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Abstract

In this paper we describe a network coding scheme for the Broadcast Erasure Channel with multiple unicast
stochastic flows, in the case of a single source transmittingpackets toN users, where per-slot feedback is fed
back to the transmitter in the form of ACK/NACK messages. This scheme performs only binary (XOR) operations
and involves a network of queues, along with special rules for coding and moving packets among the queues, that
ensure instantaneous decodability. The system under consideration belongs to a class of networks whose stability
properties have been analyzed in earlier work, which is usedto provide a stabilizing policy employing the currently
proposed coding scheme. Finally, we show the optimality of the proposed policy forN = 4 and i.i.d. erasure events,
in the sense that the policy’s stability region matches a derived outer bound (which coincides with the system’s
information-theoretic capacity region), even when a restricted set of coding rules is used.

I. INTRODUCTION

The information-theoretic capacity region of the Broadcast Erasure Channel (BEC) in the case of one transmitter
andN unicast sessions has been recently studied in [1] and [2]. Both of these papers propose coding algorithms
based on transmission of linear combinations of packets. These algorithms are shown to achieve capacity in the
following settings: 1)N ≤ 3 and arbitrary channel statistics, and 2) arbitraryN and channel statistics which satisfy
certain assumptions (i.e. symmetric channels and one-sided fair channels). However, these schemes are characterized
by high complexity (as operations take place in a sufficiently large sized finite field) and decoding delay, since
a sufficient number of linear combinations has to be receiveduntil a packet is decoded. In [3], we proposed a
network coding scheme that overcomes these obstacles by using only XOR operations, generalizing the 2-user
network coding scheme in [4] to the case of 3 users. Thus, two low complexity algorithms were proposed, namely
XOR1 andXOR2, which additionally had the advantageous property of “instantaneous decodability”. By this term,
it is meant that a receiver is able to decode packetp destined for it as soon as it receives an XOR combination
of packets containingp. Algorithm XOR2 was proved to achieve capacity for the case of i.i.d. channels as well as
spatially independent channels with erasure probabilities that do not exceed 8/9.

However, the system considered in [3] is a saturated system,where a predefined number of packets needs to
be transmitted to each user. This model is not frequently encountered in practice. Moreover, algorithmsXOR1 and
XOR2 cannot be easily generalized to more than 3 users. This happens because, at each time slot, coding choices
have to be determined a priori so that each transmission is optimally exploited in terms of allowing multiple users
to simultaneously decode their packets as well as create favorable future coding opportunities. However, forN > 3,
the number of coding choices increases dramatically so thatthere is no clear intuition on the optimal choice (this
will become apparent once the model and queue structure is described).

In the current work, we propose a general network coding scheme for the case of a single transmitter sending
packets toN users through the BEC with feedback, generalizing the scheme proposed in [3]. Any packet arriving
to the transmitter is initially placed in one ofN queues. Depending on the received feedback, these packets (or
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XOR combinations of them) may travel through a network of queues, before they reach their destination, in order
to exploit the overhearing benefit of the broadcast channel.Coding and packet movement rules are imposed in order
to ensure instantaneous decodability of packets and betterexploitation of coding opportunities.

While in [3] we examined a saturated system, in this paper we consider a stochastic model where packets may
arrive randomly at the transmitter at any time slot. Additionally, we use a backpressure type online algorithm that
makes each coding choice based on instantaneous quantities, such as queue sizes, without requiring knowledge of
future events. Therefore, we do not need to predefine the coding choices (as in [3]), and the proposed network
coding scheme can be applied to an arbitrary number of users.For the specific case of 4 users and i.i.d. erasure
events, we present a stabilizing policy that uses only a subset of all possible coding choices and prove that the policy
stability region coincides with the information theoreticcapacity region of the standard BEC with feedback. This
result is quite intriguing, considering the restrictions imposed on the policy (XOR operations only, instantaneous
decodability, reduced set of coding choices).

The network stability of single hop broadcast erasure channels with feedback has also been examined in [5],
which considered broadcast traffic only and investigated the stability regions of plain retransmission and linear
network coding schemes (parameterized over the field size) as opposed to a proposed dynamic virtual queue-based
policy. The latter policy was shown to be optimal for 2 users while, for N > 2 and i.i.d. erasures, it achieved a
stable rate that differs from the cut-set bound by a factor ofO(ǫm+1), wherem is the number of queue “levels”
that participate in the coding decision (see [5] for more details and definitions;m can be loosely regarded as a
measure of the encoding complexity) andǫ is the erasure probability. Although the structure of the virtual queues
and coding rules are inspired by similar concepts as in our work, the actual rules for moving packets between the
queues are much more involved in our work since we are interested in achieving the optimal stability region for all
values ofǫ instead of only asymptotic optimality asǫ→ 0 (these notions of optimality ignore any overhead). An
additional cause for rule complexity in our work is the fact that multiple unicast sessions are much more difficult
to handle (due to the inherent competition between different sessions) than a single broadcast session. Furthermore,
there is no guarantee in [5], for the general case ofN users, regarding instantaneous decodability.

The work in [6] studied a network which is described by an underlying complete graph where each edge is
modeled as a Markov chain ON/OFF channel (i.e. a generalization of the memoryless erasure channel), while
there also exists a special “relay” node with XOR coding capabilities which can overhear all transmissions. Any
transmissions to/from the relay are error-free. The work considers multiple unicast flows, originating in all nodes
except for the relay, and explicitly accounts for instantaneous decodability by mapping this constraint into a specially
constructed conflict graph (a similar graph structure is used in [7] to model the same constraint). It proposes an
online backpressure policy that requires computing in eachslot the maximum weight independent set of the time-
varying conflict graph. Although the work bears similarities to our paper in terms of mathematical techniques and
the optimization problem that results, the model is quite different. Hence, the proposed coding policies are quite
different and the results in [6] cannot be used to show one of our main results, namely that the proposed scheduling
and coding policies achieve channel capacity for BEC with i.i.d. erasures. In particular, the broadcast channel at
the relay (which is the only node that can perform XOR coding)is error-free in [6], while we are interested in
broadcast erasure channels.

In summary, the contribution of this paper is as follows:
1) We develop a systematic network-coding-based frameworkfor constructing instantaneously decodable feedback-

based XOR coding schemes for the BEC with multiple unicast sessions and an arbitrary number of users.
This requires a (highly non-trivial and quite involved) generalization of the rules in [3] and the replacement
of the algorithmic core in [3] with a backpressure-type online algorithm proposed in [8], which makes each
coding choice based on instantaneous quantities instead ofa predefined set of ordered actions. The new policy,
which cannot possibly be constructed from [3] through any obvious procedure, is elegant and conceptually
simple, considering its general applicability.

2) We derive an outer bound, for arbitraryN , on the stability region of the network through an elegant flow
argument and relate this to a bound on the information-theoretic capacity region of the “extended” BEC
channel (where idle slots are allowed).

3) Finally, for the special case ofN = 4 and i.i.d. erasures across users, we carefully restrict theallowable
coding choices and present a stabilizing policy on top of theprevious network coding scheme whose stability
region is essentially identical to the capacity region of the 4-user system (whereas in 2. above we only
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relate outer bounds). Hence, we show that XOR combining achieves both instantaneous decodability and
throughput optimality in this setting. Considering that the proposed policy uses only a subset of all possible
coding choices and only XOR operations, while guaranteeinginstantaneous decodability, this result is quite
unexpected.

The rest of the paper is organized as follows: in Section II, the system model is introduced along with some
useful notation. In Section III, the proposed network coding scheme is described, while in Section IV the applied
stabilizing policy is presented. In Section V, an outer bound on the stability region of the system under study is
derived. In Section VI, we prove, for the case of 4 users and i.i.d. erasure events, that the stability region of such a
system coincides with the capacity outer bound of the standard broadcast erasure channel with feedback. In Section
VII we examine some implementation issues while Section VIII concludes the paper. Some technical proofs are
contained in the Appendix.

II. SYSTEM MODEL AND NOTATION

We describe some notation that will be used in the following.Sets are denoted by calligraphic letters, e.g.M,
and the empty set by∅. The cardinality of setM is denoted by|M| and we writeM = |M|. Random
variables are denoted by capital letters and their values bysmall case letters. Vectors are denoted by bold letters,
e.g.A = (A1, . . . , An). The expected value of a random vector is the vector consisting of the expected values of
its components, i.e.,E [A] = (E [A1] , . . . ,E [An]).

We consider a time-slotted system where slott = 0, 1, . . . corresponds to the time interval[t, t+1). The system
consists of a base stationB and a setN = {1, 2, . . . , N} of receivers (users). At the beginning of slott, Ai(t)
data packets arrive atB with an average rate ofλi = E [Ai(t)]; these packets must be delivered to receiveri and
are referred to as “flowi” packets, where we denoteA(t) = (A1(t), . . . , AN (t)). All packets consist ofL bits,
and the transmission time of each packet is1 slot. A packet transmitted byB may be either correctly received or
completely erased by any receiver (broadcast medium). After each transmission, the receivers send feedback toB
(through an error-free zero-delay channel) informing whether the transmitted packet has been correctly received or
not (ACK/NACK feedback). We also assume that if no packet is transmitted in a slot (say, because all queues are
empty), then all receivers realize that the slot is idle.

Packet arrivals are assumed to be independent and identically distributed across time, but arbitrarily correlated
across users. That is, the process{A (t)}∞t=0 consists of i.i.d. random vectors, while the components of each vector
A (t) may be arbitrarily correlated. Similarly, packet erasuresare i.i.d across time and are initially assumed to be
arbitrarily correlated across users (we later concentrateon the special case of spatially i.i.d. erasures). The packet
arrival and erasure processes are independent. For subsetsS,G ⊆ N with S ∩ G = ∅, we denote byPG,S the
probability that a transmitted packet is erased atall receivers inG and received byall receivers inS (no condition
is imposed on packet reception or erasure for receivers inN − (S ∪ G)). We also denote byǫG the probability that
a transmitted packet is erased by all receivers inG, i.e., ǫG = PG,∅. For simplicity, we slightly abuse the notation
and writeǫi or ǫij instead ofǫ{i} or ǫ{i,j}, respectively.

III. N ETWORK CODING SCHEME DESCRIPTION

A. Definitions

Exogenous packets arriving atB and being intended for useri ∈ N are called “native packets fori”. A packet
is simply termed “native” if it is a native packet for some user (due to the unicast traffic, a packet is native for
exactly one user). According to the policies to be describedbelow, all transmitted packets are either native, or XOR
combinations of native packets. In other words, any transmitted packetp can be written asp =

⊕n
l=1 sl (where⊕

denotes the XOR operation), wheresl are native packets, and we say that “p containssl” or “ sl is contained inp”,
or “sl is a constituent packet ofp”. As will be seen, it is possible, and actually beneficial, for p to contain native
packets for more than one user. To shorten the description inthe following, we say that a packetp is an XOR
combination of native packets even whenp consists of a single native packet. Also, a native packetq for useri is
unknownto i at a given time if it has not been decoded byi by that time. The following definitions, which are
introduced in earlier work [3], will be crucial in the subsequent analysis.

Definition 1. User i is a Listenerof a packetp iff both of the following conditions are true:
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1) p is an XOR combination of packets, not necessarily native, that i has correctly received.
2) p contains no native packet fori that is unknown toi. Equivalently, ifp contains a native packets for user

i, then the packets is known to (i.e. has already been decoded by)i.

Definition 2. User i is a Destinationof a packetp iff either p is a native packet for useri that is unknown toi,
or p can be decomposed as an XOR combination of the formp = q ⊕ c where

1) q is a native packet fori and unknown toi, and
2) i is a Listener ofc.

We hereafter use the terms Listener, Destination to exclusively refer to the above technical definitions. The
decomposition of a packetp = q ⊕ c with Destinationi alluded to in Definition 2 is unique, sincec cannot itself
contain an unknown native packet fori, due to the second condition of Definition 1 (sincei is also a Listener of
c). Hence, a packetp for which useri is a Destination can contain exactly one unknown native packet q for i,
which we denote asq = p(i) (we call p(i) the “unknown native packet” ofi in p ). On the other hand, notice that
the second condition of the Listener definition does not assert that p always contains a native packets for useri,
only that the existence of such a packet implies thats is known toi. Furthermore, the properties of Destination and
Listener are time-dependent since they depend on notions such as “packets known to useri”, which are inherently
time-dependent. Clearly, the Listener property is absorbing, in the sense that if useri is a Listener for packetp at
slot t, it remains a Listener forp for all slotsτ > t.

To better understand the previous definitions and some of their fine points, we offer the following illustrative
examples:

• Denote all native packets for usersi, j with r̃, s̃, respectively; we will use indices̃r1, r̃2, . . . , ands̃1, s̃2, . . . , to
refer to different native packets for the same user. Supposep = r̃ ⊕ s̃ is transmitted, wherẽr, s̃ are unknown
to i andj, respectively, and have been previously received byj, i, respectively. Then, according to Definition
2, bothi andj are Destinations forp. If p is only received by a third userk, thenk becomes a Listener forp
(sincer̃, s̃ are not native packets fork). If i receivesp in the future, theni instantly decodes its native packet
r̃, ceases to be a Destination forp, and becomes a Listener forp, asp no longer contains a native packet of
i that is unknown toi.

• Suppose thatp = r̃l⊕ s̃l is transmitted and received byi, where neither̃rl nor s̃l has been decoded byi in the
past. Then, according to Definition 1,i is not a Listener ofp (sincep contains an unknown native packetr̃l
for i), even though it knowsp. In juxtaposition to the previous example, we note the following subtle point:
although a user can only become a Listener of a packet after receiving an XOR combination containing the
packet, the previous example shows that it is not always truethat every successful reception of a packet by a
user automatically makes the user a Listener for the received packet. To take that example one step further,
suppose now that̃p = r̃m⊕p is transmitted immediately afterp and received byi. Then,i is not a Destination
for p̃ (since Definition 2 would requirei to be a Listener ofp at the time ofp̃’s transmission) even thoughi
is able to decodẽrm. Sincep̃ is an Innovative packet1 for i, we conclude that the notion of “i is a Destination
for p̃” is a stronger notion than “̃p is Innovative fori”. As will be seen, the proposed policies ensure that this
scenario never occurs; it is mentioned here only to illustrate the Innovative/Destination distinction.

As will be seen, transmitted packets may have several receivers as Destinations or Listeners. The next fact follows
from Definition 2.

Fact 1. If useri is a Destination for a packetp andi receivesp, theni is able to immediately (i.e. instantly) decode
the unknown native packet intended for it that is contained in p.

Hence, one way of guaranteeing instant decodability in the proposed scheme would be to guarantee that whenever
a transmitted packetp contains an unknown native packet for some useri, theni is a Destination forp. This desirable
property will be eventually proved once the coding scheme isfully described.

1since each transmitted packetp is an XOR combination of native packets, we can writep asp =
⊕

n
a
(i)
n,pr̃

(i)
n ⊕ dp, wherer̃(i)n are all

native packets for useri, the (composite) packetdp contains no native packet fori anda(i)
n,p ∈ GF (2) are suitable coefficients. Hence, for

each transmitted packetp and each useri, we can associate a vectora(i)
p = (a

(i)
n,p) over the fieldGF (2) and consider the space spanned by

the vectorsa(i) that correspond to all packets previously received by useri. Packetp is defined in [9] to be Innovative for useri if the a
(i)
p

vector is linearly independent w.r.t. thea(i) vectors of all previously received packets byi. Hence, an Innovative packet essentially brings
“fresh” information to a user.
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Fig. 1. Network of queues forN = 3 (virtual queues are not shown since they are not used by the transmitter).

B. Queue management and coding choices

Under the proposed policies, packets may be placed in various queues at the transmitter side, based on the
received feedback. A general queueQL

D is characterized by two index setsL,D satisfying the following criteria:
Compatibility criteria (CC) for sets L,D

1) L,D ⊆ N ,
2) L ∩ D = ∅,
3) D 6= ∅,
4) L = ∅ only if |D| = 1.

For simplicity, we will denote queueQ{k}
{i,j} by Qk

ij, and queueQ∅
{i} by Qi. Also, we use the notationpLD to denote

a packet that is stored in queueQL
D and denote with|QL

D| the number of packets stored inQL
D. We hereafter assume

that all setsL, D for queuesQL
D satisfy the CC and will not state this explicitly.

In addition to the above network of queues, it will be helpfulto introduce a network of “virtual” queuesV L
D (i),

for all L,D andi ∈ D as follows: eachV L
D (i) exclusively contains “tokens” identifying native packets, namely the

unknown native packets for useri ∈ D which are contained in packets stored inQL
D. We refer to these tokens as

“virtual packets” and writepLD(i) to refer both to a token stored inV L
D (i) as well as to the native packet identified

by this token. In the following, we will use the term “packet movement” between virtual queues to actually refer
to token movement (tokens are atomic entities so they cannotbe further decomposed: each token moves as a unit).
Hence, queuesV L

D (i) do not really exist at the transmitter side and should only beexamined at a conceptual level,
since they will be useful in Sections V, VI. In contrast to the“virtual” network, the queuesQL

D and the packets
stored in them will be referred to as “real”.

We also associate with each queueQL
D a group of non-negative integer countersKL

D(i), for eachi ∈ D, which are
interpreted as the number of unknown native packets for useri contained in packets stored inQL

D (equivalently, the
number of tokens for useri in QL

D), i.e. it holds by definitionKL
D(i) = |V

L
D (i)|. We will later prove the important

propertyKL
D(i) = |Q

L
D| for all i ∈ D. Initially, all queues are empty and all counters set to 0.

We classify queues intoN levels, where levelw ∈ {1, . . . , N} contains all queuesQL
D such that|L|+ |D| = w.

Moreover, we classify queues of levelw ≥ 3 into sublevels, where sublevelw.u includes queues of levelw with
|L| = u, u ∈ {1, . . . , w − 1}. In Figure 1, we give an example of the queue network whenN = 3. Under the
proposed scheme, XOR combinations of packets are transmitted, which contain at most one packet from each of
the queuesQL

D. While the specific choice of packets depends on the received feedback and the specific algorithm
that is employed, the following rule always holds.

Basic Coding Rule (BCR) A set P =
{

pL1

D1
, . . . , pLν

Dν

}

of ν packets,one from each of thedifferent queues
{

QL1

D1
, . . . , QLν

Dν

}

, can be combined (by XORing) into a single coded packet only if

Dn ⊆ Lr, ∀ r 6= n, n, r ∈ {1, . . . , ν} . (1)

Note that the Basic Coding Rule implies thatDn ∩ Dr = ∅, for all r 6= n, n, r ∈ {1, . . . , ν}. Indeed,i ∈ Dn

implies, through (1), thati ∈ Lr and, since according to CC it holdsDr ∩ Lr = ∅, it follows that i /∈ Dr.
We have not yet fully specified the criterion according to which a packet is stored in a queue. It will be

convenient for packets stored in the same queue to have some common characteristics or properties. Since the
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notions of Destination/Listener are crucial for keeping track of the packet’s history, we use these two notions as
the basis for the packet storage rules. Specifically, we require the following properties to hold:

Basic Properties (BP) of packets stored in queuesQL
D:

1) Each packetpLD ∈ QL
D is an XOR combination of native packets (including the special case of a single native

packet), not necessarily for the same user.
2) For each packetpLD ∈ QL

D, the set of Destinations forpLD is D and all i ∈ L are Listeners forpLD.
3) For each packetpLD ∈ QL

D, if pLD contains an unknown native packetq for some useri, theni is a Destination
for pLD. Hence, taking BP2 into account, it follows thati ∈ D.

4) For each native packetq for useri that has not been decoded byi yet, there exists exactly one packetpLD ∈ QL
D

(for some setsL,D) such thatq = pLD(i), i.e. pLD is a composite packet that containsq.
We should stress the following subtle difference in terms ofreference between BP1–BP3 and BP4: BP1–BP3
describe properties of packets stored in any queueQL

D, while BP4 is an existence statement that essentially describes
properties of native packets, which are then related to somequeueQL

D.
In retrospect, the Basic Properties justify the Compatibility Criteria imposed onD,L. Specifically, the fact that

D,L contain Destinations and Listeners, respectively, for a packetp implies thatL∩D = ∅, sincep cannot contain
any packet that is unknown to a Listener user, due to condition 2 of Definition 1 (hence, a Listener can never be a
Destination, although a Destination for a packet becomes a Listener upon reception of the packet). The condition
D 6= ∅ captures the fact that a packet need only be stored in the queues for as long as it contains an unknown native
packet for at least one user. Finally, before any transmissions occur, each native packet has a singleton Destination
set and an empty Listener set.

The next result follows immediately from BP.

Lemma 1. For all L,D that satisfy CC, BP implies thatKL
D(i) = |Q

L
D| for all i ∈ D.

Proof: We slightly abuse notation and useQL
D to refer to the queue indexed byL,D as well as the set of

packets stored in the queue. We also denote withPi the set of unknown native packets for useri that are contained
in packets stored inQL

D. By definition, it holdsKL
D(i) = |Pi|, so that it suffices to show|Pi| = |QL

D|. Consider
any i ∈ D; by BP4, any unknown native packet for useri in Pi is contained in exactly one packet stored inQL

D,
which implies |Pi| ≤ |QL

D|. Also, by BP2, any packetpLD ∈ QL
D contains exactly one unknown native packet for

user i (since i ∈ D is a Destination forpLD) and, by BP4, no two distinct packets inQL
D can contain the same

unknown native packet fori, which implies|QL
D| ≤ |Pi|. This completes the proof.

The significance of the BP (apart from a systematic way of storing packets in queues) lies in the fact that,
combined with BCR, they guarantee the desired instantaneous decodability property, as described in the next result.

Lemma 2. If BP holds at the beginning of slott and the transmitted packetp at slot t is created according to BCR,
the following statement is true: ifp contains an unknown native packet for some useri, then i is a Destination
for p. Hence, by Fact 1, any user for whichp contains an unknown native packet can instantly decode it upon
reception ofp.

Proof: Let the transmitted packetp =
⊕ν

k=1 p
Lk

Dk
, formed according to BCR, contain some unknown native

packetq for user i. Then,q must be contained in one of thepLk

Dk
packets that comprisep, say pLk∗

Dk∗
. BP3 now

implies that, sinceq is unknown toi, i is a Destination forpLk∗

Dk∗
so that, by BP2, it holdsi ∈ Dk∗. Hence, we can

write pLk∗

Dk∗
= q ⊕ c, wherei is a Listener forc. Furthermore, the BCR implies thati ∈ Lr for all r 6= k∗, since

it holds i ∈ Dk∗, so that we can writep = q ⊕ c⊕
⊕

r 6=k∗ p
Lr

Dr
. By BP2 again,i is a Listener for eachpLr

Dr
(since

i ∈ Lr), whence it follows thati is a Destination forp. Fact 1 now implies thati can instantly decodeq upon
reception ofp.

Notice that Lemma 2 proves a property which is essentially identical to BP3, albeit for the transmitted packet
p only (whereas BP3 holds for all packets stored in queuesQL

D). In fact, the previous lemma can be strengthened
into the following statement, which specifies the users thatcan potentially instantly decode unknown native packets
after reception ofp. This corollary will be crucially used in the proof of subsequent results.

Corollary 1. If BP holds at the beginning of slott and the transmitted packetp is created according to BCR,
thenp contains unknown native packets for all users in∪νk=1Dk, and only for them (in fact,∪νk=1Dk is the set of
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Destinations forp at the beginning of slott). Also, only the users inS ∩ (∪νk=1Dk), whereS is the set of users
that receivep, can decode any unknown native packets contained inp.

Proof: We have already shown in the proof of Lemma 2 that ifp contains an unknown native packet for some
useri, then there exists somek∗ such thati ∈ Dk∗, which implies thati ∈ ∪νk=1Dk. For the converse, consider any
useri ∈ ∪νk=1Dk. Then, there exists somek∗ ∈ {1, . . . , ν} such thati ∈ Dk∗ and, repeating the argument in the
proof of Lemma 2, we conclude thati is a Destination forp. Hence, the set of Destinations forp at the beginning
of slot t is ∪νk=1Dk. Finally, it is obvious that a useri can only decode an unknown native packetq (intended for
i) after successful reception of a packetp that containsq. Hence, only the Destinations ofp that receive it, i.e. the
users inS ∩ (∪νk=1Dk) can decode unknown native packets at the end of slott.

Notice that we have not yet proved the BP but only stated them as desirable properties that the proposed scheme
should possess. The proof of BP, by induction on time, will begiven after the full description of the scheme. It
still remains to examine how feedback can be efficiently usedto update our knowledge about the Listeners and
Destinations of a packet. This is performed in the next subsection.

C. Packet movement

We now describe how packets are moved between queuesQL
D based on the received feedback. The next result

is necessary here and follows immediately from BCR.

Lemma 3. Consider a packetp = pL1

D1
⊕ . . . ⊕ pLν

Dν
formed according to BCR, where|Di| + |Li| ≤ k, for some

i ∈ {1, . . . , ν}. Then, it holdsν ≤ |∪νr=1Dr| =
∑ν

r=1 |Dr| ≤ k.

Proof: Assume w.l.o.g. that|D1| + |L1| ≤ k. The BCR dictatesDr ⊆ L1, ∀r ∈ {2, . . . , ν}, which implies
⋃ν

r=2Dr ⊆ L1 and
⋃ν

r=1Dr ⊆ D1 ∪ L1. Since allDr sets are disjoint andL1 ∩ D1 = ∅, it holds
∑ν

r=1|Dr| =
|
⋃ν

r=1Dr| ≤ |D1 ∪ L1| = |D1| + |L1| ≤ k. SinceDr 6= ∅ for all r (i.e. |Dr| ≥ 1), it also holds
∑ν

r=1 |Dr| ≥ ν,
which completes the desired inequality.

As previously mentioned, we wish to always satisfy BP, sincethey guarantee instantaneous decodability through
Lemma 2. Hence, the rationale behind the rules for packet movement can be broadly stated as follows: “after
transmission occurs at slott and feedback is gathered, packets may be placed in new queuessuch that the BP are
satisfied at the end of slott (equivalently, beginning of slott+ 1). The role of feedback is to help the transmitter
update its knowledge of the Destinations and Listeners for each packet”. The following example will serve to
illustrate this point. In this example, we also describe howthe virtual packets (i.e. tokens) are moved among
the virtual queues. Although the latter movement is purely virtual, this description will be crucial in the ensuing
analysis.

Example 1. We consider the case of 3 users and, assuming BP holds at the beginning of slott, packetp = p312⊕p
12
3

is transmitted at slott (this combination satisfies the Basic Coding Rule). We assume that only user2 receives
the packet; since, by Corollary 1, user 2 is a Destination forp, it can decode the unknown native packetp312(2)
contained inp312, so thatK3

12(2) is reduced by 1. For the other packet movements, two choices are consistent with
BP:

1) Packetp312 is moved to queueQ23
1 and packetp123 is not moved; hence, regarding the virtual queues, only

tokenp312(1) is (virtually) moved toV 23
1 (1) andK3

12(1) is reduced by 1 whileK23
1 (1) is increased by 1 while

all other counters are unaffected. This is consistent with BP since, after receivingp, receiver 2 becomes a
Listener forp312 = p⊕ p123 at the end of slott, while receiver 3 is already a Listener forp312 (due to BP2 at
beginning oft) and remains so due to the absorbing property of Listener.

2) Packetp is moved to queueQ2
13 and packetsp312, p

12
3 are removed from queuesQ3

12, Q
12
3 respectively; hence,

tokenp312(1) is moved toV 2
13(1) andp123 (3) is moved toV 2

13(3). Additionally, countersK3
12(1), K

12
3 (3) are

reduced by 1 whileK2
13(1), K

2
13(3) are increased by 1. This is also consistent with BP since, after receiving

p, receiver 2 becomes a Listener ofp. Furthermore, by Corollary 1, users 1, 3 are Destinations for p at the
beginning of slott and, since no user receivedp, the unknown native packets for 1,3 contained inp (at the
beginning of slott) remain unknown at the end of slott. Hence, users 1,3 are still Destinations at the end
of slot t.
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Intuition at this point tells us that the higher the level of aqueue in which a packetp is stored, the better are the
chances of sending multiple unknown native packets with a single transmission. Specifically, by combining packets
of queues in levelw, we can send up tow unknown native packets per transmission, as stated in Lemma3. For
example,p = p21 ⊕ p12 contains two unknown native packets, one for user1 and one for user2. To provide a more
general example of a BCR-formed packet that contains the maximum allowable number of unknown packets for
the given level queues, consider setsLi,Di for i = 1, . . . , ν such thatLi ∪ Di = W for all i and∪νi=1Di = W,

where|W| = w. It is now easy to show that packetp =
ν
⊕

i=1
pW−Di

Di
satisfies the BCR, where allpW−Di

Di
are at level

w, and contains exactly|∪νi=1Di| = w unknown packets. For example, within queues of levelw = 2 and user set
W = {1, 2} the most beneficial combination isp21 ⊕ p12 which results in transmitting 2 unknown native packets
with a single transmission, while within queues of levelw = 3 and user setW = {1, 2, 3} the most beneficial
combinations are any of the following types:p123 ⊕ p231 , p213 ⊕ p132 , p312 ⊕ p123 andp231 ⊕ p132 ⊕ p123 . All these types
result in 3 unknown native packets transmitted simultaneously.

Additionally, among queues of a given level, packets at higher sublevel queues can be combined with other
packets in more ways than packets of queues at lower sublevels. For example,p312 can only be combined withp123
while p123 can be combined with 1)p312, 2) p231 , 3) p132 and 4)p231 ⊕ p132 . The benefit of having more available
coding choices for a higher sublevel packet is that the probability of “wasting” a slot is reduced, as the following
specific example illustrates forN = 3: assume that the transmitter can either send a packetp = p312 or a packet
p = p132 ⊕ p21. Both choices have the same number of Destinations. In the first case, the slot is “wasted” (i.e. no
decoding or packet movement takes place) with probabilityǫ12 (i.e. iff p is erased by users 1,2). However, in the
second case, even ifp is erased by both of its Destinations (i.e. users 1,2) and received by user 3, we can move
p21 = p⊕ p132 to Q23

1 (sincep is known to 3); as a result, the slot is “wasted” with a lower probability ǫ123, which
corresponds to the case thatp is erased by all users.

Of course, one can argue instead that if the only non-empty queues wereQ3
12 andQ13

2 , then (applying an argument
similar to that of the previous paragraph) it would be betterto transmitp312 instead ofp132 , since the former packet
“wastes” a slot with probabilityǫ12 and the latter with a higher probabilityǫ2. Nevertheless, we have to consider
that in a “loaded” system (i.e. when the exogenous arrivals are close to the boundary of the stability region), most
of the queues will be non-empty so that this scenario (where it is preferable to transmit a lower sublevel packet) is
unlikely to occur. Hence, we intuitively expect that the scenario described in the previous paragraph will dominate
performance-wise and this why, when multiple choices for packet movement arise (all of which satisfy the BP after
movement), we select the one that ensures that all packets involved in a transmission are placed in a higher level
and, within the same level, higher sublevels, (else they arenot moved at all). Thus, in Example 1 above, we choose
the first option, sincep312 is moved from sublevel3.1 to 3.2 andp123 is not moved, while in the second optionp123
descends from sublevel3.2 to 3.1.

The following specific rules for packet movement (shown in pseudocode form in Fig. 2) have been devised
according to the above rationale i.e. assuming, for now, that BP holds at the beginning of slott, we should move
the packets in such a way that BP also holds at the end of slott. For the reader’s benefit, we provide a high level
description of the algorithmic logic for each case and we usea mnemonic name in parentheses to easily distinguish
the cases.

Rules for Packet Movement (RPM): Let packetp of the formp =
⊕ν

k=1 p
Lk

Dk
satisfying the Basic Coding Rule

(BCR) be chosen for transmission at slott, and letS be the maximal set of users that receivep (i.e. the packet
is erased by all users inSc). We define the set̃L as follows:i ∈ L̃ iff i belongs to at leastν − 1 of the setsLk,
for k = 1, . . . , ν. Hence, before transmission ofp, useri ∈ L̃ is a Listener for all but at most one of the packets
pLk

Dk
, with k = 1, . . . , ν. We also denote with̃S = S ∩ L̃ the set of users iñL that receivedp. Note that it is

quite possible forS̃ to be empty even thoughS 6= ∅ (e.g.p = p12 ⊕ p21, which satisfies BCR, withS = {3} and
L̃ = {1, 2}). The following rules are now checked and the correspondingactions are performed (if applicable).
Although only the real packets and queues are handled by the transmitter, we also consider (at a conceptual level)
the virtual network and describe how it would be affected in each case.

1) (p is erased by all users): If S = ∅, then the transmitted packet is erased by all users. Hence, no new
information is gained by the users and the Destination/Listener sets for each packet in the network remains
unaffected (the current slot essentially being “wasted”),which implies that no packet movement occurs and
p is retransmitted in the next slot.
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Input: sets Lk,Dk, for k = 1, . . . , ν, that satisfy BCR (transmitted packet is p =
⊕

ν

k=1
p
Lk

Dk
).

Input: the maximal set S of users that successfully receive p.
Input: the set L̃ containing all indices which belong to at least ν − 1 of the sets Lk (denote S̃ = S ∩ L̃).

1 if S = ∅ then // Case 1

2 retransmit p and apply RPM anew (i.e. on the new set S) ;
3 else if ∪ν

k=1Dk − S = ∅ then // Case 2.1

4 for k = 1 to ν do

5 dequeue the p
Lk

Dk
that is contained in p ;

6 For all i ∈ Dk: dequeue p
Lk

Dk
(i), KLk

Dk
(i)-- ;

7 end for

8 else // it now holds ∪ν

k=1Dk − S 6= ∅
9 if S − ∪ν

k=1(Lk ∪ Dk) = ∅ then // Case 2.2.1

10 for k = 1 to ν do

11 dequeue packet p
Lk

Dk
contained in p and enqueue it to Q

Lk∪(Dk∩S)∪S̃
Dk−S

;

12 For all i ∈ Dk: dequeue p
Lk

Dk
(i) and enqueue it to V

Lk∪(Dk∩S)∪S̃
Dk−S

(i), K
Lk

Dk
(i)--, K

Lk∪(Dk∩S)∪S̃
Dk−S

(i)++ ;

13 end for

14 else if S − ∪ν

k=1(Lk ∪ Dk) 6= ∅ and |(∩ν

k=1Lk ∪ S) ∪ (∪ν

k=1Dk − S)| > maxk |Lk ∪ Dk| then // Case 2.2.2A

15 enqueue p to Q
∩

ν

k=1
Lk∪S

∪ν

k=1
Dk−S

;

16 for k = 1 to ν do

17 For all i ∈ Dk: dequeue p
Lk

Dk
(i) and enqueue it to V

∩
ν

k=1
Lk∪S

∪ν

k=1
Dk−S

(i), K
Lk

Dk
(i)--, K

∩
ν

k=1
Lk∪S

∪ν

k=1
Dk−S

(i)++ ;

18 end for

19 else // Case 2.2.2B

20 if S ∩ (∪ν

k=1(Lk ∪ Dk)) = ∅ then

21 return; // do nothing

22 else // it now holds S ∩ (∪ν

k=1(Lk ∪ Dk)) 6= ∅
23 set S ← S ∩ (∪ν

k=1(Lk ∪ Dk)) and apply RPM on this S ;
24 end if

25 end if

26 end if

Fig. 2. Pseudocode representation for the Rules for Packet Movement.

2) Otherwise, it holdsS 6= ∅. In this case, by Corollary 1 and Fact 1, all users in∪νk=1Dk (i.e. the Destinations
of packetp) that receivep can instantly decode their unknown native packet, i.e. for all k ∈ {1, . . . , ν} and
i ∈ Dk ∩ S, packetpLk

Dk
(i) is decoded byi and its corresponding token is removed from the virtual network

(as a result,KLk

Dk
(i) is reduced by 1). Notice also that anyi ∈ Dk ∩ S becomes a Listener forpLk

Dk
after

receivingp. Regarding the potential packet movements and counter changes:

2.1) (all Destinations ofp receivep): If ∪νk=1Dk ⊆ S (i.e. ∪νk=1Dk −S = ∅), then all native packetspLk

Dk
(i),

for k = 1, . . . , ν and i ∈ Dk, are instantly decoded by their intended destinations and their tokens are
removed from the virtual network (as explained above), since the corresponding native packets are no
longer useful, having been decoded by their intended users.For the same reason, fork = 1, . . . , ν, all
packetspLk

Dk
that comprisep are removed from the respective queueQLk

Dk
and no other packet/token

movement takes place.
2.2) Otherwise, it holds∪νk=1Dk − S 6= ∅ and we distinguish the following cases:

2.2.1) (only Destinations/Listeners of constituent packets ofp receivep): It holds S ⊆ ∪νk=1(Lk ∪ Dk),
equivalentlyŜ = S −∪νk=1(Lk ∪Dk) = ∅. Notice that, forν > 1, the latter condition is equivalent,
by the BCR, toS ⊆ ∪νk=1Lk, while for ν = 1 it reduces toS ⊆ L1 ∪ D1. In both cases, and for

eachk ∈ {1, . . . , ν}, packetpLk

Dk
, whereDk − S 6= ∅, is moved to queueQLk∪(Dk∩S)∪S̃

Dk−S and, for

eachi ∈ Dk −S, tokenpLk

Dk
(i) is moved toV Lk∪(Dk∩S)∪S̃

Dk−S (i). Hence, counterKLk

Dk
(i) is reduced by

1 while K
Lk∪(Dk∩S)∪S̃
Dk−S (i) is increased by 1. If, for somek, it holdsDk − S = ∅, then allpLk

Dk
are
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removed from the respective queues. The two casesDk − S
6=
= ∅ can be jointly handled following

the convention that whenever a packet is moved to a queueQL
D with D = ∅, it actually leaves the

network. This will be systematically used below to avoid repetition. The consistency of these packet
movements with Basic Properties is subsequently proved in Lemma 4. Hence, according to this rule,
packetpLk

Dk
is either not moved at all (ifS̃ ∪ (Dk ∩ S) = ∅), or is moved to a higher level (or

within the same level but higher sublevel) queue, or exits the network completely (ifDk − S = ∅).
Also notive that, as intuitively expected based on Definitions 1, 2, the current case guarantees that
the Destination set (resp. Listenerr set) of a packet cannotdecrease(resp. increase after a packet
movement).

2.2.2) It holdsŜ = S −∪νk=1(Lk ∪Dk) 6= ∅/ Again, this condition is equivalent tôS = S − ∪νk=1Lk 6= ∅,
for ν > 1, and Ŝ = S − (L1 ∪D1) 6= ∅ for ν = 1. We further distinguish two subcases:

A) (received feedback creates a combined Listener/Destination set in a level higher than that of
all constituent packets ofp): If |(∩νk=1Lk ∪ S) ∪ (∪νk=1Dk − S)| > maxk=1,...,ν |Lk ∪Dk|,2 then
packetp is moved toQ∩ν

k=1Lk∪S
∪ν

k=1Dk−S and packetspLk

Dk
are removed from queuesQLk

Dk
. In the virtual

network, for eachi ∈ Dk − S, token pLk

Dk
(i) is moved fromV Lk

Dk
(i) to V

∩ν
k=1Lk∪S

∪ν
k=1Dk−S (i) (so that

countersKLk

Dk
(i) andK∩ν

k=1Lk∪S
∪ν

k=1Dk−S (i) are reduced by 1 and increased by 1, respectively). Lemma
4 shows again that this packet movement is consistent with Basic Properties and the packets are
moved only to higher level or sublevel queues (or exit the network).

B) (no higher level Listener/Destination set, relative to constituent packets ofp, can be created based
on received feedback): If |(∩νk=1Lk ∪ S) ∪ (∪νk=1Dk − S)| ≤ maxk=1,...,ν|Lk ∪ Dk| then
• if S ∩ (∪νk=1(Lk ∪ Dk)) = ∅, no further action is taken.
• else, setS ← S ∩ (∪νk=1(Lk ∪ Dk)) and apply the above rules again for the newS. Notice

that Case 2.2.1 is now applicable for the newS.
As previously mentioned, the validity of the above actions is proved in the following result, which in turn

guarantees the instant decodability property. Induction on time then shows that BP is true for all slotst if BCR
and RPM are applied in each slot.

Lemma 4. Assuming that the Basic Properties are satisfied at the beginning of slott, then the application of the
Basic Coding Rule and Rules for Packet Movement to the packettransmitted at slott satisfies the Basic Properties
at the beginning of slott+ 1.

Proof: See Appendix A.
Since the Rules for Packet Movement have a complicated logical structure, we provide the following concrete

example for clarification.

Example 2. Suppose packetp = p23461 ⊕ p13524 ⊕ p12463 is transmitted, soν = 3 andD1 = {1} ,D2 = {2, 4} ,D3 =
{3} , L1 = {2, 3, 4, 6} , L2 = {1, 3, 5} , L3 = {1, 2, 4, 6}. Hence,∪3k=1Dk = {1, 2, 3, 4}.

• Supposep is received by users2, 5 and6, soS = {2, 5, 6}. It holds∪3k=1Dk−S = {1, 3, 4} 6= ∅ andŜ = S−
∪3k=1(Lk ∪Dk) = {2, 5, 6} − {1, 2, 3, 4, 5, 6} = ∅, so we are in case 2.2.1. We haveS ∩

(

∪3k=1(Lk ∪ Dk)
)

=

S = {2, 5, 6} and S̃ = {2, 6}, because user5 does not belong toν − 1 = 2 setsLk but only to setL2. The 3
packets are moved as follows:

– packetp23461 is not moved becauseD1∩S = {1}∩{2, 5, 6} = ∅ (equivalently, it is moved toQL1∪(D1∩S)∪S̃
D1−S ,

i.e. Q{2,3,4,6}∪∅∪{2,6}
{1} = Q2346

1 , which is where it is currently stored).

– packetp13524 is moved toQL2∪(D2∩S)∪S̃
D2−S , i.e. Q{1,3,5}∪({2,4}∩{2,5,6})∪{2,6}

{2,4}−{2,5,6} = Q12356
4 .

– packetp12463 is not moved becauseD3∩S = {3}∩{2, 5, 6} = ∅ (equivalently, it is moved toQL3∪(D3∩S)∪S̃
D3−S ,

i.e. Q{1,2,4,6}∪∅∪{2,6}
{3} = Q1246

3 ).

• Suppose now thatp is received by users7 and 8, so S = {7, 8}. It holds ∪3k=1Dk − S = {1, 2, 3, 4} and

2it is easy to verify that this inequality is always true forν = 1.
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Ŝ = S − ∪3k=1(Lk ∪ Dk) = {7, 8} − {1, 2, 3, 4, 5, 6} = {7, 8} 6= ∅, so we are in case 2.2.2. We have
∣

∣

(

∩3k=1Lk ∪ S
)

∪
(

∪3k=1Dk − S
)∣

∣

= |(({2, 3, 4, 6} ∩ {1, 3, 5} ∩ {1, 2, 4, 6}) ∪ {7, 8}) ∪ (({1} ∪ {2, 4} ∪ {3})− {7, 8})|

= |{1, 2, 3, 4, 7, 8}| = 6.

We also have

max
k=1,...,3

|Lk ∪ Dk| = max {|{1, 2, 3, 4, 6}| , |{1, 2, 3, 4, 5}| , |{1, 2, 3, 4, 6}|} = 5.

Therefore, we are in subcase 2.2.2A, andp is moved toQ∩3
k=1Lk∪S

∪3
k=1Dk−S , i.e. Q78

1234.

• If p is received by user7, then S = {7}. It holds ∪3k=1Dk − S 6= ∅ and Ŝ = S − ∪3k=1(Lk ∪ Dk) =
{7} − {1, 2, 3, 4, 5, 6} = {7} 6= ∅, so we are in case 2.2.2. We have

∣

∣

(

∩3k=1Lk ∪ S
)

∪
(

∪3k=1Dk − S
)∣

∣ = |{1, 2, 3, 4, 7}| = 5,

andmaxk=1,...,3 |Lk ∪Dk| = 5. We also haveS ∩
(

∪3k=1(Lk ∪ Dk)
)

= {7} ∩ {1, 2, 3, 4, 5, 6} = ∅, therefore
we are in the first case of 2.2.2B and no packets are moved.

• If p is received by users2 and7, thenS = {2, 7}. We have∪3k=1Dk −S 6= ∅ andŜ = S −∪3k=1(Lk ∪Dk) =
{2, 7} − {1, 2, 3, 4, 5, 6} = {7} 6= ∅, so we are in case 2.2.2. We have

∣

∣

(

∩3k=1Lk ∪ S
)

∪
(

∪3k=1Dk − S
)∣

∣ = |{1, 2, 3, 4, 7}| = 5,

andmaxk=1,...,3 |Lk ∪ Dk| = 5. We also haveS ∩
(

∪3k=1(Lk ∪ Dk)
)

= {2, 7} ∩ {1, 2, 3, 4, 5, 6} = {2} 6= ∅,
therefore we are in the second case of 2.2.2B. Next, we setS ← S ∩

(

∪3k=1(Lk ∪Dk)
)

, i.e. S ← {2}, and
apply the same rules to the newS, which brings us to case 2.2.1. We haveS̃ = {2} and the 3 packets are
moved as follows:

– packetp23461 is not moved becauseD1 ∩ S = {1} ∩ {2} = ∅ (equivalently, it is moved toQL1∪(D1∩S)∪S̃
D1−S ,

i.e. Q{2,3,4,6}∪∅∪{2}
{1} = Q2346

1 ).

– packetp13524 is moved toQL2∪(D2∩S)∪S̃
D2−S , i.e. Q{1,3,5}∪({2,4}∩{2})∪{2}

{2,4}−{2} = Q1235
4 .

– packetp12463 is not moved becauseD3 ∩ S = {3} ∩ {2} = ∅ (equivalently, it is moved toQL3∪(D3∩S)∪S̃
D3−S ,

i.e. Q{1,2,4,6}∪∅∪{2}
{3} = Q1246

3 ).

The above choice of the Rules for Packet Movement allows for potential feedback information loss, regarding
which user knows which packet. This is best illustrated in the third case of Example 2 where, although user 7
becomes a Listener for packetp at the end of slott, this information is actually discarded. As explained, this choice
is made on intuitive grounds in order to keep the system manageable and amenable to analysis. However, as will
be seen in the next Section, forN = 4 even a more restrictive choice of rules suffices to implementa policy with
asymptotically (as packet length increases) maximal stability region when the channel erasure probabilities are i.i.d.

D. Comparison between the Rules for Packet Movement and the rules in [3]

The reader who is familiar with the work in [3] will notice that the current RPM constitute an involved extension
and strict generalization of the rules in [3], i.e. all allowable packet movements in [3] are still allowable in this
work (and additional movements, not possible in [3], are nowallowed). A proof of this fact entails a straightforward
enumeration of all possible feedback and application of therelevant RPM case and is omitted. However, for the
reader’s benefit, we provide Tables I–VII, which summarize the packet movements for all phases in [3] and show
which RPM case applies to them.

IV. STABILIZING SCHEDULING POLICY

In this Section, we investigate the design of policies that,under the coding restrictions and packet movements
described in Section III, stabilize the system whenever possible. We first need some definitions.



12

TABLE I
SELECTINGpi FOR TRANSMISSION IN PHASE1 OF XOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepi; useri decodes Case 2.1

R R E dequeuepi; useri decodes Case 2.1

R E R dequeuepi; useri decodes Case 2.1

R E E dequeuepi; useri decodes Case 2.1

E R R dequeuepi, movepi to Q
jk
i Case 2.2.2A

E R E dequeuepi, movepi to Q
j

i Case 2.2.2A

E E R dequeuepi, movepi to Qk
i Case 2.2.2A

E E E retransmit Case 1

TABLE II
SELECTINGpij ⊕ p

j
i FOR TRANSMISSION IN PHASE2 OFXOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepji , p
i
j ; usersi, j decode Case 2.1

R R E dequeuepji , p
i
j ; usersi, j decode Case 2.1

R E R dequeuepji , p
i
j , movep to Qik

j ; useri decodes Case 2.2.2A

R E E dequeuepji ; useri decodes Case 2.2.1

E R R dequeuepji , p
i
j , movep to Q

jk
i ; userj decodes Case 2.2.2A

E R E dequeuepij ; userj decodes Case 2.2.1

E E R dequeuepji , p
i
j , movep to Qk

ij Case 2.2.2A

E E E retransmit Case 1

TABLE III
SELECTINGpijk ⊕ p

jk
i FOR TRANSMISSION IN PHASE3 (PART 1) OFXOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepjki , pijk; all 3 users decode Case 2.1

R R E dequeuepjki , pijk, movepijk to Q
ij

k ; usersi, j decode Case 2.2.1

R E R dequeuepjki , pijk, movepijk to Qik
j ; usersi, k decode Case 2.2.1

R E E dequeuepjki ; useri decodes Case 2.2.1

E R R dequeuepijk; usersj, k decode Case 2.2.1

E R E dequeuepijk, movepijk to Q
ij

k ; userj decodes Case 2.2.1

E E R dequeuepijk, movepijk to Qik
j ; userk decodes Case 2.2.1

E E E retransmit Case 1
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TABLE IV
SELECTINGpijk FOR TRANSMISSION IN PHASE3 (PART 2) OFXOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepijk; usersj, k decode Case 2.1

R R E dequeuepijk; movepijk to Q
ij

k ; userj decodes Case 2.2.1

R E R dequeuepijk, movepijk to Qik
j ; userk decodes Case 2.2.1

R E E pijk remains inQi
jk Case 2.2.1

E R R dequeuepijk; usersj, k decode Case 2.1

E R E dequeuepijk, movepijk to Q
ij

k ; userj decodes Case 2.2.1

E E R dequeuepijk, movepijk to Qik
j ; userk decodes Case 2.2.1

E E E retransmit Case 1

TABLE V
SELECTINGp

j
i ⊕ pikj FOR TRANSMISSION IN PHASE4 (PART 1) OFXOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepji , p
ik
j ; usersi, j decode Case 2.1

R R E dequeuepji , p
ik
j ; usersi, j decode Case 2.1

R E R dequeuepji ; useri decodes Case 2.2.1

R E E dequeuepji ; useri decodes Case 2.2.1

E R R dequeuepji , p
ik
j , movepji to Q

jk

i ; userj decodes Case 2.2.1

E R E dequeuepikj ; userj decodes Case 2.2.1

E E R dequeuepji , movepji to Q
jk

i Case 2.2.1

E E E retransmit Case 1

TABLE VI
SELECTINGp

j

i FOR TRANSMISSION IN PHASE4 (PART 2) OFXOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepji ; useri decodes Case 2.1

R R E dequeuepji ; useri decodes Case 2.1

R E R dequeuepji ; useri decodes Case 2.1

R E E dequeuepji ; useri decodes Case 2.1

E R R dequeuepji , movepji to Q
jk

i Case 2.2.2A

E R E p
j

i remains inQj

i Case 2.2.1

E E R dequeuepji , movepji to Q
jk
i Case 2.2.2A

E E E retransmit Case 1
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TABLE VII
SELECTINGp

jk

i ⊕ pikj ⊕ p
ij

k FOR TRANSMISSION IN PHASE5 OF XOR2 IN [3].

useri userj userk action performed in [3] Corresponding case in RPM (for arbitraryN )
leading to identical action

R R R dequeuepjki , pikj , pijk ; usersi, j, k decode Case 2.1

R R E dequeuepjki , pikj ; usersi, j decode Case 2.2.1

R E R dequeuepjki , pijk ; usersi, k decode Case 2.2.1

R E E dequeuepjki ; useri decodes Case 2.2.1

E R R dequeuepikj , pijk ; usersj, k decode Case 2.2.1

E R E dequeuepikj ; userj decodes Case 2.2.1

E E R dequeuepijk ; userk decodes Case 2.2.1

E E E retransmit Case 1

A. System Stability and Stability Region

Let X (t) , t = 0, 1, . . . be a stochastic process.

Definition 3 (Stability). The processX (t) , t = 0, 1, . . . is stable iff

lim
q→∞

lim sup
t→∞

Pr (X (t) > q) = 0.

Consider next a time-slotted systemU . At the beginning of each slot, a number of new packets belonging to a
setN of “flows” arrive to the system. Newly arriving packets of flowi ∈ N are placed at infinite size queues,
i.e. no incoming packets are ever dropped. These packets areprocessed by a policyπ belonging to a setΠ of
admissible policies. We hereafter use the term “policy” to refer to a collection of rules for choosing which packets,
stored in a set of queuesQ, to combine through a XOR operation and how to move packets between the queues in
Q (the rules also allow for a packet to exit the system). The exact rules will be stated later. LetAi (t), i ∈ N , be
the number of flowi packets arriving at the system at the beginning of slott. For the purposes of this paper, we
assume that the process{A(t)}∞t=0, whereA (t) = (Ai(t) : i ∈ N ), consists of i.i.d vectors withE[A(t)] = λ ≥ 0.
We denote withQπ

l (t) the number of packets in queueQl ∈ Q at time t when policyπ ∈ Π is applied, and define
Q̂π(t) =

∑

Ql∈Q
Qπ

l (t) .

Definition 4 (System Stability).
1) For a given arrival rate vectorλ, systemU is stable under policyπ if the processQ̂π(t) is stable.
2) The stability regionRπ of a policy π ∈ Π is the closure of the set of arrival rates for whichU is stable

underπ.
3) The stability regionRΠ of systemU under the set of policiesΠ is the closure of the set∪π∈ΠRπ.
4) A policy π∗ ∈ Π is stabilizing withinΠ if RΠ = Rπ∗

.

Consider now the system under study in the current work. At the beginning of each slot, a decision must be
made at the base station concerning the combination of packets from the real queues that must be XORed to form
the packetp = pL1

D1
⊕ . . . ⊕ pLν

Dν
to be transmitted. Such a decision is called a “control”IL1,...,Lν

D1,...,Dν
and we denote

the set of such controls byI. Notice that, by definition, a control is identified by the set{(Di,Li)}
ν
i=1 and not by

the order of the elements in the set, i.e. controlIL1,...,Lν

D1,...,Dν
is identical to controlILσ(1),...,Lσ(ν)

Dσ(1),...,Dσ(ν)
for any permutation

σ(i) of the indices on{1, . . . , ν}.
We assume henceforth that the Basic Coding Rule is followed for the formation of packetp. For this system, an

admissible policy consists of selecting, at the beginning of each time slot, one of the available controlsIL1,...,Lν

D1,...,Dν

to form a packetp for transmission. Afterp is transmitted, packets are moved among the real queuesQLk

Dk
(i)

according to the Rules for Packet Movement (RPM) described in Section III. We also consider the virtual network,
where a token for an exogenous native packet for useri ∈ N is initially stored inVi(i) and then travels through
the virtual network according to the RPM (as it now applies tothe virtual queues only). Hence, there exist two
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Fig. 3. Possible movements of tokensp312(1), p
3
12(2), p

12
3 (3). Destination of useri is denoted asdi. Received feedback is denoted as

(u1, u2, u3), whereui is the feedback from useri, where R, E stand for received, erased, respectively, whileX denotes an unspecified value
(either R or E).

different queue networks, a “real network”Q =
⋃

L,D

{

QL
D

}

and a “virtual network”V =
⋃

L,D

⋃

i∈D

{

V L
D (i)

}

,
although only the former is actually present in the transmitter (the latter should be understood as part of a thought
experiment that facilitates the analysis).

We now identifyΠ as the set of admissible policies that select transmitted packets according to the Basic Coding
Rule and then move packets based on the Rules for Packet Movement. A characteristic of such movements is that
the destination (i.e. queue) of a packet movement cannot be determined at the beginning of transmission since it
depends on the feedback received after packet transmission. For example, assume thatN = 3 and controlI3,1212,3 is
applied, i.e. packetp = p312⊕p123 is transmitted. The tokens involved in this transmission are p312(1), p

3
12(2), p

12
3 (3).

Figure 3 shows the possible movements of these tokens according to the received feedback.
Under the above definition ofΠ, any policyπ ∈ Π can be individually applied to the “real” and “virtual” network.

Defining Q̂π(t) =
∑

L,D|
(

QL
D(t)

)π
| and V̂ π(t) =

∑

L,D

∑

i∈D|
(

V L
D (i)(t)

)π
| as the total backlog at slott in each

network (and hereafter dropping theπ superscript in the queues), we can use Lemma 1 to write

Q̂π(t) =
∑

L,D

|QL
D(t)| ≤

∑

L,D

|D||QL
D(t)| = V̂ π(t) ≤

∑

L,D

N |QL
D(t)|, (2)

since |D| ≤ N , whence we conclude thatV̂
π(t)
N ≤ Q̂π(t) ≤ V̂ π(t). The last inequality implies that the real and

virtual networks have the same stability region. Surprisingly, it also implies that the total number of packets stored
in the real queues at any time is generally less than the totalnumber of unknown native packets at that time.

Furthermore, it turns out that the virtual network falls in the class of systems whose stability has been studied in
[8]. We next summarize the formulation and main results in [8] in a manner that will be useful in the development
that follows. Consider a slotted-time network with a node setM∪{d}, whered 6∈ M, and directed edge (i.e. link)
setE , where the special noded represents the destination of traffic originated at the nodes inM (for now, assume
there is a single destination for all traffic). LetEmout, E

m
in denote, respectively, the set of outgoing links and incoming

links to nodem ∈ M and assume thatEmout 6= ∅ for all m ∈ M. We allow self-loops in the network, i.e. for node
m ∈ M, there may be a link(m,m), implying that the setsEmout, E

m
in may both contain nodem. A finite set of

controlsI is available. For each controlI ∈ I, “transmission” takes place over the set of outgoing linksEmout of
nodem ∈M in a random manner as follows.

• If, at a given slot, controlI ∈ I is applied, then, for any nodem ∈ M, at mostµ̂m(I) ∈ {0, 1} packets
may be transmitted “over the set”Emout in the following random manner: For eachI ∈ I, there is a random
sequenceRm

n (I), with n ≥ 1, m ∈ M, where eachRm
n (I) takes values in the setEmout, with the following

interpretation. A packet (if any) transmitted from nodem over the setEmout when controlI is applied for the
n-th time, is receivedonly by the recipient of the linkRm

n (I) . Of course, ifRm
n (I) = (m,m) then the packet

is not received by any node inEmout-{m} , hence it remains at nodem.

For a givenn andI, the random variablesRm
n (I) , m ∈ M, may be arbitrarily correlated. Moreover, we assume

that for each controlI ∈ I, the random sequences{Rm
n (I) , m ∈M}∞n=1 are i.i.d., independent of the arrival
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processes, and definepme (I) , Pr (Rm
n (I) = e) for e ∈ Emout so that
∑

e∈Em
out

pme (I) = 1 ∀m ∈ M, ∀ I ∈ I. (3)

Strictly speaking, the description above is for nodes for which µ̂m (I) > 0. In caseµ̂m (I) = 0 for somem ∈ M,
to avoid complicated notation, it is helpful to setRm

n (I) = e0 for some fixede0 ∈ Emout.
To describe the stability regionRΠ of this network, we need some preliminary definitions. For control I ∈ I,

we define the setΓ(I) of vectorsf as

Γ (I) = {f = (fe)e∈E : fe = pme (I)µm, 0 ≤ µm ≤ µ̂m(I), m ∈ M, e ∈ Emout} , (4)

and the convex hullH of the setsΓ(I) as

H = conv (Γ (I) , I ∈ I) . (5)

The stability region of the network(M∪ {d}, E) is described by the following Theorem.

Theorem 1. [8] The stability regionRΠ of the system is the set of arrival ratesλ = {λm}m∈M, λm ≥ 0, for
which there exists a vectorf ∈ H such that for all nodesm ∈ M it holds

∑

e∈Em
in

fe + λm ≤
∑

e∈Em
out

fe. (6)

We will apply the formulation described above to the networkconsisting of the virtual queuesV L
D (i), i ∈ D,

i.e., we considerM =
{

V L
D (i) : i ∈ D

}

for all L,D that satisfy CC. For this network, since at most one virtual
packet (i.e. token) is transmitted per slot from any queuem, we haveµ̂m(I) ∈ {0, 1}, m ∈ M. Also, the packet
transition probabilitiespme (I) for nodes withµ̂m(I) = 1 can be easily calculated (an example is given below).
The only difference between the network(M ∪ {d} , E) and our model is that, in the latter, there areN token
destinations,di, i ∈ N (one for each of the receivers) instead of a single one. However, we can combine all these
destinations to a single destinationd, so that any token arriving indi is considered to arrive atd. This affects
neither the admissible policies, nor the queue sizes at the various native queues at the base station. Hence, system
stability is not affected, provided that we are interested in the total queue size at the base station.

Example 3. Consider the caseN = 3 and assume that controlI3,1212,3 is chosen, hence a combinationp = p312⊕ p123
is transmitted, wherep312 = p312 (1) ⊕ p312 (2) and p123 = p123 (3) (recall Section III-A for the interpretation of the
parentheses). The transition probabilities are then as follows:

• Tokenp312 (1):
1) If p is received by user1, p312 (1) is removed fromV 3

12 (1) and delivered tod1 (i.e. tod for the equivalent
network). This event has probabilityP∅,{1}.

2) If p is erased at user 1 and received by user 2, packetp312 is moved to queueQ23
1 and tokenp312 (1) is

moved toV 23
1 (1). This event has probabilityP{1},{2}.

3) If p is erased at users 1 and 2,p312 (1) remains atV 3
12 (1). This event has probabilityP{1,2},∅.

• Tokenp312 (2): the transition probabilities are determined as in the previous case, by interchanging the indices
1, 2.

• Tokenp123 (3):
1) If p is received by user 3,p123 (3) is removed fromV 12

3 (3) and delivered tod3. This event has probability
P∅,{3}.

2) If p is erased at3, p123 (3) remains atV 12
3 (3). This event has probabilityP{3},∅.

We now describe the stability region of Theorem 1 in a form that is more convenient for calculations. Anyf in
H can be written in the form

f =
∑

I∈I

φIf (I) , for some {φI}I∈I such thatφI ≥ 0,
∑

I∈I

φI ≤ 1, (7)

where
f (I) = (fe (I))e∈E ,
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fe (I) = pme (I)µm(I), 0 ≤ µm (I) ≤ µ̂m(I), m ∈ M, e ∈ Emout,

and, for any controlI = IL1,...,Lν

D1,...,Dν
, we define the setM(I) =

⋃ν
r=1

⋃

k∈Dr

{

V Lr

Dr
(k)
}

so that

µ̂m(I) =

{

1 if m ∈ M (I) ,
0 otherwise.

(8)

In words, µ̂m(I) indicates whether controlI involves the queue corresponding to nodem for creation of the
transmitted packet according to BCR.

Hence it holds,
∑

e∈Em
out

fe =
∑

e∈Em
out

∑

I∈I

φIfe (I) =
∑

I∈I

φI

∑

e∈Em
out

pme (I)µm (I) , (9)

and
∑

e∈Em
in

fe =
∑

e∈Em
in

∑

I∈I

φIfe (I) =
∑

I∈I

∑

e=(l,m)∈Em
in

φIµl (I) p
l
e(I). (10)

Since the tokens for new packet arrivals are always placed inqueuesVi(i), i ∈ N , we define

λ̄m =

{

1 if m = Vi(i),

0 otherwise.
(11)

Replacing (9), (10) in (6), we have

∑

I∈I

φI





∑

e=(l,m)∈Em
in

µl (I) p
l
e(I)



+ λ̄m ≤
∑

I∈I

φI





∑

e∈Em
out

pme (I)µm (I)



 , m ∈ M, (12)

or equivalently, taking into account (3),

∑

I∈I

φI









∑

e=(l,m)∈Em
in

l 6=m

µl (I) p
l
e(I)









+ λ̄m ≤
∑

I∈I

(

1− pm(m,m)(I)
)

µm (I)φI , m ∈ M, (13)

Hence, the stability regionRΠ of the system is described by either one of (12), (13), combined with

0 ≤ µm (I) ≤ µ̂m(I), (14)

φI ≥ 0, (15)
∑

I∈I

φI ≤ 1, (16)

whereµ̂m (I) is given by (8).
Two implementation issues are worth mentioning at this point. First, there must exist a mechanism for the

receivers to know the constituents of the XOR combination ofeach received packet, in order to be able to use
this packet in the decoding process. The simplest way to implement this is to use packet addresses to identify the
native packets involved in the XOR combination of the transmitted packet. These addresses can be placed in the
packet header. Reserving bits to describe packet addressesimplies some loss of throughput due to the introduced
overhead. To simplify the description, in the current and next Section we do not take the overhead into account
and address the issue of stability in packets per slot. In Section VII, we discuss the number of addressed needed
and loss of throughput due to overhead.

The second issue is that, under the schemes described in Section III, the receivers need to save received packets
so that they can correctly decode at a later time. The stability results above consider only the queues at the base
station. Hence, if we are interested in taking the receiver queues into consideration as well, we must ensure that
the system remains stable even if the sizes of these queues are added to the total queue size at the base station. In
fact, if the receivers are never informed by the base stationas to which of their received packets will not be needed
in the future, it is easy to devise scenarios where the queue sizes at the receivers grow to infinity even though the
queues at the base station are stable. A simple way to deal with this problem is described in Section VII.
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Fig. 4. Virtual queues in the case ofN = 2 users and possible movements of tokens.

B. Stabilizing Policy

Applying directly the results in [8], we obtain the stabilizing policy described below. At the beginning of each
time slot, the policy chooses a control of the formI = IL1,...,Lν

D1,...,Dν
∈ I, where all countersKLr

Dr
(k), for r =

1, . . . , ν andk ∈ Dr, are non-zero3 and forms the appropriate packet to be transmitted in that slot, p = ⊕ν
r=1p

Lr

Dr
,

according to the Basic Coding Rule. If controlI is chosen, one token from each of the queues in the setM (I) =
⋃ν

r=1

⋃

k∈Dr

{

V Lr

Dr
(k)
}

may be moved to another virtual queue inside the network, or may reach the destination
(thus, the native packet corresponding to the token exits the network). No packets from any of the other queues
are moved. The algorithm for choosing the appropriate control is the following.

Algorithm 1 : At each decision slot:

1) For each controlI = IL1,...,Lν

D1,...,Dν
∈ I that satisfies the BCR:

• Form the weights

cm (I) = max







Km −
∑

e=(m,l)∈Em
out

pme (I)Kl, 0







, m ∈ M (I) ,

whereKm is the length of the queue corresponding to nodem (corresponding to a queue in the virtual
network, i.e. ifm = V L

D (i) for someL,D and i ∈ D, thenKm = KL
D(i)).

• Form the reward under the given control,

C (I) =
∑

m∈M(I)

cm (I) .

2) Find the control that maximizes the reward, i.e.I∗ = argmax I∈IC (I), transmit the packetp =
⊕ν∗

k=1 p
L∗

k

D∗
k

that corresponds to controlI∗ = I
L∗

1,...,L
∗
ν∗

D∗
1 ,...,D

∗
ν∗

and apply the Rules for Packet Movement after reception of
feedback (including updating theK counters).

Example 4. Consider a network ofN = 2 users. The virtual queue network can be seen in Figure 4, where d1 and
d2 are the two destination nodes. The set of all controls that obey the BCR isI =

{

I1, I2, I
2
1 , I

1
2 , I

2,1
1,2

}

. Suppose
all queues are non empty. At each decision slot:

1) For each controlI ∈ I:

• The setM (I) is formed. Table VIII shows the setM(I) for each control.
• The next step is forming the weightscm (I) for everyI. For every nodem ∈ M (I), all possible outgoing

edgese = (m, l) in set Emout, when applying controlI, or equivalently, all receiving nodesl, must be
determined. Table IX shows all receiving nodes for each nodem, as well as the respective transition
probabilities.

• Next, for each nodem ∈ M(I) and each controlI the weightcm (I) is calculated, as can be seen in
Table X.

3recall thatKLr
Dr

(k) is defined as the number of tokens in virtual queueV
Lr
Dr

(k) and, by Lemma 1, can be deduced by information
available in the real network. Hence,KLr

Dr
(k) > 0 is equivalent to saying thatV Lr

Dr
(k) is non-empty.
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TABLE VIII
SET OF QUEUESM (I) FOR EACH CONTROLI

I I1 I2 I21 I12 I
2,1
1,2

M (I) {V1(1)} {V2( 2)}
{

V 2
1 (1)

} {

V 1
2 (2)

} {

V 2
1 (1), V

1
2 (2)

}

TABLE IX
RECEIVING NODES FOR EACH NODEm AND TRANSITION PROBABILITIES

control nodem nodel pm(m,l)(I) control nodem nodel pm(m,l)(I)

I1 V1(1)

V1(1) P{1,2},∅

I2 V2(2)

V2(2) P{1,2},∅

V 2
1 (1) P{1},{2} V 1

2 (2) P{2},{1}

d1 P∅,{1} d2 P∅,{2}

I21 V 2
1 (1)

V 2
1 (1) P{1},∅

I12 V 1
2 (2)

V 1
2 (2) P{2},∅

d1 P∅,{1} d2 P∅,{2}

I
2,1
1,2 V 2

1 (1)
V 2
1 (1) P{1},∅

I
2,1
1,2 V 1

2 (2)
V 1
2 (2) P{2},∅

d1 P∅,{1} d2 P∅,{2}

• Then, for each controlI the rewardC (I) is determined (Table XI).

2) Finally, select the control that maximizes the reward

I∗ = argmax I∈IC (I) = argmax
{

C (I1) , C (I2) , C
(

I21
)

, C
(

I12
)

, C
(

I2,11,2

)}

.

The previous example is simple enough that the stability region of the proposed algorithm can be analytically
determined as follows. For arrival ratesλ1, λ2, we use the transition probabilities in Table IX and apply (12),
(14)–(16) to get the following set of inequalities (recall the notational shortcut at the end of Section II)

V1(1) : λ1 ≤ (1− ǫ12)φ1, (17)

V2(2) : λ2 ≤ (1− ǫ12)φ2, (18)

V 2
1 (1) : (ǫ1 − ǫ12)φ1 ≤ (1− ǫ1)

(

φ2
1 + φ2,1

1,2

)

, (19)

V 1
2 (2) : (ǫ2 − ǫ12)φ2 ≤ (1− ǫ2)

(

φ1
2 + φ2,1

1,2

)

, (20)

with the additional constraint thatφ1, φ2, φ
2
1, φ

1
2, φ

2,1
1,2 are non-negative and their sum is less than 1. Applying the

Fourier-Motzkin algorithm to eliminate (i.e. deparameterize) φ2,1
1,2, φ

1
2, φ

2
1, φ2, φ1 in this order results, after some

simple algebra (see Appendix B), in the set of inequalities
{

λ1

1−ǫ1
+ λ2

1−ǫ12
≤ 1, λ2

1−ǫ2
+ λ1

1−ǫ12
≤ 1
}

, which matches
the stability outer bound in [4] (this will be generalized toarbitraryN in the next Section). This shows that the
optimal policy derived in [4] for arbitrary erasures is a special case of the policy proposed in this paper.

TABLE X
WEIGHT cm(I) FOR EACH NODEm AND EACH CONTROLI

cm (I)

cV1(1) (I1) = max
{

KV1(1) − P{12},∅KV1(1) − P{1},{2}KV 2
1 (1) − P∅,{1}Kd1 , 0

}

cV2(2) (I2) = max
{

KV2(2) − P{12},∅KV2(2) − P{2},{1}KV 1
2 (2) − P∅,{2}Kd2 , 0

}

cV 2
1 (1)

(

I21
)

= max
{

KV 2
1 (1) − P{1},∅KV 2

1 (1) − P∅,{1}Kd1 , 0
}

cV 1
2 (2)

(

I12
)

= max
{

KV 1
2 (2) − P{2},∅KV 1

2 (2) − P∅,{2}Kd2 , 0
}

cV 2
1 (1)

(

I
2,1
1,2

)

= max
{

KV 2
1 (1) − P{1},∅KV 2

1 (1) − P∅,{1}Kd1 , 0
}

cV 1
2 (2)

(

I
2,1
1,2

)

= max
{

KV 1
2 (2) − P{2},∅KV 1

2 (2) − P∅,{2}Kd2 , 0
}
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TABLE XI
REWARD C (I) FOR EACH CONTROLI

I C (I)

I1 C (I1) =
∑

m∈{V1(1)}
cm(I) = cV1(1)(I1)

I2 C (I2) =
∑

m∈{V2(2)}
cm(I) = cV2(2)(I2)

I21 C
(

I21
)

=
∑

m∈{V 2
1 (1)} cm(I) = cV 2

1 (1)

(

I21
)

I12 C
(

I12
)

=
∑

m∈{V 1
2 (2)} cm(I) = cV 1

2 (2)

(

I12
)

I
2,1
1,2 C

(

I
2,1
1,2

)

=
∑

m∈{V 2
1 (1),V 1

2 (2)} cm(I) = cV 2
1 (1)

(

I
2,1
1,2

)

+ cV 1
2 (2)

(

I
1,2
2,1

)

C. Comparison between Algorithm 1 forN = 3 and the algorithm in [3]

It should be stated that, although the application of the RPMto the caseN = 3 yields theexactsame rules as
in [3], the performance of Algorithm 1 is not identical to thealgorithmXOR2 in [3]. In fact, althoughXOR2 in
[3] (which assumed a fixeda priori number of packets and no new arrivals) can be suitably modified so that it is
applicable to the case of stochastic arrivals, the resulting policy will be no better than Algorithm 1 in this paper,
since the latter yields, by construction, a stabilizing policy over the class of policies that apply BCR and RPM (and
this includes the policy in [3]).

A more intuitive reason for the performance difference is that XOR2 in [3] and the current work apply different
procedures for selecting the XOR combination to be transmitted. Namely, [3] selects packets for transmission by
combining queues in different levels in an order that is defined a priori, while Algorithm 1 imposes no such
fixed order and determines the packet for transmission by maximizing a suitable backlog-weighted sum. Hence,
Algorithm 1 is not burdened by anya priori choices, which may actually be suboptimal.

V. OUTER BOUND ON THE STABILITY REGION

In this Section, we derive an outer bound on the stability region of the system under study by deparameterizing
(i.e. eliminating the flow variablesf in) Theorem 1. This bound is identical with the bound on the information-
theoretic capacity region of the BEC with feedback presented in [1], [2]. Although it was shown in [10] that the
capacity region of the system under consideration is the same as the stability region of the system, we cannot directly
invoke this result to derive the stability region outer bound via the capacity outer bound in [1], [2]. The reason is
that the latter capacity bound does not take into account thecase of slots without any packet transmission, i.e. idle
slots, so that, in principle, coding algorithms may take advantage of idle slots to increase capacity beyond the outer
bound in [1], [2]. To distinguish between the two channels, we call the BEC studied in [1], [2] the “standard” BEC,
and refer to the channel under study in this paper (i.e. the one containing idle slots) as the “extended” BEC.

As will be seen, the capacity of the standard BEC, measured ininformation bits per transmitted symbol, differs
from the capacity of the extended BEC by at most 1 bit; in fact,this difference decreases exponentially w.r.t. the
packet lengthL. Specifically, the following Theorem is proved in the Appendix (we denote withǫS the probability
that a transmitted packet is erased by all users in setS).

Theorem 2. A capacity outer boundCout, measured in packets per transmitted symbol, for theN -user “extended”
BEC with feedback is given by (assuming thatǫi < 1 for all i ∈ N )

Cout =

{

R : max
σ∈P

(

∑

k∈N

Rσ(k)

1− ǫ{σ(1),...,σ(k)}
− 2−L/AσAσ/L

)

≤ 1

}

, (21)

whereP is the set of permutationsσ onN andAσ =
∑

k∈N
1

1−ǫ{σ(1),...,σ(k)}
.

Corollary 2. Using the same notation as in Theorem 2 and measuring rates inunits of bits per transmitted symbol,
a capacity outer boundCout for theN -user “extended” BEC with feedback is given by (assuming that ǫi < 1 for
all i ∈ N )

Cout =

{

R : max
σ∈P

(

∑

k∈N

Rσ(k)

1− ǫ{σ(1),...,σ(k)}
− 2−L/AσAσ

)

≤ L

}

. (22)
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TABLE XII
PERMITTED CONTROLS FOR LEVELS1 TO 4.

Level 1 Level 2 Level 3 Level 4

Permitted controls

Control Control Control Control

Ii I
j,i

i,j I
jk,i

i,jk I
jkl,i

i,jkl

I
j
i Iijk Iijkl

I
jk,ik,ij

i,j,k I
kl,ij

ij,kl

I
jk,ik
i,j I

kl,ijl,ijk

ij,k,l

I
jk

i Iklij

I
jkl,ikl,ijl,ijk

i,j,k,l

I
jkl,ikl,ijl

i,j,k

I
jkl,ikl
i,j

I
jkl

i

The next Theorem, which is proved in Appendix C, describes the main result of this Section.

Theorem 3. The following relation holds

RΠ ⊆

{

λ : max
σ∈P

∑

i∈N

λσ(i)

1− ǫS̃(i)
≤ 1

}

, Cu, (23)

whereP is the set of permutations onN and S̃(i) = {σ (1) , . . . , σ(i)}.

Since Cu is identical to an outer bound on the capacity region of the “standard” BEC (and the “extended”
BEC capacity region differs from this by at most 1 bit), it follows that any classΠ of policies that achievesCu
(i.e.RΠ = Cu) is essentially optimal. A special case where this occurs is examined in the next Section.

VI. T HE CASE OF I.I .D. CHANNELS: STABILITY REGION FOR4 USERS

In this Section, we assume that the erasure events for all receivers are i.i.d, and denote byǫ the probability of
such an event. We also repeat the definitionPG,S = ǫ|G|(1−ǫ)|S|. We consider the case of a channel with 4 receivers
and show that, for all0 ≤ ǫ < 1, if λ ∈ Cu, thenλ ∈ RΠ, i.e.RΠ ⊇ Cu. Hence, in this case we haveRΠ = Cu and
the stability region using only XOR operations coincides (barring addressing overhead) with the capacity region of
the standard broadcast channel. Also, it is within one bit, and asymptotically (as the packet length increases) equal
to the stability region of the extended BEC under general coding schemes.

To proceed, we restrict the set of available controls by allowing only intra-level coding, i.e. we only consider
controls of the formIL1,...,Lν

D1,...,Dν
where|Lr ∪Dr| = |Ls ∪ Ds| for all r, s ∈ {1, . . . , ν}. This restriction simplifies the

calculations and shows that even a restricted set of controls suffices to achieve the maximal stability region when
channel erasure events are i.i.d. We note however, that if channel statistics are non-i.i.d., the additional controls
are helpful in increasing the stability region of the policy. The set of permitted controls is described in Table XII,
wherei, j, k, l ∈ {1, 2, 3, 4} are distinct.

For the rest of this Section, we assume without loss of generality that

λ1 ≥ λ2 ≥ λ3 ≥ λ4, (24)

which implies that

max
σ∈P

4
∑

i=1

λσ(i)

1− ǫi
=

4
∑

i=1

λi

1− ǫi
. (25)

We will show thatλ ∈ Cu impliesλ ∈ RΠ, which, by combining (25), (23), is equivalent to solving the following
problem for any0 ≤ ǫ < 1.
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Problem: If λ1 ≥ λ2 ≥ λ3 ≥ λ4 and
∑4

i=1
λi

1−ǫi ≤ 1, find parametersφI satisfying (13)-(16), whereM is the
set of all queuesQL

D (i) , i ∈ D, andL,D satisfy CC.
In the following, we will describe the procedure according to whichµm (I) , φI , m ∈ M, I ∈ I, are calculated.

First, we set
µm (I) = µ̂m (I) , m ∈M, I ∈ I, (26)

ensuring that (14) is satisfied. It remains to determineφI , I ∈ I. Notice that, for any given value ofǫ, (26)
transforms (13), (15), (16) into a linear program (LP) w.r.tφI , so that achievability of the rateλ is reduced to LP
feasibility (a similar LP-based approach is used to describe an achievable scheme for a 2 user MIMO setting over
broadcast erasure channels in [11]). However, sinceǫ takes a continuum of values, we cannot solve the resulting
LP for eachǫ but need to determineφI analytically.

To simplify the notation somewhat, for controlI = IL1,...,Lν

D1,...,Dν
we denote

φI = φL1,...,Lν

D1,...,Dν
.

An overview of the approach follows. We start from inequalities (13) referring to queues at level 1, i.e.Vi (i), and
determine allφi, ensuring that these inequalities are satisfied. In general,having determinedφI for all controlsI
that involve queues up to levell, we consider the inequalities (13) referring to queues at level l+1 and determineφI

for all controls that involve queues at levell+1, ensuring that these inequalities are satisfied. During thisprocess,
it is ensured that (15) is satisfied. After allφI are computed, it is checked that (16) is also satisfied.

We now proceed with the detailed description of the manner inwhichφI , I ∈ I, are determined. We will use the
following terminology in the description. If, under an allowable controlI, it is possible to have a token movement
from virtual queuem to virtual queuel, we say that there is a “flow from virtual queuem to virtual queuel”
under controlI and we namep(m,l) (I), the “probability of flow” fromm to l under controlI. We also say that
there is “flow from virtual queuem to virtual queuel” if it is possible to have a token movement from queuem
to queuel under some of the allowable controls.

Level 1: At this level, there are 4 queues (equivalently, nodes inM) of the formVi (i) , i ∈ {1, . . . , 4}. There are
no incoming flows from other nodes toVi (i), but there are new native packet arrivals (equivalently, token arrivals)
of rateλi at everyVi (i). The only control that may result in packets leavingVi (i) is Ii, so inequality (13) becomes

λi ≤ (1− ǫ4) · φi. (27)

To satisfy this inequality, we set, for alli ∈ {1, . . . , 4},

φi = λi/(1 − ǫ4) . (28)

Level 2: At level 2, there are 12 queues of the formV j
i (i) , i, j ∈ {1, . . . , 4} , i 6= j. The only incoming flow

to each of these nodes is under controlIi, with probability ǫ3(1 − ǫ), while there are two outgoing flows, under
controlsIj,ii,j andIji , that result in packets leaving with probability1− ǫ3. Hence, inequality (13) becomes

ǫ3(1 − ǫ) · φi ≤ (1− ǫ3) · φj,i
i,j + (1− ǫ3) · φj

i . (29)

Similarly, for nodeV i
j (j) we have

ǫ3(1− ǫ) · φj ≤ (1− ǫ3) · φj,i
i,j + (1− ǫ3) · φi

j . (30)

Sinceφi, φj have already been determined by (28), the LHS of (29), (30) are known. We selectφj
i = φi

j = 0, for
all i 6= j, so that

φj,i
i,j ≥

ǫ3(1− ǫ)

1− ǫ3
max(φi, φj), (31)

and we chooseφj,i
i,j to satisfy (31) with equality. Assuming w.l.o.g.i < j (so thatλi ≥ λj), it follows from (28)

that φi ≥ φj , which implies

φj,i
i,j =

ǫ3(1− ǫ)

1− ǫ3
φi , (32)
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or
φj,i
i,j = ǫ3(1− ǫ) · λi/(1− ǫ3) · (1− ǫ4), i < j. (33)

Level 3: At this level, there are 12 real queues of typeQk
ij (corresponding to virtual queuesV k

ij (i) andV k
ij (j))

and 12 real queues of typeQjk
i (corresponding to virtual queuesV jk

i (i)), wherei, j, k ∈ {1, . . . , 4} with i 6= j 6= k.

• Incoming flow toQk
ij (respectively, to bothV k

ij (i) and V k
ij (j)) occurs under controlIj,ii,j with probability

ǫ3(1− ǫ). Outgoing flows from nodes of this form occur under controlsIk,ijij,k andIkij , with probability1− ǫ3.
While for each of the queuesV k

ij (i) andV k
ij (j) there is one inequality of the form (13), it turns out that these

inequalities are identical. Hence, for both queuesV k
ij (i) andV k

ij (j) the following inequality holds

ǫ3(1− ǫ) · φj,i
i,j ≤ (1− ǫ3) · φk,ij

ij,k + (1 − ǫ3) · φk
ij.

We setφk
ij = 0, so that the previous inequality becomes

ǫ3(1− ǫ) · φj,i
i,j ≤ (1− ǫ3) · φk,ij

ij,k . (34)

Next, to satisfy (34), we set

φk,ij
ij,k = ǫ3(1− ǫ) · φj,i

i,j/(1− ǫ3) , (35)

where the second part of the inequality only depends onǫ andλ, by substitutingφj,i
i,j from (33). It follows

that φk,ij
ij,k ≥ 0.

• Possible incoming flows toV jk
i (i) are due to controlsIi, I

j,i
i,j , I

k,i
i,k , I

j
i , I

k
i , I

k,ij
ij,k , Ij,ikik,j and possible outgoing

flows are due to controlsIi,jkjk,i , I
jk,ik,ij
i,j,k , Ijk,iki,j , Ijk,iji,k , Ijki , where i, j, k ∈ {1, . . . , 4} with i 6= j 6= k. For

V jk
i (i), inequality (13) becomes

ǫ2(1− ǫ)2 ·
(

φi + φj,i
i,j + φk,i

i,k

)

+ ǫ2(1− ǫ) ·
(

φj
i + φk

i + φk
ij + φj

ik + φk,ij
ij,k + φj,ik

ik,j

)

≤ (1− ǫ2) ·
(

φjk,ik,ij
i,j,k + φi,jk

jk,i + φjk,ik
i,j + φjk,ij

i,k + φjk
i

) . (36)

For V ik
j (j) and V ij

k (k), inequality (13) takes the form of (36), with the appropriate exchange of indices.
Specifically, forV ik

j (j) andV ij
k (k), we have the following inequalities, respectively

ǫ2(1− ǫ)2 ·
(

φj + φj,i
i,j + φk,j

j,k

)

+ ǫ2(1− ǫ) ·
(

φi
j + φk

j + φk
ij + φi

jk + φk,ij
ij,k + φi,jk

jk,i

)

≤ (1− ǫ2) ·
(

φjk,ik,ij
i,j,k + φj,ik

ik,j + φjk,ik
i,j + φik,ij

j,k + φik
j

)

,
(37)

ǫ2(1− ǫ)2 ·
(

φk + φk,i
i,k + φk,j

j,k

)

+ ǫ2(1− ǫ) ·
(

φi
k + φj

k + φj
ik + φi

jk + φj,ik
ik,j + φi,jk

jk,i

)

≤ (1− ǫ2) ·
(

φjk,ik,ij
i,j,k + φk,ij

ij,k + φjk,ij
i,k + φik,ij

j,k + φij
k

)

.
(38)

All φ parameters in the LHS of inequalities (36), (37) and (38) have already been computed (or set to 0, by
selection). Therefore, the unknown parameters at this point areφjk,ik,ij

i,j,k , φjk,ik
i,j , φjk,ij

i,k , φik,ij
j,k , φjk

i , φik
j andφij

k .

We set all of these values to 0, with the exception ofφjk,ik,ij
i,j,k , so that we can combine (36)–(38) to get the

following equivalent expression (only the non-zero valuesare included)

max

[

ǫ2(1− ǫ)2
(

φi + φj,i
i,j + φk,i

i,k

)

+ ǫ2(1− ǫ)
(

φk,ij
ij,k + φj,ik

ik,j

)

1− ǫ2
− φi,jk

jk,i,

ǫ2(1− ǫ)2
(

φj + φj,i
i,j + φk,j

j,k

)

+ ǫ2(1− ǫ)
(

φk,ij
ij,k + φi,jk

jk,i

)

1− ǫ2
− φj,ik

ik,j,

ǫ2(1− ǫ)2
(

φk + φk,i
i,k + φk,j

j,k

)

+ ǫ2(1− ǫ)
(

φj,ik
ik,j + φi,jk

jk,i

)

1− ǫ2
− φk,ij

ij,k

]

≤ φjk,ik,ij
i,j,k .

(39)
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The formulas are getting very convoluted at this point but they are easily calculated as functions of the erasure
probabilities and the arrival rates using symbolic computation packages. Using such a package (we used Maple
13.0), it is easy to see that, fori < j < k, the first term in (39) is the maximum term and is also non-negative.
Hence, we select for alli, j, k, with i < j < k,

φjk,ik,ij
i,j,k =

ǫ2(1− ǫ)2
(

φi + φj,i
i,j + φk,i

i,k

)

+ ǫ2(1− ǫ)
(

φk,ij
ij,k + φj,ik

ik,j

)

1− ǫ2
− φi,jk

jk,i . (40)

Level 4: At level 4, there are 4 real queues of the formQl
ijk (which corresponds to virtual queuesV l

ijk (i),
V l
ijk (j), V

l
ijk (k)), 6 real queues of the formQkl

ij (which corresponds to virtual queuesV kl
ij (i), V kl

ij (j)) and 4 real

queues of the formQjkl
i (corresponding to virtual queueV jkl

i (i)).

• Incoming flows to the virtual queues corresponding toQl
ijk are due to controlsIk,ijij,k , Ij,ikik,j , I

i,jk
jk,i andIjk,ik,iji,j,k ,

with probability ǫ3(1− ǫ), while outgoing flows are due to controlsI l,ijkijk,l andI lijk with probability 1− ǫ3. We
setφl

ijk = 0 so that inequality (13) becomes

ǫ3(1− ǫ)
(

φk,ij
ij,k + φj,ik

ik,j + φi,jk
jk,i + φjk,ik,ij

i,j,k

)

≤
(

1− ǫ3
)

φl,ijk
ijk,l. (41)

To satisfy (41), we set

φl,ijk
ijk,l = ǫ3(1− ǫ)

(

φk,ij
ij,k + φj,ik

ik,j + φi,jk
jk,i + φjk,ik,ij

i,j,k

)

/
(

1− ǫ3
)

. (42)

• Incoming flows to the virtual queues corresponding toQkl
ij are due to controlsIj,ii,j , I

k,ij
ij,k , I l,ijij,l , I

j,ik
ik,j , I

j,il
il,j , I

i,jk
jk,i ,

Ii,jljl,i , I
jk,ik,ij
i,j,k , Ijl,il,iji,j,l , with probability ǫ2(1 − ǫ)2, and Ijk,iki,j , Ijl,ili,j , I l,ijkijk,l , I

k,ijl
ijl,k with probability ǫ2(1 − ǫ).

Outgoing flows are due to controlsIkl,ijij,kl , I
kl,ijl,ijk
ij,k,l andIklij with probability 1− ǫ2. Therefore, inequality (13)

becomes

ǫ2(1− ǫ)2
(

φj,i
i,j + φk,ij

ij,k + φl,ij
ij,l + φj,ik

ik,j + φj,il
il,j + φi,jk

jk,i + φi,jl
jl,i + φjk,ik,ij

i,j,k + φjl,il,ij
i,j,l

)

+ǫ2(1− ǫ)
(

φjk,ik
i,j + φjl,il

i,j + φl,ijk
ijk,l + φk,ijl

ijl,k

)

≤
(

1− ǫ2
)

(

φkl,ij
ij,kl + φkl,ijl,ijk

ij,k,l + φkl
ij

)

.
(43)

Similarly, for the virtual queues corresponding toQij
kl, inequality (13) becomes

ǫ2(1− ǫ)2
(

φl,k
k,l + φi,kl

kl,i + φj,kl
kl,j + φl,ik

ik,l + φl,jk
jk,l + φk,il

il,k + φk,jl
jl,k + φkl,il,ik

i,k,l + φkl,jl,jk
j,k,l

)

+ǫ2(1− ǫ)
(

φil,ik
k,l + φjl,jk

k,l + φj,ikl
ikl,j + φi,jkl

jkl,i

)

≤
(

1− ǫ2
)

(

φkl,ij
ij,kl + φij,jkl,ikl

kl,i,j + φij
kl

)

.
(44)

All φ parameters in the LHS of inequalities (43) and (44) have already been computed (or set to 0, by selection).
We now set all terms in the RHS of (43), (44) to 0, with the exception of φkl,ij

ij,kl. Without loss of generality,
we can also restrict our attention to the casei = 1, i < j and k < l, for distinct i, j, k, l. Similarly to the
argument in level 3, we can combine (43), (44) to the equivalent expression

1

1− ǫ2
max

[

ǫ2(1− ǫ)2
(

φj,i
i,j + φk,ij

ij,k + φl,ij
ij,l + φj,ik

ik,j + φj,il
il,j + φi,jk

jk,i + φi,jl
jl,i + φjk,ik,ij

i,j,k + φjl,il,ij
i,j,l

)

+ ǫ2(1− ǫ)
(

φl,ijk
ijk,l + φk,ijl

ijl,k

)

,

ǫ2(1− ǫ)2
(

φl,k
k,l + φi,kl

kl,i + φj,kl
kl,j + φl,ik

ik,l + φl,jk
jk,l + φk,il

il,k + φk,jl
jl,k + φkl,il,ik

i,k,l + φkl,jl,jk
j,k,l

)

+ ǫ2(1− ǫ)
(

φj,ikl
ikl,j + φi,jkl

jkl,i

)

]

≤ φkl,ij
ij,kl.

(45)
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Again, symbolic manipulations show that the maximum is achieved for the first term (which is clearly non-
negative) so that we select

φkl,ij
ij,kl =

1

1− ǫ2

[

ǫ2(1− ǫ)2
(

φj,i
i,j + φk,ij

ij,k + φl,ij
ij,l + φj,ik

ik,j + φj,il
il,j + φi,jk

jk,i + φi,jl
jl,i + φjk,ik,ij

i,j,k + φjl,il,ij
i,j,l

)

+ ǫ2(1− ǫ)
(

φl,ijk
ijk,l + φk,ijl

ijl,k

)

]

.

(46)

• For the virtual queues corresponding toQjkl
i , incoming flows are due to controls of the formIL1,...,Lν

D1,...,Dν
, i ∈

D1, |Dj ∪ Lj| ≤ 3, j ∈ {1, . . . , 3}, as well as controls of the formIL1,...,Lν

D1,...,Dν
, i ∈ D1, |D1| ≥ 2, |Dj ∪ Lj| =

4, j ∈ {1, . . . , 3}. Outgoing flows are due to controls of the formIL1,...,Lν

D1,...,Dν
, i ∈ D1, |D1| = 1, |Dj ∪ Lj| =

4, j ∈ {1, . . . , 4}, with probability (1− ǫ). Therefore, inequality (13) becomes

ǫ (1− ǫ)3
(

φi +
∑

a6=i φ
a,i
i,a +

∑

a,b6=i φ
i,ab
ab,i +

∑

a,b6=i φ
b,ia
ia,b +

∑

a,b6=i φ
ab,ib,ia
i,a,b

)

+ǫ (1− ǫ)2
(

∑

a6=i φ
a
i +

∑

a,b6=i φ
ab,ib
i,a +

∑

a,b,c 6=i φ
c,iab
iab,c

)

+ǫ (1− ǫ)
(

∑

a,b6=i φ
ab
i +

∑

a,b,c 6=i φ
bc,ia
ia,bc +

∑

a,b,c 6=i φ
bc,ibc,iac
ia,b,c

)

≤

(1− ǫ)
(

φjkl,ikl,ijl,ijk
i,j,k,l + φi,jkl

jkl,i + φil,jkl,ijk
jk,i,l + φjkl,ikl,ijl

i,j,k

+ φjkl,ikl,ijk
i,j,l + φjkl,ijl,ijk

i,k,l + φjkl,ikl
i,j + φjkl,ijl

i,k + φjkl,ikl
i,l + φjkl

i

)

,

(47)

wherea, b, c, d are distinct summation indices that take values in the set{i, j, k, l}. Similar inequalities to (47)
can be formed forQikl

j , Qijl
k andQijk

l . We now set

φbcd,acd,abd
a,b,c = 0, ∀ a, b, c, d ∈ {i, j, k, l} ,

φbcd,acd
a,b = 0, ∀ a, b, c, d ∈ {i, j, k, l} ,

φbcd
a = 0, ∀ a, b, c, d ∈ {i, j, k, l} .

(48)

Therefore, when we write down (47) fori = 1, . . . , 4, only parameterφ234,134,124,123
1,2,3,4 is unknown in the RHS

while all LHS parameters in (47) have been previously determined. Hence, (47) as written fori = 1, . . . , 4 is
equivalent to

max
i=1,...,4

[

ǫ(1− ǫ)2



φi +
∑

a6=i

φa,i
i,a +

∑

a,b6=i

φi,ab
ab,i +

∑

a,b6=i

φb,ia
ia,b +

∑

a,b6=i

φab,ib,ia
i,a,b





+ ǫ(1− ǫ)
∑

a,b,c 6=i

φc,iab
iab,c + ǫ

∑

a,b,c 6=i

φbc,ia
ia,bc − φi,jkl

jkl,i

]

≤ φ234,134,124,123
1,2,3,4 ,

(49)

and some simple algebra reveals that the maximum term (whichis also non-negative) is fori = 1, so that we
select

φ234,134,124,123
1,2,3,4 =ǫ(1− ǫ)2



φ1 +
∑

a6=1

φa,1
1,a +

∑

a,b6=1

φ1,ab
ab,1 +

∑

a,b6=1

φb,1a
1a,b +

∑

a,b6=1

φab,1b,1a
1,a,b





+ ǫ(1− ǫ)
∑

a,b,c 6=1

φc,1ab
1ab,c + ǫ

∑

a,b,c 6=1

φbc,1a
1a,bc − φ1,234

234,1.

(50)

For the reader’s convenience, the selected controlsφ are given in closed form in Appendix D. Finally, to ensure
that (16) is satisfied, we calculate the sum of all flows, and find

∑

I∈I

φI =

4
∑

i=1

λi

1− ǫi
.
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Since, by assumption, it holds
∑4

i=1
λi

1−ǫi ≤ 1, we conclude that
∑

I∈I φI ≤ 1, as desired. Hence, we have proved
the following result.

Theorem 4. For the case of 4 users, and for i.i.d erasure events, the stability region of the system is given by

RΠ =

{

λ : max
σ∈P

4
∑

i=1

λσ(i)

1− ǫi
≤ 1

}

,

whereP is the set of permutationsσ on {1, . . . , 4}. Moreover, the policyπ∗ ∈ Π described in Section IV-B using
the XOR controls described in Table XII is stabilizing. The stability region coincides with the information theoretic
capacity region of the standard BEC with feedback, and is within one bit (actually,O(2−L) bits according to
Theorem 2) from the capacity of the extended BEC with feedback. The latter is equal to the stability region of the
system under any coding strategy.

VII. I MPLEMENTATION ISSUES

A. Packet overhead

As mentioned in Section IV, for the proposed network coding scheme to work, every user must know the identities
of all native packets that constitute a composite (i.e. XOR combination) packet it receives. Having this information,
a user is able to decode the native packet destined for it. A simple mechanism that can be used to provide users with
this information is equipping every native packet with a Packet ID, which consists of the packet’s destination and a
sequence number. If a transmitted packet is composed ofµ native packets, then it contains in its packet header theµ
packet IDs. Depending on the feedback from the users and in accordance to the Rules for Packet Movement, either
the transmitted packetp =

⊕ν
k=1 p

Lk

Dk
is moved as a whole to a real queue, or some of the packetspL1

D1
, . . . , pLν

Dν

are individually moved to real queues. More precisely, the following Lemma follows immediately from the Rules
for Packet Movement.

Lemma 5. After transmission of a packet at slott, let packetq (not necessarily the transmitted packet) be placed
at a real queue of level k.n. Then, either a)q is a combination of packets that at the beginning of slott were at
queues of level less thank, or b) q is a copy of a packet that at the beginning of slott was either at levelr,
r ∈ {0, . . . , k − 1}, or at sublevelk.l, 1 ≤ l ≤ n− 1.

To compute the overhead bits needed to implement the above mechanism, we need to find the maximum number
of Packet IDs that may be included in a packet that is placed ina real queue of a certain level. This is expressed in
Lemma 6 below (all queues and packets referred to in this lemma are real queues and packets, respectively). In the
following, when we say that a packetcomes from levelk (or exits levelk) we mean that it is an XOR combination
of packets placed in queues of levels1 to k (with at least one packet being in a levelk queue).

Lemma 6. Under the coding scheme of Section III, it holds a) Any packetplaced in queues at sublevelk.n, n =
1, 2, . . . , k − 1, k ≥ 2, contains at most(k − 1)! packet IDs.

b) Any packet exiting levelk ≥ 2 contains at mostk! packet IDs.

Proof: We use induction onk to prove the Lemma. Fork = 2, the Lemma follows immediately from the
Rules for Packet Movement in Section III. We now assume that the Lemma holds for levels2 up to k − 1 and
show that it also holds for levelk. We first prove part a) of the Lemma by induction onn.

Part a): If a packetp is placed in a queue at the lowest sublevel of levelk, i.e. k.1, then according to Lemma 5,
p comes from levelsl ≤ k− 1. Hence, according to part b) of the inductive hypothesis, itcontains at most(k− 1)!
packet IDs, so that part a) holds forn = 1. Assume next that part a) holds for all packetsp placed at any sublevel
from k.1 up to k.n with 2 ≤ n < k − 1, i.e. assume that all packetsp in sublevels fromk.1 up to k.n contain
at most(k − 1)! packet IDs. We shall prove that any packet in sublevelk. (n+ 1) also contains at most(k − 1)!
packet IDs. According to Lemma 5 for a packetp at sublevelk. (n+ 1), one of the following two cases holds.

1) Packetp comes from levell, where2 ≤ l ≤ k − 1. Then, according to part b) of the inductive hypothesis,p
contains at most(k − 1)! packet IDs.

2) Packetp was placed before the current slot transmission at a queue ina lower sublevel of the same level,
i.e. a sublevel fromk.1 up to k.n. According to the inductive hypothesis onn, packets in these sublevels
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contain at most(k − 1)! packet IDs. Since Lemma 5 states that packets from lower sublevels are merely
copied to higher sublevels, it follows that the maximum number of packet IDs they contain remains the same,
so packetp at sublevelk. (n+ 1) will also contain at most(k − 1)! packet IDs. Therefore, packets at all
sublevelsk.n, n = 1, 2, . . . , k − 1, k ≥ 2, contain at most(k − 1)! packet IDs. This completes the proof of
part a) of the Lemma.

To prove part b) of the Lemma, consider a packetp exiting levelk. This packet is of the formp = pL1

D1
⊕. . .⊕pLν

Dν
,

where eachpLr

Dr
belongs to a queue of at most levelk, hence the maximum number of packet IDsp may contain

is the sum of the packet IDs contained in packetspLr

Dr
, r ∈ {1, . . . , ν}, which is at mostν(k − 1)! due to part a).

From Lemma 3, it holdsν ≤ k, therefore any packet exiting levelk contains at mostk(k− 1)! = k! packet IDs.
Up to level 4, the maximum number of Packet IDs that may need tobe included in a packet is4! = 24. Assuming

a packet ID of 20 bits and packet length of 1500 bytes, i.e. 12000 bits, the overhead is approximately4%. Hence,
for N = 4 receivers, since only queues up to level 4 may be formed, the overhead of the proposed algorithm is
fairly acceptable. It can be seen that the maximum number of Packet IDs needed increases dramatically with the
number of usersN and it is very important to address this matter asN increases. Various suboptimal policies that
reduce the necessary number of Packet IDs can be investigated. For example, the transmitter may choose not to
send packet combinations if the resulting packet header exceeds a certain number of Packet IDs. Another policy
towards this direction could involve coding of packets onlyuntil a certain level. Specifically, forN users, only
the real queues until levell could be created, wherel < N . In case a packet is received by more thanl users,
additional receivers would be ignored and the packet would be placed in one of the levell queues. The detailed
study of these possibilities and the performance of the resulting algorithm is a subject of future work.

B. Queue stability at the receivers

As mentioned in Section IV, another problem that may arise ispossible instability of queues at the receivers,
where all packets received by a certain user are stored. A simple way to avert this possibility is to take advantage of
the fact that when the queue sizes at the base station become empty, all packets formed during previous transmissions
are not needed at the receivers. Therefore, we can let the base station inform all receivers when its queues become
empty, by, for example, leaving a slot empty after a series oftransmissions taking place when the queues are
nonempty. Under this modification, using standard results from regenerative theory, it can be shown that the system
is stable if and only if the total queue size at the base station is stable.

VIII. C ONCLUSIONS

In this work, we presented a network coding scheme for the broadcast erasure channel withN multiple unicast
sessions based on the coding scheme we proposed in [3]. In this scheme, only XOR operations are allowed. Also,
instant decodability, i.e. the ability of any user that receives a coded packet to instantly decode its own native
packet, is ensured.

Furthermore, we assumed random packet arrivals and presented a stabilizing policy based on this coding scheme.
We then derived an upper bound on the stability region of the system under examination. For the case of4 users
and i.i.d. erasure events, we proved that the stability region of the system is identical to the capacity outer bound
of the BEC channel with feedback.

Finally, implementation issues were examined, such as the increase of packet overhead as the number of users
increases, which is due to the number of packet addresses needed to completely describe a coded packet. The
maximum number of addresses needed in the general case ofN users was found to beN !. Future work could be
aimed towards the development of suboptimal variations of the proposed policy that will require a smaller number
of packet addresses, thus reducing packet overhead.

APPENDIX

A. Proof of Lemma 4

Let the transmitted packetp at slot t have the formp =
⊕ν

k=1 p
Lk

Dk
whereLk,Dk satisfy BCR. The proof is

easier if we assume that any exogenous arrivals of native packets for useri ∈ N at slot t enter the network (and
are stored in queueQi while a corresponding token is stored in virtual queueVi(i) andKi(i) is also increased
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Fig. 5. Real (LHS) and virtual (RHS) queue contents at beginning of slot t. Only the real queues are actually stored at the transmitter.

by 1) after the transmission ofp takes place, i.e. any exogenous packet stays in the network for at least one slot.
However, it should be emphasized that this assumption is only made to simplify the subsequent proof; Lemma 4
still holds regardless of this assumption. For brevity, we hereafter write “BP att” to mean the BP properties being
true at the beginning of slott (which is the assumption in Lemma 4) and “BP att+1” as the BP properties being
true at the end of slott, or beginning of slott + 1 (which is the result we wish to prove). Clearly, BP1 att + 1
follows immediately from BP1 att, so we concentrate on proving BP2–BP4 att + 1. Notice that the exogenous
arrivals that enter at slott automatically satisfy BP2–BP4 att+1. Since BP att+1 is trivially true if S = ∅ (i.e. p
is erased by all users, so that the slot effectively “never happened”), we hereafter assumeS 6= ∅. In the following,
we only examine the caseν > 1 in detail, sinceν = 1 can be handled as a special case.

We examine each case of the Rules for Packet Movement (RPM) separately. It will also be useful to have a
graphical representation for the queue contents att, as shown in Fig. 5. The following notation is introduced to
illustrate Fig. 5: we denotenk = |Dk| so that each setDk can be written w.l.o.g. asDk = {ik,1, ik,2, . . . , ik,nk

},
for eachk = 1, . . . , ν. The real queues are shown in the LHS of Fig. 5, where the rectangles denote packets
and the topmost packets (shown in bold edges) in queuesQLk

Dk
, for k = 1, . . . , ν, are the ones that comprise the

transmitted packetp according to the BCR. All other packets (including the ones contained in the queuesQL
D, with

(L,D) 6= (Lk,Dk), shown in the circles at the bottom of Fig. 5) are non-bold. All packets denoted witĥp in Fig. 5
are not included inp and are therefore unaffected by the RPM (the[·] notation is used only for indexing purposes
to visually distinguish the packets in the same queue).

The virtual queues are shown in the RHS of Fig. 5, where the bold edges denote the tokens for the unknown native
packets contained in the packets that comprisep. The tokens for the unknown native packets contained inpLk

Dk
are

denoted aspLk

Dk
(ik,1), . . . , p

Lk

Dk
(ik,nk

) while those contained in̂pLk

Dk
[l] are denoted aŝpLk

Dk
[l](ik,1), . . . , p̂

Lk

Dk
[l](ik,nk

).
The duality between a token and its corresponding native packet will be consistently used below.

A careful examination of the RPM leads to the following observation: in all cases, the non-bold-edged real and
virtual packets in Fig. 5 are not affected by the RPM. Specifically, these packets possess the following properties.

Properties of non-bold-edged packets (PNB):
1) non-bold-edged real and virtual packets (tokens) are notmoved from the queues they are stored att and the

XOR decomposition of the non-bold-edged real packets remains the same betweent andt+ 1.
2) none of the unknown native packets corresponding to non-bold-edged tokens in the virtual queues att are

decoded att+ 1 (i.e. these packets remain unknown att+ 1).

The second item in the above list follows from the fact that, by Corollary 1 and Fact 1, only the users inS∩(∪νk=1Dk)
actually decode unknown native packets (i.e. the bold-edged native packets in Fig. 5) contained in thepLk

Dk
that

comprise the transmitted packetp. Since, by BP4 att, each unknown native packet is contained in exactly one real
packet, it follows that no (non-bold-edged) native packet contained in a non-bold-edged real packet is decoded at
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t+ 1.
We now use the above observations to show that all non-bold-edged real packets in Fig. 5 (which, by assumption,

satisfy BP att) satisfy BP att + 1. Specifically, consider any non-bold-edged real packetpLD (this packet must
either be stored in a queue contained in the left circle of Fig. 5, or in queueQLk

Dk
, i.e. pLD = p̂Lk

Dk
[·]). Any i ∈ D is,

by BP2 att, a Destination forpLD and, since the native unknown packet contained inpLD is still unknown att+ 1
(second item in PNB) andpLD retained its XOR decomposition (first item in PNB), we conclude thati is also a
Destination forpLD at t+ 1. Also, any useri that is a Destination ofpLD at t+ 1 is also a Destination of the same
packet att, since the XOR decomposition ofpLD did not change during slott. Hence, by BP2 att, it follows that
i ∈ D. The absorbing property of Listeners forpLD now implies BP2 att+ 1.

Furthermore, any unknown native packet for some useri contained inpLD at t+ 1 is also unknown att (again,
due to PNB) so that by BP3 att, useri is a Destination forpLD at p andi ∈ D (by BP2 att). Hence, BP2 att+1
(which was proved in the previous paragraph) implies thati is a Destination forpLD at t + 1, which also proves
BP3 att+ 1. Finally, BP4 att+ 1 follows immediately from Fig. 5, since any unknown native packet is either a
new exogenous arrival att for some useri (and, by the scheme’s construction, it is contained in exactly one packet
in Qi) or it was already in the network att and, by BP4 att, was stored in exactly one non-bold-edged packetpLD
for someL,D.

Since the above arguments show that BP2–BP4 att + 1 is true for all non-bold-edged real packets, it suffices
to only examine whether the packets moved between differentqueues in the network according to RPM satisfy
BP2–BP4 att+ 1. This is performed next.

Case 2.1: it holds ∪νk=1Dk ⊆ S (equivalently,∪νk=1Dk − S = ∅), so that all users in∪νk=1Dk decode their
unknown native packets. By the RPM in this case, all packets and tokens shown with bold edges in Fig. 5 leave
the network att+ 1, whereas all other packets remain in their queues (recall that the network actually consists of
the real queues only; virtual queues are conceptual). Hence, the network representation att+ 1 is the same as in
Fig. 5 minus the bold-edged packets and tokens (and the possible addition of exogenous arrivals, which we have
already shown to satisfy BP2–BP3 att + 1) so that no packets/tokens are moved between queues in the network
and no further examination is necessary. BP4 att+ 1 also follows trivially from BP4 att.

Case 2.2.1: it holds∪νk=1Dk−S 6= ∅ andS ⊆ ∪νk=1 (Lk ∪ Dk) so thatŜ = S −∪νk=1 (Lk ∪Dk) = ∅. Again, all
users inS∩(∪νk=1Dk) decode the unknown native packets contained in thepLk

Dk
that comprisep. Applying the RPM

for this case to the network in Fig. 5, for eachk = 1, . . . , ν, bold-edged packetpLk

Dk
is moved toQLk∪(Dk∩S)∪S̃

Dk−S

and, for eachi ∈ Dk−S, bold-edged tokenpLk

Dk
(i) is “virtually” moved toV

Lk∪(Dk∩S)∪S̃
Dk−S (i) (which is captured by

the fact thatKLk

Dk
(i), KLk∪(Dk∩S)∪S̃

Dk−S (i) are reduced and increased by 1, respectively), so that the queue contents at
t+ 1 are pictorially shown in Fig. 6. Recall also the convention mentioned in Section III-C that a packet actually
leaves the network ifDk − S = ∅. Hence, to prove BP2–BP4 for the moved packets, we can assumew.l.o.g. that
Dk − S 6= ∅ and we need to show the following:

• BP2 at t+1: for each bold-edgedpLk

Dk
moved toQ

Lk∪(Dk∩S)∪S̃
Dk−S , the set of Destinations for this packet is

Dk −S and all users in Q
Lk∪(Dk∩S)∪S̃
Dk−S are Listeners: we start with the Listener part. Notice that, since it holds

S̃ ⊆ S, we can writeLk ∪ (Dk ∩ S) ∪ S̃ = Lk ∪ (Dk ∩ S) ∪
[

S̃ ∩ Lck ∩ D
c
k

]

so that we can examine each of the

three sets separately. Any useri ∈ Lk is, by BP2 att, a Listener forpLk

Dk
and this property also holds att + 1,

due to the absorbing property of Listener. Also, as previously described, any useri ∈ Dk ∩ S decodes att + 1
its unknown native packetq contained inp. Since anyi ∈ Dk ∩ S also satisfiesi ∈ Dk, BP2 att implies thati
is a Destination forpLk

Dk
, so thatq is contained inpLk

Dk
and it holdspLk

Dk
= q ⊕ c, wherei is Listener forc. Since

i decodesq at t + 1, it follows that i becomes a Listener forpLk

Dk
at t + 1. Finally, by definition ofS̃, any user

i ∈ S̃ ∩ Lck ∩ D
c
k must belong to allLr for r 6= k (sincei ∈ S̃ implies thati receivedp and belongs to at least

ν− 1 of the Listener sets) so thati ∈ Dc
r for all r 6= k. Hence, we writepLk

Dk
= p⊕

⊕

r 6=k p
Lr

Dr
, wherei 6∈ ∪νr=1Dr,

and note that, by Corollary 1,p contains no unknown native packets for anyi 6∈ ∪νr=1Dr. Sincei knows the value
of p and is a Listener ofpLr

Dr
(BP2 att), we conclude thati is also a Listener forpLk

Dk
at t+ 1.

For the Destination part, consider anyi ∈ Dk − S, which impliesi ∈ Dk. By BP2 att, i is a Destination for
pLk

Dk
and the unknown att packetq for i is still unknown att+ 1 (since only users inS ∩ (∪νk=1Dk) can decode

packets att). Hence,i is still a Destination forpLk

Dk
at t+1. Conversely, consider any useri that is a Destination of
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Fig. 6. Real (LHS) and virtual (RHS) queue contents at end of slot t for case 2.2.1.

pLk

Dk
at t+ 1. This implies thati 6∈ Dk ∩ S (otherwise,i would have decoded its unknown native packet contained

in pLk

Dk
and would be a Listener for it). Additionally, since the XOR decomposition ofpLk

Dk
did not change between

t and t + 1, it follows that i is also a Destination forpLk

Dk
at t, so that BP2 att implies thati ∈ Dk. Hence,

i ∈ Dk ∩ (Dk ∩ S)
c = Dk − S, which is the desired result.

• BP3 at t + 1: if the non-bold-edged packetpLk

Dk
stored in Q

Lk∪(Dk∩S)∪S̃
Dk−S contains an unknown native

packet for some useri, then i is a Destination for pLk

Dk
: let pLk

Dk
contain an unknown native packetq for some

useri at t+ 1. Then, since the XOR decomposition ofpLk

Dk
did not change betweent andt+ 1, we conclude that

q was also unknown att, so that BP3 att implies thati was a Destination forpLk

Dk
at t and (by BP2 att) i ∈ Dk.

Also, it holds i 6∈ Dk ∩ S (otherwiseq would be decoded byi at t+ 1, due to Corollary 1), so thati ∈ Dk − S.
Hence, by the previously proved BP2 att+ 1, i is a Destination forpLk

Dk
.

Finally, BP4 att+ 1 follows immediately from BP4 att, since any unknown native packet att is contained in
exactly one XOR packetpLD (stored in a real queueQL

D) and, under the RPM,pLD either exits the real network or
is moved (not copied) to another real queueQL′

D′ at t+ 1.
Case 2.2.2A: it holds∪νk=1Dk − S 6= ∅, Ŝ = S − ∪νk=1 (Lk ∪ Dk) 6= ∅ and |(∩νk=1Lk ∪ S) ∪ (∪νk=1Dk − S)| >

maxk=1,...,ν |Lk ∪ Dk|. As in the previous case, all users inS ∩ (∪νk=1Dk) decode their unknown native packets.
RPM now requires that all bold-edged packetspLk

Dk
in Fig. 5 exit the network and the transmitted packetp is moved

to queueQ∩ν
k=1Lk∪S

∪ν
k=1Dk−S . Also, for k = 1, . . . , ν and i ∈ Dk − S, all bold-edged native tokenspLk

Dk
(i) are moved to

V
∩ν

k=1Lk∪S
∪ν

k=1Dk−S (i) (this is captured by the fact thatKLk

Dk
(i), K∩ν

k=1Lk∪S
∪ν

k=1Dk−S(i) are reduced and increased by 1, respectively).
Hence, the network status att+ 1 is shown in Fig. 7. We now need to show the following:
• BP2 at t+1: for the packet p moved toQ

∩ν
k=1Lk∪S

∪ν
k=1Dk−S , the set of Destinations for this packet is∪νk=1Dk−S

and all users in ∩νk=1Lk ∪ S are Listeners: for the Destination part, consider anyi ∈ ∪νk=1Dk − S. Then, there
exists somek∗ ∈ {1, . . . , ν} such thati ∈ Dk∗ − S and, by the BCR,i ∈ Lr for all r 6= k∗. By BP2 att, i is a
Destination forpLk∗

Dk∗
and Listener for allpLr

Dr
, r 6= k∗. Hence, we can writepLk∗

Dk∗
= q ⊕ c, whereq is an unknown

native packet fori at t andi is Listener forc, so thatp = q⊕ c⊕
⊕

r 6=k∗ p
Lr

Dr
. Due to Corollary 1,q is not decoded

by i so that it is still unknown att+1, which implies thati is a Destination forp at t+1 . Conversely, leti be a
Destination ofp at t+ 1, so thatp contains an unknown native packetq for i at t+ 1. Obviously,q is contained
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Fig. 7. Real (LHS) and virtual (RHS) queue contents at end of slot t for case 2.2.2A.

in some packetpLk∗

Dk∗
and, by BP3 att, i is Destination forpLk∗

Dk∗
so thati ∈ Dk∗ (by BP2 att). It must then hold

i 6∈ S (otherwise,i would be able to decodeq by Corollary 1) so thati ∈ Dk∗−S, which impliesi ∈ ∪νk=1Dk−S.
For the Listener part, consider anyi ∈ ∩νk=1Lk ∪ S. If i ∈ ∩νk=1Lk, then by BP2 att, i is a Listener for each

packetpLk

Dk
so that it is also a Listener forp at t. The absorbing property of Listener then implies thati is a Listener

for p at t + 1. If i ∈ S − ∩νk=1Lk = S ∩ (∪νk=1L
c
k), then it suffices to show thatp contains no unknown native

packet for thisi at t + 1 (which immediately implies thati is a Listener forp). Sincei ∈ S ∩ (∪νk=1L
c
k), there

exists somek∗ = 1, . . . , ν such thati ∈ S ∩ Lck∗ and the BCR implies, for allr 6= k∗, Lk∗ ⊇ Dr ⇒ L
c
k∗ ⊆ Dc

r so
that i ∈ S ∩ Lck∗ ∩Dc

r for all r 6= k∗. By BP3, BP2 att, eachpLr

Dr
, for r 6= k∗, contains no unknown native packet

for this i at t, and therefore att+ 1 as well. We now distinguish two cases: a) it holdsi 6∈ Dk∗ so that, by BP3,
BP2 att, pLk∗

Dk∗
contains no unknown native packet fori at t, as well as att + 1. Hence,p contains no unknown

native packet fori, which is the desired result b) ifi ∈ Dk∗, then since it also holdsi ∈ S, Corollary 1 implies
that i decodes its unknown native packet contained inpLk∗

Dk∗
at t + 1. Hence,p again contains no unknown native

packet fori at t+ 1 and the Listener part is complete.
• BP3 at t+ 1: if p stored in Q

∩ν
k=1Lk∪S

∪ν
k=1Dk−S contains an unknown native packet for some useri, then i is a

Destination for p: let p contain an unknown native packetq for useri at t+1. Clearly,q is contained in one of the
pLk

Dk
that comprisep and was also unknown att. BP3 att now implies thati is a Destination forpLk

Dk
and i ∈ Dk

(by BP2 att). Sinceq is unknown att+ 1 and i ∈ Dk, Corollary 1 now implies thati 6∈ S, whence we conclude
that i ∈ ∪νk=1Dk − S. Sincep is stored inQ∩ν

k=1Lk∪S
∪ν

k=1Dk−S at t + 1, BP2 att+ 1 now implies thati is a Destination
for p.

As in Case 2.2.1, BP4 att+ 1 follows from BP4 att and the fact that no packet copying is performed.
Case 2.2.2B: it holds∪νk=1Dk − S 6= ∅, Ŝ = S − ∪νk=1 (Lk ∪Dk) 6= ∅ and |(∩νk=1Lk ∪ S) ∪ (∪νk=1Dk − S)| ≤

maxk=1,...,ν |Lk ∪ Dk|. We further distinguish two subcases:
• if S ∩ (∪νk=1(Lk ∪ Dk)) = ∅, which impliesS ∩ (∪νk=1Dk) = ∅, then no native packets are decoded att+ 1

(due to Corollary 1) and no packet movement takes place underthe RPM. Hence, the network status att+ 1
is exactly the same as int so that BP holds trivially att+ 1.

• if S ∩ (∪νk=1(Lk ∪ Dk)) 6= ∅, we setS ← S ∩ (∪νk=1(Lk ∪ Dk)) and RPM reverts to Case 2.2.1, which has
already been shown to satisfy BP att+ 1.
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Since all possible cases under RPM have been examined and shown to satisfy BP att+ 1, the proof is complete.

B. 2-user stability region through Fourier-Motzkin elimination

The Fourier-Motzkin algorithm for eliminating a variable in a set of inequalities, consists of splitting the set of
inequalities into 3 setsKFM , LFM , UFM , where the first set has inequalities which do not contain thevariable to be
eliminated, and the second and third sets have inequalitieswhich provide, respectively, lower and upper bounds for
the variable to be eliminated. We then combine the equationsin LFM , UFM to get a new set of inequalities. This
can be repeated for each variable to be eliminated. We provide below a step-by-step application of Fourier-Motzkin
to eliminateφ2,1

1,2, φ
1
2, φ

2
1, φ2, φ1 in this order.

Initial set of equations:

KFM =
{

λ1 ≤ (1− ǫ12)φ1, λ2 ≤ (1− ǫ12)φ2, φ1 ≥ 0, φ2 ≥ 0, φ1
2 ≥ 0, φ2

1 ≥ 0
}

,

LFM =

{

0 ≤ φ2,1
1,2,

ǫ1 − ǫ12
1− ǫ1

φ1 − φ2
1 ≤ φ2,1

1,2,
ǫ2 − ǫ12
1− ǫ2

φ2 − φ1
2 ≤ φ2,1

1,2

}

,

UFM =
{

φ2,1
1,2 ≤ 1− φ1 − φ2 − φ1

2 − φ2
1

}

.

(51)

New inequalities after elimination ofφ2,1
1,2:

0 ≤ 1− φ1 − φ2 − φ1
2 − φ2

1,

ǫ1 − ǫ12
1− ǫ1

φ1 − φ2
1 ≤ 1− φ1 − φ2 − φ1

2 − φ2
1,

ǫ2 − ǫ12
1− ǫ2

φ2 − φ1
2 ≤ 1− φ1 − φ2 − φ1

2 − φ2
1,

(52)

so that we proceed to recast the equations in terms ofφ1
2 to get

KFM =

{

λ1 ≤ (1− ǫ12)φ1, λ2 ≤ (1− ǫ12)φ2, φ
2
1 ≤ 1− φ1 −

1− ǫ12
1− ǫ2

φ2, φ1 ≥ 0, φ2 ≥ 0, φ2
1 ≥ 0

}

,

LFM =
{

0 ≤ φ1
2

}

,

UFM =

{

φ1
2 ≤ 1− φ2 −

1− ǫ12
1− ǫ1

φ1, φ
1
2 ≤ 1− φ1 − φ2 − φ2

1

}

,

(53)

and get the new equations

0 ≤ 1− φ2 −
1− ǫ12
1− ǫ1

φ1,

0 ≤ 1− φ1 − φ2 − φ2
1,

(54)

and we can recast these in terms ofφ2
1 to get

KFM =

{

λ1 ≤ (1− ǫ12)φ1, λ2 ≤ (1− ǫ12)φ2, φ1 ≥ 0, φ2 ≥ 0, 0 ≤ 1− φ2 −
1− ǫ12
1− ǫ1

φ1

}

,

LFM =
{

0 ≤ φ1
2

}

,

UFM =

{

φ2
1 ≤ 1− φ1 −

1− ǫ12
1− ǫ2

φ2, φ
2
1 ≤ 1− φ1 − φ2

}

.

(55)

Eliminating φ1
2 yields the new equations

0 ≤ 1− φ1 −
1− ǫ12
1− ǫ2

φ2,

0 ≤ 1− φ1 − φ2,
(56)



33

and recasting the equations in terms ofφ2 yields

KFM = {λ1 ≤ (1− ǫ12)φ1, φ1 ≥ 0} ,

LFM =

{

λ2

1− ǫ12
≤ φ2

}

,

UFM =

{

φ2 ≤
1− ǫ2
1− ǫ12

(1− φ1), φ2 ≤ 1− φ1, φ2 ≤ 1−
1− ǫ12
1− ǫ1

φ1

}

,

(57)

whence we get the new equations

λ2

1− ǫ12
≤

1− ǫ2
1− ǫ12

(1− φ1),

λ2

1− ǫ12
≤ 1− φ1,

λ2

1− ǫ12
≤ 1−

1− ǫ12
1− ǫ1

φ1.

(58)

We now recast in terms of the remainingφ1 to get

LFM =

{

λ1

1− ǫ12
≤ φ1

}

,

UFM =

{

φ1 ≤ 1−
λ2

1− ǫ2
, φ1 ≤ 1−

λ2

1− ǫ12
, φ1 ≤

1− ǫ1
1− ǫ12

(

1−
λ2

1− ǫ12

)}

,

(59)

and applying the last step yields

λ1

1− ǫ12
≤ 1−

λ2

1− ǫ2
⇔

λ1

1− ǫ12
+

λ2

1− ǫ2
≤ 1,

λ1

1− ǫ12
≤ 1−

λ2

1− ǫ12
⇔ λ1 + λ2 ≤ 1− ǫ12,

λ1

1− ǫ12
≤

1− ǫ1
1− ǫ12

(

1−
λ2

1− ǫ12

)

⇔
λ1

1− ǫ1
+

λ2

1− ǫ12
≤ 1.

(60)

Since the middle inequality is dominated by the first and third one, it can be removed and the final result is the
stability region in [4].

C. Proof Of Theorem 3

We need some preliminary definitions. Define the setsN1 = ∅ andNi = {1, 2, . . . , i− 1}, for i ∈ N with i ≥ 2,
as well as

Mi =
{

V L
D (i) : i ∈ D, andL,D − {i} ⊆ Ni

}

,

Ii =
{

IL,L2,...,Lν

D,D2,...,Dν
: i ∈ D, andL,D − {i} ⊆ Ni

}

.

Notice thatIi ∩ Ij = ∅ for i 6= j. This is due to the fact that the existence of a controlI ∈ Ii ∩ Ij would imply
that i ∈ Nj as well asj ∈ Ni, which is impossible. We also define the setMN

i in the subnetwork consisting of
queues (i.e. each node is a queue, as described in Section IV)as follows:

MN
i =

{

V L
D (i) : i ∈ D, andD,L ⊆ N

}

∪ {d},

Denote withCout(Mi) the set of all outgoing links in the cut
[

Mi,M
N
i −Mi

]

, i.e.

Cout (Mi) =
{

e = (m, l) ∈ E : m ∈ Mi, l ∈ M
N
i −Mi

}

,

while the setCin(Mi) of incoming links to the cut is

Cin (Mi) =
{

e = (m, l) ∈ E : m ∈MN
i −Mi, l ∈Mi

}

, (61)
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To prove Theorem 3, it suffices to show that, under (12) and (14)–(16), it holds
∑

i∈N

λi

1− ǫN−Ni

≤ 1, (62)

which corresponds to the permutationσ(i) = N − i+1 in (23). The same argument can then be repeated verbatim
for any permutationσ(i), i ∈ N . Summing (12) over allm ∈ Mi and using (11) yields

∑

I∈Ii

φI

∑

m∈Mi

∑

e=(l,m)∈Em
in

µl (I) p
l
e(I) + λi ≤

∑

I∈Ii

∑

m∈Mi

∑

e∈Em
out

pme (I)µm (I)φI , ∀ i ∈ N ,

or, rearranging the terms,

λi ≤
∑

I∈Ii

∑

m∈Mi





∑

e∈Em
out

pme (I)µm (I)−
∑

e=(l,m)∈Em
in

µl (I) p
l
e(I)



φI . (63)

But (61) and the construction ofCout(Mi), Cin(Mi) imply

∑

m∈Mi





∑

e∈Em
out

pme (I)µm (I)−
∑

e=(l,m)∈Em
in

µl (I) p
l
e(I)





=
∑

e=(l,m)∈Cout(Mi)

µl (I) p
l
e(I)−

∑

e=(l,m)∈Cin(Mi)

µl (I) p
l
e(I) ≤

∑

e=(l,m)∈Cout(Mi)

µl (I) p
l
e(I).

Also, any controlIL,L2,...,Lν

D,D2,...,Dν
∈ Ii affects only one real queue inMi (namely,V L

D (i), sincei ∈ D amd BCR

is applied) that contains packets fori. Hence, whenIL,L2,...,Lν

D,D2,...,Dν
is applied, it holdsµl(I) = 1 for l = V L

D (i) and
µl(I) = 0 for all other queues inMi, which implies

∑

e=(l,m)∈Cout(Mi)

µl (I) p
l
e(I) ≤ 1− ǫN−Ni

. (64)

This follows from the fact that, underIL,L2,...,Lν

D,D2,...,Dν
, whenever a native packet for useri is transferred fromV L

D (i) to
one of the queues in queues inMN

i −Mi, the transmitted packet must have been received by at least one user in
N −Ni, which occurs with probability1− ǫN−Ni

.
Hence, (63) yields through (64)

λi ≤
∑

I∈Ii

(1− ǫN−Ni
)φI ,

and, summing over alli ∈ N , we conclude that
∑

i∈N

λi

1− ǫN−Ni

≤
∑

i∈N

∑

I∈Ii

φI .

However, sinceIi ∩ Ij = ∅ for all i 6= j, it holds
∑

i∈N

∑

I∈Ii
φI ≤

∑

I∈I φI ≤ 1 and (62) is proved.

D. Closed form expressions for controlsφ for 4 users and iid erasures

Performing the algebra in (33), (35), (40), (42), (46), (50)through Maple yields

φj,i
i,j =

ǫ3(1− ǫ)

(1− ǫ3)(1− ǫ4)
λi for i < j, (65)

φk,ij
ij,k =

ǫ6(1− ǫ)2

(1− ǫ3)2(1− ǫ4)
λi for i < j < k, (66)

φjk,ik,ij
i,j,k =

ǫ2

(1− ǫ4)(1 + ǫ+ ǫ2)2
(

(1− ǫ4)λi + ǫ2λi − ǫ4λj

)

for i < j < k, (67)
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φl,ijk
ijk,l =

ǫ5(1− ǫ+ ǫ2)

(1− ǫ4)(1 + ǫ+ ǫ2)2
λi for i < j < k < l, (68)

φkl,ij
ij,kl =

ǫ4(2− ǫ+ 2ǫ2 − ǫ4)

(1− ǫ4)(1 + ǫ)(1 + ǫ+ ǫ2)2
λi for i = 1, j > 1, k < l, (69)

φ234,134,124,123
1,2,3,4 =

[

λ1(1 + ǫ+ 3ǫ2 − 2ǫ3 + 4ǫ4 − 3ǫ5 + ǫ6 + ǫ7)− λ2(ǫ
4 + ǫ7)

]

×
ǫ

(1− ǫ4)(1 + ǫ)(1 + ǫ+ ǫ2)2
.

(70)

The non-negativity of (65)–(69) is obvious (sincei < j implies λi ≥ λj) while for (70) we observe that the
coefficient ofλ1 in the RHS of (70) is non-negative, which implies

λ1(1 + ǫ+ 3ǫ2 − 2ǫ3 + 4ǫ4 − 3ǫ5 + ǫ6 + ǫ7)− λ2(ǫ
4 + ǫ7)

≥ λ2(1 + ǫ+ 3ǫ2 − 2ǫ3 + 4ǫ4 − 3ǫ5 + ǫ6 + ǫ7)− λ2(ǫ
4 + ǫ7)

≥ λ2(1 + ǫ+ 3ǫ2 − 2ǫ3 + 3ǫ4 − 3ǫ5 + ǫ6) ≥ 0,

(71)

whence the non-negativity of (70) follows immediately.

E. Proof Of Theorem 2

We first need to establish some notation and prove a few intermediate results. We consider the “extended”
broadcast erasure channel (BEC), where the transmitter hasthe option of not transmitting in a given slot (as
opposed to the “standard” BEC that appears in the literature). This is equivalent to considering that the transmitter
sends in this slot a special (null) symbol, denoted as∅. Hence, in information theoretic terms, given a standard
point-to-point BEC with an input alphabet ofX and output alphabet ofY = X ∪ {∗}, where∗ denotes an erasure,
the extended point-to-point BEC has input alphabetX ′ = X ∪{∅} and output alphabetY ′ = X ′∪{∗} = X ∪{∗,∅}.
Since we consider feedback, we assume that, if the transmitter sends symbol∅, all users send∅ as feedback back
to the transmitter. Hence, at slotl, each user can send feedbackZ ∈ {ACK,NACK,∅} to the transmitter, where
ACK (resp.NACK) denotes a successful reception (resp. erasure) of a non-null symbol, while∅ denotes a null
symbol transmission (and reception).

The N user version of the extended BEC follows from a simple “vectorization” procedure. Specifically, let
N = {1, . . . , N} be the set ofN users and denote withWi the message for useri ∈ N . The transmitted symbol
at slot l is denoted asX(l) (with X(l) ∈ X ′) and we also introduce the shortcut notationX l △

= (X(1), . . . ,X(l)).
Furthermore, letYi(l) ∈ Y

′ be the symbol received by useri at slot l, while Zi(l) ∈ {ACK,NACK,∅} is
the feedback sent by useri to the transmitter at slotl. We can also define an auxiliary random variableẐi(l) ∈
{ACK,NACK} that is independent ofX(l) and all previously generated random variables (up to slotl) so that
it holds

Zi(l) =

{

Ẑi(l) if X(l) 6= ∅,
∅ if X(l) = ∅,

Notice that, for anyz 6= ∅, the events{Zi(l) = z} and{Ẑi(l) = z, F (l) = 1} are identical. We now introduce the
following “vectorized” entities

W[1,j] = (W1, . . . ,Wj),

Y l
i = (Yi(1), . . . , Yi(l)),

Y [1,j](l) = (Y1(l), . . . , Yj(l)), Y l
[1,j] = (Y [1,j](1), . . . ,Y [1,j](l)),

Z[1,j](l) = (Z1(l), . . . , Zj(l)), Zl
[1,j] = (Z [1,j](1), . . . ,Z [1,j](l)),

Ẑ[1,j](l) = (Ẑ1(l), . . . , Ẑj(l)),

and use the shortcutY = Y [1,N ], Y
l = Y l

[1,N ] (with similar interpretation forZ, Zl).
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The subsequent analysis closely follows the approach in [12], with some necessary variations due to the fact
thatZ(l) areX(l) are not independent. The following Lemma can be proved by straightforward manipulations of
information measures.

Lemma 7. Let A,B,C,D be discrete random variables. The following identities hold.

1) Conditioning can be added to either part of mutual information:

I(A;B|C,D) = I(A,C;B|C,D) = I(A;B,C|C,D) = I(A,C;B,C|C,D)

2) Let B be independent of the joint ensemble(C,D). It then holdsI(A,B;C|D) = I(A;C|B,D).
3) Let D be independent of the joint ensemble(A,B,C). It then holdsI(A;B|C,D) = I(A;B|C).
4) Conditioning can be augmented by redundant condition, i.e.if the event{B = b} implies{C = cb}, it then

holdsH(A|B,D) = H(A|B,C,D).
5) It holds I(A;B|C) = I(A;B|C,D) + I(A;D|C)− I(A;D|B,C).

We now consider an arbitrary codeC for the extended BEC with feedback (see [10] for a detailed description of
encoding and decoding functions ofC) and denoteπ(l) = Pr(X(l) 6= ∅) andF (l) = I[X(l) 6= ∅]. The following
results, whose proofs can be found, respectively, in sections F, G of the Appendix, will be used.

Lemma 8. For any rateR = (R1, . . . , RN ) that is achievable underC, and for anyj ∈ N , it holds

n

j
∑

k=1

Rk ≤
n
∑

l=1

[

h(π(l)) + (1− π(l))(1 − ǫ{1,...,j})I(W[1,j];X(l)|Y l−1
[1,j]

,Z l−1, F (l) = 1)
]

+ o(n),

whereh(·) is Shannon’s entropy function.

Lemma 9. For any rateR = (R1, . . . , RN ) that is achievable underC, and for anyj ∈ N , it holds

n

j
∑

k=1

Rk ≥ (1− ǫ{1,...,j+1})

n
∑

l=1

(1− π(l))I(W[1,j];X(l)|Y l−1
[1,j+1],Z

l−1, F (l) = 1).

Applying Lemma 8 forj − 1 yields

n
∑j−1

k=1Rk

1− ǫ{1,...,j−1}
≤ o(n) +

n
∑

l=1

h(π(l))

1− ǫ{1,...,j−1}
+

n
∑

l=1

(1− π(l))I(W[1,j−1];X(l)|Y l−1
[1,j−1],Z

l−1, F (l) = 1), (72)

where the second line was produced by using the inequality

(1− π(l))I(W[1,j−1];X(l)|Y l−1
[1,j−1],Z

l−1, F (l) = 1) = I(W[1,j−1];X(l)|Y l−1
[1,j−1],Z

l−1, F (l))

it.5
≤ I(W[1,j−1];X(l)|Y l−1

[1,j],Z
l−1, F (l)) + I(Y l−1

j ;X(l)|Y l−1
[1,j−1],Z

l−1, F (l))

= (1− π(l))
[

I(W[1,j−1];X(l)|Y l−1
[1,j]

,Z l−1, F (l) = 1) + I(Y l−1
j ;X(l)|Y l−1

[1,j−1]
,Z l−1, F (l) = 1)

]

,

(73)

and applying Lemma 9, forj − 1, to the first term in the last line of (73). Hence, we arrive at

n

j−1
∑

k=1

Rk

(

1

1− ǫ{1,...,j−1}
−

1

1− ǫ{1,...,j}

)

≤ o(n) +
1

1− ǫ{1,...,j−1}

n
∑

l=1

h(π(l))

+

n
∑

l=1

(1− π(l))I(Y l−1
j ;X(l)|Y l−1

[1,j−1],Z
l−1, F (l) = 1).

(74)

We are now ready to prove Theorem 2. We only consider the identity permutation (i.e.σ(i) = i), since all other
permutations are handled similarly. Summing (74) forj = 2, . . . , N , applying Lemma 8 forj = N and summing
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the results yields after some manipulations (which involvea change of order summation betweenj andk)

n

N
∑

k=1

Rk

1− ǫ{1,...,k}
≤





N
∑

j=1

1

1− ǫ{1,...,j}





n
∑

l=1

h(π(l)) +

n
∑

l=1

(1− π(l))

N
∑

j=2

I(Y l−1
j ;X(l)|Y l−1

[1,j−1],Z
l−1, F (l) = 1)

+

n
∑

l=1

(1− π(l))I(W[1,N ];X(l)|Y l−1,Z l−1, F (l) = 1) + o(n).

(75)

For notational compactness, we hereafter denoteA =
∑N

j=1
1

1−ǫ{1,...,j}
. It also holds

L ≥ H(X(l)|F (l) = 1) = I(X(l);Y l−1
[1,N ],Z

l−1|F (l) = 1) +H(X(l)|Y l−1,Z l−1, F (l) = 1)

=

N
∑

j=2

I(Y l−1
j ;X(l)|Y l−1

[1,j−1],Z
l−1, F (l) = 1) +H(X(l)|Y l−1,Z l−1, F (l) = 1)

≥
N
∑

j=2

I(Y l−1
j ;X(l)|Y l−1

[1,j−1],Z
l−1, F (l) = 1) +H(W[1,N ];X(l)|Y l−1,Z l−1, F (l) = 1),

(76)

where the second line is derived by applying the chain rule over j. Inserting (76) into (75) yields

n

N
∑

k=1

Rk

1− ǫ{1,...,k}
≤

n
∑

l=1

[Ah(π(l)) + (1− π(l))L] + o(n). (77)

The RHS of (77) is separable in terms ofπ(l) and its maximum can be computed via standard derivative arguments.
In fact, the maximum in the RHS of (77) is achieved forπ(l)) = 1

1+2L/A for l = 1, . . . , n which yields

n

N
∑

k=1

Rk

1− ǫ{1,...,k}
≤ nA log2(1 + 2L/A) + o(n) = nL+ nA log2(1 + 2−L/A) + o(n). (78)

Dividing by n, taking a limit asn→∞ and using the inequalityln(1 + x) ≤ x, for anyx > 0, yields
N
∑

k=1

Rk

1− ǫ{1,...,k}
≤ L+ 2−L/AA. (79)

Repeating the above procedure for an arbitrary permutationσ onN produces
N
∑

k=1

Rσ(k)

1− ǫ{1,...,k}
≤ L+ 2−L/AσAσ ,

whereAσ =
∑N

k=1
1

1−ǫ{σ(1),...,σ(k)}
and since the last inequality must be true for all permutations σ, the proof is

complete.

F. Proof of Lemma 8

Fano’s inequality implies

n

j
∑

k=1

Rk = H(W[1,j]) = I(W[1,j];Y
n
[1,j],Z

n) + o(n), (80)

with

I(W[1,j];Y
n
[1,j],Z

n) =

n
∑

l=1

I(W[1,j];Y [1,j](l),Z(l)|Y l−1
[1,j],Z

l−1)

=

n
∑

l=1

[

I(W[1,j];Z(l)|Y l−1
[1,j],Z

l−1) + I(W[1,j];Y [1,j](l)|Y
l−1
[1,j],Z

l−1,Z [1,j](l)
]

it.1
=

n
∑

l=1

[

I(W[1,j];Z(l)|Y l−1
[1,j],Z

l−1) + I(W[1,j];Y [1,j](l),Z [1,j](l)|Y
l−1
[1,j],Z

l−1,Z [1,j](l)
]

.

(81)
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Applying the chain rule twice with different order yields

I(W[1,j];Z(l),X(l)|Y l−1
[1,j],Z

l−1) = I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1) + I(W[1,j];Z(l)|Y l−1
[1,j],Z

l−1,X(l))

= I(W[1,j];Z(l)|Y l−1
[1,j],Z

l−1) + I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1,Z(l)),
(82)

and sinceZ(l) is independent of all previous random variablesgivenX(l), (82) yields

I(W[1,j];Z(l)|Y l−1
[1,j],Z

l−1) = I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1)− I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1,Z(l)). (83)

Furthermore, since knowledge ofX(l) implies knowledge ofF (l), it holds

I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1) = I(W[1,j];X(l), F (l)|Y l−1
[1,j],Z

l−1)

= I(W[1,j];F (l)|Y l−1
[1,j],Z

l−1) + I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l)).
(84)

Combining (83), (84) yields

I(W[1,j];Z(l)|Y l−1
[1,j]

,Z l−1) = I(W[1,j];F (l)|Y l−1
[1,j]

,Z l−1) + I(W[1,j];X(l)|Y l−1
[1,j]

,Z l−1, F (l))

− I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1,Z(l)).
(85)

Defining the setZ[1,j] =
{

Z[1,j] : Z [1,j] 6= (∅, . . . ,∅)
}

, we can compute

I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1,Z(l)) =
∑

z∈Z[1,j]

I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1,Z(l) = z) Pr(Z(l) = z)

=
∑

z∈Z[1,j]

I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, Ẑ(l) = z, F (l) = 1)Pr(Ẑ(l) = z) Pr(F (l) = 1)

=
∑

z∈Z[1,j]

I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l) = 1)Pr(Ẑ(l) = z) Pr(F (l) = 1)

= I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l) = 1)Pr(F (l) = 1)

= I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l)),

(86)

where we exploited the independence ofẐ(l) from all variables up to slotl and used the facts thatF (l) = 0
impliesX(l) = ∅ and

∑

z∈Z[1,j]
Pr(Ẑ(l) = z) = 1.

To manipulate the last term in (81), we define the setZ̃[1,j] =
{

Z [1,j] : Z [1,j] 6= (∅, . . . ,∅), (∗, . . . , ∗)
}

. In words,
Z̃[1,j] is the set of feedback vectors in which at least one user in{1, . . . , j} successfully receives the transmitted
symbol and sends backACK. Notice that, for anyz 6∈ Z̃[1,j], the event{Z [1,j](l) = z} implies full knowledge of
Y [1,j](l). It now holds

I(W[1,j];Y [1,j](l),Z [1,j](l)|Y
l−1
[1,j],Z

l−1,Z [1,j](l))

=
∑

z∈Z̃[1,j]

I(W[1,j];Y [1,j](l),Z [1,j](l)|Y
l−1
[1,j]

,Z l−1,Z [1,j](l) = z) Pr(Z [1,j](l) = z)

=
∑

z∈Z̃[1,j]

[

H(W[1,j]|Y
l−1
[1,j],Z

l−1,Z [1,j](l) = z)−H(W[1,j]|Y
l−1
[1,j],Z

l−1,Y [1,j](l),Z [1,j](l) = z)
]

Pr(Z [1,j](l) = z)

=
∑

z∈Z̃[1,j]

[

H(W[1,j]|Y
l−1
[1,j],Z

l−1, F (l) = 1, Ẑ [1,j](l) = z)−H(W[1,j]|Y
l−1
[1,j],Z

l−1,Y [1,j](l), F (l) = 1, Ẑ [1,j](l) = z)
]

× Pr(Ẑ [1,j](l) = z) Pr(F (l) = 1)

=
∑

z∈Z̃[1,j]

[

H(W[1,j]|Y
l−1
[1,j],Z

l−1, F (l) = 1)−H(W[1,j]|Y
l−1
[1,j],Z

l−1, F (l) = 1,X(l))
]

Pr(Ẑ [1,j](l) = z) Pr(F (l) = 1)

= (1− ǫ{1,...,j})(1 − π(l))I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l) = 1).

(87)
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In the transition from the third to the fourth line of (87), weused the event identity{Z [1,j](l) = z} = {Ẑ [1,j](l) =

z, F (l) = 1}, which is valid for anyz ∈ Z̃[1,j], while in the transition from the fourth to the fifth line we used
the facts thatẐ [1,j] is independent of all variables up tol (including F (l), X(l)) and knowledge ofŶ [1,j](l),
Z [1,j](l) = z implies knowledge ofX(l) for any z ∈ Z̃[1,j].

Inserting (87), (86), (85) into (80), via (81), and using item 5 in Lemma 7 produces

n

k
∑

k=1

Rk ≤ o(n) +

n
∑

l=1

[

I(W[1,j];F (l)|Y l−1
[1,j],Z

l−1) + (1− ǫ{1,...,j})(1− π(l))I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l) = 1)
]

≤ o(n) +

n
∑

l=1

[

h(π(l)) + (1− ǫ{1,...,j})(1 − π(l))I(W[1,j];X(l)|Y l−1
[1,j],Z

l−1, F (l) = 1)
]

,

(88)

where we used the inequalityI(W[1,j];F (l)|Y l−1
[1,j],Z

l−1) ≤ H(F (l)) = h(π(l)).

G. Proof of Lemma 9

Performing similar manipulations as in the proof of Lemma 8,we can write

n

j
∑

k=1

Rk = H(W[1,j]) ≥ I(W[1,j];Y
n
[1,j+1],Z

n) =

n
∑

l=1

I(W[1,j];Y [1,j+1](l),Z(l)|Y l−1
[1,j+1]

,Z l−1)

≥
n
∑

l=1

I(W[1,j];Y [1,j+1](l)|Y
l−1
[1,j+1],Z

l−1,Z(l))

=

n
∑

l=1

∑

z∈Z̃[1,j+1]

I(W[1,j];Y [1,j+1](l)|Y
l−1
[1,j+1],Z

l−1,Z(l) = z) Pr(Z(l) = z)

=

n
∑

l=1

∑

z∈Z̃[1,j+1]

I(W[1,j];Y [1,j+1](l)|Y
l−1
[1,j+1]

,Z l−1, Ẑ(l) = z, F (l) = 1)Pr(F (l) = 1)Pr(Ẑ(l) = z)

=

n
∑

l=1

∑

z∈Z̃[1,j+1]

[

H(W[1,j]|Y
l−1
[1,j+1],Z

l−1, Ẑ(l) = z, F (l) = 1)

−H(W[1,j]|Y
l−1
[1,j+1],Z

l−1,Y [1,j+1](l), Ẑ(l) = z, F (l) = 1)
]

Pr(F (l) = 1)Pr(Ẑ(l) = z)

=

n
∑

l=1

∑

z∈Z̃[1,j+1]

[

H(W[1,j]|Y
l−1
[1,j+1],Z

l−1, Ẑ(l) = z, F (l) = 1)

−H(W[1,j]|Y
l−1
[1,j+1]

,Z l−1,X(l), Ẑ(l) = z, F (l) = 1)
]

Pr(F (l) = 1)Pr(Ẑ(l) = z)

= (1− ǫ{1,...,j+1})

n
∑

l=1

(1− π(l))I(W[1,j];X(l)|Y l−1
[1,j+1],Z

l−1, F (l) = 1),

(89)

where we used again the independence ofẐ(l) from all other variables.
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