL3 networks, the relative
advantage of optimal strategies over non-optimal strategies in
these networks, at high values ofb̂2 = ĉ2 is less, in comparison
to the ER network (where degrees of the nodes present in the
network are distributed more homogeneously).

G. Effect of the Number of Seeds at the Start of the Epidemic

Fig. 10 studies the effect of the fraction of population
already infected at the start of the epidemic,i0 (seeds) onJ . As
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Fig. 6: J vs. normalized budgetB/(u2
maxT ), and percentage improvement (right Y-axis) with respect to static and bang-bang control

strategies. Parameter values:T = 1, i0 = 0.01, α = 0.5, β = 0.12, umax = 0.12, vmax = 0.5, b̂m = ĉm = 1 ∀m, d = 0.5, M = 10.
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Fig. 7:J vs. weighting factord, and percentage improvement (right Y-axis) with respect tostatic and bang-bang control strategies. Parameter
values:T = 1, i0 = 0.01, α = 0.5, β = 0.12, umax = 0.12, vmax = 0.5, B = u2

maxT/8, b̂m = ĉm = 1 ∀m, M = 10.
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Fig. 8: J vs. spreading rateβ, and percentage improvement (right Y-axis) with respect tostatic and bang-bang control strategies. Parameter
values:T = 1, i0 = 0.01, α = 0.5, umax = 0.12, vmax = 0.5, B = u2

maxT/8, b̂m = ĉm = 1 ∀m, d = 0.5, M = 10.
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Fig. 9: J vs. weighting factor̂b2 = ĉ2, and percentage improvement (right Y-axis) with respect tostatic and bang-bang control strategies.
Parameter values:M = 2, T = 1, i0 = 0.01, α = 0.5, β = 0.12, umax = 0.12, vmax = 0.5, B = u2

maxT/8, b̂1 = ĉ1 = 1, d = 0.5.
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Fig. 10: J vs. i0 (seeds), and percentage improvement (right Y-axis) with respect to static and bang-bang control strategies. Parameter
values:T = 1, α = 0.5, β = 0.12, umax = 0.12, vmax = 0.5, B = u2

maxT/8, b̂m = ĉm = 1 ∀m, d = 0.5, M = 10.

i0 increases, the improvement offered by the optimal strategy
over the non-optimal strategies decreases quickly. Thus, one
should only bother about calculating and implementing the
optimal strategy if starting the campaign early. However, it
should be noted that for most real world applications, this
condition is satisfied most of the time; we become aware of
some information as a result of the ongoing campaign.

VII. L IMITATIONS AND FUTURE WORK

We list some of the limitations and potential future di-
rections in which the work presented in this paper can be
extended:

(1) We have only used information from the degree distri-
bution of the network to prescribe the optimal allocation ofthe
resource. The effects of some of the other network properties
like degree-degree correlations, community structure, cluster-
ing etc. on the optimal strategy still need to be explored. The
degree based compartmental model may not be accurate for
some of these situations, and more complicated methods, such
as pair approximation methods [22, Sec. 17.10.1], may be
required. However, pair approximation methods lead to many
more differential equations compared to the degree based com-
partmental models. This will lead to significant computational
challenges because the system is solved multiple times to
compute (optimal) controls.

(2) Degree is only one measure of node centrality in the
network. Exploring the effect of other centrality measures
on campaigning resource allocation forms another interesting
direction of future work.

VIII. C ONCLUSION

We studied the problem of optimal resource allocation
over time, for maximizing the spread of information among
nodes (individuals) connected in a network, under fixed budget
constraints. We used the degree based compartmental model
for the Susceptible-Infected epidemics to model information
propagation on networks. Nodes with the same degree are
aggregated into the same degree class. The degree classes are
divided intoM groups, each influenced by a direct and a word-
of-mouth control, the two strategies to accelerate information
spreading.

Our formulation leads to an optimal control problem the
solution to which provides the best allocation of the resource
over (i) the campaign duration, (ii) strategies, and (iii) theM
groups, to maximize the information spread. In the process,
the solution also identifies the important groups which should
be allotted more resources to maximize the epidemic size. The
order of importance of the groups depends on the network.

We proved the existence of a solution to the optimal con-
trol problem with non-linear isoperimetric constraints using
novel techniques. The optimal control problem was solved
by converting it into a non-linear static optimization problem.
Our formulation works for arbitrary degree distributions which
allowed us to study the effects of network topology on
epidemic control. We presented results for Erdős-Rényi and
scale free networks (with power law exponents 2 and 3) and
studied the effects of various model parameters on the optimal
control strategy. We have quantified the improvement offered
by the optimal control strategy over the static and bang-bang
control strategies.

Our results show that for certain scenarios, the performance
gains achieved by the optimal strategy are only marginal com-
pared to the non-optimal strategies. Controls are strongerin
early stages of the campaign. For the case when degree classes
are divided into three groups, for scale free (heterogeneous)
networks, the order of importance of the groups in message
spreading is: (the importance is based on the resource allocated
by the optimal strategy to the groups) high degrees> medium
degrees> low degrees. In contrast, for the Erdős-Rényi
(homogeneous) network, it is: medium degrees> high degrees
> low degrees. Word-of-mouth strategy is more important for
maximizing information diffusion in heterogeneous networks
than homogeneous networks. Optimal campaigning leads to
significant performance gains (over a static strategy) only
if campaigning starts early, for topics which have low to
intermediate spreading rates and for low to intermediate budget
constraints.

The results presented in this paper may be of interest to
(election and crowdfunding) campaign managers and product
marketing managers working to disseminate a piece of infor-
mation on a social network. The framework presented in this
paper, with some modifications, can also be used for biological
epidemic mitigation on networks.
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APPENDIX A
NEIGHBOR DEGREEDISTRIBUTION

Here we argue that in the configuration model, with degree
distributionpk, k ∈ K, neighbor degree distribution is given
by, rk = kpk/k̄, wherek̄ is mean degree of the network [22,
Sec. 13.3].

When an edge is cut, it leads to two half edges, one adjoined
to each node which the original edge is joined to. The total
number of half edges in the network is given by2m an
even positive integer. In the configuration model, a half edge
originating from any node is equally likely to terminate at any
other node. If total number of nodes in the network isN , total
number of nodes of degreek is pkN . The total number of half
edges corresponding to this iskpkN . Thus, the probability
that one of them will be paired with the tagged half edge
originating from the tagged node iskpkN/(2m−1) (we leave
out the edge from the tagged node itself). In the limit of large
number of nodes, this is≈ kpkN/2m. Notice that2m/N = k̄.
Thus the probability that the tagged edge will terminate on a
neighbor that has degreek is kpk/k̄.
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Barabási, and J. Saramäki, “Small but slow world: How network
topology and burstiness slow down spreading,”Physical Review
E, vol. 83, no. 2, p. 025102, 2011.

[3] P. Belleflamme, T. Lambert, and A. Schwienbacher, “Crowd-
funding: Tapping the right crowd,”Journal of Business Ventur-
ing, 2013.

[4] L. B. Shaw and I. B. Schwartz, “Enhanced vaccine control of
epidemics in adaptive networks,”Physical Review E, vol. 81,
no. 4, p. 046120, 2010.

[5] M. I. Dykman, I. B. Schwartz, and A. S. Landsman, “Disease
extinction in the presence of random vaccination,”Physical
Review Letters, vol. 101, no. 7, p. 078101, 2008.

[6] E. Asano, L. J. Gross, S. Lenhart, and L. A. Real, “Optimalcon-
trol of vaccine distribution in a rabies metapopulation model,”
Mathematical Biosciences and Engineering, vol. 5, no. 2, pp.
219–238, 2008.

[7] H. Gaff and E. Schaefer, “Optimal control applied to vaccination
and treatment strategies for various epidemiological models,”
Mathematical Biosciences and Engineering, vol. 6, no. 3, pp.
469–492, 2009.

[8] X. Yan and Y. Zou, “Optimal internet worm treatment strategy
based on the two-factor model,”ETRI Journal, vol. 30, no. 1,
pp. 81–88, 2008.

[9] Q. Zhu, X. Yang, L.-X. Yang, and C. Zhang, “Optimal control
of computer virus under a delayed model,”Applied Mathematics
and Computation, vol. 218, no. 23, pp. 11 613–11 619, 2012.

[10] P. Dayama, A. Karnik, and Y. Narahari, “Optimal incentive
timing strategies for product marketing on social networks,” in
International Conference on Autonomous Agents and Multia-
gent Systems, 2012, pp. 703–710.

[11] M. Youssef and C. Scoglio, “Mitigation of epidemics in contact
networks through optimal contact adaptation,”Mathematical
Biosciences and Engineering, vol. 10, no. 4, pp. 1227–1251,
2013.

[12] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Rumorspreading
in social networks,” inAutomata, Languages and Programming.
Springer, 2009, pp. 375–386.

[13] B. Pittel, “On spreading a rumor,”SIAM Journal on Applied
Mathematics, vol. 47, no. 1, pp. 213–223, 1987.

[14] A. Karnik and P. Dayama, “Optimal control of information
epidemics,” in International Conference on Communication
Systems and Networks. IEEE, 2012, pp. 1–7.

[15] K. Kandhway and J. Kuri, “How to run a campaign: Optimal
control of SIS and SIR information epidemics,”Applied Math-
ematics and Computation, vol. 231, pp. 79–92, 2014.

[16] ——, “Optimal control of information epidemics modeledas
Maki Thompson rumors,”Communications in Nonlinear Sci-
ence and Numerical Simulation, vol. 19, pp. 4135–4147, 2014.

[17] M. H. R. Khouzani, S. Sarkar, and E. Altman, “Optimal
control of epidemic evolution,” inInternational Conference on
Computer Communications. IEEE, 2011, pp. 1683–1691.

[18] S. Belen, “The behaviour of stochastic rumours,”Ph.D. Disser-
tation, University of Adelaide, 2008.

[19] S. P. Sethi, A. Prasad, and X. He, “Optimal advertising and pric-
ing in a new-product adoption model,”Journal of Optimization
Theory and Applications, vol. 139, no. 2, pp. 351–360, 2008.

[20] W. H. Fleming and R. W. Rishel,Deterministic and Stochastic
Optimal Control. Springer-Verlag, 1975.
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