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Campaigning in Heterogeneous Social Networks:

Optimal Control of SI

Information Epidemics

Kundan Kandhway and Joy Kuri

Abstract—We study the optimal control problem of maximizing
the spread of an information epidemic on a social network.
Information propagation is modeled as a Susceptible-Infeed
(SI) process and the campaign budget is fixed. Direct recruihent
and word-of-mouth incentives are the two strategies to actéerate
information spreading (controls). We allow for multiple controls
depending on the degree of the nodes/individuals. The solon
optimally allocates the scarce resource over the campaignuda-

tion and the degree class groups. We study the impact of the

degree distribution of the network on the controls and presat

results for Erd6s-Renyi and scale free networks. Results show

to the ‘optimal control’ formulation—maximize an objeativ
functional by adjusting a control which affects the system
evolution.

We address the above resource allocation problem to max-
imize the fraction of nodes in a social network that are aware
of the information. Individuals communicate the infornoati
to their neighbors (through Twitter tweets, Facebook posts
exchange of ideas when two individuals interact in face-to-
face meetings etc.), giving rise to an information epidemic

that more resource is allocated to high degree nodes in the The campaigner can influence this information spreading in
case of scale free networks but medium degree nodes in thetwo ways: (i) By directly recruiting individuals from the

case of Erdbs-Renyi networks. We study the effects of various
model parameters on the optimal strategy and quantify the
improvement offered by the optimal strategy over the static
and bang-bang control strategies. The effect of the time vaing
spreading rate on the controls is explored as the interest \el
of the population in the subject of the campaign may change
over time. We show the existence of a solution to the formulat
optimal control problem, which has non-linear isoperimetric
constraints, using novel techniques that is general and cabhe
used in other similar optimal control problems. This work may
be of interest to political, social awareness, or crowdfunithg
campaigners and product marketing managers, and with some
modifications may be used for mitigating biological epidents.

Index Terms—Erd 6s-Renyi Networks, Information Epidemics,
Non-linear Programming, Optimal Control, Scale Free Netwaks,
Social Networks, Susceptible-Infected (SI).

|. INTRODUCTION

population at some cost by adjusting direct recruitment
control (advertisements in mass media announcing discounts
on products). (ii) By accelerating message spreading gninc
tivizing individuals who already have the message to spread
more, by adjusting avord-of-mouth control, e.gannouncing
referral rewards in the form of discounts, coupons or cash-
backs for introducing a friend to a product or service. Word-
of-mouth incentives may be announced by emailing current
customers, which will encourage them to put in a good word
for the company.

Resource limitations prevent the campaigner from commu-
nicating the information to the whole population. Not only
is the timing of the direct recruitment and word-of-mouth
incentives a crucial factor in determining the extent obimf
mation spreading, but also the resource distribution among
different types of individuals and strategies. For example
individuals with large numbers of links are known to be

POL_'T|CA|- campaigners, crowdfunders and product mainflyential spreaders [[1], and more resources may be spent
keting managers are using social networks increasingly @ them.

influence individuals. The size of the online social netvgerk

Justification for using the Susceptible-Infected (SI) nhode

in addition to the (old) human network where two individual§ye choose to model the information epidemic as the Sl
interacting in day-to-day life are connected via a link—As i process (where a fixed fractiomy < 1, of infected in-
creasing day by day, which gives campaigners an opportundfyjiduals spread the information in the absence of any

to mold the opinion of many individuals. Informatioe..

word-of-mouth control), over other possibilities such as

awareness of newly launched or upcoming products or s&vigge Susceptible-Infected-Susceptible (SIS) and Sudzepti
like smartphones, video games, satellite TV plans, mowi&s ejnfected-Recovered (SIR) processes. The Sl process has bee

ideologies of political candidates) spreads through neta/m

used in previous studies as a preferred model for informatio

a manner similar to pathogens on human networks, leadingjgpagation ¢.g.[2]). It is suitable to model situations where

“information epidemics”. The campaigners’ goal is to ‘iofe

as many individuals as possible with the message by t

geople who have ever received a message do not forget it
Bring the campaign period and depending upon the level of

campaign deadline, respecting her budget constraintseyoRyord-of-mouth incentive, spread the message via theirslink
and manpower are scarce resources that need to be utilizg@h a situation may be encountered in marketing of a durable
judiciously over the duration of the campaign, to achievgroduct e.g.latest version of smartphones or computer games)
optimal results. Such a resource allocation problem leags services requiring memberships.d. mobile-phone and

Authors are with the Department of Electronic Systems Eewyiimg,
Indian Institute of Science, Bangalore 560012, India; é:m&undan, kur}
@dese.iisc.ernet.in

satellite TV services) where the campaign duration is of the
same order as the life of the product. In these cases, thaaont
details of the customers are always available with the caippa
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which can incentivize their customers with varying levefs c{lﬂ] computed the optimal solution only for a five node
word-of-mouth control to turn them into active spreadersetwork and proposed heuristics for larger networks.
Thus, the word-of-mouth incentive changes the fraction of The works on rumor spreading on technological and social
active spreaders among the infected. networks with known topologie&gﬂlﬂm] are similar in spiri
Infected individualsecoverin the SIR process or fall backto the problem considered here. However, the aim there
to the susceptible state in the SIS process. SIS processes mas to compute maximum number of communication rounds
be suitable to model marketing of consumables. SIR prosessequired to disseminate a piece of information to almost all
may be suitable for situations where individuals will stophe nodes, following fixed communication strategies. Nodes
spreading the message after random amounts of time and ity either ‘Pull’ the message from their neighbors, ‘Pubk’ t
campaign duration is large compared to the ‘recovery’ tinieformation to them or do both. Finding the optimal message
(e.g. a situation arising in multi-level marketing, where arspreading strategy was not considered in those works.
individual, although still a member, has become inactive). ~ The authors in[14, 15, 16] and [17] maximized information
The framework developed in this paper can be used @md security patch dissemination through optimal control o
situations where only direct recruitment control can beliadp social and computer networks respectively, but considered
as well as those in which both direct recruitment and wordtomogeneously mixed population. Similarly, the author in
of-mouth controls can be applied. The former is suitable fcﬂﬂ] used impulse control to maximize the information sprea
modeling political campaigns, campaigns for spreadingawain a homogeneously mixed population, assuming the Daley-
ness of a social cause, movie promotion etc. The latter modeindall and Maki-Thompson models, which are different from
is suitable for the product marketing as well as campaigtise Susceptible-Infected model assumed in this paper. The
for crowdfunding. Crowdfunding refers to micro-funding inauthors in ] devised optimal pricing and advertisement
forms of loans, donations, equity purchases or pre-ordefn strategies for new products without considering the epidem
products yet to be produced, through the Internet and onlineessage propagation, as is the case in this paper.
social networks such as Facebook, Twitter, LinkedIn éff. [3 A unique aspect of an information epidenig that the
interest level of people in talking about the subject of the
o campaign may undergo a gradual change over the campaign
A. Related Work and Our Contributions dura?ior?e.g.,gecreasi?]g intgerest fora mc?del of a smartph%ng
Devising strategies for epidemic prevention has beenoa a version of a software or computer game as they grow
subject of interest in many studies.. [EI B]). Our work old; or increasing interest level of people to talk about the
is different in that thetheory of optimal controlis used. upcoming elections). Thus, the spreading rate of an infor-
The literature on optimal control of disease and computaration epidemic may vary during the campaign duration.
virus epidemics, in a homogeneously mixed population, &his differentiates it from biological epidemics, whereeth
plentiful [€,7,[8,/9].Our work is different from the previousspreading rate is constaiie have captured this phenomenon
literature on optimal control of epidemics in two aspectsn this work, which differentiates it from the previous fgture
First, we consider information epidemics, which aeguired on disease and information epidemi€ar some applications
to be disseminatedthis seems to have attracted less attetike crowdfunding, the spreading rate is not expected tagha
tion compared to biological and computer virus epidemiceyer time.
which need to be curbe&econdly and more importantiywe Another contribution of this work is tehow the existence of
consider a population afietworked individualsWe note that a solution to optimal control problems with a budget conistra
networks play an important role in information dissemioati under non-linear costs of applying controBrevious studies
as individuals rarely interact randomly with others in &bgi on biological epidemics on homogeneously mixed population
(as homogeneous mixing assumes); and even if they do, tifeyy. [6, [7]) have considered non-linear cost functions (on
seldom trust those unknown to them. Most people interact aoontrols); however they considered a linear combination of
trust a small group of individuals (‘small’ compared to fotathe cost and the reward reaped by the application of controls
population size) who are their ‘neighbors’ and share a lirdy the system, and minimized theet cost In contrast, we
with them in the network. have explicit budget constraints. [14] does not have a niwo
Many of the papers above consider a homogeneously mixgtducture, although the authors have formulated a problgm w
population, and the ones which do n@[lO], present resulia explicit budget constrainﬂlO] has a network structbre
for the case where individuals are divided into a maximuunioes not have explicit budget constraints.
of two degree classes only. In contrast, we consider almosiNotice that the cost incurred by application of controls is
three hundred degree classes in this study. Unlike thequsvi often non-linear in controls in practical applications aagued
literature, this allows us tetudy the effect of network topologyin [Iﬂ] This motivates us to formulate the problem with a non-
(Power Law, Erés-Renyi) on control of information dissemi-linear cost structure. Of course, this is also a generaizaif
nation in networksMoreover in contrast tdﬂO], we formulatethe linear cost structure that has been assumed widelylierear
the optimal control problem with a fixed budget constraint. literature. Once we have an explicit budget with non-linear
A recent studyl_L_1|1] has formulated the optimal epidemicosts, the standard theorems (by Filippov and Ce'sari [20]) f
prevention problem for the network case, where mean fiedtiowing the existence of a solution are not applicable (ieea
equations are written for each node of the network insteadtbe system is now non-linearly influenced by the control) and
each degree class, the approach taken in this study. Howehence new techniques for showing the existence of a solution
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are required. population can be changed by the level of the word-of-mouth

Apart from considering a network structure and an explicincentive (discussed later).
budget constraint for the first time in this papere have  Let the numbers of susceptible and infected nodes at time
tailored the classical Susceptible-Infected model to eapt 0 < ¢ < T, in the degree clasé € K be Si(t) and
information spreadingln particular, unlike a biological epi- I(t) respectively; andsy (t) = Sk (t)/N, ix(t) = Ix(t)/Nk.
demic, information spreading is voluntary. We have cagturd hen, the fractions of susceptible and infected nodes in the
this by introducing a parameter to represent the fraction of network at timet is given by s(t) = >, prsk(t) and
the infected population that chooses to be spreaders. Woith) = >,k prir(t) respectively withs(t) + i(t) = 1 and
of-mouth control encourages slightly unwilling people & a s, (t) +ix(t) =1, V k € K.
as spreaders, increasing the effectiveA similar control was ~ The population consists mostly of the susceptibles-ato,
considered in[[17] in a four state model for a homogeneoustcept for a small fractior,, of nodes which act as the seed
mixed population. for information dissemination. We assumg0) = ig, Vk €

Our results show considerable improvement in the fin&. The message is passed probabilistically due to suscegptibl
fraction of the infected population (people who are awaspreader contact. At time, a susceptible node acquires the
of the topic), when compared to a static and bang-bantgssage from a spreader at a rate), ¢ < [0,77]. In other
control strategies, that respect the same budget cortstriile words, in a small intervadlt at time ¢, a ‘susceptible’ node
improvements, as expected, are very substantial compared¢hanges its state to ‘infected’ due to a single susceptible—
the no control (campaign) strategy. spreader link with a probability(¢)dt.

The degree based compartmental model makes an approx-
imation that all the nodes in the degree clasdehave in
exactly the same waﬂlzz, Sec. 17.10[21, Sec. 9.2]. We

Individuals in the target population are organized into first evaluate the probability that a tagged susceptiblesrafd
static network (or a graph). The degree of a node (individgal degreek will change to infected state in a small intervélat
the number of neighbors the node in the network is connectiéae ¢. For the configuration model, the neighbor degree dis-
to. The nodes are grouped into different classes. All theesodribution, which is the probability that we will find a neighb
with degreek are said to be in the degree cldssThe set of of degreek if we follow an edge of any node in the network, is
all possible degree classes (or degrees) is denot@d Byus, r, = kp,/k (details are in Appendix]A). Here = > kek KDk
ke K = {Knin, -, Kmaz }, Kmin and K,,,., denote the is average degree of the network. Note thatis not simply
minimum and maximum degrees of the nodes in the netwoyk,, one cannot reach a node with degree zero by following an
There are a total ofK| degree classes whet&| denotes edge even iy # 0. Since the node in question is susceptible
the cardinality of the seK. Let the size of the network beand the neighbor is infected (and active), so the neighbor
N and the number of nodes in the degree clasE K must have acquired the information from somewhere else. So
be Ni, so that}, . Ny = N. Our formulation works for the quantity of interest here is ‘excess degree distribytio
networks with an arbitrardegree distributionp,. The degree which discounts the edge (of the neighbor) due to the tagged
distribution of a network is defined as the probability massusceptible node we are situated at. Excess degree diigtribu
function, p;, of the degrees: of the nodes in the network, is given byg, = 7,41 = (k+1)pxr1/k. Note thatgg, .. = 0.
> rex Pk = 1. For a network, the empirical degree distribution The mean number of active neighbors around the tagged
is, pr = Ni,/N, k€K [ﬂ]. susceptible node of degrde who can potentially pass the

Uncontrolled System: We model the Susceptible-Infectednformation to it, isk ],k (ai;(t)g). Thus the tagged sus-
information epidemic by the ‘degree based compartmentaptible node will switch to infected state with a proba;ﬂi
model’. These models are most accurate on configuration- (1 — B(t)dt)" el a) ~ B(#)k ™, o (aiy (t)qr)dt.
model networks. These networks lack correlation in the w&ince the fraction of susceptible nodes in degree class
nodes are connected to one another, in the sense that a &tlfime ¢ is s;(¢), the total increase in the fraction of
edge of a given node is equally likely to be connected to amyfected nodes in degree clagsin interval d¢ is given by
other half edge in the network. Also, being a mean field model, (1) 5(t)k D,k (avi (t)qr)dt [24, Sec. 17.10.2, adapted for
degree based compartmental model requires populatiod\sizéime varyings(t¢)]. Thus, the rate of change of infected nodes
to be large. in degree clasg in the uncontrolled S| epidemic is:

The campaigner is interested in spreading a message in the - . )
population connected via the network. The process starts at w(t) = ﬁ(t)ksk(t)z(a”(t)ql)’ kel
time t = 0 and the campaign deadline is= 7. The nodes o fele
in the network are classified into two categories—suscptip Admissible Controls: To control the above system, we
and infected. A susceptible node is yet to receive the messgie_ the direct recruitment and word-of-mouth control signa
and an infected node already has it. Infected nodes areefurtfnich are defined next. We denote thé-dimensional direct
classified into active (spreaders) and non-active nodefy OFFCruitment vector control function by = (us, ..., uar). The
a < 1 fraction of the infected population is interested iy&lU€um(t), 1 <m < M, denotes the rate of direct recruit-
transmitting the message further (active or spreaderg)s ThMeNt at timet, carried out by the campaigner in the group
a newly infected node chooses to become a spreader with Bt is 1 minus the probability that none of the neighbors passinforma-
probability . Effective fraction of spreaders in the infectedion. Information flow from the neighbors is assumed indefeen.

Il. THE SYSTEM MODEL AND PROBLEM FORMULATION
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m of degree classes, denoted Ky, = {lfcm_l +1,..., lfcm}, all admissible word-of-mouth controls is defined as:
Kpin — 1 =ko < k1 < ... < kyg = Kypag. Through direct

recruitment control, the campaigner taps the pool of alhdla M

susceptible nodes and converts them into infectettgction v = (v1,...,vm) €V £ X Vi, 3)
of those who get infected are spreaders). This can be don m=l

) a .
for example, by placing advertisements in the mass mediaV"€"€:vm € Vin = lo€V:0<0(t) < vmaa, VL€, T%‘}l)

The purpose of having/ control functions and dividing
degree classes intd/ groups is to control each group with
one control, thereby identifying groups which are impottadiere, v, is the maximum allowed word-of-mouth control
to target at any given time. Fifl_Jla shows a small netwogignal and the se¥ was defined above.
with 5 nodes:a to e, with degree sequence;3,4,2,1. Thus  Controlled System: The objective (reward) functional
K = {1,2,3,4} and empirical degree distributiop; = p3 = for the optimal control problem is chosen to bé, =
ps = 1/5,p2 = 2/5. If we decide to havell = 2, we may S~ i, (T). For applications like political/social aware-
chooseK; = {1,2},Ky = {3,4}. Thus nodes, d, e will be ness/crowdfunding campaigns and product marketing, densi
controlled withu, andb, ¢ with u,. Fig.[1 shows an exampleered in this paper; we want to maximize the final number
of grouping a network withK| = 295 degree classes into (fraction) of individuals who have received the message by
M = 3 groups. We emphasize that even though degree clasgs end of the campaigng. att = 7. We do not care about
are grouped into fewer groups for the purpose of controllingle evolution history;,(t),0 < t < T this motivates such
them, we will still capture information diffusion dynamies a choice for.J. In addition, we assume that the resources at
a finer level with differential equations for each of th€| our disposal for applying the control signals are fixed. The
classes. budget constraint is captured in E@.](6d), whé?edenotes

the combined budget for both types of controls.

K K K. Rationale for the budget constrainf _{6dYhe functions
%\. @ b (.) ande,,(.) capture the instantaneous cost of applying the
e ¢ ‘ ® . 58 015 16300 direct recrwtment and the Word-of-_mouth c_ontrols in theugr .

m and are continuous, non-negative and increasing functions
@ (®) in their arguments foi < m < M (more effort incurs more
Fig. 1: (a) An example graph. Each filled oval represents a node. @pst). Also,g,, = ZkeKm pi denotes the fraction of the whole

An example of dividing a network with minimum degréé.... =6  population in groupn. The instantaneous resource consump-
and maximum degre&q.. = 300 into M = 3 three degree class tjgn for the direct control strategy @:%:1 Gonbim (um (1)).

groups. Each square represents a degree class. ]
For the word-of-mouth control, the resource is spent when
an active node demonstrates that it has successfully influ-

The set of all admissible direct controls is defined in th@nced a susceptible. Denote Iy) the average fraction
following. Let ¥ be the set of all equicontinuous function®f susceptible nodes around a given node. Then =
over[0,T),i.e. |o(t)—a(d)| < Cy(e), fort,i € [0,T); [t—f| < kex Tksk(t), wherery = kpg/k is the neighbor de-
e, Vo € U with Cy(e) — 0 ase — 0 [23, Sec. 1.6]. Then, ~ 9gree distribution defined earlier. Given that we are in group

m, the probability of picking up an active node of de-
greek and a susceptible neighbor (®y/g.m )ik (t)5(t). In

Um EUm 2 {0 €V :0 < 0(t) < Umas, V¢t €[0,T]}, (1) a small intervaldt, the susceptible neighbor will convert
A M to infected with probability (pr/gm )ir(t)5(t)av,, (£)5(¢)dt
and,u = (u1,...,un) €U = milUm' () due to application of word-of-mouth control. So the aver-

age word-of-mouth resource consumed forneighbors is

keem (v (£)) (pr / gm)in (8)5(t) avn, (1) B(¢)dt. Aggregating the
Practical considerations will require each of thg(t) to be resource consumption over all degree classes in grownd
continuous and bounded (maXimUm allowed direct control iﬁen aggregating over all groups we get the instantanedﬂs ra

Umag) at all timest. We make a slightly stricter assumptiorof resource consumption for word-of-mouth strategy as
that the functions in are equicontinuous.é.the same”'y (e)

works for all the functions in and it is independent of) .

as it aids in showing existence of a solution to the optimal < B

control problem[{B) (will be discussed later). This asstiompt Z%Cm(”m(t))s(t)a”m(tw(t) Z {
is not too strict and is milder than, for example, assuming”=" keKom
differentiability of functions.

The word-of-mouth control affects the fraction of spreadeDefine i,,(t) = > rex,, Fik(t)pr. Thus we get Eq.[(8d)
in the infected population and is denoted#y-= (v1,...,va7). by aggregating the resource expenditure over the complete
The valuewv,,(t), 1 < m < M, denotes the rate at whichcampaign horizon. The constraint EQ.1(6d) is written from th
word-of-mouth incentives are handed out, at timen the perspective of a single (typical) node in the network; 5o,
mth group of degree classekg,,,, defined above. The set ofmust be interpreted as a per-node expected budget.
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The optimal control problem can now be stated as: [1l. EXISTENCE OF ASOLUTION
' The proof of the existence of a solution to an optimal control
ue@‘%‘,‘]: Zpklk(T)v (6a) problem is of practical importance because sometimes even
kel reasonable looking problems do not admit their extrema; see
) M examples 1.1 and 1.2 irﬂzo, Chap. Ill, Sec. 1]. The usual
st ik (t) = BW)sk(®k [ D> qrir(t) a(l + vy(t)) method to show the existence of a solution to an optimal
p=11€Ky — T — . ™ . .
word-of-mouth control problem is to use Filippov/Cesari’'s existence teeo
+ um(t)si(t); Vk € Km,1 <m < M, (6b) [@ Chap. lll, Sec. 2 and 4]. However, they are only applieab
drect recruitment to systems where the controls affect the system linearlyg Du
ir(0) = io; k€K, (6c) to the isoperimetric constraint(6d), for non-linggy(.) and
M cm(.), neither of the theorems is applicable in our case.
/ Z {gmbm(um(t)) + This observation is based on the fact that, in the equivalent
0 m=1 formulation of Problem[{6), Eq[{6d) can be replaced by:
AV (D) B(E)cm (Um (t))zm(t)g(t)}dt -B. (6d) o
1(t) = D7 { b (0 (1)) + v (D)BE) e (0 (1) (D5 }:
As stated earlieliy is the seed for the epidemic. Sineg(t) = m=1

1—ip(t), 0<t<T, k€K, sowe haveK| = S |K,,| 7(0)=0, h(T)= B;
state variables (and n&K|). Also, a(l + v,,,(t)) < 1, Vt €
[0,T]. To satisfy this condition, we chooge and v,,,.. such
that, a(1 + vimas) < 1.

Define By,; as the resource required to run the campai
with full intensity throughout the campaign horizon. It issth
noting that the interesting case occurs wilet B < By.
In this case, the solution to the problem allocates the édichit
resource over the campaign period. We will not considers:a§§r
where B > By, in this paper. For the cases considere
notice that it will never be optimal to underutilize the beatg

which has, for non-lineab,,(.) and ¢,,(.), a non-linear de-
pendence on the controls. Note that this is the standard way
of handling the isoperimetric constraints in optimal cohtr
%}oblems. Due to the non applicability of the standard Fil-
ippov/Cesari existence theorems, we show the existence of a
solution to the formulated problem using first principles.

We detail the steps to show the existence of a solution to
oblem [[6). We make use of the ‘Extreme Value Theorem’
, Theorem 4.16] to show the existence. It says that a
e . .. .2 continuous function on a compact space attains its supremum
hence we _hﬁve 'IOUt eqfuahty (ml_stead of the inequadilyin at some point in the compact space. The steps involved are
Eq. (&d) without loss o g_enera ity. o . as follows (Theoreri IITI1): (i) We first define a compact set

In Problem[(6), depending on the application and situatiogy, using the set of admissible contrdlg x V (defined in
the campaigner can decide upon the number of direct am and [3)) and the isoperimetric constraffl(6d). (ii) Wert
word-of-mouth controls), she wants to apply and the degregpq,y that the functional defined in [BR) is continuous at all
classes_ln thenth group,Km, they would target. Also, in some gjaments of that compact spadey, v) € W. (iii) Then we
cases, it may not be feasible to apply word-of-mouth contrl, v that the constraint differential equationl(66Y] (6a
For such cases, we sef, =0, 1 <m < M. solution at all element$u,v) € W, thus the constraint is

We emphasize the imp|icati0n of the factoand the word- satisfied for all elements of the Compact SpWe
of-mouth control in our model (biological SI epidemics have | et j(¢) = (i, (1), rixc,... (1)) denote the state vari-
a =1, i.e, every infected individual is a potential spreaderhple vector. The right hand side (RHS) of equatibnl (6b) is
Irrespective of the value of used () < « < 1), message prop- denoted byf;(i(t),t) (note that(u,v) is a function of¢).
agation is always probabilistic whenever individuals iat¢, | et FE),t) = (Frpin (5(8), 1), oy fican (3(2),1)). In this
depending upon whether or not the topic of interest came ggction we use 1-norm for vectors. However, the result holds
during the meeting. In our m0de|, OnJy fraction of infected for any p-norm due to equiva'ence of Vectpfnormsip > 1
individuals ‘try’ to spread the message; the rest of them
uninterested to begin with, and do not attempt spreadingnEv ) o ) _
the non-spreading infected individuals have the message,.mma lll.1. The functionf((t), ) is Lipschitz continuous
a higher level of word-of-mouth control may convert som#! i(t).
of them to spreaders (which is a reasonable model) and Proof: Notice that,
when word-of-mouth incentive subsides, such individuady m . R . .
again become uninterested (non-spreaders). Advertising f [£(i(2),1) = F(2), )] = Z |fi(i(2),8) = fie(a(8), )]

. . . . kek
product, or advocating for a (risky) crowdfunding investrne v
means putting personal reputation at stake, so the level of Nkal (1 =i (t () (1 + v (L
word-of-mouth incentive is an important factor influencihg B ,ZH; o [( 8 ))7;lezﬂ<;n a0+ en ()
spreading behavior of an individual. Note that the classica M
Susceptible-Infected-Recovered model will not captuis th ~ — (1 —ix(t)) > > aqi(t)(1 +vm(t))H
phenomenon because once recovered, individualsneNler m=11Km
spread the message. This makes the SI model @jitmore + Z [um (t) (sk(t) — 8x(¢))]
suitable for the applications considered in this paper. keK

Copyright (c) 2014 IEEE. Personal use is permitted. For ahgropurposes, permission must be obtained from the IEEEnmjlieg pubs-permissions@ieee.org.


http://dx.doi.org/10.1109/TNET.2014.2361801

This is the author’s version of an article that has been phbli in IEEE/ACM Transcactions on Networking. Changes wes€le to this version by the publisher prior to
publication. The final version of record is availablehdip://dx.doi.org/10.1109/TNET.2014.2361801 6

< Umaz|i — 1|

M
)OSR CIEHONAOEEAO)

m=11€K,,

+ /Bmaszacva Z

kek

— a1+ o) (D) = WO (0)
i —igi it —igig
S Umaz|i - 2| + BmazK’ilawa(l + 'Umaz)|i — ’;|
+ ﬂmawanaza(l + 'Umaac)li - ’;| X 2.
Thus, | £(i(t),t) — f£(i(t), )| < C|i(t) — 2(t)] which estab-
lishes Lipschitz continuity off(i(t),t) in i(t) V (u,v) €
UxV.

Proof: Step I: The set&/ and V' are compactNote that
Uy, in (@) andV,, in (@) are equicontinuous and equibounded
sets and hence precompact (Arzela-Ascoli Theo [23, The-
orem 1.6.3]). In additioni/,,, andV},, are closed by definition.
HenceU,, andV,, are compact sets. Now/ and V' being
cross products of finite number of compact sets are compact
(Tychonoff’s Theoremlﬂ?, Page 392)).

Step II: The setW”’ is closed: From Lemmallll2, the
solution to the IVP [(Gb),[{@c) is a continuous function of
(u,v) € U x V. Thus, i,(t) and 5(t) are continuous
functions of (u,v) € U x V. Also, by, (), ¢n() are con-
tinuous in their arguments, hend®’ can be expressed as
W’ = {(u,v) : n(u,v) = B}, wheren(.) is a continuous

Lemma I1.2. If i(¢) is a solution of the system of ODES6bJunction in its arguments. Using standard techniques it rea

and [6¢), theri(t) is a continuous function @, v) € Ux V.

Proof: The continuity off(t) can be shown by using the
‘Theorem on Continuous DependencE[ZG, pg. 145] of t

solution of an ordinary differential equation on the vedteld

on the RHS. The theorem on continuous dependence states

if 4(t),t € [0,T] is a solution of [Bb){Ac); then giventhere
exist & such that|i(t) — (t)| < e, whenever|f(i(t),t) —
f(i(t),1)] < 6, for t € [0,T]. Herei(t) is the solution of
a perturbed version of (BHYL.(6C)i(t) = fu(i(t),t), Vk €
K, where (u,v) in f(i(t),t) is perturbed to(a, ) to get

Ft), ).
Notice that,
|£G(),t) — FG@), 0] =D 1fe(i(t), ) — fu(i(t), 1)
< BWseEa Y ST @in(t) (vm(t) — om (1)
kekK m=11€K,,
D 1w (t) (wm () — dn(t))]
keK

S ﬂmangmaza"U - 'E’l + Kmaw"u - ’il|,

where, maximum valueg,,... for 5(t), K. for k, 1 for

sk(t), 1 forig(t), and 1 forg, are used in the last step (not
that the excess degree distributian, is a probability mass

function which is non-negative and sums to 1). So when,
)
max{ﬂmamK?namaa Kmaz}

we have,|f — f| <& = [i(t) —i(t)| < ¢,V € [0 T7; which
establishes the continuity aft) in (u,v).

o — | + Ju— 4| <

(S

analysis, we can shoWV”’ is closed. Let{(u,,v,)} be a
sequence such thdtu,,v,) € W’ Vn € Z*, the set of
non-negative integers. Let the limit point of the sequence
e ,_ = - . .

e (a,v). Then,n(a@,v) = n(limy,—eo Un, limy, 500 V,) =
#’m?ﬁoo n(wn,v,) = lim,_,~, B = B. Third to last equality
offows from the fact that)(.) is continuous in its arguments.
Thus the limit point lies inW’, which meansW” is closed.

Step lll: The seW is compactThe product of compact sets
U x V is compact (Tychonoff’s Theorelﬂ27, Page 392]). The
intersection of closed and compact S8 N (U x V) & W
is compact, Page 38]. |

Theorem Ill.1. There exist optimal control signals.*, v*) €
U x V and the corresponding solutiori§t) to the IVP [6b),
(6d) such that(u*,v*) € argmax {J(u,v)} in Problem
@) (u,v)eUXV

Proof: In light of the discussion earlier in the section, this
theorem can be proved in three steps:

Step I: The seW is compact:Lemma[lll.3.

Step Il: Initial value problem[{@b).(6c) has a solution for
any (u,v) € W: The solution to the initial value problem
(6h),(6¢) (aggregated for akl € K) exists becaus¢ (z(¢),t
is Lipschitz continuous in(t) V (u,v) e U x V O W [‘ﬁ
pg. 185]. Lipschitz continuity follows from Lemniall.1.

Step Ill: The functionalJ = 37, y prin(T) in @4) is
continuous at all(u,v) € W: From Lemm&lL2, ifi(t)
is the solution of IVP [(Bb),[(8c), thed(T) = i(t)|—7 is
continuous in(u,v) € U x V. But W is a compact subset
of U x V. |

The ‘Theorem on Continuous Dependence’ also requires

Lipschitz continuity of f(.) in the state variable vectai(t),
which follows from LemmaTIL1. [

Define W/ 2 {(u,v) : [ SN {gmbm(um(t)) +
QU (1) B(E) e (0 ())im (¢)5(t) }dt = B}, where g,, =
Sper, Phe im(t) = Yk, kik(t)pr and s(t) =

IV. SOLUTION VIA NON-LINEAR PROGRAMMING

Once we have established the existence of a solution to
Problem [(6), we proceed to calculate it. We solved Problem
(6) by using algorithms that are available to solve optimal
control problems by converting them into discrete nondine

ZkeK(kpk_/l})sk(t). Mean degree of the network is repreoptimization problems [29]. Matlab’s non-linear optimiim
sented byk andi(t)'s are the solution to the initial value solverfmincon () is used to solve the discretized version of

problem (IVP) [Gb), [(Bc).

Lemma I11.3. The setW is compact, wherdV £ W’ N
(U x V).

Note that the seW consists of all controls itV x V for
which the budget constraiff (6d) is satisfied.

Problem [(6). The function solves the constrained non-tinea
optimization problems and requires the objective functad
the constraints as inputs. We brief the discretizationssiap
the following.

The campaign duratiof), T'] is sampled afV+1 equidistant
time-points, such thaty = 0 andty = T'. Letix(t,), wm(tn)
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anduv,,(t,) be the values of the state and control variables at V. NETWORKS USED IN THISSTUDY
those instances; = 0,1,...,N; and letAt =t; —tg = ... =

ty —ty—1. The idea is to keepV large enough to achieve + Erdos-Renyi

the desired accuracy and compute the values,pft,,) and ogl o POverLawy=2 =30(

vm(tn), Vn, ¥Ym using the optimization routine. “ Power Lawy=345 k"R =60

Objective function: The objective to be maximized is
> rex Prix(tn). However, to evaluate this, we need to solve
the initial value problem (IVP)[{8b) and{6c). We do so by
following Heun’s method [30, Sec. 1.1] to solve the IVP. The
global error due to discretization is bounded ©yA¢#?) for

o

g
10 g
L2 1310° 10° 107

Cummulative Distribution Function

this method. KER=1 4 min ‘Degree (log scale)
Let the right hand side of Ed._(bb) be denotedfhyi(t),t), % s " o
WhereiEt; is vector of alli(t); notice thats () = 1 —ix(?) Degree (log scale)
and u,(t), vy, (t) are just functions ot. At the initial time-  Fig. 2: Cumulative degree distribution and degree distributiosdt)

point,i(tg) = 40, Vk. The value ofi(t,) for 1 <n < N, for  (defined in Sed]I) of the networks used in this paper.
a givenk, is computed using both the left and right derivatives

as follows:
We have used degree distributions from three networks
ik (tn) =ik (tn_1) + % fr(i(tn-1),tn-1) to demonstrate the results. The first one is an Erd6s-Rényi
network, which is known to have a Poisson degree distri-
approximate right derivative bution. The probability of finding a node with degréeis,
) ) pr = e *\F /K Yk € K, where) is the mean degree in the
+ fx ( i(tn—1) + At fro (i(tn-1), tnfl)%) } ‘ network andk! denotes the factorial of the integerThe other
approximation ofi (¢, ) two are scale free networks, which are known to follow the
The valuei(ty ), at the last time-point is used in the objectivdOwer law degree distributiopy, = ck™7,Vk € K, wherec is
function. a properly chosen scalar to normalize the degree distoibititi
Constraints:The following constraints are fed as inputs td- Here~ is the exponent of the power law and lies between
the routine: and3 for most real networks (including social networks)|[22].
1) The inequality constraintsy, (t,) > 0, vm(ty) > 0, Hence we have cho_seﬂ_: 2 and~ = 3 for the two scale
U (tn) < Umaz, Vm(tn) < Vmazs V1, V. free networks _used in this study. We name the networks ER,
2) The budget constraint(5d) leads to the equalify-2 @nd PL3 in the rest of the paper.
constraint: ZN ZM {g bon (1t (£) i The three networks are chosen such that the mean degrees
n=1 fem=1 | JmumiTmimn for all three of them are almost the same. They cannot be made

owm(tn)ﬂ(tn)cm(vm(tn)){m(tn)E(tn)}At — B = 0. exactly the same because the minimum and maximum degrees
Here g, = Ypcr. Do im(tn) = Sopcr. kin(ta)pr, for the networks are discrete quantities. The minimum and

and 5(t,) = > per(kpi/K)si(tn). Values of maximum degrees for the scale free networks &g.? = 6,
ix(tn), Vn, Vk, are obtained from the computationfmas = 300, K53 = 13, K7i3 = 300, which yield the
above andsy, (t,) = 1 — i (ty). mean degree for the two networks fas; o = 22.47, kprs =

The computation in the optimization routine is initializecd4-03- The mean degree for the Erdos-Rényi network is set to
with some initial guess fonu,(t,) and v (t,), Vn, Vm kgpr = A = 23.60, with minimum and maximum degrees as

; - ; ; ; o ER — 1, KER — 60
and the routine refines it until the stopping criteria are.met min ' max :

The functionfmincon () uses a combination of factors, like | "€ Maximum degrees for both the scale free networks are

change in the objective function value, change in the vatfiesth® Same, so that the hubs (which will aid in information
the variables being optimized, magnitude of the gradient efPréading) have similar degrees in both the cases. We pedfer
to decide the stopping criteria. to keep the mean degree the same for all the three networks

We have used Heun'’s method over other possibilities suchRfEause, for any given (large) size, all three of them willeha
Euler and Runge-Kutta methods. For reasonable valueg of(@lmost) the same number of links. Thus, none of the networks

(so that the number of optimization variables is not toodyg Will have a statistical advantage in spreading the inforomat
Euler's method was numerically unstable for certain patame'WNich propagates through the links of the network. The
values €.g. high ). This is so because Eulers method iorobability distribution and den5|t_y functions of the degs
only O(At) accurate. The Runge-Kutta method requires tff the three networks are shown in Fig. 2.

value of the optimization variables atx N time points for

N point discretization[[30, Sec. 1.1]. Although more accerrat VI. RESULTS AND DISCUSSIONS

for small systems (with small values af), the memory and In this section, we first explain the values for the model pa-
execution time requirements (in the optimization routif@) rameters and validate the degree based compartmental model
larger systems will increase non-linearly, which makesiie for the Sl process for configuration model networks. Then
unsuitable. Heun’s method offers a compromise betweerth@ge present the results demonstrating the importance ofigimi
factors (accuracy and memory requirement/execution timse incentives properly, and identify the degree classeastwh
and works well in practice. are more useful to target for maximum spreading. Then we
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study the effect of various model parameters on the rewgehptured by,, andé,,) is the same. The parametécaptures
functional, / and compare the optimal strategy with statithe relative cost of using word-of-mouth control over direc
and bang-bang control strategies. In the static contrategjly, control and is set t@.5.
the direct and word-of-mouth controls are implemented at The budgetB is set tou?,,, x T'/8, which is one-eighth of
£ < 1 times the maximum allowed value in all degree classeie value of the resource spent if direct control is used lat fu
The value ofx is selected so that this strategy respects thetensity and no word-of-mouth control is used throughbaet t
same budget constraint as the optimal control strategy. dampaign duration (foism = ¢, = 1, Ym). This corresponds
the bang-bang strategy, direct and word-of-mouth contids to the scarce resource case, which is likely to be encouhtere
implemented in all degree classes at the maximum strengihmost real situations. We are not interested in cases where
till the resource lasts. As will be seen in this section, ooint the resource is so abundant that maximum control strength
strengths are strongest in the early stages of the campaén ean be applied throughout the campaign duration. All the
gradually subside; this motivates the bang-bang strategy. computations are carried out by discretizing the campaign
duration into 51 time points.

A. Default Model Parameters and Validation of Degree Based Mode! Validation:The comparison between system evolu-
Compartmental Model tions, captured byi(t) = >, . ir(t)px, produced by the Sl
epidemic process simulated on configuration model networks

and that produced by differential equations from degreedbas
compartmental models are shown in Hig. 3. The simulation
results are averaged over 20 runs on networks of $ire

for all three types of networks—ER, PL3 and PL2. We see
an excellent match between simulation and degree based
compartmental model. To construct a configuration model

—simulation ER |

fraction of infected nodes

R ---theory ER network, sample the degree of ali* nodes fromp;, k € K.
- — simulation PL3 .. .
0.2 ---theory PL3 | Then select a half edge of any node and pair it with any other
j;']':gr';tg’l_"zpu half edge available in the network. Self and multiple looas ¢
 — 2 3 2 5 occur, but their density goes to zero for large networks.[22]
time Also, if the last half edge is left unpaired, it is ignored.

Fig. 3: Validation of the degree based compartmental model for an
S| epidemic onl0* node configuration model networks. We average

over 20 simulationsar = 1, 3 = 0.12, 4o = 0.01. B. Timing the Incentives and Important Degree Classes

1) Constant Spreading Ratéi(t) = g: For this result,

Model ParameterslUnless otherwise stated, the model pathe degree classes are divided into three grouds< 3)

rameters are set to the following values for the resultsntego .
in the rest of this section. The fraction of infected node("éac.h targeted by a dlrec'g and a word-of-mouth control. For
(relative to the total population) at the start of the epidem a gven network,. nodes in degreg classes,in 10 k1 are
19, IS set t00.01. The small value of, implies that we have assigned tq the first group, those in degree cladges 1 to
started campaigning at the early stages of the epidemic. ky are :_:153|gned to the. second group @ndt 1 10 Kinge
The campaign deadline and spreading rate together deciig @ssigned to the third group, such et ., o ~
the extent of spreading in the uncontrolled system. We ha@:iklﬂpk ~ f:mgﬂpk ~ 1/3. Thus, the three groups
normalized the campaign deadlineffo= 1 and the spreading are selected such that roughly one-third of the nodes fall in
rate is set to3 = 0.12 (for cases where the spreading rateach of the groups for all the three networks. This approach
is constant over the campaign period). We choose suclhofacreating the three groups remains the same in the rest of
value of § because it leads to low to moderate spreading the paper. This is just an example of forming groups that is
the uncontrolled systemi((") = 0.040,0.058 and 0.126 for used to demonstrate results in this paper. Our method works
ER, PL3 and PL2 networks respectively, figr= 0.01), the for any disjoint collection of degree classes grouped tonfor
situation which would require campaigning. K,,’s. The degree classes are grouped only for the purpose
The value ofa, the fraction of the infected populationof controlling the network, information diffusion dynarsic
interested in further spreading the message is sétftoThe is still captured with |K| equations, as suggested by Eq.
maximum value of direct control is set t9,,,, = 0.12, equal (6H). Following this approach, groups in the ER network
in magnitude to the spreading rate, irrespective of whetheave degree classés’? = {1,...,21}, KFE = {22, ..., 25},
word-of-mouth control is used or not. The maximum value fdK¥?® = {26,...,60}; PL3 network: KI'*3 ={13,14,15,
the word-of-mouth control is set ta,,., = 0.5; thus, we can K{'%? ={16,...,2%, K{'X? ={22,...,300; and PL2 network:
only increase the fraction of spreaders by a maximurbost Ki%? ={6,7,8;, K{'? ={9,...,18, KI'*? ={16,...,300.
by applying word-of-mouth control, which seems reasonable Shapes of the direct and word-of-mouth optimal control
The functions deciding the cost of applying the directignals for ER, PL3 and PL2 networks and the corresponding
and word-of-mouth controls aré,,(u(t)) = b,u?(t) and rates at which resource is allocated in each of the three
em(0(t)) = déymv(t), with b,, = é, = 1, Vm. That is, groups are shown in Fig]4. To plot the resource alloca-
the default value of convincing all the degree class groufien rate in groupm, we have plottedg,, b, (u.,(¢)) and
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@V (1) B(t) o (Vi (1) )in (t)5(t) over time for direct and word- ~ The resource allocation rate plots (Fifis] [4é, 4f) also
of-mouth controls (as derived irf](5)). The word-of-moutshow that: (i) The word-of-mouth strategy assumes increas-
control is representative of the cash-back or discount amg importance with network heterogeneity (PtRL3>ER).
membership renewals, announced for present customeeyif tifhe percentages of total resource allocated to word-oftmou
introduce a friend to the service/product. The correspaogdistrategies (all 3 groups combined) for PL2, PL3 and ER
resource allocation rate is akin to the rate at which moneyngtworks are 44%, 28% and 19% respectively. The more het-
spent due to announcement of such cash-backs. As seen fesngeneous the network, the more hubs it has, thus more word-
the figure, for all three networks, both direct and word-obf-mouth resource is allocated to the highest group to infec
mouth controls have larger strength at the early stageseof the nodes attached to the hubs (see the curves corresponding
epidemic and they gradually decay. This is so because for themn = 3 in the figures for PL2, PL3 networks). The ER
S| epidemic, early infection aids in faster propagationtad t network does not have a group with distinct advantage ingerm
epidemic, hence the reward for an intense control, in-sgfite of degrees, so the word-of-mouth resource allocation is low
the higher costs, is worthwhile. (i) The more heterogeneous the network, the more disparity
As seen from the resource allocation rate plots (Figh.4d, 4kere is in the allocated resources for high, medium and low
[41), when all the degree classes are equally costly to inflegngroups for both control strategies. Thus, high degree nodes
for PL3 and PL2 networks (which are more heterogeneomsre heterogeneous networks have more relative importance
than the ER network), the highest group & 3) is most im- than their counterparts in less heterogeneous networks.
portant in the optimal strategy (which assigns highestugs®  To achieve the above resource allocation, the optimal-strat
for both types of controls to them; at least at the beginniregyy uses controls as shown in Fids] 4b 4c. The
stages in the case of direct controls, and always for the wordirect controls follow the same trend as the corresponding
of-mouth controls). For the ER network, the medium grougesource allocation rate curves; however, the word-oftmou
(m = 2) attracts the most investment, which makes thegontrols show different trends. For the ER network, more
the most important group for information spreading (morord-of-mouth rewards (the controls in form of cash-backs,
important than even the highest group, which is somewhat example) are announced for the medium group, followed
surprising). The group with highest degree classes is nest mby the low and then the highest group. For the heterogeneous
important, followed by the group with lowest degrees classenetworks, highest reward is announced in medium group,
which is as expected. The percentages of total (direct pligslowed by high and low groups. Since the highest group has
word-of-mouth) resource taken up by low, medium and highore nodes around it, the resource spent due to the group’s
groups in the case of ER are 21%, 47%, 32%; for PL3: 8%ash-back claims is more than that of the other groups in
29%, 63%; and PL2: 5%, 17%, 78% respectively. the heterogeneous network. More rewards are announced in
Explanation of this (‘surprising’) bahaviorinformation the medium group to incentivize their members for strong
diffuses through edges in the network. We calculate the mespreading to their neighbors, as there are fewer neighbors i
degree of nodes in the given network and given degree clalse group.
group usingky,, = > . (kpk)/ D kex, Pe- The values  Table[] gives an idea of the time taken to solve the optimal
for ER arek{" = 18.3, k3" = 23.5, k'™ = 28.9. For control problem for various networks for the parameter galu
PL3: kf13 = 13.9, k'E3 = 18.0, k'3 = 40.1. And, chosen in Sed_VIEA. Note that this time is dependent on
for PL2: kP12 = 6.8, kI'F2 = 11.3, kI'l? = 48.5. Thus the values chosen for the parameters (which is true for any
we see that the highest groups in heterogeneous netwanksnerically solved optimization problem).
(PL2 and PL3) have disproportionate advantage in terms
of the number of links/edges to other nodes. Although thiBABLE I: Time taken (in sec, on a machine with Intel quard-core i3-
aids in both spreading and receiving information, targgtir?100 CPU @ 3.10 GHz, 4 GB RAM, and running a 64 bit operating

; ; ; ; stem) to solve Problerh](6) for various networks for difervalues
low/medium group nodes early on in the _campalgn_ IS n(6)¥M (averaged over 10 runs) whe@, 77 is discretized taV = 51
useful because a randomly chosen node in them will mqghe points

likely be a part of a collection of nodes connected to other M1 M—2 M M4 M M1

low/medium group nodes and_ls most likely away from a hub.E 55D 4505 77.93 16568 2845.38 100(2).75

In PL2/PL3 networks, hubs (high degree nodes) are connecteds 1225 8552 143.33 24434 34158 1217.80

to low/medium degree nodes, but the rest of low/mediunPL2 12.36 94.64 16942 25197  395.72  1222.33

group nodes connect among themselves and the information

penetrates slowly there. Later on in the campaign when we2) Time Varying Spreading Ratefo capture the varying

have exhausted high group nodes, it makes sense to taiggdrest level of the population in talking about the subjafc

medium and low group nodes. the campaign, we have modeled the spreading rate as a time
On the other hand, connectivity is more uniform in thearying quantity. In this section we demonstrate the eftdct

ER network. Nodes in the highest group will be able to geiime-varying spreading rate on the optimal control strateg

information from medium and lower group nodes. In additione have chosen linearly decreasing and linearly increasing

directly targeting medium and lower groups increases thiene varying3(t) for illustration, defined as:

fraction of infected nodes in these groups, thus havingectir

effect on increase in the objective (reward) functionalt (ne But)= Bux(1—-t/T), 0<t<T,

fraction of infected nodes at the deadline). Ba(t) = Ba x t/T, 0<t<T.
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A decreasing’; (t) may be encountered in product promotiorosts they incur due to their strength) for both decreasing
campaigns€.g.smartphones), where the interest of the popand increasing spreading rate profiles. More infected nodes
lation in the version of the product decreases as it grows ot beginning of the campaign leads to more information
An increasingsz(t), on the other hand, may be encounteredissemination in the case of Sl process (where there is no
in cases such as poll campaigns, where people are more eswbvery like SIR). The word-of-mouth resource allocation
more interested in the subject as the polling day approachéis Fig.[5d) follows the trend, because of slow conversion of

The controls for the PL3 network for decreasifigt) are sus_ceptibles to infected due to word-of-mouth strategyyear
shown in Fig.[Bh, and controls and resource allocation r&t8 in the campaign (because of low valuesfeft) in early
curves for increasingd:(t) are shown in FigsLBb ang]5cStages)-

respectively. HereﬂM. = 0.24 and degree classes are divided (i) The importance of the degree class groups in spreading
into three groups as in Sdc. VI-B1. The graphs for other casgg epidemic is the same as in Jec. VI-B1 for ER and PL2/PL3
showed similar trends and are omitted for brevity. Points Itworks. Thus, the earlier result is reconfirmed, thattis, t

note are: order of importance for the ER network is: medium degrees
(i) The word-of-mouth and direct controls are always strongigh degrees- low degrees, and that for the PL2/PL3 network
in the beginning stages of the campaign (in-spite of the high high degrees>- medium degrees- low degrees (omitted
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graphs showed the same trend). E. Effect of the Spreading Rate
Fig.[8 shows the effect of varying the spreading ratmn the
C. Effect of the Budget reward functional/. The optimal control strategy gives notable

] _improvement (say> 10%) over the non optimal strategies
In the rest of this paper we assume a constant spreading "8ifly for a window of low and intermediate values ®f(exact

Fig.[8 studies the effect of the budget on the reward fu_”a“?r\/vindow depends on the network used). When the spreading
J, for M =10, for all three networks and compares it Withate is too high, the static or bang-bang strategies will not
static and bang-bang strategies. To divide the degreeeslagserform too badly compared to the optimal control strategy.
into M = 10 groups, we use the approach similar to that The figures also reveal that the relative advantage of the
in Sec[VI-B, where degrees were sequentially allotted & thtimal and static campaigning strategies over the no cam-
groups, with each group having about one-tenth of the to{8igning strategy decreases as the spreading rate insrease
fractl(_)n of the nodes. This approach of creating ten groupg higher spreading rates, we are able to reach a greater
remains the same for the rest of the paper. fraction of the population even without campaigning anddeen
From the figures we conclude that (for the parameter valugs: importance of campaigning (optimal or static/banggan
used) the heterogeneous networks (PL2 and PL3) benefit mgggreases.
from the application of the optimal control strategy conger  Examining the right part of the three figures carefully, we
to the ER network, with respect to the static control sthateGee that at higher spreading rates, the fraction of populati
(concluded from the percentage improvement data in[Hig. dached through optimal campaigning is more for the ER and
The trend is also roughly true for bang-bang control. Thg| 3 networks than the PL2 network (in-spite of the fact that
benefit for heterogeneous networks is more because we B[® has heavier tail,e., more hubs with larger degrees). This
still in the regime of low infection and there are untappeg|so happens for the case of no campaigning (or no control
susceptible nodes closer to hubs which will benefit froghse see also Figl 3). This is because of the way the networks
increasing the resource. This does not happen for the ca$g chosen. From Figl 2, PL3 has a minimum degree of 13 and
of the ER network. Increase in resource benefits the optimgl 2 has minimum degree of 6; about 60% of the nodes in PL2
strategy more than the non-optimal strategies, leadin@it ty,zye degree of 13 or less (the minimum degree of PL3). We
trend. know that an epidemic spreads through the edges, so reaching
Also, the performance benefits are more for the low and ighe low degree nodes, which constitute a significant poxtion
termediate budgets than for the high budgets. This is egfdecp| 2 is more difficultat higher levels of infectianAlthough
because at higher budget values, the optimal, static ang-bagome low degree nodes are connected to hubs, but low degree
bang controls are increasingly similar in shape and all efith nodes are large in number, and the rest of them which are
tends to saturate to the maximum allowed value. away from hubs and connected to other low degree nodes,
From this figure (and results in the rest of the paper) wge penetrated slowly. However, this effect is not seent lo

see that static strategy outperforms the bang-bang syrategvels of infection (low values of ) because we mostly infect
Although the bang-bang strategy puts the control efforhat tthe nodes close to the hubs.

most productive stage (beginning of the campaign), thengtro
intensity incurs more cost (due to the convex cost Structute efact of the Cost of Influencing Various Target Groups
assumed in this section). Compared to the static stratbgy, t
bang-bang strategy is able to exert less total control effor
for the same value of budget. It turns out that this trade-o0
(productive time vs. total effort) is working in favor of the
static strategy.

We study the effect of changing the cost of influencing
d incentivizing the target groups, for the case when the
egree classes are divided inld = 2 groups. We change
this cost by changing the weighting parametersandé,, in

the functions,, () andc,,() defined in Sed_VI-A. The results
are shown in Figl19. The weighting parameters for the group
D. Effect of Changing the Relative Cost of Word-of-mouttontaining lower degree classeés,andé¢, are fixed to 1, and
Controls by = &, are varied. As the skewness in the costs increases,
OI;he advantage obtained by the optimal control strategy over
the non-optimal strategies also increases. This is so kecau
the optimal strategy starts allocating more resource to the

show that increase in the price of word-of-mouth controlgsu cheaper group. Since high degree classes are more impor_tant
the PL2 network more than the ER network (as suggestgﬁ spreading in tr_le case of P_L2 and PL3 networks,the r_ael_anv
by the relative improvement over non-optimal strategida)da advantage of optimal strategies over non-optimal strateg

The optimal strategy tries to adjust for high costs by aliimca theie networks, ali h'gr? ValléeSIQf: c2f|shless,(|jn comparison h
more resource to direct controls, so the advantage gained d¢ the ER network (where degrees of the nodes present in the

non-optimal strategies has an increasing trend, but daing EtWork are distributed more homogeneously).
hurts the PL2 network, which uses the word-of-mouth strate

The effect of varying the relative cost of using wor
of-mouth control, which is captured by parametkin the
function ¢,,,(v(t)) = dé,v?(t), is studied in Fig[l7. Results

Hence the percentage improvement curve for PL2 is lowerFig. [I0 studies the effect of the fraction of population
than that for ER. already infected at the start of the epidenij(seeds) orv. As
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ip increases, the improvement offered by the optimal strategyOur formulation leads to an optimal control problem the
over the non-optimal strategies decreases quickly. Thas, aolution to which provides the best allocation of the reseur
should only bother about calculating and implementing trever (i) the campaign duration, (ii) strategies, and (lig 11/
optimal strategy if starting the campaign early. However, groups, to maximize the information spread. In the process,
should be noted that for most real world applications, ththe solution also identifies the important groups which $thou
condition is satisfied most of the time; we become aware bé allotted more resources to maximize the epidemic size. Th
some information as a result of the ongoing campaign.  order of importance of the groups depends on the network.

We proved the existence of a solution to the optimal con-
VIIl. L IMITATIONS AND FUTURE WORK trol problem with non-linear isoperimetric constraintsngs
novel techniques. The optimal control problem was solved
. ) . ) _ by converting it into a non-linear static optimization plern.
rections in which the work presented in this paper can lg{Jrformulation works for arbitrary degree distributionkiah
extended: _ _ . allowed us to study the effects of network topology on
(_1) We have only used |nf0rmat|0n frqm the degr_ee OllStrJa'pidemic control. We presented results for Erdés-Rényg a
bution of the network to prescribe the optimal allocatiorieef scale free networks (with power law exponents 2 and 3) and
resource. The effects of some of the other network profertig, ieq the effects of various model parameters on the aptim
like degree-degree correlations, community structurestet- .,nyro| strategy. We have quantified the improvement offere

ing etc. on the optimal strategy still need to be explorece Thy, we optimal control strategy over the static and banggban
degree based compartmental model may not be accurate J9f o strategies

some of these situations, and more complicated methods, suc _ .

as pair approximation methodEtZZ Sec. 17.10.1], may heOur results show that for certain scenarios, the performanc
required. However, pair approximation methods lead to maf{tins achieved by the optimal strategy are only marginal-com
more differential equations compared to the degree baged c#ared to the non-optimal strategies. Controls are stromger
partmental models. This will lead to significant computasib €&y Stages of the campaign. For the case when degreesclasse

challenges because the system is solved multiple times® divided into three groups, for scale free (heterogesjeou
compute (optimal) controls. networks, the order of importance of the groups in message

(2) Degree is only one measure of node centrality in t§

We list some of the limitations and potential future di

reading is: (the importance is based on the resourceadidc
the optimal strategy to the groups) high degreesedium
egrees> low degrees. In contrast, for the Erd&s-Rényi
(homogeneous) network, it is: medium degreeligh degrees

> low degrees. Word-of-mouth strategy is more important for
maximizing information diffusion in heterogeneous netikgor
VIII. CONCLUSION than homogeneous networks. Optimal campaigning leads to

We studied the problem of optimal resource allocatiofignificant performance gains (over a static strategy) only
over time, for maximizing the spread of information amonlj campaigning starts early, for topics which have low to

nodes (individuals) connected in a network, under fixed buddntermediate spreading rates and for low to intermediatigbt
constraints. We used the degree based compartmental m&@&straints.

for the Susceptible-Infected epidemics to model inforovati  The results presented in this paper may be of interest to
propagation on networks. Nodes with the same degree #etection and crowdfunding) campaign managers and product
aggregated into the same degree class. The degree classemarketing managers working to disseminate a piece of infor-
divided intoM groups, each influenced by a direct and a wordnation on a social network. The framework presented in this
of-mouth control, the two strategies to accelerate infdioma paper, with some modifications, can also be used for bioébgic
spreading. epidemic mitigation on networks.

network. Exploring the effect of other centrality measur
on campaigning resource allocation forms another integst
direction of future work.

Copyright (c) 2014 IEEE. Personal use is permitted. For ahgropurposes, permission must be obtained from the IEEEnBjli@g pubs-permissions@ieee.org.


http://dx.doi.org/10.1109/TNET.2014.2361801

This is the author’s version of an article that has been phbli in IEEE/ACM Transcactions on Networking. Changes wes€le to this version by the publisher prior to
publication. The final version of record is availablehdip://dx.doi.org/10.1109/TNET.2014.2361801 1

APPENDIXA
NEIGHBOR DEGREEDISTRIBUTION

[14]

Here we argue that in the configuration model, with degrefgs]

distributionp, k € KK, neighbor degree distribution is
by, ri = kpi/k, wherek is mean degree of the netwo
Sec. 13.3].

iven
22,
[1

When an edge is cut, it leads to two half edges, one adjoined

to each node which the original edge is joined to. The total7

number of half edges in the network is given Byn an
even positive integer. In the configuration model, a halfeedg
originating from any node is equally likely to terminate aya [18]

other node. If total number of nodes in the networRvistotal
number of nodes of degrdeis p;, N. The total number of half

[19]

edges corresponding to this i, N. Thus, the probability
that one of them will be paired with the tagged half edg0]
originating from the tagged node i$,. N/(2m —1) (we leave

out the edge from the tagged node itself). In the limit of éargpl]
number of nodes, this i kpyN/2m. Notice tham /N = k.

Thus the probability that the tagged edge will terminate on[ap]

neighbor that has degréeis kpy/k.
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