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Abstract

In this paper we describe a network coding scheme for the d&ast Erasure Channel with multiple unicast
stochastic flows, in the case of a single source transmipickets toN users, where per-slot feedback is fed
back to the transmitter in the form of ACK/NACK messages.sTétheme performs only binary (XOR) operations
and involves a network of queues, along with special rulecéaling and moving packets among the queues, that
ensure instantaneous decodability. The system underdmyasion belongs to a class of networks whose stability
properties have been analyzed in earlier work, which is tiegaovide a stabilizing policy employing the currently
proposed coding scheme. Finally, we show the optimalitjheffiroposed policy folV = 4 and i.i.d. erasure events,
in the sense that the policy’s stability region matches avddrouter bound (which coincides with the system’s
information-theoretic capacity region), even when a retstd set of coding rules is used.

. INTRODUCTION

The information-theoretic capacity region of the Broad&assure Channel (BEC) in the case of one transmitter
and N unicast sessions has been recently studiedlin [1] [@nd [Zh Bbthese papers propose coding algorithms
based on transmission of linear combinations of packetss@talgorithms are shown to achieve capacity in the
following settings: 1)V < 3 and arbitrary channel statistics, and 2) arbitradfyand channel statistics which satisfy
certain assumptions (i.e. symmetric channels and one-&idtechannels). However, these schemes are characterized
by high complexity (as operations take place in a sufficiefdtge sized finite field) and decoding delay, since
a sufficient number of linear combinations has to be receivatil a packet is decoded. In![3], we proposed a
network coding scheme that overcomes these obstacles hyg osly XOR operations, generalizing the 2-user
network coding scheme in|[4] to the case of 3 users. Thus, twocbmplexity algorithms were proposed, namely
XOR1 andXOR2, which additionally had the advantageous property of dnsineous decodability”. By this term,
it is meant that a receiver is able to decode pagkdestined for it as soon as it receives an XOR combination
of packets containing. Algorithm xOR2 was proved to achieve capacity for the case of i.i.d. chanaglwell as
spatially independent channels with erasure probalsilifiat do not exceed 8/9.

However, the system considered [d [3] is a saturated sysidmare a predefined number of packets needs to
be transmitted to each user. This model is not frequentlpemered in practice. Moreover, algorithmsr1 and
XOR2 cannot be easily generalized to more than 3 users. This hapgprause, at each time slot, coding choices
have to be determined a priori so that each transmissiontisially exploited in terms of allowing multiple users
to simultaneously decode their packets as well as createdhale future coding opportunities. However, for> 3,
the number of coding choices increases dramatically sotlttese is no clear intuition on the optimal choice (this
will become apparent once the model and queue structuresisrided).

In the current work, we propose a general network codingreehfor the case of a single transmitter sending
packets toN users through the BEC with feedback, generalizing the sehamposed in[[3]. Any packet arriving
to the transmitter is initially placed in one @ queues. Depending on the received feedback, these packets (
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XOR combinations of them) may travel through a network ofupse before they reach their destination, in order
to exploit the overhearing benefit of the broadcast chai@wding and packet movement rules are imposed in order
to ensure instantaneous decodability of packets and ketoitation of coding opportunities.

While in [3] we examined a saturated system, in this paper evesider a stochastic model where packets may
arrive randomly at the transmitter at any time slot. Additily, we use a backpressure type online algorithm that
makes each coding choice based on instantaneous quartiti@sas queue sizes, without requiring knowledge of
future events. Therefore, we do not need to predefine thengochioices (as in[3]), and the proposed network
coding scheme can be applied to an arbitrary number of uBersthe specific case of 4 users and i.i.d. erasure
events, we present a stabilizing policy that uses only aetudfsall possible coding choices and prove that the policy
stability region coincides with the information theoretiapacity region of the standard BEC with feedback. This
result is quite intriguing, considering the restrictiomspiosed on the policy (XOR operations only, instantaneous
decodability, reduced set of coding choices).

The network stability of single hop broadcast erasure caBnwith feedback has also been examined_in [5],
which considered broadcast traffic only and investigated stability regions of plain retransmission and linear
network coding schemes (parameterized over the field szepposed to a proposed dynamic virtual queue-based
policy. The latter policy was shown to be optimal for 2 usetsley for N > 2 and i.i.d. erasures, it achieved a
stable rate that differs from the cut-set bound by a facto©6f™*!), wherem is the number of queue “levels”
that participate in the coding decision (seé [5] for moreaiftetand definitionsyn can be loosely regarded as a
measure of the encoding complexity) anés the erasure probability. Although the structure of theuwal queues
and coding rules are inspired by similar concepts as in oukwibe actual rules for moving packets between the
gueues are much more involved in our work since we are irtextén achieving the optimal stability region for all
values ofe instead of only asymptotic optimality as— 0 (these notions of optimality ignore any overhead). An
additional cause for rule complexity in our work is the fdtatt multiple unicast sessions are much more difficult
to handle (due to the inherent competition between diffesessions) than a single broadcast session. Furthermore,
there is no guarantee ihl[5], for the general caséVofisers, regarding instantaneous decodability.

The work in [6] studied a network which is described by an ulyitegy complete graph where each edge is
modeled as a Markov chain ON/OFF channel (i.e. a generalizaif the memoryless erasure channel), while
there also exists a special “relay” node with XOR coding téljiles which can overhear all transmissions. Any
transmissions to/from the relay are error-free. The worksters multiple unicast flows, originating in all nodes
except for the relay, and explicitly accounts for instaetaus decodability by mapping this constraint into a sphcial
constructed conflict graph (a similar graph structure isduse[7] to model the same constraint). It proposes an
online backpressure policy that requires computing in edahthe maximum weight independent set of the time-
varying conflict graph. Although the work bears similasti®s our paper in terms of mathematical techniques and
the optimization problem that results, the model is quitéedént. Hence, the proposed coding policies are quite
different and the results in[6] cannot be used to show onaupofr@ain results, namely that the proposed scheduling
and coding policies achieve channel capacity for BEC witd.ierasures. In particular, the broadcast channel at
the relay (which is the only node that can perform XOR codiisggrror-free in[[6], while we are interested in
broadcast erasure channels.

In summary, the contribution of this paper is as follows:

1) We develop a systematic network-coding-based frameortonstructing instantaneously decodable feedback-

based XOR coding schemes for the BEC with multiple unicassisas and an arbitrary number of users.
This requires a (highly non-trivial and quite involved) gealization of the rules in[3] and the replacement
of the algorithmic core in[]3] with a backpressure-type nalalgorithm proposed in 8], which makes each
coding choice based on instantaneous quantities insteag@defined set of ordered actions. The new policy,
which cannot possibly be constructed from [3] through anyiais procedure, is elegant and conceptually
simple, considering its general applicability.

2) We derive an outer bound, for arbitrafy, on the stability region of the network through an elegantflo
argument and relate this to a bound on the information-#taoicapacity region of the “extended” BEC
channel (where idle slots are allowed).

3) Finally, for the special case d¥ = 4 and i.i.d. erasures across users, we carefully restricatiogvable
coding choices and present a stabilizing policy on top ofpifexious network coding scheme whose stability
region is essentially identical to the capacity region o #huser system (whereas in 2. above we only



relate outer bounds). Hence, we show that XOR combiningeaebi both instantaneous decodability and
throughput optimality in this setting. Considering tha¢ foroposed policy uses only a subset of all possible
coding choices and only XOR operations, while guarantegiatantaneous decodability, this result is quite
unexpected.

The rest of the paper is organized as follows: in Secfibnhg system model is introduced along with some

useful notation. In SectioinlIl, the proposed network cgdacheme is described, while in Sectlod IV the applied

stabilizing policy is presented. In Sectibd V, an outer kibam the stability region of the system under study is

derived. In Sectiof VI, we prove, for the case of 4 users ardl erasure events, that the stability region of such a
system coincides with the capacity outer bound of the stahioi@adcast erasure channel with feedback. In Section
VIllwe examine some implementation issues while Sedtiodl ¥dincludes the paper. Some technical proofs are
contained in the Appendix.

[I. SYSTEM MODEL AND NOTATION

We describe some notation that will be used in the followiigts are denoted by calligraphic letters, e\d,
and the empty set by). The cardinality of setM is denoted by| M| and we write M = |M]|. Random
variables are denoted by capital letters and their valuesniigil case letters. Vectors are denoted by bold letters,
e.g. A= (4,...,A,). The expected value of a random vector is the vector congistf the expected values of
its components, i.eE[A] = (E[A4],...,E[A,]).

We consider a time-slotted system where glet 0, 1, ... corresponds to the time intervil ¢t + 1). The system
consists of a base statiaB and a set\' = {1,2,..., N} of receivers (users). At the beginning of slgtA;(¢)
data packets arrive @ with an average rate of; = E [A;(t)]; these packets must be delivered to receivand
are referred to as “flow” packets, where we denotd(t) = (A;(t),..., An (t)). All packets consist of_ bits,
and the transmission time of each packet islot. A packet transmitted by may be either correctly received or
completely erased by any receiver (broadcast medium)r A&faeh transmission, the receivers send feedbadk to
(through an error-free zero-delay channel) informing wbethe transmitted packet has been correctly received or
not (ACK/NACK feedback). We also assume that if no packetasgmitted in a slot (say, because all queues are
empty), then all receivers realize that the slot is idle.

Packet arrivals are assumed to be independent and idéniitisiributed across time, but arbitrarily correlated
across users. That is, the procgssk(t)},°, consists of i.i.d. random vectors, while the componentsaghevector
A (t) may be arbitrarily correlated. Similarly, packet erasuaesi.i.d across time and are initially assumed to be
arbitrarily correlated across users (we later concentiatéhe special case of spatially i.i.d. erasures). The gacke
arrival and erasure processes are independent. For subggts N with SN G = 0, we denote byFP; s the
probability that a transmitted packet is erasedlareceivers inG and received bwall receivers inS (no condition
is imposed on packet reception or erasure for receivef§ in (S U G)). We also denote byg the probability that
a transmitted packet is erased by all receivergin.e.,eg = FPg . For simplicity, we slightly abuse the notation
and writee; or ¢;; instead ofey;, or ey; ;;, respectively.

[1I. NETWORK CODING SCHEME DESCRIPTION
A. Definitions

Exogenous packets arriving & and being intended for usérc A/ are called “native packets faf. A packet
is simply termed “native” if it is a native packet for some ugdue to the unicast traffic, a packet is native for
exactly one user). According to the policies to be descriddw, all transmitted packets are either native, or XOR
combinations of native packets. In other words, any tratisthpackeip can be written ap = @', s; (Where®
denotes the XOR operation), whesgare native packets, and we say thatcbntainss;” or “s; is contained irp”,
or “s; is a constituent packet of’. As will be seen, it is possible, and actually beneficial, foto contain native
packets for more than one user. To shorten the descriptigheirfollowing, we say that a packetis an XOR
combination of native packets even whemronsists of a single native packet. Also, a native pagkietr useri is
unknownto 7 at a given time if it has not been decoded bpy that time. The following definitions, which are
introduced in earlier work 3], will be crucial in the subsmmt analysis.

Definition 1. Useri is a Listenerof a packetp iff both of the following conditions are true:



1) pis an XOR combination of packets, not necessarily nati\a, itlnas correctly received.
2) p contains no native packet farthat is unknown ta. Equivalently, ifp contains a native packet for user
i, then the packet is known to (i.e. has already been decoded by)

Definition 2. Useri is a Destinationof a packet iff either p is a native packet for userthat is unknown ta,
or p can be decomposed as an XOR combination of the foery & ¢ where

1) ¢ is a native packet foi and unknown ta, and

2) i is a Listener ofc.

We hereafter use the terms Listener, Destination to exalysirefer to the above technical definitions. The
decomposition of a packet= ¢ & ¢ with Destination; alluded to in Definitior{ 2 is unique, sineecannot itself
contain an unknown native packet fordue to the second condition of Definitibh 1 (since also a Listener of
c). Hence, a packet for which user: is a Destination can contain exactly one unknown native @agKor i,
which we denote ag = p(i) (we callp(i) the “unknown native packet” of in p ). On the other hand, notice that
the second condition of the Listener definition does notraskat p always contains a native packefor useri,
only that the existence of such a packet implies thstknown to:. Furthermore, the properties of Destination and
Listener are time-dependent since they depend on notiaris &l “packets known to usél, which are inherently
time-dependent. Clearly, the Listener property is absgrbin the sense that if useérns a Listener for packet at
slot ¢, it remains a Listener fop for all slotst > t.

To better understand the previous definitions and some af fine points, we offer the following illustrative
examples:

« Denote all native packets for userg with 7, 5, respectively; we will use indices, 75, ..., andsy, s, ..., t0

refer to different native packets for the same user. Suppese ¢ s is transmitted, wheré, s are unknown
to ¢ and j, respectively, and have been previously received,byrespectively. Then, according to Definition
[2, both: andj are Destinations fop. If p is only received by a third usér, thenk becomes a Listener for
(sincer, 5 are not native packets fdr). If i receivesp in the future, then instantly decodes its native packet
7, ceases to be a Destination farand becomes a Listener fpr asp no longer contains a native packet of
7 that is unknown ta.

« Suppose thap = 7 @ §; is transmitted and received bywhere neithef; nor 5; has been decoded hyin the
past. Then, according to Definitidt 4,s not a Listener of (sincep contains an unknown native packet
for i), even though it know. In juxtaposition to the previous example, we note the feilgy subtle point:
although a user can only become a Listener of a packet aiteivirg an XOR combination containing the
packet, the previous example shows that it is not alwaysttraeevery successful reception of a packet by a
user automatically makes the user a Listener for the redgiaeket. To take that example one step further,
suppose now thai = 7, ® p is transmitted immediately afterand received by. Then,i is not a Destination
for p (since Definitio_2 would requireé to be a Listener of at the time ofp’s transmission) even though
is able to decodé,,. Sincep is an Innovative pacl@tfor 7, we conclude that the notion ot s a Destination
for p” is a stronger notion thanp‘is Innovative for:”. As will be seen, the proposed policies ensure that this
scenario never occurs; it is mentioned here only to illdstthe Innovative/Destination distinction.

As will be seen, transmitted packets may have several rexceas Destinations or Listeners. The next fact follows

from Definition[2.

Fact 1. If useri is a Destination for a packetandi receives, then: is able to immediately (i.e. instantly) decode
the unknown native packet intended for it that is contaimeg. i

Hence, one way of guaranteeing instant decodability in topgsed scheme would be to guarantee that whenever
a transmitted packetcontains an unknown native packet for some us#reni is a Destination fop. This desirable

property will be eventually proved once the coding schenellg described.

Isince each transmitted packefs an XOR combination of native packets, we can wyitasp = @, an,)pf,(f) D dp, wherer{" are all
native packets for user, the (composite) packet, contains no native packet farand an,)p € GF(2) are suitable coefficients. Hence, for
each transmitted packptand each uset, we can associate a vectaj;” = (an,),,) over the fieldGF'(2) and consider the space spanned by
the vectorsa® that correspond to all packets previously received by isBacketp is defined in[[9] to be Innovative for userif the a,(f)
vector is linearly independent w.r.t. thké? vectors of all previously received packets byHence, an Innovative packet essentially brings
“fresh” information to a user.
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Fig. 1. Network of queues folV = 3 (virtual queues are not shown since they are not used by dnertitter).

B. Queue management and coding choices

Under the proposed policies, packets may be placed in \amueues at the transmitter side, based on the
received feedback. A general que@§, is characterized by two index sefsD satisfying the following criteria:
Compatibility criteria (CC) for sets L,D

1) L,DCN,
2) LND =1,
3) D #0,

4) L =0 onlyif |D|=1.

For simplicity, we will denote queu@%} by ij, and queue;)?i} by @;. Also, we use the notatiopg to denote
a packet that is stored in que@;, and denote withQ%| the number of packets stored@%,. We hereafter assume
that all setsC, D for queues% satisfy the CC and will not state this explicitly.

In addition to the above network of queues, it will be helgfuiintroduce a network of “virtual” queuelég(i),
for all £,D andi € D as follows: each’5 (i) exclusively contains “tokens” identifying native packetamely the
unknown native packets for usékx D which are contained in packets stored@é. We refer to these tokens as
“virtual packets” and writep% (i) to refer both to a token stored ¥4 (i) as well as to the native packet identified
by this token. In the following, we will use the term “packebwement” between virtual queues to actually refer
to token movement (tokens are atomic entities so they cadméirther decomposed: each token moves as a unit).
Hence, queue¥’ (i) do not really exist at the transmitter side and should onlgxemined at a conceptual level,
since they will be useful in Sectiofs Z.VI. In contrast to thertual” network, the queues)s and the packets
stored in them will be referred to as “real”.

We also associate with each qu@g a group of non-negative integer countéfg(i), for eachi € D, which are
interpreted as the number of unknown native packets for usentained in packets stored @p% (equivalently, the
number of tokens for userin Q%), i.e. it holds by definitionk5(i) = |V (i)|. We will later prove the important
property K5(i) = |Q%| for all i € D. Initially, all queues are empty and all counters set to 0.

We classify queues intd/ levels, where levelv € {1,..., N} contains all queue§4 such thaiL| + |D| = w.
Moreover, we classify queues of level > 3 into sublevels, where sublevel.u includes queues of leved with
L] = u, u € {1,...,w—1}. In Figure[1, we give an example of the queue network when- 3. Under the
proposed scheme, XOR combinations of packets are tramsinitthich contain at most one packet from each of
the queue®)%. While the specific choice of packets depends on the receedbiick and the specific algorithm
that is employed, the following rule always holds.

Basic Coding Rule (BCR)A setP = {péﬁ,...,pf;u} of v packets,one from each of thedifferent queues
{Q%l, .. .,Qf;u}, can be combined (by XORIing) into a single coded packet dnly i

D, C Ly, Vr#mn, n,re{l,...,v}. (1)

Note that the Basic Coding Rule implies thBf, N D, = (), for all » £ n, n, r € {1,...,v}. Indeed,i € D,
implies, through[{lL), that € £, and, since according to CC it hold®. N £, = 0, it follows that: ¢ D,.

We have not yet fully specified the criterion according to ebhia packet is stored in a queue. It will be
convenient for packets stored in the same queue to have somman characteristics or properties. Since the



notions of Destination/Listener are crucial for keepinack of the packet’s history, we use these two notions as
the basis for the packet storage rules. Specifically, weiredhe following properties to hold:
Basic Properties (BP) of packets stored in queue@%:

1) Each packep% € Qg is an XOR combination of native packets (including the splecase of a single native
packet), not necessarily for the same user.

2) For each packets € Q%, the set of Destinations fgr is D and alli € £ are Listeners fop5,.

3) For each packets € Q%, if p% contains an unknown native packetor some uset, theni is a Destination
for pg. Hence, taking BB2 into account, it follows that D.

4) For each native packetfor useri that has not been decoded byet, there exists exactly one pacbo% € Qg
(for some sets, D) such thaty = p%(i), i.e.pé is a composite packet that contaips

We should stress the following subtle difference in termsreference between BP1-BP3 and[BP4{1BP14BP3
describe properties of packets stored in any qugfiewhile BF4 is an existence statement that essentially dhescr
properties of native packets, which are then related to sgueeieQ5.

In retrospect, the Basic Properties justify the Compatyb(Criteria imposed orD, L. Specifically, the fact that
D, L contain Destinations and Listeners, respectively, forekegp implies thatZ ND = (), sincep cannot contain
any packet that is unknown to a Listener user, due to comdiof Definition[1 (hence, a Listener can never be a
Destination, although a Destination for a packet becomesterher upon reception of the packet). The condition
D =+ () captures the fact that a packet need only be stored in theegfenas long as it contains an unknown native
packet for at least one user. Finally, before any transomssoccur, each native packet has a singleton Destination
set and an empty Listener set.

The next result follows immediately from BP.

Lemma 1. For all £, D that satisfy CC, BP implies that5(i) = |Q5| for all i € D.

Proof: We slightly abuse notation and usgs to refer to the queue indexed by, D as well as the set of
packets stored in the queue. We also denote Wjtthe set of unknown native packets for usehat are contained
in packets stored i))%. By definition, it holds/K5(i) = |P;|, so that it suffices to shouP;| = |Q%|. Consider
any: € D; by BR4, any unknown native packet for ugein P; is contained in exactly one packet stored@@,
which implies|P;| < |Q5%]. Also, by B2, any packets € Q45 contains exactly one unknown native packet for
useri (sincei € D is a Destination fop%) and, by BPH, no two distinct packets @% can contain the same
unknown native packet for, which implies|Q5| < |P;|. This completes the proof. [ |
The significance of the BP (apart from a systematic way ofirggopackets in queues) lies in the fact that,
combined with BCR, they guarantee the desired instantan@ecodability property, as described in the next result.

Lemma 2. If BP holds at the beginning of sletand the transmitted packetat slott is created according to BCR,
the following statement is true: j§ contains an unknown native packet for some usehen: is a Destination
for p. Hence, by Factll, any user for whighcontains an unknown native packet can instantly decode dnup
reception ofp.

Proof: Let the transmitted packet = @Zzlpéi, formed according to BCR, contain some unknown native
packetq for useri. Then,q must be contained in one of thn%; packets that comprisg, saypf)’;;. BH3 now
implies that, sincey is unknown toi, 7 is a Destination fop%f; so that, by BPR, it holds € D,.-. Hence, we can
write pé’;; = q @ ¢, wherei is a Listener forc. Furthermore, the BCR implies thate £, for all » # k*, since
it holds i € D;.-, so that we can write = ¢ ® ¢ ® @T;,ék* pf,é:. By BH2 again; is a Listener for eacmf): (since
i € L), whence it follows that is a Destination fop. Fact[1l now implies that can instantly decode upon
reception ofp. [ |

Notice that Lemmal2 proves a property which is essentiayniidal to BPB, albeit for the transmitted packet
p only (whereas BE3 holds for all packets stored in quedgs In fact, the previous lemma can be strengthened
into the following statement, which specifies the users ¢hatpotentially instantly decode unknown native packets
after reception ofp. This corollary will be crucially used in the proof of subseqt results.

Corollary 1. If BP holds at the beginning of sldgtand the transmitted packet is created according to BCR,
thenp contains unknown native packets for all users_ifi , Dy, and only for them (in fact,;_, Dy, is the set of



Destinations forp at the beginning of slot). Also, only the users i N (U]_, D), whereS is the set of users
that receivep, can decode any unknown native packets contained in

Proof: We have already shown in the proof of Lemfja 2 that dontains an unknown native packet for some
useri, then there exists somi€ such thati € Dy., which implies that € Uj_, D;.. For the converse, consider any
useri € Uy_,Dy. Then, there exists some < {1,...,v} such thati € D;. and, repeating the argument in the
proof of LemmdXR, we conclude thais a Destination fop. Hence, the set of Destinations fprat the beginning
of slott is Uy_,D;. Finally, it is obvious that a usercan only decode an unknown native packetntended for
1) after successful reception of a packethat containg;. Hence, only the Destinations pfthat receive it, i.e. the
users inS N (U;_, Dy,) can decode unknown native packets at the end oftslot u

Notice that we have not yet proved the BP but only stated theufesirable properties that the proposed scheme
should possess. The proof of BP, by induction on time, willgheen after the full description of the scheme. It
still remains to examine how feedback can be efficiently usedpdate our knowledge about the Listeners and
Destinations of a packet. This is performed in the next sttimse

C. Packet movement

We now describe how packets are moved between qu@@ebased on the received feedback. The next result
is necessary here and follows immediately from BCR.

Lemma 3. Consider a packep = p%l @... @pé”u formed according to BCR, whet®;| + |£;| < k, for some
ie{l,...,v}. Then, it holdsy < |U/_D,| =37, |D,;| < k.

Proof: Assume w.l.o.g. thatD;| + |£1| < k. The BCR dictateD, C £;, Vr € {2,...,v}, which implies
U._,D, C £y and|J._, D, C D; U L;. Since allD, sets are disjoint and; N D; = 0, it holds Y__,|D,| =
Ur—_; Dr| <|D1 ULy = |D1]+ |L4| < k. SinceD, # 0 for all r (i.e. |D,| > 1), it also holds)_"_, |D,| > v,
which completes the desired inequality. [ |

As previously mentioned, we wish to always satisfy BP, sithey guarantee instantaneous decodability through
Lemmal[2. Hence, the rationale behind the rules for packetemewnt can be broadly stated as follows: “after
transmission occurs at sloetand feedback is gathered, packets may be placed in new geaceshat the BP are
satisfied at the end of slet(equivalently, beginning of slat+ 1). The role of feedback is to help the transmitter
update its knowledge of the Destinations and Listeners &mhepacket”. The following example will serve to
illustrate this point. In this example, we also describe htw virtual packets (i.e. tokens) are moved among
the virtual queues. Although the latter movement is purétiual, this description will be crucial in the ensuing
analysis.

Example 1. We consider the case of 3 users and, assuming BP holds atghming of slott, packetp = p3, © pi?
is transmitted at slot (this combination satisfies the Basic Coding Rule). We agstimt only user receives
the packet; since, by Corollafy 1, user 2 is a Destinationpfoit can decode the unknown native packes(2)
contained inp3$,, so thatk?,(2) is reduced by 1. For the other packet movements, two choieesamsistent with
BP:

1) Packetp?, is moved to queu&)?® and packefpi? is not moved; hence, regarding the virtual queues, only
tokenp3, (1) is (virtually) moved toV;?*(1) and K3, (1) is reduced by 1 whilg<?3(1) is increased by 1 while
all other counters are unaffected. This is consistent wighdce, after receiving, receiver 2 becomes a
Listener forp$, = p @ pi? at the end of slot, while receiver 3 is already a Listener fpf, (due to BPR at
beginning oft) and remains so due to the absorbing property of Listener.

2) Packep is moved to queu€)?; and packetss,, pi? are removed from queu&s;,, Q3? respectively; hence,
tokenp3, (1) is moved toV4(1) andpi?(3) is moved toV%(3). Additionally, countersky, (1), Ki2(3) are
reduced by 1 whilek?,(1), K%(3) are increased by 1. This is also consistent with BP sincer edteiving
p, receiver 2 becomes a Listener af Furthermore, by Corollaryl 1, users 1, 3 are Destinationgfat the
beginning of slott and, since no user received the unknown native packets for 1,3 containedifat the
beginning of slott) remain unknown at the end of slet Hence, users 1,3 are still Destinations at the end
of slot ¢.



Intuition at this point tells us that the higher the level af@eue in which a packetis stored, the better are the
chances of sending multiple unknown native packets witmglsitransmission. Specifically, by combining packets
of queues in levelv, we can send up taw unknown native packets per transmission, as stated in LeBirfrar
example,p = p? ® p} contains two unknown native packets, one for us@nd one for use2. To provide a more
general example of a BCR-formed packet that contains thermmax allowable number of unknown packets for
the given level queues, consider s&isD; for i = 1,...,v such that; UD; = W for all i andU}_,D; = W,

v
where|W| = w. It is now easy to show that packet= @p), ~"'satisfies the BCR, where all) =" are at level

=1
w, and contains exactlju’_, D;| = w unknown packets. For example, within queues of levek 2 and user set

W = {1,2} the most beneficial combination j§ @ p} which results in transmitting 2 unknown native packets
with a single transmission, while within queues of level= 3 and user se¥V = {1,2,3} the most beneficial
combinations are any of the following typess; ® p?3, pis ® pi?, pi, @ pi? andp?® @ pi® @ pi2. All these types
result in 3 unknown native packets transmitted simultasgou

Additionally, among queues of a given level, packets at digbublevel queues can be combined with other
packets in more ways than packets of queues at lower subléval examplep?, can only be combined witj!?
while pi? can be combined with 1)3,, 2) p?3, 3) pi3 and 4)p? @ pi®. The benefit of having more available
coding choices for a higher sublevel packet is that the gitibaof “wasting” a slot is reduced, as the following
specific example illustrates faN = 3: assume that the transmitter can either send a packep?, or a packet
p = pi® @ p?. Both choices have the same number of Destinations. In teedase, the slot is “wasted” (i.e. no
decoding or packet movement takes place) with probabhiligy(i.e. iff p is erased by users 1,2). However, in the
second case, even jfis erased by both of its Destinations (i.e. users 1,2) anedived by user 3, we can move
p? = p®pl3 to QF (sincep is known to 3); as a result, the slot is “wasted” with a lowenkgbility €123, which
corresponds to the case thats erased by all users.

Of course, one can argue instead that if the only non-emptyegiwere)?, andQi3, then (applying an argument
similar to that of the previous paragraph) it would be bettetransmitp?, instead ofp}?, since the former packet
“wastes” a slot with probability;, and the latter with a higher probabilits. Nevertheless, we have to consider
that in a “loaded” system (i.e. when the exogenous arrivadscibse to the boundary of the stability region), most
of the queues will be non-empty so that this scenario (wheregreferable to transmit a lower sublevel packet) is
unlikely to occur. Hence, we intuitively expect that the rs@meo described in the previous paragraph will dominate
performance-wise and this why, when multiple choices fakgamovement arise (all of which satisfy the BP after
movement), we select the one that ensures that all packetlvéd in a transmission are placed in a higher level
and, within the same level, higher sublevels, (else theynatenoved at all). Thus, in Examgdlé 1 above, we choose
the first option, since?, is moved from subleve3.1 to 3.2 andpi? is not moved, while in the second optig?
descends from sublevsl2 to 3.1.

The following specific rules for packet movement (shown irymocode form in Figld2) have been devised
according to the above rationale i.e. assuming, for now, Bfaholds at the beginning of slet we should move
the packets in such a way that BP also holds at the end of .skair the reader’s benefit, we provide a high level
description of the algorithmic logic for each case and weaisgmemonic name in parentheses to easily distinguish
the cases.

Rules for Packet Movement (RPM) Let packetp of the formp = @Zzlpg’; satisfying the Basic Coding Rule
(BCR) be chosen for transmission at slptand letS be the maximal set of users that recejvéi.e. the packet
is erased by all users ifi). We define the sef as follows:i € £ iff i belongs to at least — 1 of the sets(;,
for k = 1,...,v. Hence, before transmission pf useri € £ is a Listener for all but at most one of the packets
pp, with k = 1,...,v. We also denote witt§ = S L the set of users irC that receivedp. Note that it is
quite possible forS to be empty even though # 0 (e.g.p = ps @ p?, which satisfies BCR, witl§ = {3} and
L = {1,2}). The following rules are now checked and the corresponditipns are performed (if applicable).
Although only the real packets and queues are handled byahenhitter, we also consider (at a conceptual level)
the virtual network and describe how it would be affected actecase.

1) (p is erased by all usejsIf S = 0, then the transmitted packet is erased by all users. Herwaew
information is gained by the users and the Destinationdhist sets for each packet in the network remains
unaffected (the current slot essentially being “wasted/hjch implies that no packet movement occurs and
p is retransmitted in the next slot.
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Fig. 2.

Input: sets Ly, D, for k= 1,...,v, that satisfy BCR (transmitted packet is p = @, _, pg’;).
Input: the maximal set S of users that successfully receive p. ~ ~
Input: the set £ containing all indices which belong to at least v — 1 of the sets Li (denote S =S NL).

if S =0 then // Case 1
retransmit p and apply RPM anew (i.e. on the new set S) ;
else if U;_,Dr — S = then // Case 2.1

for k=1to v do
dequeue the pé’; that is contained in p ;

For all 4 € Dy: dequeue p%’; (1), Ké’: (1)--;

end for
else // it now holds Uj_1Dx — S # 0
if §—Uj_1(LxUDy) =0 then // Case 2.2.1

for k=1 to v do
dequeue packet Py LkU Dk ns)ué

£k contained in p and enqueue it to Q5 ;

For all i € Dy: dequeue pDk (i) and enqueue it to Vg:usp"ms)us(i), Kg’}:(')——7 Ké:u(sbms)us( Vit
end for
else if S —Uj_ 1(£k UDk) # 0 and |(Nf_1Lr US)U (U1 Dy, — S)| > maxy, |Lr UDy| then // Case 2.2.2A

L LRUS
enqueue p to QU ~ DS

fork—ltoz/do

For all i € Dy: dequeue p%’;() and enqueue it to VU: Dﬁ:ug(z), Kg: (3)--, KGIZ’; é:uZ( )4+ ;
end for
else // Case 2.2.2B
if SN (Uzzl(ﬁk U Dk)) = () then
return; // do nothing
else // it nmow holds SN (Uj_(LxUDy)) #0
set S «+— SN (Uf—1(Lrx UDyg)) and apply RPM on this S ;
end if
end if
end if

Pseudocode representation for the Rules for Packetient.

2) Otherwise, it holdsS # (). In this case, by Corollaryl 1 and Fddt 1, all usersJjp , Dy, (i.e. the Destinations
of packetp) that receivep can instantly decode their unknown native packet, i.e. foka {1,...,v} and
1 €DpNS, packetpf)’; (1) is decoded by and its corresponding token is removed from the virtual oektw
(as a resuIth): (7) is reduced by 1). Notice also that amy= D, NS becomes a Listener fqvf)’; after
receivingp. Regarding the potential packet movements and countemgelsan

2.1) (@ll Destinations ofp receivep): If U;_,D;, C S (i.e. U;_, Dy — S = (), then all native packetgsg’; (1)

for k =1,...,v andi € Dy, are instantly decoded by their intended destinations baut tokens are
removed from the virtual network (as explained above), esithe corresponding native packets are no
longer useful, having been decoded by their intended ufersthe same reason, far=1,...,v, all
packetSpgi that comprisep are removed from the respective que@é’; and no other packet/token
movement takes place.

2.2) Otherwise, it holds)}_, Dy — S # () and we distinguish the following cases:

2.2.1) enly Destinations/Listeners of constituent packety seceivep): It holds S C U} _, (L U Dy),
equivalentlyS = S — Uy_, (£ UDy) = (. Notice that, forv > 1, the latter condition is equivalent,
by the BCR, toS C U;_, Ly, while for v = 1 it reduces toS C £; U D;. In both cases, and for

eachk € {1,...,v}, packetp5:, where Dy — S # 0, is moved to queue)y"'s (DxNS)US and, for

eachi € Dy, — S, tokenpf: (i) is moved toVE’“U(DmS)US( ). Hence, counteK 5! (i) is reduced by

1 while Kﬁku(pms)u‘s( /) is increased by 1. If, for somk, it holds Dy, — S = 0, then allp5: are
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removed from the respective queues. The two cdes S z () can be jointly handled following
the convention that whenever a packet is moved to a q%m/vith D = (, it actually leaves the
network. This will be systematically used below to avoidegon. The consistency of these packet
movements with Basic Properties is subsequently proved@mrhd#. Hence, according to this rule,
packetp “ is either not moved at all (ifS U (D, NS) = ), or is moved to a higher level (or
within the same level but higher sublevel) queue, or exiesrtatwork completely (iD, — S = 0).
Also notive that, as intuitively expected based on Defingid,[2, the current case guarantees that
the Destination set (resp. Listenerr set) of a packet cadeotease(resp. increase after a packet
movement).

2.2.2) It holdsS = S — UY_ (L, UDy) # 0/ Again, this condition is equivalent 1§ = S — UY_, L. # 0,
for v > 1, andS = S — (£, UD;) # 0 for v = 1. We further distinguish two subcases:
A) (received feedback creates a combined Listener/Destmat@t in a level higher than that of

all constituent packets qf): If |(N}_, £, US) U (U/_ Dy —S)| > maxp—1,_,|Ls UDk]E then

packetp is moved tonk lﬁku‘?g and packetsapk are removed from queue@é In the virtual

network, for eachi € Dy, — S, token p: (i) is moved fromVi* (i) to V5 15"“5( ) (so that

countersK"“( ) andKﬂk 15’”‘;( ) are reduced by 1 and increased by 1 respectively). Lemma
[ shows again that thls packet movement is consistent witficB2roperties and the packets are
moved only to higher level or sublevel queues (or exit thevoek).
B) (no higher level Listener/Destination set, relative to d@nent packets gf, can be created based
on received feedbagklf |(Ny_, Ly US) U (U;_ Dy — S)| < maxy—; . ,|L; UDg| then
o if SN (U{_,(LrUDy)) =0, no further action is taken.
o else, setS «+ SN (U}_,(Lx UDy)) and apply the above rules again for the nSwNotice
that Case 2.2.1 is now applicable for the néw
As previously mentioned, the validity of the above actioasproved in the following result, which in turn
guarantees the instant decodability property. Inductiortime then shows that BP is true for all slatsf BCR
and RPM are applied in each slot.

Lemma 4. Assuming that the Basic Properties are satisfied at the Inéggnof slot¢, then the application of the
Basic Coding Rule and Rules for Packet Movement to the paeiesmitted at slot satisfies the Basic Properties
at the beginning of slot + 1.

Proof: See Appendix’A. [ |
Since the Rules for Packet Movement have a complicateddbgicucture, we provide the following concrete
example for clarification.

Example 2. Suppose packet = p2316 @ pl?® @ pl246 is transmitted, so = 3 andD; = {1} ,D, = {2,4} , D3 =
{3}, £1=12,3,4,6}, Lo ={1,3,5}, L3 ={1,2,4,6}. Hence,U? v_1Dy ={1,2,3,4}.
« Suppose is received by userg, 5 and6, soS = {2,5,6}. It holdsU;_ Dy, — S = {1,3,4} # 0 andS =S—
Ui, (L1 UDy) = {2,5,6} — {1,2,3,4,5,6} = (), so we are in case 2.2.1. We ha¥e) (U}_, (L, UDy)) =
S =1{2,5,6} andS = {2,6}, because user does not belong to — 1 = 2 setsL;, but only to setls. The 3
packets are moved as follows:
L1U(D1NS)U uS

— packetp?*! is not moved becaus, NS = {1}N{2,5,6} = 0 (equivalently, it is moved t@Q) "5 :
ie. Q{2 SAGIIV6) _ 92346 \which is where it is currently stored).
EzU DQOS us e Q{l ,3,51U({2,41n{2,5,6})u{2,6} Q12356

{2,4}—{2,5,6}
— packetpi?46 is not moved becausléng = {3}n{2,5,6} = 0 (equivalently, it is moved t@ﬁ?’U(DBOS) s

ie. Qg’fA 6 U0U{2,6} _ Qé246)-
« Suppose now thap is received by userg and8, soS = {7,8}. It holds U}_, D, — S = {1,2,3,4} and

— packetp§§5 is moved toQ7;

%it is easy to verify that this inequality is always true for= 1.
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S=8- Us_ (Lx UDg) = {7,8} — {1,2,3,4,5,6} = {7,8} # (), so we are in case 2.2.2. We have
(Mo Lk US) U (Ui Di — S)|

= [(({2,3,4,6} N {1,3,5} N {1,2,4,6}) U{7,8}) U ({1} U{2,4} U{3}) — {7,8})|
= {1,2,3,4,7,8}| = 6.

We also have

kIﬂlaX3|£k UDIC| = maX{|{172737476}| ) |{172737475}| ) |{1>273747 6}|} = 5.

Therefore, we are in subcase 2.2.2A, anid moved tonk léku‘i, i.e. Q75,,.

« If p is received by usef, thenS = {7}. It holds Uzlek ~S#DandS=8 —U}_ (Ly UDy) =
{7} —{1,2,3,4,5,6} = {7} # 0, so we are in case 2.2.2. We have

(Mo Lk US) U (UpeDi — S)| = 1{1,2,3,4,7} =5,

and maxy—1,_3|Lr UDy| = 5. We also haveS N (Up_, (L, UDy)) = {7} N {1,2,3,4,5,6} = 0, therefore
we are in the first case of 2.2.2B and no packets are moved.

« If pis received by userg and7, thenS = {2,7}. We haveU}_ Dy, —S # 0 andS = S — U _, (L, UDy,) =
{2,7} —{1,2,3,4,5,6} = {7} # (), so we are in case 2.2.2. We have

(Mo L US) U (Ui Di — S)| = |{1,2,3,4, 7} =5,

andmaxy—1, 3|L; UDg| = 5. We also haveS N (Ui_, (L, UDy)) = {2,7} N {1,2,3,4,5,6} = {2} # 0,
therefore we are in the second case of 2.2.2B. Next, we&set S N (U;_, (L, UDy)), i.e. S + {2}, and
apply the same rules to the neSy which brings us to case 2.2.1. We haSe= {2} and the 3 packets are
moved as follows:

L:lu(DlmS) uS

— packetp?31% is not moved becausB; NS = {1} N {2} = 0 (equivalently, it is moved t@)r :

ie Qﬁf A6 U00{2} Q2346)

— packetpl?® is moved toQE2U (D0S)US 5 g QIL3IVURANENUE) _ 1235

{24} {2}
— packetp}?'S is not moved becausB; NS = {3} N {2} = 0 (equivalently, it is moved ta)y 5 " s

ie. Q{1,2,4 6 UpU{2} Q1246)

The above choice of the Rules for Packet Movement allows faergial feedback information loss, regarding
which user knows which packet. This is best illustrated ia third case of Examplgl 2 where, although user 7
becomes a Listener for packett the end of slot, this information is actually discarded. As explaineds tbihoice
is made on intuitive grounds in order to keep the system mealalg and amenable to analysis. However, as will
be seen in the next Section, fof = 4 even a more restrictive choice of rules suffices to implenaepblicy with
asymptotically (as packet length increases) maximal gtabegion when the channel erasure probabilities aré.i.i.

D. Comparison between the Rules for Packet Movement andutbs in [3]

The reader who is familiar with the work ihl[3] will notice ththe current RPM constitute an involved extension
and strict generalization of the rules in][3], i.e. all allowable packeovements in[[3] are still allowable in this
work (and additional movements, not possible_in [3], are madlawed). A proof of this fact entails a straightforward
enumeration of all possible feedback and application ofrélevant RPM case and is omitted. However, for the
reader’s benefit, we provide Tablé$ I=VIl, which summarize packet movements for all phaseslih [3] and show
which RPM case applies to them.

IV. STABILIZING SCHEDULING PoLicy

In this Section, we investigate the design of policies thatler the coding restrictions and packet movements
described in Sectionll, stabilize the system whenevesibs. We first need some definitions.



TABLE |
SELECTING p; FOR TRANSMISSION IN

PHASEL OF XOR2 IN [3].

userq

userj

userk action performed in[]3]

Corresponding case in RPM (for arbitraiy)
leading to identical action

dequeuep;; useri decodes

Case 2.1

dequeuep;; useri decodes

Case 2.1

dequeuep;; useri decodes

Case 2.1

dequeuep;; useri decodes

Case 2.1

dequeuep;, movep; to Q7*

Case 2.2.2A

dequeuep;, movep; to Q’

Case 2.2.2A

dequeuep;, movep; to Q¥

Case 2.2.2A

m|imim| m|20|X0|0|A0

mim|o|D | m|m|0|XD

mixo|m|Xo | m|xO|m|X3

retransmit

Case 1

' _ TABLE 1l
SELECTINGp} & p] FOR TRANSMISSION

IN PHASE2 OF XOR2 IN [3].

users

userj

userk

action performed in[[3]

Corresponding case in RPM (for arbitraiy)
leading to identical action

dequeuep!, p}; usersi, j decode

Case 2.1

dequeuep!, p}; usersi, j decode

Case 2.1

dequeuey?, p, movep to Q*; useri decodes

Case 2.2.2A

dequeuep?; useri decodes

Case 2.2.1

dequeuey?, p’, movep to Q7*; userj decodes

Case 2.2.2A

dequeuep’; user;j decodes

Case 2.2.1

dequeuep], pj, movep to Qj;

Case 2.2.2A

mimim| m|20|X0|0|A0

mim|Xo|XD | m|{m|20|XD

m|o|lm|o|m|O0|m|Ao0

retransmit

Case 1

TABLE 11l

SELECTINGpY; @ p]* FOR TRANSMISSION IN PHASE3 (PART 1) OF XOR2 IN [3].

user:

userj

userk

action performed in[[3]

Corresponding case in RPM (for arbitraiy)
leading to identical action

dequeuep’®

7

, Pl all 3 users decode

Case 2.1

dequeuep’®

7

, Py, Movep’, to QY; usersi,

j decode | Case 2.2.1

dequeuep’®

7

, Ph, movep?, to QF; usersi,

k decode| Case 2.2.1

dequeuep’”; useri decodes

Case 2.2.1

dequeuep’,; usersj, k decode

Case 2.2.1

dequeuepg'-k, movepjk to fo: userj decodes

Case 2.2.1

dequeuep’;,, movepi, to Q%*; userk decodes

Case 2.2.1

m|imim| m|20|X0|0|A0

m|m|O |0 |m|{m|O|0

mixo|m|Xo | m|O0|m|X3

retransmit

Case 1

12



TABLE IV

SELECTING p};, FOR TRANSMISSION IN PHASE3 (PART 2) OF XOR2 IN [3].

useri | userj | userk action performed in[]3] Corresponding case in RPM (for arbitraiy)
leading to identical action
R R R dequeuqﬁ-k; usersyj, k decode Case 2.1
R R E dequeuep’,; movep, to Q}; user; decodes| Case 2.2.1
R E R dequeuep’,,, movep}, to Q%; userk decodes| Case 2.2.1
R E E Pl remains inQ’, Case 2.2.1
E R R dequeuq>§k; usersyj, k decode Case 2.1
E R E dequeuep’,, movep!, to Qy; user;j decodes| Case 2.2.1
E E R dequeuep’,,, movepi, to Q%*; userk decodes| Case 2.2.1
E E E retransmit Case 1
TABLE V
SELECTINGp! @ p}" FOR TRANSMISSION IN PHASE4 (PART 1) OF XOR2 IN [3].
useri | userj | userk action performed in[[3] Corresponding case in RPM (for arbitraiy)
leading to identical action
R R R dequeuep’, pi¥; usersi, j decode Case 2.1
R R E dequeuep’, pi¥; usersi, j decode Case 2.1
R E R dequeuqﬁf; useri decodes Case 2.2.1
R E E dequeuqﬁf; user; decodes Case 2.2.1
E R R dequeuey?, pi*, movep! to QI*; user;j decodes| Case 2.2.1
E R E dequeuep’®; user; decodes Case 2.2.1
E E R dequeuep’, movep’ to Q7" Case 2.2.1
E E E retransmit Case 1
) TABLE VI
SELECTING p] FOR TRANSMISSION IN PHASE4 (PART 2) OF XOR2 IN [3].
useri | userj | userk action performed in[]3] Corresponding case in RPM (for arbitraiy)
leading to identical action
R R R dequeuq;{; user: decodes | Case 2.1
R R E dequeuq?{; user: decodes | Case 2.1
R E R dequeuqﬂf; user: decodes | Case 2.1
R E E dequeuqﬂf; user: decodes | Case 2.1
E R R dequeuep’, movep! to Q7F | Case 2.2.2A
E R E p! remains inQ’ Case 2.2.1
E E R dequeuep!, movep! to Q7" | Case 2.2.2A
E E E retransmit Case 1

13
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TABLE VII
SELECTINGp* @ piF @ p? FOR TRANSMISSION IN PHASES OF XOR2 IN [3].

useri | userj | userk action performed in[]3] Corresponding case in RPM (for arbitraiy)
leading to identical action

R R R dequeuep pk usersi, j, k decode| Case 2.1

R R E dequeuq; ; usersi, j decode Case 2.2.1

R E R dequeuq;i ,p;j, usersi, k decode Case 2.2.1

R E E dequeueo{’“; useri decodes Case 2.2.1

E R R dequeuep’*, pi; usersj, k decode Case 2.2.1

E R E dequeueoj’“; userj decodes Case 2.2.1

E E R dequeuep)’; userk decodes Case 2.2.1

E E E retransmit Case 1

A. System Stability and Stability Region
Let X (¢),t=0,1,... be a stochastic process.

Definition 3 (Stability). The processX (¢), ¢t =0,1,... is stable iff
lim limsupPr (X (t) > q) = 0.

4= t—o0

Consider next a time-slotted systéi At the beginning of each slot, a number of new packets bahontp a
set N of “flows” arrive to the system. Newly arriving packets of flowe N are placed at infinite size queues,
i.e. no incoming packets are ever dropped. These packetpracessed by a policy belonging to a seil of
admissible policies. We hereafter use the term “policy”dter to a collection of rules for choosing which packets,
stored in a set of queu&d, to combine through a XOR operation and how to move packeigdss the queues in
Q (the rules also allow for a packet to exit the system). Theceraes will be stated later. Led; (¢), i € N, be
the number of flowi packets arriving at the system at the beginning of &ldtor the purposes of this paper, we
assume that the proce§d (¢)},°,, whereA (t) = (A;(t) : i € ), consists of i.i.d vectors witli[A(t)] = X > 0.
We denote withQ7 (¢) the number of packets in quelg € Q at timet when policyr € II is applied, and define
QT(t) = Xgee @l ()
Definition 4 (System Stability)

1) For a given arrival rate vector\, systeni/ is stable under policyr if the process@”(t) is stable.

2) The stability regionR™ of a policyw € II is the closure of the set of arrival rates for whi¢his stable

underr.

3) The stability regioriRy; of systeni/ under the set of policieH is the closure of the set .R™.
4) A policy 7* € II is stabilizing withinII if Ry = R™ .

Consider now the system under study in the current work. Atliaginning of each slot, a decision must be
made at the base station concerning the combination of afiken the real queues that must be XORed to form
the packep = p L, @pD to be transmitted. Such a decision is called a “cont@‘” £ and we denote
the set of such controls by. Notice that, by definition, a control is identified by the :@éDZ, Z)} _, and not by
the order of the elements in the set, i.e. conﬁ;@‘l’ ’EU is identical to control[D"S;’ ’f;i , for any permutation

o(i) of the indices on{1,..., v}.

We assume henceforth that the Basic Coding Rule is followedhie formation of packet. For this system, an
admissible policy consists of selecting, at the beginnihgaxch time slot, one of the available contro'gzjjjéj
to form a packetp for transmission. Aftery is transmitted, packets are moved among the real qué}#ﬁz‘)
according to the Rules for Packet Movement (RPM) describheskictior 1. We also consider the virtual network,
where a token for an exogenous native packet for user\ is initially stored inV;(i) and then travels through
the virtual network according to the RPM (as it now appliedhe virtual queues only). Hence, there exist two
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XXR :| d3
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Fig. 3. Possible movements of tokep$,(1), p3»(2), p3>(3). Destination of usei is denoted asl;. Received feedback is denoted as
(u1, u2,us), wherew; is the feedback from user where R, E stand for received, erased, respectively, whidenotes an unspecified value
(either R or E).

different queue networks, a “real networl = |J, » {Q%} and a “virtual network™y = J » Uep {V5 (0},
although only the former is actually present in the trantmifthe latter should be understood as part of a thought
experiment that facilitates the analysis).

We now identifyII as the set of admissible policies that select transmittettgia according to the Basic Coding
Rule and then move packets based on the Rules for Packet Mowes characteristic of such movements is that
the destination (i.e. queue) of a packet movement cannoeberrdined at the beginning of transmission since it
depends on the feedback received after packet transmidoorexample, assume that = 3 and control[f’éfg IS
applied, i.e. packet = p3, ® pi? is transmitted. The tokens involved in this transmissiamzgs (1), p3,(2), pi(3).
Figure[3 shows the possible movements of these tokens aegdadthe received feedback.

Under the above definition di, any policyr € IT can be individually applied to the “real” and “virtual” netrk.
Defining Q™ (t) = 3_, p|(Q5(1)"| and V™ (t) = 3=, 5 > sepl (VA (i)(t)) 7| as the total backlog at slatin each
network (and hereafter dropping thesuperscript in the queues), we can use Leriima 1 to write

Q(t) = > _1Qp(1)] < Y _IPIQEEH)| = V(1) <> NIQp(1), )
L,D LD

L,D

since|D| < N, whence we conclude thsﬁ% < Q™(t) < V7(t). The last inequality implies that the real and
virtual networks have the same stability region. Surpghinit also implies that the total number of packets stored
in the real queues at any time is generally less than the notaber of unknown native packets at that time.

Furthermore, it turns out that the virtual network falls retclass of systems whose stability has been studied in
[8]. We next summarize the formulation and main results Jnifi8a manner that will be useful in the development
that follows. Consider a slotted-time network with a node/s€uU {d}, whered ¢ M, and directed edge (i.e. link)
set&, where the special nodérepresents the destination of traffic originated at the aade\Vt (for now, assume
there is a single destination for all traffic). L&Y, £ denote, respectively, the set of outgoing links and incgmin
links to nodem € M and assume tha"’, # () for all m € M. We allow self-loops in the network, i.e. for node
m € M, there may be a linKm,m), implying that the setg]’,, £ may both contain node:. A finite set of

controlsZ is available. For each contrdl € Z, “transmission” takes place over the set of outgoing ligk%, of
nodem € M in a random manner as follows.

« If, at a given slot, control € 7 is applied, then, for any node: € M, at mostj,,(I) € {0,1} packets
may be transmitted “over the sef}, in the following random manner: For eache Z, there is a random

(2

sequenceR*(I), with n > 1, m € M, where eachR]” (I) takes values in the s&},, with the following

ut

interpretation. A packet (if any) transmitted from nodeover the se€]’, when control! is applied for the

n-th time, is receiveanly by the recipient of the linkz"* (I). Of course, ifR]" (I) = (m,m) then the packet
is not received by any node & ,-{m}, hence it remains at node.

For a givenn and/, the random variableg;" (1), m € M, may be arbitrarily correlated. Moreover, we assume
that for each control € Z, the random sequencds® (I), m € M} 2, are ii.d., independent of the arrival
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processes, and defip (I) £ Pr(R™ (I) = e) for e € €7, so that
S pMI)=1 ¥YmeM,VIeT (3)

ecEm,

Strictly speaking, the description above is for nodes forcWhi,,, (I) > 0. In caseji,, (I) = 0 for somem € M,
to avoid complicated notation, it is helpful to sBf' (I) = ey for some fixedey € £7},.

To describe the stability regioRy; of this network, we need some preliminary definitions. Fontonl 7 € Z,
we define the sef(I) of vectorsf as

() ={f = (fe)eee : fe = p" (Dpm; 0 < pin < fin (1), m € M, € € Egpy} (4)
and the convex hulH of the setdl'(I) as
H=conv(I'(I),l €T). (5)
The stability region of the networkM U {d}, ) is described by the following Theorem.

Theorem 1. [8] The stability regionRy; of the system is the set of arrival ratds= {\,.},,c v Am > 0, for
which there exists a vectgf € H such that for all nodesn € M it holds

Yo fetdm< D fe 6)

ecEmn ec&ln,

out

We will apply the formulation described above to the netwodnsisting of the virtual queugss (i), i € D,
i.e., we considetM = {Vg(i) 1 i€ D} for all £, D that satisfy CC. For this network, since at most one virtual
packet (i.e. token) is transmitted per slot from any queyeve havei,,(I) € {0,1}, m € M. Also, the packet
transition probabilitie]* (I) for nodes with/,,(I) = 1 can be easily calculated (an example is given below).
The only difference between the netwofk1 U {d},€) and our model is that, in the latter, there a¥etoken
destinationsd;, : € N/ (one for each of the receivers) instead of a single one. Hewsvwe can combine all these
destinations to a single destinatiah so that any token arriving ia; is considered to arrive at. This affects
neither the admissible policies, nor the queue sizes atdhieus native queues at the base station. Hence, system
stability is not affected, provided that we are interestedhie total queue size at the base station.

Example 3. Consider the cas&/ = 3 and assume that contnzif2 is chosen, hence a combinatipn= p3, & pi?
is transmitted, where?, = p3, (1) @ p3, (2) andpi? = pi? (3) (recall Sectior 1A for the interpretation of the
parentheses). The transition probabilities are then dswsi
« Tokenp}, (1):
1) If pis received by uset, p3, (1) is removed fromi, (1) and delivered tal; (i.e. tod for the equivalent
network). This event has probabilitl} ;1.
2) If pis erased at user 1 and received by user 2, packeis moved to queu&)?® and tokenp?, (1) is
moved toV;* (1). This event has probability’;y (2.
3) If pis erased at users 1 and;#, (1) remains afi’;} (1). This event has probability’;; 5 ¢.
« Tokenp?, (2): the transition probabilities are determined as in the iptes/case, by interchanging the indices
1, 2.
« Tokenpi? (3):
1) If pis received by user 3;3% (3) is removed fromV;'? (3) and delivered tels. This event has probability
Py (3)-
2) If ; i}s erased a8, p3 (3) remains afl’;'* (3). This event has probability’sy g.

We now describe the stability region of TheorEm 1 in a fornt thanore convenient for calculations. Anfyin
‘H can be written in the form

=Y éif(I), for some{¢r},.; suchthatp; >0, > ¢; <1, (7)
Iez Tez
where

) = (fe(D)eee »
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fe (I) :pgn(l):um(I% 0 é Hm (I) S l&’m(I)7 m e M €c outa
and, for any control = Iéi:::::é“y, we define the seM (1) = U/, Urep. {ng(k)} so that

N 1 iftmeM(I),
fin (1) = { 0  otherwise ®

In words, /i,,(I) indicates whether contral involves the queue corresponding to noaefor creation of the
transmitted packet according to BCR.

Hence it holds,
Z fe— Z Z¢Ife Z(bl Z pe Hm 5 (9)

eEEN ecEN, I1eT IeT ecEm,
and

dofe= D D oufe=3_ >, erm(DpD) (10)

ec&n ec&Em IeT I€T e=(I,m)eEm

Since the tokens for new packet arrivals are always placepiguesV;(i), i € N, we define

S\m:{l if m = Vi(i), 1)

0 otherwise
Replacing [(®),[(10) in[{6), we have

Z¢1< > M(I)pé(f))+>\m<z¢1<zpe fm ( ), m e M, (12)

1€ e=(I,m)eEm 1€ ecEm,

or equivalently, taking into accouril(3),

Sor| X @D |+ 3 <3 (1= (D) o (D61, meM, (13)

IeT e=(l,m)e&Em IeT

l#m
Hence, the stability regioRy; of the system is described by either one[ofl (1)) (13), coetbiwith
0 < pim (I) < fim (1), (14)
ér >0, (15)
Y or<t, (16)
IeT

where ji,,, (I) is given by [8).

Two implementation issues are worth mentioning at this fpdhirst, there must exist a mechanism for the
receivers to know the constituents of the XOR combinatioreath received packet, in order to be able to use
this packet in the decoding process. The simplest way toameht this is to use packet addresses to identify the
native packets involved in the XOR combination of the traitigt packet. These addresses can be placed in the
packet header. Reserving bits to describe packet addrespkss some loss of throughput due to the introduced
overhead. To simplify the description, in the current andtriection we do not take the overhead into account
and address the issue of stability in packets per slot. IMi@e¥Il] we discuss the number of addressed needed
and loss of throughput due to overhead.

The second issue is that, under the schemes described ior8BBtthe receivers need to save received packets
so that they can correctly decode at a later time. The diabésults above consider only the queues at the base
station. Hence, if we are interested in taking the receivegrugs into consideration as well, we must ensure that
the system remains stable even if the sizes of these quesiesided to the total queue size at the base station. In
fact, if the receivers are never informed by the base stat#oto which of their received packets will not be needed
in the future, it is easy to devise scenarios where the quees at the receivers grow to infinity even though the
gueues at the base station are stable. A simple way to ddalthvit problem is described in Sectibn MII.
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Vi(1) ) ()@

Va(2) da

Fig. 4. Virtual queues in the case &f = 2 users and possible movements of tokens.

B. Stabilizing Policy

Applying directly the results in_|8], we obtain the stahmg policy described below. At the beginning of each
time slot, the policy chooses a control of the folm= I b ’f; € Z, where all countersKL " (k), for r =
1,...,v andk € D,, are non- -zefband forms the approprlate packet to be transmitted in trm,t]slz Y lpD :
accordlng to the Basic Coding Rule. If contbis chosen, one token from each of the queues in theV$él) =
Ur—1 Usen, {Vﬁj‘(kz)} may be moved to another virtual queue inside the network, @y reach the destination
(thus, the native packet corresponding to the token exésntitwork). No packets from any of the other queues
are moved. The algorithm for choosing the appropriate obigrthe following.

Algorithm 1: At each decision slot:

1) For each control = Ié;:jjjzgz € 7 that satisfies the BCR:

o Form the weights

em (1) =max{ K — Y pl() K, 03, meM(I),
e=(m,l)eE™

out

where K, is the length of the queue corresponding to nedécorresponding to a queue in the virtual
network, i.e. ifm = V(i) for someL, D andi € D, thenK,, = K5(i)).
« Form the reward under the given control,

Ch= Y en(l).

meM(I)

2) Find the control that maximizes the reward, i[é.= arg max ;c7C (I), transmit the packet = EBZ* lpff

that corresponds to contrdl® = I i f) and apply the Rules for Packet Movement after reception of

feedback (including updating th& counters)

Example 4. Consider a network oiV = 2 users. The virtual queue network can be seen in Figure 4,enheand
ds are the two destination nodes. The set of all controls thaydbe BCR isZ = {11,12,112,[21,[12:21}. Suppose
all queues are non empty. At each decision slot:
1) For each controf € Z:
o The setM (I) is formed. Tablé VIl shows the se¥1(I) for each control.
« The next step is forming the weightg, (I) for everyI. For every noden € M (I), all possible outgoing

edgese = (m,l) in set&,, when applying controll, or equivalently, all receiving nodds must be
determined. Table“TX shows all receiving nodes for each nagdes well as the respective transition

probabilities.
« Next, for each noden € M(I) and each control the weightc,, (I) is calculated, as can be seen in
Table[X.
®recall thatKCT( ) is defined as the number of tokens in virtual quéqé ) and, by Lemmd]l, can be deduced by information

available in the real network. Henc& ;" (k) > 0 is equivalent to saying that’ﬁ (k) is non-empty.
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TABLE VIII
SET OF QUEUESM (I) FOR EACH CONTROL/

I I I I? I3 17y
M) | (i)} | ((2)) | (v} | (B @) | {0, (2)}

TABLE IX
RECEIVING NODES FOR EACH NODEn AND TRANSITION PROBABILITIES

control | nodem | nodel | p{;, () | control | nodem | nodel | p{y, (1)

Vi(1) | P20 Va(2) | Proye
L Vi(l) | V(1) | Puayqo I Va(2) | Vi (2) | Py
di Py 1y do Py, 23

V(1 P Vi (2 P
112 V12(1) 1 ( ) {1},0 121 ‘/21 (2) 2 ( ) {2},0
d1 Po.1y d2 Do, 12y

V(1 P V3 (2 P
112:21 V12(1) 1 ( ) {1},0 112:21 ‘/21 (2) 2 ( ) {2}.,0
di Py 1y do Py, 23

« Then, for each contral the rewardC (1) is determined (Table=XI).
2) Finally, select the control that maximizes the reward
I = argmax ;¢7C (I) = arg max {C’ (I),C(Iy),C (112) ,C (121) ,C (Ii’zl)} .

The previous example is simple enough that the stabilityoregf the proposed algorithm can be analytically
determined as follows. For arrival rates, A2, we use the transition probabilities in Taljlel IX and applZ)(1
(14)-(16) to get the following set of inequalities (recéletnotational shortcut at the end of Secfidn I1)

Vi(1) : A1 < (1 = €e12) 61, 17)
V2(2) : A2 < (1 — €12)¢ho, (18)
VE(1) : (e — en)n < (1—ex) (63 +673) (19)
V3 (2) i (&2 — e12)en < (1 - 2) (04 + 073) (20)

with the additional constraint tha;tl,gzbg,gzﬁ,gz%,gzﬁé are non-negative and their sum is less than 1. Applying the
Fourier-Motzkin algorithm to eliminate (i.e. deparamétey ¢f:§,¢§,¢%,¢2,¢1 in this order results, after some
simple algebra (see AppendiX B), in the set of inequaligggl?1 + 1_Az <1, e 1A1 < 1;, which matches

€1z — 7 l—e —€12
the stability outer bound i [4] (this will be generalized ddbitrary IV in the next Section). This shows that the

optimal policy derived in[[4] for arbitrary erasures is a sipécase of the policy proposed in this paper.

TABLE X
WEIGHT ¢, (I) FOR EACH NODEm AND EACH CONTROL [

cm (I)
cvi(n (1) = max {Kvm) — PuzyoBvio) — Py Bz — Poy Ky, 0}

Cvy(2) (I2) = max {Kv2<2> — Ppiay 0 Kvy(2) — Pray (13 Ky o) — Po,2y Kao, 0}
cvpy (1) = maX{KvEu) — PoyoBvea) — Pogy Ky, 0}
cva (13) = max { Ky o) = PiayoKyy ) = Pogey Koo, 0}
cyzay (I75) = max {Kvlz(l) — PuyoKyaay — Pooy Ko, 0}
cvp(a (I73) = max {szl(Q) — Py0Kv 2 — Pogy Koy, 0}
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TABLE XI
REWARD C' (I) FOR EACH CONTROL/

T o)
I C ) = Ymevyyy em) = eviy (1)

I C() = Do vaon) emlD) = oy ) (I2)

I c (112) = Zme{vfu)} em () = Cv2(1) (112)

I C(2) = ey onlD) = cyp (I2)

11221 C (11221) = 27,Le{v12(1),v21(2)} em () = Cv2(1) (11221) t ey (12112)

C. Comparison between Algorithm 1 fof = 3 and the algorithm in[[3]

It should be stated that, although the application of the RBNhe caseV = 3 yields theexactsame rules as
in [3], the performance of Algorithm 1 is not identical to thégorithm xoRr2 in [3]. In fact, althoughxor2 in
[B] (which assumed a fixed priori number of packets and no new arrivals) can be suitably maddsfeethat it is
applicable to the case of stochastic arrivals, the regujpiolicy will be no better than Algorithm 1 in this paper,
since the latter yields, by construction, a stabilizingigobver the class of policies that apply BCR and RPM (and
this includes the policy in[3]).

A more intuitive reason for the performance difference &t ttor2 in [3] and the current work apply different
procedures for selecting the XOR combination to be trartechitNamely, [[B] selects packets for transmission by
combining queues in different levels in an order that is aefia priori, while Algorithm 1 imposes no such
fixed order and determines the packet for transmission byimmaixg a suitable backlog-weighted sum. Hence,
Algorithm 1 is not burdened by arg priori choices, which may actually be suboptimal.

V. OUTER BOUND ON THE STABILITY REGION

In this Section, we derive an outer bound on the stabilityare@f the system under study by deparameterizing
(i.e. eliminating the flow variableg in) Theorenlll. This bound is identical with the bound on thferimation-
theoretic capacity region of the BEC with feedback preskime[1], [2]. Although it was shown in[[10] that the
capacity region of the system under consideration is theesesthe stability region of the system, we cannot directly
invoke this result to derive the stability region outer bdwia the capacity outer bound inl[1],/[2]. The reason is
that the latter capacity bound does not take into accountale of slots without any packet transmission, i.e. idle
slots, so that, in principle, coding algorithms may takeaadage of idle slots to increase capacity beyond the outer
bound in [1], [2]. To distinguish between the two channels,aall the BEC studied in [1][ [2] the “standard” BEC,
and refer to the channel under study in this paper (i.e. tlreecamtaining idle slots) as the “extended” BEC.

As will be seen, the capacity of the standard BEC, measur@afanmation bits per transmitted symbol, differs
from the capacity of the extended BEC by at most 1 bit; in féds difference decreases exponentially w.r.t. the
packet lengthl. Specifically, the following Theorem is proved in the Appeng@ive denote withes the probability
that a transmitted packet is erased by all users inS¥et

Theorem 2. A capacity outer bound,,,;, measured in packets per transmitted symbol, forXheser “extended”
BEC with feedback is given by (assuming that 1 for all i € \)

Bo ) —L/A,
Cout:{RZICIrlea%( <Z )}—2 / Ay /L <13, (21)

keN 1- 6{0’(1),...@'([@

1

where is the set of permutations on N and Ay = > v T=coo oo

Corollary 2. Using the same notation as in Theorem 2 and measuring ratesita of bits per transmitted symbol,
a capacity outer bound,,; for the N-user “extended” BEC with feedback is given by (assuming &hac 1 for

all i e N)
Cout =< R : max Z Ro(k) — 2_L/A°Ag <L,. (22)
oeP 1 (k)} -

pen LT o)
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TABLE Xl
PERMITTED CONTROLS FOR LEVELSL TO 4.

Level 1 | Level 2 | Level 3 Level 4
Control | Control | Control Control
Jst Jk,i Jkl,i
Ii Ii,j IL ik [z gkl
I} []Z'k Ijkl
Jk,ik,ij kl,ij
’Ii,j,k IZJ kl
IJkLk [kl ijl,ijk
. i,] ij,k,l
Permitted controls a
I_]k Ikl
k2
Jkl,ikl,ijlijk
Iz ,J. k1
Jkl,ikl,ijl
Lk
I_jl;l,z‘kl
Ijkl

The next Theorem, which is proved in Appenfik C, describesntiain result of this Section.
Theorem 3. The following relation holds

1 —es,.
UGPZ'GN €30

whereP is the set of permutations ok” and S(i) = {o (1),...,0(i)}.

Ao (i) A
R €< A: max ———— <13 =0C,, (23)
(@)

SinceC, is identical to an outer bound on the capacity region of thearfdard” BEC (and the “extended”
BEC capacity region differs from this by at most 1 bit), itléals that any clas$I of policies that achieve§,
(i.e. R = Cy) is essentially optimal. A special case where this occurs@mned in the next Section.

V1. THE CASE OF I.I.D. CHANNELS: STABILITY REGION FOR4 USERS

In this Section, we assume that the erasure events for alivess are i.i.d, and denote leythe probability of
such an event. We also repeat the definitiens = ¢/9!(1—¢)!SI. We consider the case of a channel with 4 receivers
and show that, for all <e < 1, if A € C,, then\ € Ry, i.e. R 2 C,. Hence, in this case we ha¥eg = C,, and
the stability region using only XOR operations coincidear(ing addressing overhead) with the capacity region of
the standard broadcast channel. Also, it is within one Iiti asymptotically (as the packet length increases) equal
to the stability region of the extended BEC under generalngbdchemes.

To proceed, we restrict the set of available controls bywatig only intra-level coding, i.e. we only consider
controls of the form[éj:::::f)j/ where|L, UD,| = |Ls; UD;| for all ,s € {1,...,v}. This restriction simplifies the
calculations and shows that even a restricted set of cansuffices to achieve the maximal stability region when
channel erasure events are i.i.d. We note however, thataifrodl statistics are non-i.i.d., the additional controls
are helpful in increasing the stability region of the polidhe set of permitted controls is described in Tdblg XII,
wherei, j, k,l € {1,2,3,4} are distinct.

For the rest of this Section, we assume without loss of géitethat

A1 > A2 > A3 > Ay, (24)
which implies that
4 LY
Iglea% — 1 — 62 ; 1—e’ (25)

We will show thatA € C, implies A € Ry, which, by combining[(25),[(23), is equivalent to solving tfollowing
problem for any0 < e < 1.
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Problem: If A\; > Ay > A3 > )4 and ZZ 1 1 - < 1, find parameterg; satisfying [1B){(1b6), where\ is the
set of all queue®)% (i), i € D, and L, D satlsfy CC.
In the following, we will describe the procedure accordingathich yi,,, (1), ¢7, m € M, I € Z, are calculated.
First, we set
pim (1) = fim (I), m € M, I €T, (26)

ensuring that[(14) is satisfied. It remains to determine I € Z. Notice that, for any given value of, (28)
transforms[(1B),[(15)[(16) into a linear program (LP) wiit so that achievability of the ratk is reduced to LP
feasibility (a similar LP-based approach is used to descaib achievable scheme for a 2 user MIMO setting over
broadcast erasure channels(inl[11]). However, sintakes a continuum of values, we cannot solve the resulting
LP for eache but need to determing; analytically.

To simplify the notation somewhat, for contrdl= Iﬁl"“’f)” we denote

61 =5,
An overview of the approach follows. We start from inequedit(13) referring to queues at level 1, il§.(i), and
determine allp;, ensuring that these inequalities are satisfied. In genleaaing determined; for all controls’
that involve queues up to levklwe consider the inequalitiels (13) referring to queues alley¥ 1 and determine;
for all controls that involve queues at level 1, ensuring that these inequalities are satisfied. Duringpitosess,
it is ensured thaf(15) is satisfied. After al} are computed, it is checked that16) is also satisfied.

We now proceed with the detailed description of the mannertiich ¢;, I € Z, are determined. We will use the
following terminology in the description. If, under an ailable controll, it is possible to have a token movement
from virtual queuem to virtual queuel, we say that there is a “flow from virtual queuwe to virtual queuel”
under controll and we name,, ;) (I), the “probability of flow” fromm to I under control/. We also say that
there is “flow from virtual queuen to virtual queud” if it is possible to have a token movement from queue
to queuel under some of the allowable controls.

Level 1: At this level, there are 4 queues (equivalently, nodesthof the formV; (i), i € {1,...,4}. There are
no incoming flows from other nodes 14 (i), but there are new native packet arrivals (equivalentketoarrivals)
of rate \; at everyV; (7). The only control that may result in packets leaviridi) is I;, so inequality[(IB) becomes

A < (1—€Y- oy (27)
To satisfy this inequality, we set, for alle {1,...,4},
i =Ni/(1—€Y| (28)

Level 2. At level 2, there are 12 queues of the foﬁrﬁ (i), 4,5 € {1,...,4}, i # j. The only incoming flow
to each of these nodes is under contfgl with probability (1 — ¢), while there are two outgoing flows, under
controls[f’; and I, that result in packets leaving with probability- ¢3. Hence, inequalityl(13) becomes

Sl—e) di < (1-e) -0+ (1-¢) ¢, (29)
Similarly, for noder" (j) we have
S(l—e)-0;<(1=e) -9+ (1-¢)- ¢ (30)

Since¢;, ¢; have already been determined by](28), the LHSIE_f (29), (3@)kaown. We seleabg = qﬁg =0, for
all i # j, so that
i (1 —e)

i 2 13 max(¢;, ¢j), (31)

and we choose)g:; to satisfy [31) with equality. Assuming w.l.o.g.< j (so that); > );), it follows from (28)
that ¢; > ¢;, which implies

j i 63(1 —€)
525?,]- =18 ®i |, (32)
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or

F=dl—e - N/1-€)-(1—¢), i<y (33)
Level 3: At this level, there are 12 real queues of typ§ (corresponding to virtual queuds’ (i) andV;" (4))
and 12 real queues of typ@gk (corresponding to virtual queuésik(z‘)), wherei, j, k € {1,...,4} with i # j # k.
« Incoming flow to ij (respectively, to botWi’; (7) and Vi’; (7)) occurs under controI{’; with probability
e3(1 — €). Outgoing flows from nodes of this form occur under contrkj]vé‘,j andli’“j, with probability 1 — €3.
While for each of the queud@’; (7) andVi’; (7) there is one inequality of the forrh ([13), it turns out thatsthe

inequalities are identical. Hence, for both quem’(g;s(z’) and V/} (j) the following inequality holds

E(1—e)- ol < (11—l +(1—¢%) - ol

We setqsfj = 0, so that the previous inequality becomes

El—e)-¢li < (1—e) ol (34)
Next, to satisfy[(34), we set
k,ij /5%
<Z5Z-j,;g = 63(1 - 6) : g,j/(l - 63) ) (35)

where the second part of the inequality only depends amd )\, by substituting¢{’§ from (33). It follows
that ¢/ > 0.
« Possible incoming flows t&/7* (i) are due to controld;, /!, I}y, I/, IF, 'Y/, I/ and possible outgoing
47']{/‘ .k7.k7,. k/"k k7 k " . ? ? . . .
floyvs are due to controls{j’.,gvz.,lijv,’f ”,Iz{jl ,Iik”,lj , wherei, j, k € {1,...,4} with ¢ # j # k. For
V7% (i), inequality [IB) becomes

(1= (05075 + o) + 21— )« (0] + 0 + ol + 0l + T + )

oy (kikii ik gkik L ki ok
<(1-e )'( Wik T TG T+ )

(36)

For Vj”“(j) and V,;j(k), inequality (13) takes the form of (B6), with the appropriaxchange of indices.
Specifically, foer““(j) andV,”(k), we have the following inequalities, respectively

(1= (65 + 0l + 05f) + (1 — )« (1 + 0 + 9l + 0 + 0 + 91

s N (37)
< (1= )« (615507 + 9l + o™+ 07 + 0}
(1= (on+ i+ 080) + =) (0f + 6] + dh+ ol + ol + 6318 )

< (=) (Y + o+ i+ 0+ o).
All ¢ parameters in the LHS of inequalitids 136),1(37) and (38)ehalveady been computed (or set to 0, by
selection). Therefore, the unknown parameters at thist raamm;ﬁf’;}f” Lol qﬁfi” , ;’“k” o1, o and gy
We set all of these values to 0, with the exceptionyff*, so that we can combinE(36)=(38) to get the
following equivalent expression (only the non-zero valaes included)

(1 —e¢)? (@- + ¢+ qﬁ,,i) +e2(1—¢) (%f,g + qﬁf,j,j) ik
max 1 — 62 - ki
2 2 k.j 2 k,ij 7k
(=92 (5 + 05+ 00) + 20— (5t +o3lE) (39)
1 — €2 - Tk
2(1 2 ki k,j 2(1 — ik i,k
€ ) (or+ & + 055 ) (L =€) (Dip; + i ki ik
il | < bk
1 — 62 Zjvk - Z?]vk
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The formulas are getting very convoluted at this point beythare easily calculated as functions of the erasure
probabilities and the arrival rates using symbolic comfiomepackages. Using such a package (we used Maple
13.0), it is easy to see that, fox j < k, the first term in[(3P) is the maximum term and is also non-tiega
Hence, we select for all, j, k, with i < j < k,

2 2 . st k., 201 _ k,ij ik
hikij e(1—¢) (¢z + ¢i,j + ¢i,k) +e*(1—¢) <¢ij,k + qbik,j) ijk 40
<Z5z',j,k - 1 — 2 - ¢jk,i : ( )

Level 4: At level 4, there are 4 real queues of the fo@éjk (which corresponds to virtual queué@‘jk (1),

Vi (), Vi (K)), 6 real queues of the form;! (which corresponds to virtual queugg’ (i), V¥ (j)) and 4 real

queues of the forn@)/*" (corresponding to virtual queue’* (i)).

+ Incoming flows to the virtual queues correspondingg, are due to controlg};/, 1'%, I} and I/,
with probability ¢3(1 — ¢), while outgoing flows are due to contro[%’,gf andIfjk with probability 1 — €3. We
set¢§jk = 0 so that inequality[(13) becomes

(1~ ) (657 + of + ol + o) < (1 &) gl 1)
To satisfy [41), we set

ot = S =) (e + ol + il + oIiET) 1 (1= ) | (42)

« Incoming flows to the virtual queues correspondingg are due to controlg/", I, .1, I, I/, 17",

I, i i with probability ¢*(1 — ¢)?, and pRE Ik, 1 with probability €2(1 — e).
Outgoing flows are due to controI%l’,j{, Ifjlgjll’”k andlfjl with probability 1 — €2. Therefore, inequality{13)
becomes

2 2 (i o ki Lig o ik gl gk gl gkikig gLl
(L =€) (b3 + Sij e + D1+ Bty + Gidj + jis + Pjia T ik T i )

o o g g g (43)
k,ik Lil | Lijk | kgl kL, kl,ijl,ijk
+e2(1—e) R ¢ijllg,l + 5%%) <(1-¢%) (%l?l + ¢ij71?,l Tt ¢fjl> :
Similarly, for the virtual queues corresponding@%, inequality [I8) becomes
Lk i kl j kil Lik | Ljk | kil kgl | klilik | kLjljk
(1 —¢)? (%,z R S S R S S i ) (a4

9 il ik jl,jk 5,ikl i,jkl 2 klij ij,jkl ikl ]
+e“(1 —¢) (%,g + %,1 + ¢ikl,j + ¢jkl,i) < (1 —¢ ) (¢ij7kl + ¢kl7i7j T ¢kl> )

All ¢ parameters in the LHS of inequalitiés [43) aind (44) haveadlydeen computed (or set to 0, by selection).
We now set all terms in the RHS df (43), {44) to 0, with the eximepof gbf]l,’jl Without loss of generality,
we can also restrict our attention to the cdse 1, i < 7 andk < [, for distincti, j, k,[. Similarly to the
argument in level 3, we can combirie (43),1(44) to the equitadxpression

1
1—¢€2

2 2 7yt k,ij l,ij j,ik il i,k 0,51 jk,ik,ij jlyilyig
max [6 (1—¢) (%j +biji t Oin T Gikg T Gyt i T Ot by T g )
2 Lijk | kgl
+e(1—¢) <¢ijk,l + ‘%'z,k) ; 45)
2 o (Lk | ikl | gkl Lik | gk kil kgl kLilak | kLjljk
e(1—¢) (¢k,z + Opri T Pyt Cika t Pk T Pl T Pk T Pkt TP )

2 ikl | gkl klij
+e(1—¢) <¢ikz,j + ¢jkl,i) ] < bk
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Again, symbolic manipulations show that the maximum is ee#d for the first term (which is clearly non-
negative) so that we select

Klij 1 % ki Lij " , ik i ik ik i il
O = T [e2<1 — O (05 + ol + o+ ol + O+ il + o T+ o1
(46)

itk kil
+e(1—¢) <¢ijllg,l + ¢zyl2]k) ] :

o For the virtual queues corresponding@jkl, incoming flows are due to controls of the forfﬁl"“’%, i€
Dy, |DjU L] <3, 5€{1,...,3}, as well as controls of the forrﬁg“jj"p”, i€ Dy, |Di]| > 2, |DjULj| =

4, 7 €{1,...,3}. Outgomg flows are due to controls of the forlﬁ“'“’ ', i1 €Dy, D1 =1, [DjUL =
4, 7 €{1,...,4}, with probability (1 — ¢). Therefore, |nequalltyﬂ13) becomes

b b,i b,ib,i
€ (1 - 6) ((bi + Za;ﬁz ¢ + Za b#£i ;I?i + Za,b;ﬁi (bial,lz + Za,b;ﬁi ¢?,a,lb W)
b,ib Jiab
+e(l—¢)? (Za;ﬁi O+ Dapri Bt Daperi ¢§azl:fc)

b bc,ia be,ibe,iac
+e (1 - E) (Zmb;ﬁi qbg + Za b,c#i ia,bc + Za,b,c;ﬁi ¢ia,b,c > S (47)
JRLAKLILIGR | ikl | giliklLigk | gikLikLijl
(L =€) (& + O T i Dijk
jhLikligh | gklijligh | gqklikl | kLl | gikLikl | gkl
G I ¢ I 4 G 1 g M)

wherea, b, ¢, d are distinct summation indices that take values in the/sgt k,1}. Similar inequalities to[(47)
can be formed foQi* Q”l and Q”’C We now set
gupacba®d — 0, a,b,c,d € {i, ], k,1},
gott =0, Ya,b,c,d € {i,j,k,1}, (48)
gbde—O Va,b,c,d e {i,jk,l}.

Therefore, when we write dowfiL(47) for=1,... .4, only parameten;’ s " **'** is unknown in the RHS

while all LHS parameters if(47) have been previously deiteech Hence,[(47) as written far=1,...,4 is
equivalent to

PR CED TR WD T W

i=1,...,4

ai a,b#i a,b#i a,b#i (49)
c,iab be,ia 7jkl 234,134,124,123
+ 6(1 - E) § : ¢iab c te Z ¢za be jkl,i ¢1,2,3 4 )
a,b,c#i a,b,c#£i

and some simple algebra reveals that the maximum term (whialso non-negative) is far= 1, so that we
select

234,134,124,123 )2 1,ab bla ab,1b,1a
LV =e(1—¢)" | o1+ Z s + Z Pap T Z Prap + Z D1 0b

a#1 ab#1 ab#1 a,b#1 (50)
lab be,1 1,234
c(l—€) D> rete D dloe—dosir-
a,b,c#1 a,b,c#1

For the reader’s convenience, the selected contr@se given in closed form in AppendixI D. Finally, to ensure
that [16) is satisfied, we calculate the sum of all flows, and fin

4
i
D= 172

1€ 1=1
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4 N

Since, by assumption, it holds;_; 2

the following result.

< 1, we conclude thaEIeI ¢r < 1, as desired. Hence, we have proved

Theorem 4. For the case of 4 users, and for i.i.d erasure events, theilgyakegion of the system is given by

4
{ Aa(i) }
R =4 A: max —= <1,

oeP —~1—¢ —
i=1

whereP is the set of permutations on {1,...,4}. Moreover, the policyr™ € II described in Section TViB using
the XOR controls described in Taljle Xl is stabilizing. Tkebgity region coincides with the information theoretic
capacity region of the standard BEC with feedback, and isiwibne bit (actually,0(2~%) bits according to
TheoreniR) from the capacity of the extended BEC with feéddde latter is equal to the stability region of the
system under any coding strategy.

VII. | MPLEMENTATION ISSUES
A. Packet overhead

As mentioned in Sectidn 1V, for the proposed network codiclyesne to work, every user must know the identities
of all native packets that constitute a composite (i.e. X@Rlgination) packet it receives. Having this information,
a user is able to decode the native packet destined for itmfslsimechanism that can be used to provide users with
this information is equipping every native packet with alkadD, which consists of the packet’s destination and a
sequence number. If a transmitted packet is composgedative packets, then it contains in its packet headeythe
packet IDs. Depending on the feedback from the users andciordance to the Rules for Packet Movement, either
the transmitted packet = @Zzlpg’; is moved as a whole to a real queue, or some of the papl%l;ts. . ,péj/
are individually moved to real queues. More precisely, tiowing Lemma follows immediately from the Rules
for Packet Movement.

Lemma 5. After transmission of a packet at slgtlet packety (not necessarily the transmitted packet) be placed
at a real queue of level k.n. Then, either @)s a combination of packets that at the beginning of gletere at
gueues of level less than or b) ¢ is a copy of a packet that at the beginning of slovas either at level,
re€{0,...,k—1}, or at sublevek.l, 1 <[ <n-—1.

To compute the overhead bits needed to implement the abogkanism, we need to find the maximum number
of Packet IDs that may be included in a packet that is placedrieal queue of a certain level. This is expressed in
Lemmal[® below (all queues and packets referred to in this kerare real queues and packets, respectively). In the
following, when we say that a packedmes from levet (or exits levelk) we mean that it is an XOR combination
of packets placed in queues of levéldo & (with at least one packet being in a levehueue).

Lemma 6. Under the coding scheme of Section Ill, it holds a) Any paplated in queues at sublevieln, n =
1,2,...,k—1, k > 2, contains at mostk — 1)! packet IDs.
b) Any packet exiting leveél > 2 contains at mosk! packet IDs.

Proof: We use induction ork to prove the Lemma. Fok = 2, the Lemma follows immediately from the
Rules for Packet Movement in Sectipnl lll. We now assume thatltemma holds for level up to k¥ — 1 and
show that it also holds for levél. We first prove part a) of the Lemma by induction an

Part a): If a packep is placed in a queue at the lowest sublevel of Iguele. k.1, then according to Lemmnid 5,
p comes from level$ < k — 1. Hence, according to part b) of the inductive hypothesisopittains at mostk — 1)!
packet IDs, so that part a) holds far= 1. Assume next that part a) holds for all packetplaced at any sublevel
from k.1 up to k.n with 2 < n < k — 1, i.e. assume that all packegsin sublevels fromk.1 up to k.n contain
at most(k — 1)! packet IDs. We shall prove that any packet in subleévéh + 1) also contains at mogk — 1)!
packet IDs. According to Lemnid 5 for a packeat sublevelk. (n + 1), one of the following two cases holds.
1) Packetp comes from level, where2 <! < k — 1. Then, according to part b) of the inductive hypothesis,
contains at mostk — 1)! packet IDs.
2) Packetp was placed before the current slot transmission at a queaelower sublevel of the same level,
i.e. a sublevel fromk.1 up to k.n. According to the inductive hypothesis an packets in these sublevels
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contain at mostk — 1)! packet IDs. Since Lemmid 5 states that packets from lowersgelsl are merely
copied to higher sublevels, it follows that the maximum nemdf packet IDs they contain remains the same,
so packetp at sublevelk. (n + 1) will also contain at mostk — 1)! packet IDs. Therefore, packets at all
sublevelsk.n, n =1,2,...,k — 1, kK > 2, contain at mostk — 1)! packet IDs. This completes the proof of
part a) of the Lemma.
To prove part b) of the Lemma, consider a pagkekiting levelk. This packet is of the formp = p%l b.. .@pé‘;,
where eactp%; belongs to a queue of at most levelhence the maximum number of packet Ipsnay contain
is the sum of the packet IDs contained in paclgé; r € {l,...,v}, which is at most/(k — 1)! due to part a).
From LemmdB, it holds < k, therefore any packet exiting levelcontains at mosk(k — 1)! = k! packet IDs. m
Up to level 4, the maximum number of Packet IDs that may nedzktimcluded in a packet i = 24. Assuming
a packet ID of 20 bits and packet length of 1500 bytes, i.e002tlts, the overhead is approximately. Hence,
for N = 4 receivers, since only queues up to level 4 may be formed, Weehead of the proposed algorithm is
fairly acceptable. It can be seen that the maximum numberaokél IDs needed increases dramatically with the
number of usersV and it is very important to address this matterMsncreases. Various suboptimal policies that
reduce the necessary number of Packet IDs can be investidate example, the transmitter may choose not to
send packet combinations if the resulting packet headezegisca certain number of Packet IDs. Another policy
towards this direction could involve coding of packets onlstil a certain level. Specifically, foiV users, only
the real queues until levélcould be created, wherle< N. In case a packet is received by more tliamsers,
additional receivers would be ignored and the packet woelglaced in one of the levélqueues. The detailed
study of these possibilities and the performance of theltiegualgorithm is a subject of future work.

B. Queue stability at the receivers

As mentioned in Section 1V, another problem that may arispassible instability of queues at the receivers,
where all packets received by a certain user are stored. plsiway to avert this possibility is to take advantage of
the fact that when the queue sizes at the base station becoptg all packets formed during previous transmissions
are not needed at the receivers. Therefore, we can let tleesbatson inform all receivers when its queues become
empty, by, for example, leaving a slot empty after a seriesrarismissions taking place when the queues are
nonempty. Under this modification, using standard resuttsfregenerative theory, it can be shown that the system
is stable if and only if the total queue size at the base staictable.

VIIl. CONCLUSIONS

In this work, we presented a network coding scheme for thadwast erasure channel witfi multiple unicast
sessions based on the coding scheme we proposéd in [3].sls¢theme, only XOR operations are allowed. Also,
instant decodability, i.e. the ability of any user that iees a coded packet to instantly decode its own native
packet, is ensured.

Furthermore, we assumed random packet arrivals and pegsarstabilizing policy based on this coding scheme.
We then derived an upper bound on the stability region of gfeesn under examination. For the casetaisers
and i.i.d. erasure events, we proved that the stabilityoregif the system is identical to the capacity outer bound
of the BEC channel with feedback.

Finally, implementation issues were examined, such asritease of packet overhead as the number of users
increases, which is due to the number of packet addresseteche¢e completely describe a coded packet. The
maximum number of addresses needed in the general caSeuskrs was found to b&’!. Future work could be
aimed towards the development of suboptimal variationdefgroposed policy that will require a smaller number
of packet addresses, thus reducing packet overhead.

APPENDIX
A. Proof of Lemmé&l4

Let the transmitted packet at slott have the formp = EDZ:lpf)’; where L, D;. satisfy BCR. The proof is
easier if we assume that any exogenous arrivals of nativkepador useri € A at slott¢ enter the network (and
are stored in queu&); while a corresponding token is stored in virtual qudgé&) and K; (i) is also increased
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Fig. 5. Real (LHS) and virtual (RHS) queue contents at begmof slot¢. Only the real queues are actually stored at the transmitter

by 1) after the transmission of takes place, i.e. any exogenous packet stays in the networkt least one slot.
However, it should be emphasized that this assumption ig mi@lde to simplify the subsequent proof; Lemimja 4
still holds regardless of this assumption. For brevity, veeclafter write “BP at” to mean the BP properties being
true at the beginning of sldt(which is the assumption in Lemri& 4) and “BPtat 1” as the BP properties being
true at the end of slot, or beginning of slot + 1 (which is the result we wish to prove). Clearly, BP1tat 1
follows immediately from BPI1 at, so we concentrate on proving BP2tBP4t at 1. Notice that the exogenous
arrivals that enter at sldgtautomatically satisfy BR2—-BP4 at- 1. Since BP at + 1 is trivially true if S = 0 (i.e.p

is erased by all users, so that the slot effectively “nevepeaed”), we hereafter assurfie# (). In the following,
we only examine the case> 1 in detail, sincer = 1 can be handled as a special case.

We examine each case of the Rules for Packet Movement (RPpragely. It will also be useful to have a
graphical representation for the queue contents as shown in Figl15. The following notation is introduced to
illustrate Fig.[B: we denote;, = |Dy| so that each seb, can be written w.l.o.g. a®;, = {ix1,ik2,. -, kn },
for eachk = 1,...,v. The real queues are shown in the LHS of Hi§. 5, where the nglga denote packets
and the topmost packets (shown in bold edges) in qu@&s for k =1,...,v, are the ones that comprise the
transmitted packet according to the BCR. All other packets (including the onestained in the queueds, with
(L,D) # (Lk, D), shown in the circles at the bottom of Fig. 5) are non-bold.p&lckets denoted with in Fig.[5
are not included irp and are therefore unaffected by the RPM (thenotation is used only for indexing purposes
to visually distinguish the packets in the same queue).

The virtual queues are shown in the RHS of Eig. 5, where theé &d¢jes denote the tokens for the unknown native
packets contained in the packets that comppis€he tokens for the unknown native packets containeplgip are
denoted a®%' (ix1). - .. . p5 (irn,) While those contained ips' [1] are denoted ags [1)(ix1). - - . P [ (ik.ny)-
The duality between a token and its corresponding nativ&giagill be consistently used below.

A careful examination of the RPM leads to the following olysdion: in all cases, the non-bold-edged real and
virtual packets in Fig[]5 are not affected by the RPM. Spedlificthese packets possess the following properties.

Properties of non-bold-edged packets (PNB)

1) non-bold-edged real and virtual packets (tokens) areammted from the queues they are stored anhd the

XOR decomposition of the non-bold-edged real packets nesnthie same betwegnandt + 1.
2) none of the unknown native packets corresponding to mbd-&dged tokens in the virtual queuestadre
decoded at + 1 (i.e. these packets remain unknowntagt 1).
The second item in the above list follows from the fact thgtCorollary[1 and Fagil1, only the usersSm(U_, D)
actually decode unknown native packets (i.e. the bold-@dgsive packets in Fid.]5) contained in tbéi that
comprise the transmitted packetSince, by BP4 at, each unknown native packet is contained in exactly one real
packet, it follows that no (non-bold-edged) native paclaitained in a non-bold-edged real packet is decoded at
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t+1.

We now use the above observations to show that all non-lddeatreal packets in Figl 5 (which, by assumption,
satisfy BP att) satisfy BP att + 1. Specifically, consider any non-bold- edged real pagket(this packet must
either be stored in a queue contained in the left circle of [Bjgor in queueQD , l.e. pD pp.[]). Any i€ Dis,
by BR2 att, a Destination forpD and, since the native unknown packet contalneﬂgns still unknown att + 1
(second item in PNB) ang% retained its XOR decomposition (first item in PNB), we com@tthati is also a
Destination forp4 att¢ + 1. Also, any useri that is a Destination op% att + 1 is also a Destination of the same
packet att, since the XOR decomposition of; did not change during slat Hence, by BB at, it follows that
i € D. The absorbing property of Listeners fpﬁ now implies BPR at + 1.

Furthermore, any unknown native packet for some dsgontained inp% att + 1 is also unknown at (again,
due to PNB) so that by BP3 at useri is a Destination fop% atp andi € D (by BH2 att). Hence, BPR at + 1
(which was proved in the previous paragraph) implies thist a Destination fop% at ¢ + 1, which also proves
BH3 att + 1. Finally, BR4 att + 1 follows immediately from Figl15, since any unknown nativecket is either a
new exogenous arrival atfor some uset (and, by the scheme’s construction, it is contained in éxacte packet
in @;) or it was already in the network atand, by BPY at, was stored in exactly one non-bold-edged pagket
for some”L, D.

Since the above arguments show thaf BP24BP#4-atl is true for all non-bold-edged real packets, it suffices
to only examine whether the packets moved between diffeaaties in the network according to RPM satisfy
BAZ-BP4 att + 1. This is performed next.

Case 2.1it holds U}_, D), C S (equivalently,U/_, Dy, — S = (), so that all users inJ}_,D;, decode their
unknown native packets. By the RPM in this case, all packetktakens shown with bold edges in Fig. 5 leave
the network at + 1, whereas all other packets remain in their queues (recatllttte network actually consists of
the real queues only; virtual queues are conceptual). Heheenetwork representation at- 1 is the same as in
Fig.[3 minus the bold-edged packets and tokens (and thelpessidition of exogenous arrivals, which we have
already shown to satisfy BP2-BP3tat- 1) so that no packets/tokens are moved between queues in tiverke
and no further examination is necessaryl BP4 -atl also follows trivially from BP4 at.

Case 2.2.1it holdsU}_, D, — S # 0 andS C U}_, (L UDy) SO thatS = S — UY_, (Lx UDy) = 0. Again, all
users inSN(U;_,Dy) decode the unknown natlve packets contained np@*tethat comprise. Applying the RPM

for this case to the network in Fig] 5, for eagh= 1,...,v, bold-edged packeif: is moved toQE’“U DinS)uS

and, for eachi € Dy, — S, bold-edged tokeps; (i) is “V|rtuaIIy moved to V5* ") 0

the fact thatKé: (1), Kﬁ"ugp’“”s)us( ) are reduced and increased by 1, respectively), so that theegeontents at

t + 1 are pictorially shown in Fig.]6. Recall also the conventioantioned in Sectiof III-C that a packet actually
leaves the network iD; — S = (). Hence, to prove BR2-BP4 for the moved packets, we can assulrog. that
Dr — S # ) and we need to show the following:

e BHAZ att + 1: for each bold- edgedp * moved to Q"
Lku DmS)US

(which is captured by

ﬁ’“U kaS)US , the set of Destinations for this packet is

Dy, — S and all users in Q
S C S, we can writel;, U (Dk NS)US =L, U (D NS)U [5 NL;N DC} so that we can examine each of the

three sets separately. Any usee L, is, by BP2 att, a Listener forp‘:k and this property also holds at+ 1,
due to the absorbing property of Listener. Also, as pre\bodescrlbed any user € D, NS decodes at + 1
its unknown native packef contained inp. Since anyi € D, NS also satisfies € Dy, BH2 att implies that:
is a Destination forpf)’;, so thatq is contained irpf)’; and it hO|dSp§’; = q¢ ® ¢, wherei is Listener forc. Since
1 decodesy att + 1, it follows thati becomes a Listener fqvf)’;c at ¢t + 1. Finally, by definition ofS, any user
iedn L{. N'Dj. must belong to allZ, for r # k (since: S implies thati receivedp and belongs to at least
v —1 of the Listener sets) so thaie D¢ for all r # k. Hence, we write)t = p & @, pf., Wherei ¢ U/_ D,
and note that, by Corollafyl I, contains no unknown native packets for ang U”_, D,.. Since: knows the value
of p and is a Listener o;b%; (BHZ att), we conclude that is also a Listener fopp: att + 1.

For the Destination part, consider ang D, — S, which impliesi € D,. By BR2 att, 7 is a Destination for
pDk and the unknown at packetq for i is still unknown att 4 1 (since only users it§ N (U]_, D) can decode
packets at). Hence, is still a Destination fom “ att+ 1. Conversely, consider any usethat is a Destination of

are Listeners: we start with the Listener part. Notice that, since it holds



30

Q5 Q% V5 (i11) V5 (ivm,) V5 (ina) V5 (ivn,)
7,01 | 7 1 \pp,[l i) |1 [ | [ 06 |} [0 |
P 2] eee i pE (2 eoe [ iy ;

= - ‘ Pr 2](21 1) PE2) (i) ‘ P, [2] (i) 5. [2(ivn, ) ‘

unknown native packets i@z’ unknown native packets Q%"

£,U(D1NS)US £,U(D,NS)US L£1U(D; —8)US LU(D; —8)US £,U(D,-8)uS £,U(D,-S)uS
QD, s QD s L5t S (T W e U PP B iy SO (R W s G (|
contents | contents; contents | | contents contents | contents

@ start | | @ start || @ start @ start @ start ! @ start

, 000 | LA N ) LN ) ‘o0 0
‘lof slot ¢ | ' |of slot¢| of slot ¢ of slot ¢ of slot ¢ of slot ¢
L1 Ly L1 ! 1(; 3 v (7 v (7
[ ] Lro | IEXEE [ rEn ] P (i) D5 (i)

all other V5 (i)

Fig. 6. Real (LHS) and virtual (RHS) queue contents at endaifssfor case 2.2.1.

,Dk att + 1. This implies that ¢ D, NS (otherwise,; would have decoded its unknown native packet contained
in p‘k and would be a Listener for it). Additionally, since the XORcomposition oﬁpf)i did not change between
t andt + 1, it follows that: is also a Destination fop%’; at ¢, so that BPR at implies that: € D;. Hence,

i € DN (D NS) =Dy — S, which is the desired result.

e BA3 at ¢ + 1: if the non-bold-edged packetp " stored in Q5 contains an unknown native
packet for some useri, then i is a Destination forp Ietp " contaln an unknown native packgtfor some
useri att + 1. Then, since the XOR decomposition @f did not change betweenandt + 1, we conclude that
g was also unknown at so that BPB at implies thati was a Destination fopé’; att and (by BPR at) i € Dy.
Also, it holdsi ¢ D, NS (otherwiseq would be decoded by at ¢ + 1, due to Corollary 1), so thate D, — S.
Hence, by the previously proved BP2tat 1, i is a Destination fomé’;

Finally, BR4 att + 1 follows immediately from BB at, since any unknown native packettais contained in
exactly one XOR packqtg (stored in a real queu@g) and, under the RPl\/pg either exits the real network or
is moved (ot copied) to another real queugs, att + 1.

Case 2.2.2Ait holds UY_ Dy —S #0, S =S — UY_, (Lx U Dk) 0 and|(Ny_, L US) U (UL_ Dy — S)| >
maxy—1,. ., |Lr UDy|. As in the previous case, all users$hn (U;_,D;) decode their unknown native packets.
RPM now requires that all bold-edged pacl@g in Fig.[3 exit the network and the transmitted pacgkét moved

Eku Dan) us

to queueQﬂk 1£’°US . Also, fork =1,...,v andi € Dy — S, all bold-edged native toker}sé are moved to
Vi 17§’“U§( ) (thls is captured by the fact thatz* (i), K\~ 15’;“‘8( /) are reduced and increased by 1, respectively).

Hence the network status at- 1 is shown in F|gl]7 We now need to show the following:

e BHJ att + 1: for the packet p moved to an 1%“‘?5, the set of Destinations for this packet isJ;_, D, —S
and all users inNy_, £, US are Listeners: for ‘the Destination part, consider any: U;_, D, — S. Then, there
exists some:* € {1 ,v} such thati € Dk* — S and, by the BCRj € L, for all r # k* By BA2 att, i is a
Destination forpﬁk* and Listener for alto,D , r # k*. Hence, we can wnt@‘” = q @ ¢, whereq is an unknown
native packet foi at¢ and: is Listener fore, so thatp = ¢®c® @#k* pDT. Due to Corollan[ L4 is not decoded
by i so that it is still unknown at + 1, which implies thati is a Destination fop att+ 1 . Conversely, let be a

Destination ofp at¢ + 1, so thatp contains an unknown native packgfor ¢ at¢ + 1. Obviously,q is contained
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in some packepﬁk* and, by BPB at, i is Destination forpﬁk* so thati € Dy (by BR2 att). It must then hold
1 ¢ S (otherwisey ‘would be able to decodgby CoroIIaryI]) so that € Dy- — S, which impliesi € U;_, D), — S.
For the Listener part, consider amye Ny_, L, US. If i € N}_,Ly, then by BER at, 7 is a Listener for each
packetp%’; so that it is also a Listener fgrat¢. The absorbing property of Listener then implies thist a Listener
forpatt+1.1f i €¢ S —nNj_, L = SN (U[_,L}), then it suffices to show that contains no unknown native
packet for thisi att 4+ 1 (which immediately implies that is a Listener forp). Sincei € S N (U;_,L{), there
exists some* = 1,...,v such thatt € SN Lj. and the BCR implies, for alt # k*, L~ O D, = L{. C D¢ so
that: € SN L;. ND¢ for all r # k*. By BR3, BIPR at, eachp%;, for r # k*, contains no unknown native packet
for this ¢ at ¢, and therefore at + 1 as well. We now distinguish two cases: a) it holdg Dy~ so that, by BP3,
BHZ att, pﬁ’”* contains no unknown native packet foat ¢, as well as at + 1. Hence,p contains no unknown
native packet fori, which is the desired result b) if € D,.., then since it also holds € S, Corollary[1 implies
that: decodes its unknown native packet containeqb@:ﬂ att + 1. Hence,p again contains no unknown native
packet fori att + 1 and the Listener part is complete.
e BA3 att + 1: if p stored in ka ! ’“US contains an unknown native packet for some usei, then i is a
Destlnatlon for p: let p contain an unknown native packefor useri att+ 1. Clearly,q is contained in one of the
" that comprisep and was also unknown at BH3 att now implies that; is a Destination fom andi € Dy,
(by BR2 att). Sinceq is unknown att + 1 andi e Dk, Corollary[1 now implies that ¢ S, whence we conclude
thati € U;_, Dy — S. Sincep is stored mQ”’f ' kUS att+ 1, BH2 att 4+ 1 now implies thati is a Destination
for p.
As in Case 2.2.1, BP4 at+ 1 follows from BF4 att and the fact that no packet copying is performed.
Case 2.2.2Bit holds U}_, D, — S # 0, S=85- Uy_, (L UDy) # 0 and|(N]_1LrUS)U (U{_,Dy —S)| <
maxg—1,.., |Lr UDg|. We further distinguish two subcases:
o if SN (U;_(LrUDy)) =0, which impliesS N (U]_, D) = 0, then no native packets are decoded at1
(due to Corollary 1) and no packet movement takes place uhéeRPM. Hence, the network statustat 1
is exactly the same as inso that BP holds trivially at + 1.
o if SN(U/_{(LrUDy)) # 0, we setS + SN (U;_, (L UDy)) and RPM reverts to Case 2.2.1, which has
already been shown to satisfy BPtat 1.
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Since all possible cases under RPM have been examined anth sbsatisfy BP at + 1, the proof is complete.

B. 2-user stability region through Fourier-Motzkin eliraiton

The Fourier-Motzkin algorithm for eliminating a variable & set of inequalities, consists of splitting the set of
inequalities into 3 set& s, Lrar, Uras, Where the first set has inequalities which do not contairvéir@ble to be
eliminated, and the second and third sets have inequaliésh provide, respectively, lower and upper bounds for
the variable to be eliminated. We then combine the equaiion:,;, Urys to get a new set of inequalities. This
can be repeated for each variable to be eliminated. We prdwitbw a step-by-step application of Fourier-Motzkin
to eliminateey’y, g3, 2, ¢, ¢1 in this order.

Initial set of equations:

Kra = {M < (1= @)1, o < (1= e12)da, ¢1 >0, ¢ > 0, ¢3 > 0, ¢F >0},
Lin = {o SO T A S, T < ¢f§} (51)
Upyr = {¢f:;§1—¢1—¢2—¢2—¢%}'
New inequalities after elimination Qﬁé
o<1—¢1—¢>2—¢5—
512¢1 ¢ <1—¢1— o — 3 — #7, (52)

P2 — 5 <1 — ¢y — pa — s —

512
1 — €9

so that we proceed to recast the equations in terms; db get

1—ce¢
Ken = {)\1 < (1 - )b, A2 < (1—e12)g, ¢f < 1— ¢y — N _6122¢27 $1 >0, ¢o >0, ¢7 > 0},

Lrv=1{0<¢5}, (53)
Z/{FM:{¢5§1—¢2_ 612¢1>¢2<1—¢1 ¢2—¢%},

and get the new equations

1—612

0§1—¢2— ¢1,
0§1—¢1—¢2—¢1,

and we can recast these in terms¢gfto get

(54)

Kram = {)\1 < (I —e2)p1, A2 < (1 —e12)pa, ¢1 >0, 2> 0,0 <1 — o — ! _612¢1}
Lryv=1{0<¢5}, (55)
Z/{FM:{Eb%Sl—QbI— 612¢2> 7 <1— ¢y — qbg}.

Eliminating ¢3 yields the new equations

1_
0<1—¢1— c12

0§1—¢1—¢2,

¢27 (56)
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and recasting the equations in termsg¢efyields
Kry = { M < (1 —e12)d1, ¢1 > 0},

A2
= <
£FM {1—612 _¢2}7 (57)
1-— 1—
UFJV[:{¢2§1 = (I—=¢1), p2<1—0¢1, P2 <1— 612¢1}7
— €19 1—61

whence we get the new equations

A 1
2 S 2 (1_¢1)7

I—e€2 7 1—ep2

2 g, (58)
1—e2

A2 — €12

<1 .

1—€10 ™ 1—¢ 1

We now recast in terms of the remainirg to get

A
£FM:{1 ! §¢1}>
— €12

(59)
A A 1-— A
Upp =301 <1— 22— 1 <1— 22— 6, < S (Fp—— ;
1— ¢y 1—e€19 1—€19 1—e€19
and applying the last step yields
A <1_ Ao N A n Ao <1
1—612 1—62 1—612 1—62
A2 < 60
— —€
ey = T 1+ A < 12, (60)
)\1 § 1-— €1 1— /\2 )\1 + /\2 S 1
1—612 1—612 1—612 1—61 1—612

Since the middle inequality is dominated by the first anddttune, it can be removed and the final result is the
stability region in [[4].

C. Proof Of Theorernl3

We need some preliminary definitions. Define the 9éts= () and\; = {1,2,...,i — 1}, fori € N with i > 2,
as well as

M; ={V5 (i): ieD, andL,D — {i} CN;},
T, = {[5:@2:‘_'_'_:%” cieD, andL,D - {i} C M}-
Notice thatZ; N Z; = () for i # j. This is due to the fact that the existence of a conirel Z; N Z; would imply

thati € N; as well asj € AV;, which is impossible. We also define the S‘etZN in the subnetwork consisting of
queues (i.e. each node is a queue, as described in SEctias [#d)lows:

MY ={VE (i) i e D, andD, L C N'} U {d},
Denote WithC,,:(M;) the set of all outgoing links in the cutM;, MY — M;], i.e.
Cout (M) = {e=(m,l) €& me M;, le MY — M;},
while the setC;,,(M;) of incoming links to the cut is

Cin (M) ={e=(m,l) €€ me MN — M, le M;}, (61)
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To prove Theorerfi]3, it suffices to show that, undet (12) and—{14), it holds
)P AN (62)

ieN L=ev-w

which corresponds to the permutatioty) = N —i+ 1 in (23). The same argument can then be repeated verbatim
for any permutationr (i), : € N. Summing [(IR) over alln € M; and using[(Ill) yields

Z¢Iz Z (1) pL(I) + A; <Z Z Zpe I)¢r, VieN,
I€Z, meM;e=(l,m)eEm I€T; meM,; ecE,

or, rearranging the terms,

Z Z (Z pe (D pn (1) — Z 0 (I)Ple(f)) b1 (63)

1€Z; meM; \ec&, e=(I,m)e&Em

in

But (&1) and the construction @,;(M;), Cin(M;) imply

. (Zpe (D= m(f)ple(f))

meM; \e€&l, e=(l,m)e&m
= > i (I) ph(I) — > wmDpl) < > p (1) pL(1).
e=(1,m)€Cout(M,) e=(1,m)€C;n (M;) e=(I,m)€Cout(M,)

[‘C ‘627 7‘C

Also, any control b, €1 affects only one real queue iv; (namely, V5 (i), sincei € D amd BCR
L,

is applied) that contalns packets forHence, When[£ Ez’ D is applied, it holdsy (1) = 1 for I = V(i) and
w(I) =0 for all other queues inM;, which implies

> (1) ph(I) <1 —en—n. (64)
e=(l,m)€Cout (M,)

This follows from the fact that, undei f;’ ”;'3 , whenever a native packet for useis transferred froni’/5 (i) to

one of the queues in queuesMN MZ, the transmitted packet must have been received by at leastier in
N — N, which occurs with probabilityh — exr_ ..

Hence, [(6B) yields through (64)
/\i < Z (1 - 6N—M)¢17

I€Z;
and, summing over all € A/, we conclude that

ieN
However, sinceZ; N Z; = () for all i # j, it holds Y ;> jcz, &1 < >z ¢1 < 1 and [B2) is proved.

<2 D o

1_6/\/ Ni 1eN IET;

D. Closed form expressions for contraisfor 4 users and iid erasures

Performing the algebra ih (B3, (35, (4d), (42),1(46).] (§@pugh Maple yields

3
g, _ € (1 — 6) ) f . . 65
o o0 N\, fori<j, (65)

6 2
i _ (=€ o
Pigs 1—e)2(1—eb) VA (66)
2
2 Z € . .
<Z5J,l; kk = T -1 tet )y (1= €N+ 2N —€tyy) fori<j<k, (67)
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5 2
Lijk (1 —e+¢€) N fori< i
N — ; for k<l 68
¢z]k,l (1—64)(1—|—6—|—62)2 t<J <K< ( )
.. 42_ 22_4
pilif — €2 ed27 =) s k<l (69)

SR (1 — e (1 4 €)(1 4 € + €2)2

¢??’§§i4’124’123 = [)\1(1 +e+32 -2 +4e* -3 + 8+ 67) — )\2(64 + 67)]
" € (70)
1-—e)1+e)(1+e+e2)?
The non-negativity of [(85)E(69) is obvious (sin¢e< j implies A\; > ;) while for (ZQ) we observe that the
coefficient of \; in the RHS of [7D) is non-negative, which implies

M1+ e+3e2 =2 4 4e? =3 + 5+ ") — Mot +€7)

> Xo(1+e+32 2 +4e* — 35 + 8 +€7) — Ag(e* +€) (71)

> Aa(1 + €+ 3¢? — 26 4 3¢t — 3¢° 4 ¢5) > 0,

whence the non-negativity of (70) follows immediately.

E. Proof Of Theorer]2

We first need to establish some notation and prove a few ietdiate results. We consider the “extended”
broadcast erasure channel (BEC), where the transmittethea®ption of not transmitting in a given slot (as
opposed to the “standard” BEC that appears in the literatdtas is equivalent to considering that the transmitter
sends in this slot a special (null) symbol, denotedzadHence, in information theoretic terms, given a standard
point-to-point BEC with an input alphabet & and output alphabet @ = X’ U {x}, wherex denotes an erasure,
the extended point-to-point BEC has input alphabiét= X U{@} and output alphabét’ = X'U{x} = XYU{x, &}.
Since we consider feedback, we assume that, if the tramsrsignds symbab, all users sena as feedback back
to the transmitter. Hence, at slgteach user can send feedbatk {ACK, NACK, @} to the transmitter, where
ACK (resp.NACK) denotes a successful reception (resp. erasure) of a Hbaymbol, while & denotes a null
symbol transmission (and reception).

The N user version of the extended BEC follows from a simple “vdg&dion” procedure. Specifically, let
N ={1,...,N} be the set ofV users and denote witi; the message for useérc A/. The transmitted symbol
at slot/ is denoted as¥ (/) (with X (/) € x’) and we also introduce the shortcut notatish= (X (1),...,X(l)).
Furthermore, lety;(1) € )’ be the symbol received by useérat slotl, while Z;(1) € {ACK,NACK, 2} is
the feedback sent by usérto the transmitter at slat We can also define an auxiliary random variabigl) <
{ACK,NACK} that is independent oX (1) and all previously generated random variables (up to 3lsb that

it holds Zi(l) if X(1) #
i | 9,
Z@={@ if X(I)=2

Notice that, for any: # @, the events Z;(I) = z} and{Z;(l) = z, F(I) = 1} are identical. We now introduce the
following “vectorized” entities

Wi = (Wh, ..., W),

Y = (%i(1),....Yi(0)

Y ) =M@),....Y;0), Y= Fp0),.., Y0,

Zyp ) = (2D, -, Z;(), 25 = (Zp (D), Zp (D),
Zn () = (Z:1(), ..., Z;(1)),

and use the shortcdt = Y; n), Y' = Yf1 ) (with similar interpretation forZ, zh.
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The subsequent analysis closely follows the approach i [A2h some necessary variations due to the fact
that Z(l) are X (1) are not independent. The following Lemma can be proved ajgttforward manipulations of

information measures.

Lemma 7. Let A, B, C, D be discrete random variables. The following identitiesdhol
1) Conditioning can be added to either part of mutual inforroati

I(A; B|C, D) = I(A,C; B|C,D) = I(A; B,C|C, D) = I(A,C; B,C|C, D)

2) Let B be independent of the joint ensembtg D). It then holdsI (A, B; C|D) = I(A;C|B, D).
3) Let D be independent of the joint ensemble, B, C). It then holdsI(A; B|C, D) = I(A; B|C).

4) Conditioning can be augmented by redundant condition,ifithe event{ B = b} implies{C = ¢}, it then

holds H(A|B,D) = H(A|B,C, D).
5) It holds I(A; B|C) = I(A; B|C,D) + I1(A; D|C) — I(A; D|B, C).

We now consider an arbitrary codefor the extended BEC with feedback (seel[10] for a detailextdption of
encoding and decoding functions éf and denoter(/) = Pr(X(I) # @) and F(I) = [[X (]) # @]. The following

results, whose proofs can be found, respectively, in sesfih[G of the Appendix, will be used.

Lemma 8. For any rateR = (R, ..., Ry) that is achievable undeg¢, and for any;j € /, it holds

i n
Y B < 3 () + (0 7)) W XOIY S 27 FQ) = D] +o(n)
k=1 =1

whereh(-) is Shannon’s entropy function.

Lemma 9. For any rateR = (R, ..., Ry) that is achievable undeg¢, and for any;j € /, it holds

n

j
nYy Rp>(1—eq )Y (1— W(l))I(W[l,j];X(l)lYfl_,Jl-H], Z7L R =1).
k=1 =1

Applying Lemma8 forj — 1 yields
n3oioy R S W) 1 i
—="=—— <o(n)+ — 4 1—ma(I)I(Wh i XOY ., Z7 5 F(l) =1),
= ep o SO L m O g XOIYE =1
where the second line was produced by using the inequality
(L= aI(Wp o XOIY 1y 275 F() = 1) = IWap XOIY (5, 25 F(D)

[Lj—l}’ [1vj_1]’
itk -1 -1 -1 -1 -1
= (1= 7)) [[(Wiy o XOIY ) 27 P @) = 1) + 105 XYL, 217 Fo) = 1)

and applying Lemm@]9, fof — 1, to the first term in the last line of (¥3). Hence, we arrive at

th, 1 1 1 u
nZRk<1_E{1 ' )So(n)+—2h(7r(l))

7---7]_1} 1 B 6{17"'7j} 1 B 6{177]_1} =1

n

+Y A —aO)IY; XYy, 27 F() =1).
=1

(72)

(73)

(74)

We are now ready to prove Theoréin 2. We only consider the itgiggermutation (i.eo (i) = 4), since all other
permutations are handled similarly. Summibgl(74) foe 2,..., N, applying Lemmal8 for; = N and summing
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the results yields after some manipulations (which invavehange of order summation betwegeand k)
n N

) DohE@)+d> (1 —x) Y IV XOIY ), 2 PO = 1)
=1 j=2

+ Z 1- 7T W[l NJs (l)|Yl_17Zl_17F(l) = 1) —I—O(’I’L)

N

”21_6{1 K (Z

i 1 1_6{17 7.7}

(75)
For notational compactness, we hereafter denbte Zj 1 ﬁ It also holds
L>HXOF@) =1)=I(X1:Y {5 27 FO) =)+ HXOY'™ 27 F() = 1)
N
=S IS XOY L, 2L PO = )+ HEX WY 2L F) = 1)
[1] 1] (76)
=2
N
Z Yl 1 il 1'_1]>Zl_17F(l) = 1)+H(W[l,N];X(l”Yl_lvZl_1>F(l) = 1)7
=2
where the second line is derived by applying the chain ruler gvinserting [Z6) into[(75) yields
nz — 6{1 < Z [Ah(m (1 —7(1))L] + o(n). (77)

The RHS of[(7V) is separable in termSﬁ(ﬂ) and |ts maximum can be computed via standard derivativeraggts.

In fact, the maximum in the RHS of (I77) is achieved fdi)) = 1+2L/A for i =1,...,n which yields
nz - < nAlogy(1+ 254 + o(n) = nL 4+ nAlogy(1 + 274 + o(n). (78)
- 6{1 ok}
Dividing by n, taklng a limit asn — oo and using the inequalitin(1 + z) < z, for anyz > 0, yields
YR
St <LtotMAA (79)
il B SR

Repeating the above procedure for an arbitrary permutation A/ produces

whereA Zk 1 m and since the last inequality must be true for all permutatio, the proof is
complete.

F. Proof of Lemm&l8
Fano’s inequality implies

0 Ry= HWjy ) = [(Wy i Y1, 27) + on), (80)
k=1
with
n n 1 1—
(Wi Y 2" =) IWiy Y0, ZOY 5. 271
=1
=3 1V 2OV 270 4 W g Y OY T, 2070 2050 (81)
=1
ztm -

= Z [I(W[l,j}§z(l)|Yl[1 ]1]>Zl Y+ I(Wh Y (), Zp (1 )|Y[1 Z 1>Z[1,j](l)} .
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Applying the chain rule twice with different order yields

I(Wi g ZW), X(OY (1 3, 2571 = TWp s XOY [ 2570 + T(W s ZOY 5, 271 X))

82
:I(W[l,]]a ()|Yl ! Zl 1)+I(W[1,j]a ()|Yl ! Zl ! Z(l)) ( )

and sinceZ (1) is independent of all previous random varlabdﬁasenX( ), (B2) yields

Wy ZWIY 5 250 = IWh s XY 5 250 = IW s XY [ 25 Z2(D)). - (83)

Furthermore, since knowledge &f(l) implies knowledge ofF'(I), it holds

I(Wi g XYL 2570 = 1Wy g X0, FOY L 27

1 (84)
= I(Wp s FOIY (13, 270 + IWi g XOIY (5, 271 F (D).
Combining [8B), [(8K) yields
IWp g ZWY (3, 270 = I(Wh g FOY 3, 250 + I(Wh s XOY (5, 25 () @)
— I(Wp; <l>rY§1 j],zl LZ(1).
Defining the setZy; ;) = {Z1 ;) : Z}1 ) # (@, ...,@)}, we can compute
W XOIY (5275 20) = ) IWa s XOY 27 Z() = 2) Pr(Z(D) = 2)
ZEZ )
= > IWpg XY 4,27 2(0) = 2, F(1) = 1) Pr(Z() = 2) Pr(F(l) = 1)
ZEZ,j
= > IWpg XOIY(), 27 F() = 1) Pr(Z(1) = 2) Pr(F() = 1) (86)
ZEZ,j
= I(Wp; XY 5, 25 F(D) = 1) Pr(F(1) = 1)
= I(Wp; XY, 251 F(D),

where we exploited the independence &fl) from all variables up to slot and used the facts that(l) = 0

implies X (1) = @ and)_ .5, Pr(Z() = z) = 1.

_To manipulate the last term iiL(B1), we define theSety = {Z}1;: Zpy # (9,....9), (x,...,*)}. Inwords,
21 Is the set of feedback vectors in which at Ieas} one usdijn. ., j} successfully receives the transmitted
symbol and sends backC K. Notice that, for any: ¢ Z|, ;, the event{Z; ;(I) = z} implies full knowledge of
Yy (). It now holds

I(Wp Y500, 2, }(l)|Yl[ 1} VARNARI)

= Z I(W[Lj];Y[Lj](l)a [1,;'}()’Yl[17jl-pzl 17Z[1,j](l):Z)PY(Z[LJ‘](Z):Z)
ZeZn,;

= > [HW Y 21 200 = 2) - BV YL 2570 Y10, 200, (1) = 2)] Pr(Z,,(0) = 2)
13-

Z [H(W[ AV 25 () =1, Z (1) = 2) — HWy [ Y

- A
[1,5]° [1,5]° Z 17Y[1,j](l)7F(l) =1, Z[l,j}(l) = Z)

(Z[ ) = z) Pr(F(l) = 1)

Z [H Wi [Y i, 27 F() =1) — HW Y3, 27 F() = 1,X10)| Pr(Zp () = 2) Pr(F(1) = 1)

"U

(1—6{1 ..... M@= 7O (Wi XOIY (5, 27 F() = 1).
(87)
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In the transition from the third to the fourth line ¢ {87), wieed the event identityZ, ;(I) = z} = {Z[Lj](l) =
z, F(l) = 1}, Which is valid for anyz € Z|; ;, while in the transition from the fourth to the fifth Iinfz we agb
the facts thatZy, ; is independent of all variables up to(including F(l), X(1)) and knowledge ofY'(; ;(1),
Zp j1(1) = z implies knowledge ofX (1) for any z € Z; j.

Inserting [(87), [(86),[(85) intd (80), via (B1), and usingnt®& in Lemm&¥ produces

k
n> Ry, < o(n) Z[ Wi FOIY (3 270 + (1= e ) (= m(U)I(Wi s XOIY {3 20 F() = 1)
=1

)+ Z [A(r() + (1= e, ) (1= 7@ (W i XOIY 5, 2570 F ) = 1)
(88)
where we used the inequali]ig(Vf/’[Lj];F(l)]Y%1 27N < HFQ) = h(x(D)).

G. Proof of Lemm&l9
Performing similar manipulations as in the proof of Lemhav@, can write
J
-1 I-1
nZRk = H(W[l,j]) > I(W[l,j} 1j+1 ZI ,j-i-l}(l) Z(l)|Y[1]+1]7Z )

k=1
n

> IW i Y OIY [, 27 2(0)

=1
= Z oI L (DY [y 2575 2(1) = 2) Pr(Z(1) = 2)
=1 Z€Z1 i)
= Z oI YO (i 27 20) = 2, F(D) = 1) Pr(F(1) = 1) Pr(Z(]) = 2)

=1 ZGZ [1,541]

-y ¥ [ WY 2170 Z(0) = 2, F(1) = 1)

=1 ZEZ,; 1,5+1]

—HWp Y 27 Y (D), 2(0) = 2, F() = 1)] Pr(F(l) = 1)Pr(Z(l) = 2)
Z (HW Y, 217 20) = 2, F(0) = 1)
=L ZeZp 4
—H(W[ AV 25N X (W), 20) = 2, F() = 1)} Pr(F(l) = 1) Pr(Z(l) = 2)

n

= (1= e jp1y) (= mOIWp ;s XOY {1, 27 F() = 1),
- (89)

where we used again the independencé?()lf) from all other variables.
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