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Abstract—This paper considers a problem where multiple functions (c(t), w(t)) and pi(ex(t),w(t)) for each slott.
users make repeated decisions based on their own observedThis uncertainty fundamentally restricts the time avesabat
events. The events and decisions at each time step determlneCan be achieved.

the values of a utility function and a collection of penalty . .
functions. The goal is to make distributed decisions over e to Specifically, assume the random event vecidt) is inde-

maximize time average utility subject to time average consaints ~Pendent and identically distributed (i.i.d.) over slotegpibly
on the penalties. An example is a collection of power constized correlated over entries in each slot). The vecidt) takes
sensor nodes that repeatedly report their own observationso values in some abstraevent spacé€) = Q; x Qy x --- x Qy;,
a fusion center. Maximum time average utility is fundamentdly wherew;(t) € Q; for all i € {1,...,N} and all slotst.
reduced because users do not know the events observed by athe . . . ; .

Optimality is characterized for this distributed context. It is Similarly, assumea(t) is chosen in some abstraettion
shown that optimality is achieved by correlating user decions SpaceA = A; x Az x -+ x Ay, wherea;(t) € A; for
through a commonly known pseudorandom sequence. An optimal all i € {1,..., N} and all slotst. Let = andp, be the time

algorithm is developed that chooses pure strategies at eatime  average expected utility and penalty incurred by a pasicul

step based on a set of time-varying weights. algorithmﬂ
1 t—1
I. INTRODUCTION U o= tl—iglo? E [u(7)]
Consider a multi-user system that operates over discrete :f?
time with unit time slots € {0,1,2,...}. There areN users. 5. = lim 1 E [pi(7)]
At each time slot, each usef observes aandom evenw; () k t—oo t £ b

and makes aontrol actiona;(t) based on this observation.

Let w(t) and a(t) be vectors of these values: The following problem is considered:

w(t) = (wi(t),walt), ..., wn(t) Maximize: - u (1)
at) = (a(t),az(t),...,an(t) Subjectto: p, < ¢, Vke{l,...,K} (2)
Decisions are distributed )

For each slott, these vectors determine the values of a _ _ _
system utility «(t) and a collection ofsystem penalties wherec;, are a given collection of real numbers that specify

p1(t), ..., px(t) (for some non-negative integéf) via real- constraints on the time average penalties.
valued functions: The constraint that decisions must be distributed, specifie
R in @), is not mathematically precise. This constraint isreno
u(t) = a(a(t),w(t)) carefully posed in Sectidn]Il. Without the distributed sdhil-
pe(t) = prlal),w(t)) Vke{l,...,K} ing constraint, the probleni](13(2) reduces to a standawb-pr

o . ) . lem of stochastic network optimization and can be solved via
The fl.Jnct|on3u(-.) andpk(-) are arbitrary and can possibly t?ethe drift-plus-penalty metho{fl]. Such a centralized approach
negative. Negative penalties can be used to represenahmwwomd allow users to coordinate to form an action veeigt)
system rewa_rds - . i based on full knowledge of the event vectoft). The time
The goal is to make distributed decisions over time thaperage utility achieved by the best centralized algoritam
maximize time average utility subject to time average CoRy gyrictly larger than that of the best distributed algwrit

straints on the penalties. Central to this problem is thg,s is shown for an example sensor network problem in
assumption that each useércan only observev;(t), and Section(T).

cannot observe the value of;(t) for other usersj # 1.
Further, each usef only knows its own actionu;(t), but o
does not know the actions; (t) of others. Therefore, each” Applications to sensor networks
user only knows a portion of the arguments that go into the The above formulation is useful for a variety of stochastic
network optimization problems where distributed agentkena
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repeatedly send reports about system events to a fusioarcerdther sensors report information on that slot. This sceniari
The goal is to make distributed decisions that maximize tingggnificantly more challenging to solve in a distributed t&oa.
averageguality of information This scenario was previouslyFor example, suppose the (t) variables are binary valued,
considered by Liu et al. in_[2]. There, sensors can providepresenting whether or not sensambserves an event on slot
reports every slot using one of multiplereporting formats ¢. Supposeuv; (t) = wa(t) = 1. Utility is maximized if either
such as text, image, or video. Sensors can also chooses¢nsor 1 or sensor 2 decides to report in the video format.
remain idle on slot. Thus, the action space$; are the same Power is wasted if they both send video reports. However,
for all sensors: sensor 1 does not know the value ©f(t), sensor 2 does

. : _ not know the value ofu; (t), and neither sensor knows what
ai(t) € A;={idle, text image video} Vi € {1,..., N} format will be selected lkgy) the other.

where the notation£” representslefined to be equal t&Each

format requires a different amount of power and providesg Applications to wireless multiple access
different level of quality. For example, defing(¢t) as the

. _ The general formulation of this paper can also treat simple
power incurred by sensaron slott, where:

forms of distributed multiple access problems. Again siggpo

0 if o;(t) =idle there areN wireless sensors that report to a fusion center.

Dtext if ;(t) = text For eachi € {1,...,N}, definew,;(t) as thequality that
pi(t) = Dimage  If y(t) =image a transmission from sensarwould bring to the system if

Puideo  If ;(t) = video it transmits on slott. Define «;(t) as a binary value that

ills 1 if sensori transmits on slot, and 0 else. Assume the
network operates according to a simple collision model,r&he
a transmission from sensois successful on slatif and only

Wherepieat, Pimage, Pvideo r€Present powers required for eac
of the three reporting formats and satisfy:

0 < Ptext < Pimage < Pvideo if it is the only sensor that transmits on that slot:
Assume that; (t) represents thquality that sensof would N
bring to the fusion center if it reports the event it observes u(t) = wit) |ea(®) [T = s (1)) 4)
slot ¢ using the video format. Defing(«;(t)) as the fraction i=1 J#
of this quality that is achieved under formaf(¢): The above utility function is non-separable. Concurrentkwo
0 if o;(t) =idle in [3] considers a similar utility function for wireless ey
Freat if o(t) = text harvesting applications.
Hea®) =4 7, if o (t) = image
mage 7
1 if a;(t) = video C. Contributions and related work
where The framework of partial knowledge at each user is similar
0 < freat < fimage <1 in spirit to a multi-player Bayesian gam@4][5]. There, the

oal is to design competitive strategies that lead to a Nash

quilibrium. This is significantly different from the god the

current paper. The current paper is not concerned with cempe
N tition or equilibrium. Rather, there is a single utility feton
ZE— <c that all users desire to maximize. Distributed algorithms a
i=1 developed to maximize time average utility subject to time

where ¢ is some given positive number. Further, that worRverage penalty constraints.

restricts to the special case when the utility function is a This paper shows that an optimal distributed algorithm can

The prior work [2] considers the problem of maximizinag
time average utility subject to a time average power coimtra

separable sunof functions of user variables, such as: be designed by having users correlate their decisions ghrou
N an independent source of common randomness (Section 111).
u(t) = Zfi(ai(t))w'(t) Related notions of co_mmonly shared rgrjd(_)mness_ are used
] in game theory to define aorrelated equilibrium which is

- . ... typically easier to compute than a standard Nash equiliriu
Such separable utilities cannot model the realistic séena - !
: X . . 6][7][5][4]. For the current paper, the shared randomnisss
of information saturation where, once a certain amount o . . o T )
S . . X crucial for solving the distributed optimization problefrhis
utility is achieved on slot, there is little value of having ad- L : X
o . e L paper shows that optimality can be achieved by using a shared
ditional sensors spend power to deliver additional infdrama . ; . .
on that slot. The current paper considers the caselufrar random variable withi + 1 possible outcomes, wher is
) ' - bap . . Y the number of penalty constraints. The solution is comgatab
possibly non-separabletility functions. An example is: . .
through a linear program. Unfortunately, the linear progra
& can have a very large number of variables, even for 2-user
u(t) = min E flai(t))wi(t), 1 problems. A reduction to polynomial complexity is shown
i=1 to be possible in certain cases (Secfion 1V). This paper also
This means that once a total quality bfs accumulated from develops an online algorithm that chooses pure strategéy e
one or more sensors on sigtthere is no advantage in havingslot based on a set of weights that are updated at the end



of each slot (SectioilV). The online technique is based @s observation, and) otherwise. The power penalties for
Lyapunov optimization concepts![L][8][9]. 1 € {1,2} are:

Much prior work on network optimization treats scenarios pi(t) = a;(t) (6)
where it is possible to find distributed solutions with no
loss of optimality. For example, network flow problems that U
are described by linear or separable convex programs can ch_opsemot'_[o reportan observation in order to save power.
be optimally solved in a distributed manner [10][11][14][9 e difficulty is that neither sensor knows what event was

Problems where network nodes want to average sensor a%lfgerved by the other. Therefore, a distributed algorithightn

[13] or compute convex progranis [14] have distributed sol&-end reports fronboth sensors on a given slot. A centralized

tions. Work in [15] solves for an optimal vector of parameter.SChedu!er quld avoid this because it wastes power without
V increasing utility.

associated with an infinite horizon Markov decision problem .
using distributed agents. Work in_[16][1[7]]18] develops-di Suppose thabs (t) a”.d{”?(“ are independent of each other
and i.i.d. over slots, with:

tributed multiple access methods that converge to optiynali
However, the above problems do not have random events that ~ Prjw,(t) = 1] = 3/4, Prlwi(t) =0] =1/4
create a fundamental gap between centralized and digtdbut Priws(t) = 1] = 1/2, Prlws(t) = 0] = 1/2
performance.

Recent work in[[10] derives structural results for disttémi To fix a specific numerical example, consider the following
optimization in Markov decision systems with delayed inforproblem:
mation. Such problemdo exhibit gaps between centralized

o thatp;(a1, as,w1,ws) = «; for ¢ € {1,2}. Each sensot

- . . o Maximize: U 7
and distributed scheduling. The usepivate informationin ax-|m|ze' 3 b B (7)
[19] is similar in spirit to the assumption in the current pap Subjectto: p; <1/3, p, <1/3 (8)
that each user observes its own random eug(t). The work Decisions are distributed 9)

[19] derives a sufficient statistic for dynamic programmihg
does not consider time average constraints and its sofutigNt |ndependent reporting
do not involve correlated scheduling via a pseudorandom
sequence. R‘?Ce”t work n .[3] conS|ders_d|str|buted re.‘“‘-‘?“f algorithms: Each senseindependently decides to report with
events with different qualities, but considers a more ietste Iy e )

o : robability 6; if it observesw;(t) = 1 (it does not report
class of policies that do not use correlated scheduling. Tae : o ;

. wi(t) = 0). Sincew(t) is i.i.d. over slots, the resulting
current paper treats a different model than| [19] &nd [3], anS% uencesu(t)}2y, {pr(t)},, {pa(t)}, are iid. over
shows that correlated scheduling is necessary in systeths wi d : t=00 WP1\)Je=0s 1P2\)s=0 T

. 4 slots. The time averages are:
constraints. Further, the current paper provides comiylexi

reduction results under a preferred action property (8ecti 3 B

Consider the following class oidependent scheduling

[V) and provides an online algorithm that does not require 4
a-priori knowledge of event probabilities (Sectioh V).
_ 31
@ = Efu(t)l(t) = Lw(t) =073
Il. EXAMPLE SENSOR NETWORK PROBLEM 11
This section illustrates the benefits of using a common FE[u(®)lwr () = 0,w2() = 1] 42
source of randomness for a simple example network. Suppose E 31
: t)|wr(t) = wa(t) =1] ==
the network has two sensors that operate over time slots FE )l () = wa (1) ]42
t € {0,1,2,...}. Every slot, the sensors observe the state _ 31, n 1L n 3L, (1= 6,)6,/2
of a particular system and choose whether or not to report 427! 42( 2/2) 42( 1 1)62/2)

their observations to a fusion center. Lef(t) be a binary  For this class of algorithms, utility is maximized by choos-
variable that is 1 if sensar observes an event on slgtand ing 6; andé, to meet the power constraints with equality. This
0 else. Leta; () and aa(t) be the slott decision variables, leads tof; = 4/9, 6; = 2/3. The resulting utility is:
so thato;(t) = 1 if sensori reports on slot, anda;(t) = 0 _
otherwise. Suppose the fusion center trusts sensor 1 mame th u=4/9~0.44444
sensor 2. The utility(¢) is:
B. Correlated reporting

As an alternative, consider the following three strategies
so that the deterministic functio@(-) is given by: o Strategy 1w (t) =1 = ay(t) =1 (else,a;(t) = 0).
Sensor 2 always chooses(t) = 0.

w(t) = minfws (t)o (¢) + wa(t)az(t)/2, 1]

o, azywpw2) =minfwrar +wp02/2 0 O) | sprategy 2un(t) = 1 = as(t) = 1 (else,an(t) = 0).
Thereforeu(t) € {0,1/2,1} for all slotst. If w(t) =1 and Sensor 1 always chooses () = 0.
sensor 1 reports on slot there is no utility increase if sensor ¢ Strategy 3w (t) =1 = ai(t) = 1 (else,a; (t) = 0).
2 also reports. wa(t) =1 = as(t) =1 (else,az(t) = 0).

Each report uses one unit of power. Lpi(t) be the The above three strategies grare strategiesbecausev;(t)
power incurred by sensar on slot¢, being 1 if it reports is a deterministic function ob;(¢) for each sensor. Now let



X (t) be an external source of randomness that is commonly I1l. CHARACTERIZING OPTIMALITY
known at both sensors on slotAssumeX (t) is independent

- - AL - This section considers the geneMaluser problem and char-
of everything else in the system, and is i.i.d. over slotdhwit

acterizes optimality over all possible distributed altjonis.

PriX(t)=1] = 6 Recall that:
PriX(t)=2] = 0. wit) € Q=01 x---xQy
PriX(t)=3] = 63 alt) € A=A x--x Ay

where#d;, 05,03 are probabilities that sum to 1. Consider th%vhere the vectorss

following algorithm: On slott, if X(t) = m then choose over entries in each slot). Assume that the s&tand.A; are

strategy m, where m € {1,2,3}. This algorithm can be . .. .. ‘ . -
implemented by lettingX (¢) be a pseudorandom Sequencfe|n|te with sizes denoteff);| and|.A4;|. For eachu € ) define:

that is installed in both sensors at time 0. The resultingetim m(w) = Prlw(t) = w]
averages are:

(t) are i.i.d. over slots (possibly correlated

Define thehistory H(¢) by:
= (61 + 93)4 , Do = (02 + 93)%
u:914+9222+93( + 111y H(t)E2{(w(0),x(0)),. .., (w(t—1),a(t —1))}

A Simp'e linear program can be used to Compute the Opt|m-HT||S section considers all distributed algorithms, |nﬂ1m
01,6, 05 probabilities for this algorithm structure. The resulthose where all users know the full histor((t). Such
is 6, = 1/3, 6, = 5/9, 65 = 1/9. The resulting time averageinformation might be available through a feedback message

utility is: that specifiefa(t), w(t)) at the end of each slat Theorem
T = 23/48 ~ 0.47917 [ shows that optimality can be achievedthout this history
information.

This is strictly larger than the time average utility @fi4444 First, it is important to make the distributed scheduling

achieved by the independent reporting algorithm. Thus; P&onstraint [[B) mathematically precise. One might atteropt t
formance can be strictly improved by correlating repor&sai use the following condition. For all slots the decisions made
common source of randomness. Alternatively, the same t|rH§ each usef € {1,..., N} must satisfy:

averages can be achieved tigme sharing The two sensors

agree to use a periodic schedule of period 9 slots. The3first Prio;(t) = a;|wi(t) = wi, H(t)]
slots of the period use strategy 1, the next 5 slots use gyrate = Prio;(t) = og|w(t) = w, H(1)] (10)
2, and the final slot uses strategy 3.

for all vectorsw = (w1,...,wn) € 1 X -+ x Qn and
C. Centralized reporting all a; € A;. The condition [(ID) specifies that;(t) is

Suppose sensors coordinate by observingt),w(t)) and conditionally independent ofw;(t))|;: given w;(t), H(t).
then cooperatively selectinfy (t), as(t)). It turns out that While this condition is indeed required, it turns out thaisit
an optimal centralized policy is as follows| [1]: Every slgt notrestrictive enough. Appendix B provides an examplétytil
observe(w (t),ws(t)) and chooséa (t), as(t)) as follows: function for which there is an algorithm that satisfies] (10) b

o (Wi(t),ws(t)) = (0,0) = (a1 (t),az(t)) = (0,0). yields expected utility strictly larger than that of anyu#”
o (wi(t),wa(t)) = (0,1) = (o (t),aa(t)) = (0,1). distributed algorithm (as defined in the next subsection).
o If (wi(t ),QJQ( ) =(1,0), mdependently choose
with probability 8/9 A. The distributed scheduling constraint
(1 _J G ith p ility 8/
(0, with probability 1/9 An algorithm for selectingx(t) over slotst € {0,1,2,...}
o If (wi(t),w =(1,1), mdependently choose: is distributedif:
(o ( with probability 5/9 . Thtere is an abstract sét, called acommon information
with probability 4,/9 Se

« There is a sequence ocbmmonly known random elements
X (t) € X such that(¢) is independent of (¢) for each
u7=0.5 te{0,1,2,...}.

This is larger than the value.47917 achieved by the dis- *° '{Tere %e} %?ttehr;n:cgﬁg(_: function(w;, X) for eachi €
tributed algorithm of the previous subsection. LR '

The question remains: Is it possible to construct some other fii Qi x X = A;
distributed algorithm that yieldg > 0.47917? Results in the
next section imply this is impossible. Thus, the correlated » The decisionsy;(t) satisfy the following for all slots:
reporting algorithm of the previous subsection optimizeet N .
average utility over all possible distributed algorithnigatt ailt) = filwi(), X(1)) for all i € {1,..., N} (11)
satisfy the constraints. Therefore, for this example, éher The above definition includes a wide class of algorithms.
is a fundamental gapbetween the performance of the besintuitively, the random element& (¢) can be designed as any
centralized algorithm and the best distributed algorithm.  source of common randomness on which users can base their

The resulting optimal centrallzed time average utility is:



decisions. For exampleX (¢) can be designed to have the: € {0,1,..., K}, the expected penalfif [p;(¢)] under such
form: a strategy is:

X(t) = (t,H(t), Y (1)) M

E[pr(t)] = 0E |pr (g™ (w(t)),w(t

whereY (¢) is a random element with support and distribution ()] mZ:l [pk (g (Wit ))]
that can possibly depend @i(¢) as well as past values(r) M
for 7 < t. The only restriction is thak (¢) is independent of = > O™
w(t). Because thev(t) vectors are i.i.d. over slotsy (t) can m=1

be based on any events that occur before sslot The following linear program optimizes over thg, probabil-

ities for this specific algorithm structure:

B. The optimization problem

M
For notational convenience, define: Minimize: Z 9mrf{”) (16)
m=1
po(t) £ —u(t) M
pola®),w(t) 2 —a(alt),wd)) Subjectto: Y Ori™ <o Vhke{l,...,K}(17)
m=1
Maximizing the time average expectation«gf) is equivalent 0 >0 VYme{l,...,M} (18)

to minimizing the time average expectationgft). For each

NE

k e€{0,1,..., K} and each slot > 0 define: 0,, =1 (19)
= m=1

p(t) &= ZE[pk(T)] The objective [(16) corresponds to minimizid@p, (¢)], the

b= constraints[(A7) ensur [px(t)] < ¢ for k € {1,...,K},

The goal is to design a distributed algorithm that solves tr?@(.j the coqgtramtﬂ][&)j(]@) ensure g valu_es form a
following: valid probability mass function. Such a randomized algmmt_
does not use the historyf(¢). The next theorem shows this
(12) algorithm structure is optimal.
. o _ Theorem 1:Suppose the problemi_(12)-{14) is feasible.
Subject to: limsup; o Py (t) < cx ¥k € {1,..., K} (13) Then the linear prograni (1L)-(119) is feasible, and the ogitim
Condition [11) holds7t € {0,1,2,...} (14) objective value[(T6) is equal tf?’. Furthermore, there exist
robabilities(6y,...,0,) that solve the linear program and
atisfy #,,, > 0 for at mostK + 1 values ofm € {1,..., M}.

Proof: See Appendix A. [ ]

Minimize: lim sup,_, ., Do(t)

It is assumed throughout this paper that the constrdin)s (15
(T4) arefeasible Define pg** as the infimum of all limiting
Do (t) values [(IR) achievable by algorithms that satisfy the
constraints[(I3)E(A4). The infimum is finite becapsé) takes
values in the same bounded set for all slots IV. REDUCED COMPLEXITY

The linear program [(16J-(19) uses variables

(61,02, ...,0r), whereM is the number of pure strategies:
C. Optimality via correlated scheduling

N

A pure strategyis defined as a vector-valued function: M = H |AiIIQ”

i=1
The 2-user sensor network example from Secfidn Il has
whereg;(w;) € A; for all i € {1,...,N} and allw; € ;. [Ail = [&] = 2 for i € {1,2}, for a total of 22 =4
The functiong(w) specifies a distributed decision rule wherétrategy functionsg;(w;) for each user—hence a total of
each useri choosesa; as a deterministic function of;. M = 16 functionsg(w). However, for each user, the two
Specifically,c;; = g;(w;). The total number of pure strategyStrategy functiong;(w;) that giveg;(0) = 1 can be removed
functionsg (w) is Hj'\il |A;|1%!. DefineM as this number, and from consideration (as it is useless for useto report if it

g(w) = (g1(w1), 92(w2), - - -, gn (wn))

enumerate all these vectors hy™ (w) for m € {1,..., M}. obse_rves no event). Thus, th_e effective num_ber of strategy
For eachm € {1,..., M} andk € {0,1,..., K} define: functionsg;(w;) for each user is only two, leaving only four
functionsg(w) = (g1(w1), g2(w2)). The optimal probabilities
T}(@mg Z 7T(‘,.,)ﬁk(g(m)(w)’w) (15) for switching between these four is given in Sectlon 11-B,
we where it is seen that only( + 1 = 3 strategies have non-

zero probabilities.
The valuer,(cm) is the expected value @i, (¢) given that users  For general problems, the value bf can be very large. The
implement strategy " (w) on slott. remainder of this section shows that, if certain conditioolsl,
Consider a randomized algorithm that, every gJohdepen- the set of strategy functions can be pruned to a smaller set
dently uses strategy ™) (w) with probability 6,,,. For each without loss of optimality. For example, consider a two+use



problem with binary actions, so thatl;| = 2 for i € {1,2}.
Then:
M = olul+122]|

If certain conditions hold, strategies can be restricted &®t
of size M, where:

M = (|Q] + 1)(|Q] +1)

Lemma 3:SupposeA; and Q; are given by [[20)E(21).
Definep(a, w) by:

N
plevw) =[] di(wi)thi(as)

i=1

where ¢;(w;), ¥;(a;) are non-negative functions for all e
{1,...,N}. Suppose that for eache {1,..., N}, ¢i(w;) is

Thus, an exponentially large set is pruned to a smaller gét whon-increasing imv; and;(«;) is non-decreasing in;. Then

polynomial size.

A. The preferred action property
Suppose the setd; and2; for each user € {1,...,N}
are given by:
Aj - Al =13 (20)
o Ll -1} (21)
For notational convenience, for eache {1,...,N} let

[, ;] denote theV-dimensional vectotx = (o, ..., an),
whereq; is the (N —1)-dimensional vector of; components

{0,1,..
{0,1,..

for j # 4. This notation facilitates comparison of two vectorg

that differ in just one coordinate. Defind; and (2; as the
set of all possible(/N — 1)-dimensional vectorsx; and wj,
respectively.

Definition 1: A penalty functionp(«, w) has thepreferred
action propertyif for all i € {1,..., N}, all a; € A;, and alll
w; € ;, one has:

p(log, o, [wy, w]) — p(log, B, [wy, w])
Z ﬁ([az_'a Oé], [wz_'v '7]) - ﬁ([a% B]a [wz_'a ’Y])
wheneverq, 5 are values in4; that satisfya > 3, andw, v
are values in2; that satisfyw < .

Intuitively, the above definition means that if usecom-
pares the difference in penalty under the actief¢) = o and
a;(t) = B (wherea > ), this difference is non-increasing in
the user:i observationw;(¢) (assuming all other actions and
eventsa; andw; are held fixed).

For example, any functiop(a, w) that does not depend on, (a,w) for k € {0,1,

w trivially satisfies the preferred action property. This e t
case for thep; (-) andpa(-) functions in [6) used to represen

[M Further, the utility function [(b) in that example vyields

po(-) = —a(-) that satisfies the preferred action property, gs

shown by the next lemma.
Lemma 1:Supposed; = {0,1} for i € {1,..., N}, §; is

p(a, w) has the preferred action property.

Lemma 4:Supposed; and{; are given by[(20)E(21). Sup-
posep; (a,w), ..., pr(a,w) are a collection of functions that
have the preferred action property (whétés a given positive
integer). Then for any non-negative weights, . .., wg, the
following function has the preferred action property:

R
o, w) = Z wypr(or, w)

The proofs of Lemmasi[I}4 are given in Appendix C.

Independent events and reduced complexity

Consider the special case when the components(of =
(wi(t),...,wn(t)) are mutually independent, so that:

N
m(w) = qu'(wz') (22)
where:

@i (i) 2 Pr[w;(t) = wi]

Without loss of generality, assumg(w;) > 0 for all ¢ €
{1,...,N} and allw; € ;. Recall that a pure strategy(w)
is composed of individuastrategy functiongy;(w;) for each
users:

gw) = (g1(w1), ..., 9n(wn))

Theorem 2:(Non-decreasing strategy functions) Suppose
A; and Q; are given by [(20)E(21). If all penalty functions
..., K} have the preferred action
property, and if the random event proces§&) satisfies the

y ﬁndependence property (22), then it suffices to restrienditin
power expenditures for the sensor network example of Sectig, strategy functiong;

(w;) that are non-decreasing is.
Proof: The proof uses an interchange argument. Fix
e {1,....M}, ¢ € {1,...,N}, and fix two elements
w and v in Q; that satisfyw < ~. Suppose the linear
program [(I6){(IB) places weight,, > 0 on a strategy

given by [21), and define: function (™ (w) that satisfiesy\™ (w) > ¢{"™(y) (so the
N non-decreasing requirement is violated). The goal is tavsho
(o, w) = min lz ¢i(wi)a, b] this can be replaced by new strategies that do not violate the
=1 non-decreasing requirement for elementsnd-, without loss
for some (real-valued) constart and some (real-valued)of optimality.
non-decreasing functiong;(w;). Then the penalty function Definea = ggm)(w) andg = ggm)(y). Thena > . Define
po(a, w) = —i(a,w) has the preferred action property. two new functions:
Lemma 2:SupposeAd; = {0,1} for ¢ € {1,...,N}, &,

is given by [21), and define the utility functiof(a,w) (mhlow ) = { 6" (i) it w; ¢ {w,7}
according to the multi-access example equation (4). Then B if wi € {w, 7}
the penalty functionpy (e, w) = —@ (e, w) has the preferred (m),high( ) = g§m>(wi) if w; ¢ {w,v}
action property. 9i wi) = a if w; € {w,v}



Unlike the original functiong,

satisfy:

K2

%

m),low
(m) (w)

(m)

2

g™ ()

<
m),high
< g ()

Define g(™)'°¥(w) and g(™)"9"(w) by replacing theith

component functiory!™ (w;) of g(™ (w) with new compo-
w;), respectively.
Let p¢(¢) be thekth penalty incurred in the (old) strategy
that usesg(™ (w) with probability 6,,. Let pi<*(t) be the

nent functionsg

%

(m),low

(w:) and g{"™"""(

(w;), these new functions where the above uses the fact tha{¢) is independent of

w;(t), so conditioning onw;(t) = w; does not change the

distribution of w;(t). Becausepy(-) satisfies the preferred

action property andv > 3, w < v, one has:
[br. (log, o, [wy, w]) — b ([o7, B], [wy, w])]
= [pr (log, o, [wy,7]) — br ([o, B], [w7,7])]

and hence[(23) is less than or equal to zero. This holds when
conditioning on all possible values af;(¢), and so:

E [pi(t) — pf(t)] <0

corresponding penalty under a (new) strategy that, instéad
using g™ (w) with probability ,,,, uses:
e g™ (w) with probability 6,,q;(7)/ (4i(w) + a:(7))-
o g(m)high () with probability ,,,q; (w) /(¢ (w) + ¢i (7).

Let w;(t) denote the{ N — 1)-dimensional vector of com-

ponentsw; (t) for j # i. Fix any vectorw; € Q;. Defineo;
as the correspondingV — 1)-dimensional vector ojylgm) (wy)

values forj # i. Then

o If w-(t) = ws, wi(t) = w, and g™ °¥(w) is used by

the new strategy, thew(t) = [w;,w| and:

P (1)

P (91 (fwr ) g, ]
i (o, B, fwr, )

Further, since the old strategy usgﬁ”) (w) =a:

pRt)

o If wi(t) = wy, wit) = v, and g™ (w) is used by

pi (97 (lwr ) lwr, )

b ([ag, o, [wy, w])

the new strategy, thew(t) = [w;, 7] and:

PE(t)

Further, since the old strategy usgﬁ") ()

PRt

P (97 ([wr, 7)) [wr, 1)
i (log, o, [wy,7])

=f:
P (97 (lwp ) oy, 1)
i ([az, B, [wr, )

This holds for all penalties € {0,1,...,K}, and so the
modified algorithm still satisfies all constraints with artiopal
value for E [po(t)]. The interchange can be repeated a finite
number of times until all strategy functions are non-desirga

[ |
In the special case of binary actions, so tbht= {0, 1}
for all « € {1,..., N}, all non-decreasing strategy functions
gi(w;) have the following form:
o 0 if w; < hr
gilwr) _{ 1 if w; > Ay (24)

for some threshold} € {0,1,...,|;|}. There areQ;| + 1
such threshold functions, whereas the total number ofegjyat
functions for useri is 2/l Restricting to the threshold
functions significantly decreases complexity.

V. ONLINE OPTIMIZATION

This section presents a dynamic algorithm to solve the
problem [I2){(I¥). The algorithm can also be viewed as an
online solution to the linear program {16)-[19). L&f be
the number of pure strategies required for consideration in
the linear program (wherd/ is possibly smaller than/,
as discussed in the previous section). Reorder the fursction
g™ (w) if necessary so that every slgtthe system chooses
a strategy function in the sdy(M (w),..., g™ (w)}.

Suppose all users receive feedback specifying the values of
the penaltie® (¢), ...,px(t) at the end of slot + D, where
D is a non-negative integer that represents a system delay. Fo
each constraint € {1, ..., K}, define avirtual queueQy(t)

« Supposev;(t) = wz, but neither of the above two eventsand initialize Q) (0) to a commonly known value (typically
are satisfied on slat That is, neither of the even& or

&, are true, where:

& {wi(t) = w} N {g™1° (w) is used
& & {wilt) =7} N {gt™ Mo (o) is used

> >

Thenppew (t) — pgd(t) = 0.
It follows that:

E [pr(t)

= P () w;(t) = wy]

Omi(w) (%> :

[Pk ([ B, [wr, w]) = pr ([, al, [wy, w])]

, gi(w)
wmat) (i)
[Pk ([o; , [w3,7]) — P ([, Bl (w3, 7])]

(23)

0). For eacht € {0,1,2,...} the queue is updated by:
Qr(t+ 1) = max[Qg(t) + pr(t — D) — ¢, 0] (25)

Each user can iterate the above equation based on informatio
available at the end of slat Thus, all users know the value
of Qx(t) at the beginning of each slat If D > 0, define
pr(=1) =pp(=2) = =pe(—D) = 0.

Lemma 5:Under any decision rule for choosing strategy
functions over time, for alt > 0 one has:

E[Qk()]  E[Qk(0)]
t t

t—1
S E - D) <at
=0

Proof: From [25%) the following holds for all slots <
{0,1,2,...}:

Qr(T +1) > Qk(7) + pr(T — D) — ¢y,



Thus: Proof: Note that for allk € {0,1,...,K}:

Qil(r+1) = Qi(r) > pr(r — D) — e Epe®)QWM)] = Eprla(t),w(t)|Q()
Summing overr € {0,1,...,¢t — 1} for ¢t > 0 gives: _ al R (m)
= B (t)7(w) (W), w
t—1 mzzlugl o (g )
Qi(t) — Qx(0) > (1 — D) — cxt N
k k Tgopk k _ Z ﬁm(t)T(m)
m=1

Rearranging terms proves the result. [ | ; 6) it suffi .
Lemmal® ensures the constrairts](13) are satisfied Whé]'[tﬂ_ere ore, to prove (26) it suffices to prove:

ever the conditionlim;_,o E[Q(¢)] /t = 0 holds for all E[A(t 4+ D)|Q(t)] < B(1+2D)
ke {1,...,K}, a condition callednean rate stability1].

K

+ Z Qr(t)E [pr(t) — i |Q(1)] (27)
k=1

A. Lyapunov optimization To this end, squaring the queue equatidn] (25), using
Define Q(t) = (Qi(t),...,Qx(t)). Define L(t) as the maxa,0]* < a?, and evaluating at time+ D yields:

squared norm o€)(t) (divided by 2 for convenience later): Qut+D+1)> < Qu(t+ D)+ (pr(t) — cx)?

+2Qk(t + D)(pr(t) — ck)

Al 2 1 = 2

L(t)_2||Q(t)” 2 ;Qk(ﬂ Summing overk € {1,..., K} and dividing by2 gives:
K
Define A(t)2L(t + 1) — L(t), called theLyapunov drift A(t+D) < EZ(pk(t) —c)?
Consider the following structure for the control decisions T2
Every slott the queueQ(t) are observed. Then a collec-
tion of non-negative valueg,,(t) are created that satisfy +
Zn]\le Bm(t) = 1 (if desired, thes,,(t) values can be
chosen as a function of th€(t) values). Then an index
m € {1,...,M} is randomly and independently chosen =
according to the probability mass functigh,(¢), and the
decision ruleg(™ (w(t)) is used for slott. Thus, a specific
algorithm with this structure is determined by specifyirgpyh
the 3,,,(t) probabilities are chosen on each sfot
Motivated by the theory in[]1], the approach is to choose
probabilities every slot to greedily minimize a bound on the +;(Qk(t + D) = Qu®) (i (t) — ex)
drift-plus-penalty expressionE [A(t + D) + Vpo(t)|Q(t)], i . i
whereV is a non-negative weig[ht(that a?‘fects a(p)(lrfcgrganc-r@k'ng conditional expectations of the above profes (2nup
tradeoff. TheD-shifted drift termA (¢ + D) is different from aPplication of the following inequalities (see Appendix E)
[1] and is used because of the delayed feedback structulne of t K
ZE [(px(t) — e1)*|Q()] < B
k=1

Qr(t + D)(pr(t) — cx)

17 11

(pr(t) — cx)?

N =
>
Il
—

+
] =

Qi) (pr(t) — cx)

ol

=T

N =

qgueue updatd (25). The intuition is that minimiziAgt¢ + D)
maintains queue stability, while adding the weighted pgnal
term Vpy(t) biases decisions in favor of lower penalties. TheX
following lemma provides a bound on the drift-plus-penalty) _ E [(Qx(t + D) — Qr (1)) (pr(t) — ci)|Q(t)] < 2BD
expression under ang,, (¢) probabilities. k=1

Lemma 6:Fix V' > 0. Under the above decision structure,
one has for slot:

E[A(t+ D)+ Vpo(t)|Q(t)] < B(1+2D) B. The drift-plus-penalty algorithm

K M Observe that the probability mass functigh,(¢) that
%4 Z B ()™ + ZQk(t) [Z B (£)r™) — Ck] (26) minimizes the right-hand-side of (26) is the one that, with
k=1 m=1 probability 1, chooses the index € {1,..., M} that mini-
mizes the expression (breaking ties arbitrarily):
wherer{™ is the kth component of-(™) as defined in[{15), K
and the constanB is defined: VTém) + Z Qk(t)r,(cm) (28)

m=1

K k=1
1 . m 2 . . - .
B2  max _ B E E m(w) }pk (g( )(w),w) - Ck} This gives rise to the followinglrift-plus-penalty algorithm
1 k=1wen Every slott:



« Users observe the queue vec@®(t). Again rearranging(32) yields:
« Users select the pure decision strateg§” (w), where
m is the index that minimizes the expressiénl(28). E[L(t+D)]<(C+FV)t (33)
« The delayed penalty informatiom. (¢t — D) is observed whereC is defined:
and queues are updated Vial(25).
CAE[L(D)] + B(1+2D)

C. Performance Analysis and I is defined as a constant that satisfies the following for
Theorem 3:If the problem [IR){(14) is feasible, then undeg| s|ots

the dnft-plurs-penalty algonthm for any > 0: o F> pgpt —E[po(7)]
« All desired constraintd (13)-(14) are satisfied.
« For all t > 0, the time average expectation pf(t) Such a constant exists becaysgr) has a finite number of

satisfies: possible outcomes. Using the definition bt + D) in (33)
_ gives:
1< B(1+2D) EI[L(D)]
- < p* E[||Q(t+ D)||*] <2(C+ FV)t
; Z:;)E [po(n)] < w07 + =+ =55, (29) [l +D)IIF] <2(C+ FV)

. . By Jensen’s inequality:
« For all ¢t > 0, the time average expectation of(¢) 4 d y

satisfies the following for alk € {1,..., K}: E[||Q(t+ D)||]> < 2(C + FV)t
1 Thus:
n ;E [P (7)] < e + O(V/V/t) (30) E[||Q(t + D)|| _ 2(C+ FV)
t - t

The above theorem shows the time average expectation of o ) _
po(t) is within O(1/V) of optimality. It can be pushed asUsing this with Lemmé&5 proves (BO). The inequality(30)
close to optimal as desired by increasing thearameter. The immediately implies that all desired constraints are fatls
tradeoff is in the amount of time required for the time averag u
expected penalties to be close to their desired constrdints
can b_e _shown that ifD = 0 and a mild Slgter condition p The approximate drift-plus-penalty algorithm
is satisfied, then the boun@_{30) can be improved to (see ) _
Appendix D): The ?I orithm of Sectio VB assumes perfect !mowledge
of ther,”™’ values. These can be computed[byl (15) if the event
probabilitiesw(w) are known. Suppose these probabilities are
unknown, but delayed samplegt — D) are available at the
end of each slot. Let W be a positive integer that represents

_ Proof: (Theorem[B) Every slotr € {0,1,2,...} the 5gample sizeTher{™ values can be approximated by:
drift-plus-penalty algorithm chooses probabilitigs,(7) that

minimize the right-hand-side of the expressibnl (26). Thus: 1 !

t—1
P Epk()] < e+ O(V/1) + Ollog(t)/1)  (31)
=0

S(m) oy A (m)
7 () = —= P (g (w(t — D —w)),w(t—D —w)
E[A(r + D) + Vpo(7)|Q(7)] < B(1 +2D) ’ W 2 ( )
M K M
(m) (m) The approximate algorithm usé%m) (t) values in replace of
Vv Omre ~ + Qr(T 0,,r —c
mz::l 0 ; +(7) L; F k] r,(cm) in the expression (28). Analysis i [20] shows that the

performance gap between exact and approximate drift-plus-
fBenalty implementations i©(1/v/W), so that the approxi-
mate algorithm is very close to the exact algorithm wh&n

is large.

whered,, is any alternative probability mass function define
overm € {1,...,M}. Using the probabilitied,,, that opti-
mally solve the linear prograrf (IL)-(19) gives:

E[A(7 + D) + Vpo(7)|Q(7)] < B(1+2D) + Vpg

Taking expectations of both sides and using iterated eapede- Separable penalty functions

tions gives: A simpler and exact implementation is possible, without
EIA D VE < B(1 +92D) + Vp°Pt requiring knowledge of the probability distribution far(¢),
AT+ D) + [po(m)] = B(1+2D) + Vi when penalty functions have the following separable form fo
Summing overr € {0,1,...,t — 1} gives: all k€ {0,1,...,K}:
t—1 N
E[L(t+ D)] - E[L(D)] +V ) _Elpo()] < Prlonw) =Y pirlo,w;) (34)
7=0 i=1

o opt
B(1+2D)t+ Vg™t (32) where p;i(a;,w;) are any functions ofo;,w;) € A; x Q.

Using the fact thaffl [L(t + D)] > 0 and rearranging terms Choosing ann € {1,..., M} that minimizes the expression
proves [[2D). (28) is equivalent to observing the queu€gt) and then
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choosing a strategy functiog(w) = (g1(w1),...,9n(wn)) Consider binary actionsy;(t) € {0,1}, where o;(t) = 1
to minimize: corresponds to sensersending a report, and incurs a power
cost of1 for that sensor. The penalty and utility functions are:
Zﬂ ( ) Vpo +2Qk pk )] Zai(ai,wi) = Vi€{1,2,3}
we
A . loqw oWy + Q3w
With the structure[(34), this expression becomes: (o, w) min | —— =2 =1

10 20 ’

] Thus, sensor 1 brings more utility than the other sensors.

K
Vbio(gi(wi), wi +2Qk )Pir(gi(wi), wi) Assumew (t),ws(t), ws(t) are mutually independent and

IPID

wea =t _ o =t ) uniformly distributed ovef). The requirements for Theorem
The above is minimized by the following for each € [3 nold, and so one can restrict attention to tHethreshold
{1,....N}k functionsg; (w;) of the type[[2#). As it does not make sense to

report whenw;(t) = 0, the functionsg;(w) = 1 for all w can

be removed. This leaves only 10 threshold functions at each
user, for a total ofl0° = 1000 strategy functiong(™ (w) to

be considered every slot. The approximate drift-plus-figna

reduces to having each user observe its awft) value and @algorithm of Sectior VD is simulated over = 10° slots
then settingoi(t) = g:(w;(t)), where the functiony;(w;) is With a delayD = 10 and for various choices of the moving
defined above. The queue upddfel (25) is the same as befd¥¢erage window sizéV” and the parameteV’. All average
In the special cas® = 0, this is the same algorithm asPower constraints were met for all choicesléfandW. The
the optimal (centralized) drift-plus-penalty algorithnfi [d]. achieved utility is shown in Fig.]2. The utility increases to
Hence, for separable problems, there is no optimality g&plimiting value asV’ is increased. This limiting value can

between centralized and distributed algorithms. be improved by adjusting the number of sampl€&sused in
the moving average. Increasii§ from 40 to 200 gives a

small improvement in performance. There is only a negl@ibl
improvement wheriV is further increased td00 (the curves

for W = 200 and W = 400 look identical).
This subsection presents simulation results for the 2 user

sensor network example of Sectioh Il. The approximate-drit

gi(w;) = arg mlﬁ

K
szO (0417 w’L + Z Qk pzk (0417 wz)]

k=1
Thus, the minimization step in the drift-plus-penalty aitfon

VI. SIMULATIONS
A. Ergodic performance for a 2 user system

Time average utility versus V
0.5 T T

plus-penalty algorithm of Sectidn VD is used with a delay ¢

D = 10 slots and a moving average window sizelf= 40 0.45 -\ Wed00 ]

slots. The algorithm is not aware of the system probakslitie 2 W=200

The objective of this simulation is to find how close th¢ g o4

achieved utility is to the optimal valua”® = 23/48 ~ 5 W=40

0.47917 computed in Sectioh 1I-B. Recall that the desire §0-35

power constraints arg;, < 1/3 for each uset € {1,2}. The =

table in Fig[1 presents performance for various value¥ of

For V > 50 the achieved utility differs from optimality only 0.25 ‘ ‘ ‘ ‘

in the fourth decimal place. 0 20 o, 0 g 100
Vv u D1 Do Fig. 2. Achieved utilityw versusV for various choices ofV.
1 | 0.344639| 0.259764| 0.219525
5 | 0.454557] 0.333158| 0.267161 Fig.[4 demonstrates how thié parameter affects the rate
10 | 0.472763] 0.333335| 0.300415 of convergence to the desired constraints. The window size
25 | 0.478186| 0.333346| 0.326948 is fixed toW = 40 and the valuemax[p, (t), D, (t), P5(t)] is
50 | 0.479032] 0.333369| 0.332873 p|0tt8d fort € {07 1,..., 2000} (Whereg_?i(t) is the empirical
100 | 0.479218| 0.333406| 0.333334 average power expenditure of ugeup to slott). This value

Fig. 1.

Algorithm performance over =

Recall thatu®Pt = 23/48 ~ 0.47917.

10% slots (O = 10, W = 40).

approaches the desired constraintlgB more slowly when
V is large. The following table presents time averages after a
longer duration ofl0° slots.

_ Vv u D1 P2 D3
B. Ergodic performance for a 3 user system 1 | 0.259400| 0.258000| 0.251310| 0.251342
Consider a network of 3 sensors that communicate reports| 10 | 0.406263| 0.333301| 0.316371| 0.316418
to a fusion center, similar to the example considered iniGect 50 | 0.464545| 0.333357| 0.333341| 0.333342
[ The event processes (t) for each sensore {1, 2, 3} take 100 | 0.467642| 0.333387| 0.333354| 0.333354

values in the same 10 element $Et

Fig. 3. Time averages aftér= 106 slots (¥ = 40).

02{0,1,2,3,...,9}
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Average power versus time

Utility (averaged over 2000 runs) versus time (W=40)

0.8 T S0
= 0.5
0.7 5 sk
@ o
L o 0451
E0.46 g o
=] L
505 <0 ‘ ‘ ‘ ‘ ‘
E o 2000 4000 6000 8000 10000 12000
204 _ 4 Time t
g - User 1 power (averaged over 2000 runs) versus time (W=40)
g 0.3 5 0. T T T T T
g 3
0.2 8 04
> o
“o0af o
g
0 ‘ ‘ A <, ‘ ‘ ‘ ‘ ‘
O 500 1;]_000 1500 2000 [ 2000 4000 T?g?g ¢ 8000 10000 12000
ime t

Fig. 4. Anillustration of the rate of convergence to the degsiconstraini /3 Fig. 5. A sample path of average utility and power versus tia@ues at
for various choices ol/. The curves ploimax[p, (t), P, (t), P5(t)] versust.  each time slot are obtained by averaging the actual utility and power used
by the algorithm on that slot over 2000 independent simaatuns.

C. Adaptation to non-ergodic changes o _ o o
The initial queue state determines the coefficient of a{jne0|5|ons. Optl_m_al d'St.”bUted policies were construchyd
rrelating decisions via a source of common randomness.

O(1/t) transient in the performance bounds of the syste timal policy | table Vi i »

(consider theE [L(D)] /(Vt) term in [29)). Thus, if system | € OFt) 'ma p%'cgfl.t'.s compuka € via 3 twear rp])rograml_|

probabilities change abruptly, the system can be viewed %\g system probabililies are known, and through an oniine
algorithm with virtual queues if probabilities are unknawn

:ﬁztzgls?grxwt? raegé:f?gittslt?;g ;:82: Igﬁgﬁgg:& onepexcts The online algorithm assumes there is delayed feedback abou

To illustrate this, consider the same 3-user system of {RESVIOUS penalnes and rewards. The algor_|t_h_m was shown
previous subsection, using — 50,1 — 40. The event in S|mula_t|0n to adapt when system probabilities change. In
processesv;(t) have the same probabilities as given in thahe special case when the events obggrved at- each user are
previous subsection for slots< 4000 andt¢ > 8000. Call this independent _and when penalty and utility functions §ata;fy
distribution type 1 However, for slotg € {4000, ...,8000}, prefe_rred action propertythe number (.)f pure strategies for
the w;(t) processes are independently chosen with a diﬁere%qnaderatlon on each slot can be mg_mﬂcantly reducedj In
distribution as follows: some cases, this reduces an exponentially complex algorith

Priwi(t) = 0] P o (t) = 9] = 1/2 to one that has only polynomial complexity.
. w1 = = I'riwi = = .
o Prlws(t) =k|=1/4for k € {6,7,8,9}.

e Prlws(t) = k] = 1/4 for k € {6,7,8,9}. APPENDIXA — PROOF OFTHEOREMI]
This is calleddistribution type 2 _This _appendix proves Theorem 1. Define thE + 1)-
Fig. [§ shows average utility and average power over tif#mensionapenalty vectors
first 12000 slots. Values at each slotare averaged ove&000
t) = t),pi(t t
independent system runs. The two dashed horizontal lines in p(t) (Zjo( ALY )A’ P (1)) R
the top plot of the figure are long term time average utilities pla,w) = (Pola,w) pr(e,w),....px (e, w))
achieved overl0® slots under probabilities that are fixed ator eachm € {1,..., M}, define:
distribution type 1 and type 2, respectively. It is seen that
system adapts to the non-ergodic change by quickly adstin =™ £ Z m(w)p(g'™ (w),w) = (rgm>,r§m>, . ,r%”))
to the new optimal average utility. The figure also plots ager weQ

power of userl versus time, with a dashed horizontal line apefine R as the convex hull of these vectors:
the power constraint/3. A noticeable disturbance in average N ) o
power occurs at the non-ergodic changes in distribution. R=Conv ({T( ) )})

It was observed that system performance is not very Seﬂ%e setR is convex, closed, and bounded. From the nature of

sitive to inaccurate estimates of thém) values (results not ) :
shown in the figures). This suggests that, for this exampie, tthe convex hull operation, the s& can be viewed as the set

. S of all average penalty vectors achievable by timesharirey ov
virtual queues alone are sufficient to ensure the averagermo

constraints are met, which, together with loose estimates %EM d|ﬁer§nt pure strateg@s_. .
(m) Lemma 7:Let a(t) be decisions of an algorithm that sat-

Ty o are sufficient to provide an accurate approximation ngies the distributed scheduling constralntl(11) on evéot s
optimality. Then:

a) For all slotst € {0,1,2,...}:
VIl. CONCLUSIONS @ €{0.1,2,.}
This paper treated distributed scheduling in a multi-user Elp(t) e R
system where users know their own observations and actions(b) For all slotst € {1,2,3,...}:
but not those of others. In this context, there is a funda- e
mental performance gap between distributed and centdalize p(t)eR



where

t—1
P12 S Ep(r)
7=0
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Using [38) in the last inequality above gives:

Proof: Part (b) follows immediately from part (a) together

with the fact thatR is convex. To prove part (a), fix a slot
t€{0,1,2,...}. By (1), the users make decisions:

aft) = (filwi(t), X(1)), ..., fn(wn (1), X (1))
For eachX (t) € X andw € £, define:

gX(t)(w) = (filw1, X)), ..., fnv(wn, X (1))

Then, givenX (t), the functiong x(,)(w) is a pure strategy.
Hence, gy (w) = g™ (w) for somem e {1,...,M}.
Define mx ) as the valuen € {1,..., M} for which this
holds. Thusg ;) (w) = g™x®)(w), and:

EpMIX(H)] = Efp(alt),w )X ()]
E[p (9 (@(®).w(®)) 1X(0)]
> w(@)p (9 (w),w)

weR
r(mx(t))

Taking expectations of both sides and using the law of iberat
expectations gives:

M

The above is a convex combination iV, ... »(*)} and
hence is inR. [ |
Lemma 8:There exist real numbers, o, ..., rx that sat-
isfy the following:
re<ec Vke{l,...,K} (35)
(pgpt,rl,rg,...,TK)GR (36)

Furthermore, the vector if (B6) is on theundaryof R.

re(q) <ecx Vke{l,...,K} (40)

Further, substitutind (39) intd_(87) gives:
po’ < role) < v +1/q (41)
This holds for all positive integerg. Thus, {r(q)}2; is

an infinite sequence of vectors R such thatr(q) satisfies
(40) and [(41L) for allg € {1,2,3,...}. BecauseR is closed
and bounded, the sequenge(q)}52, has a limit pointr =
(ro,71,...,7K) € R that satisfies;; = pi¥* andry, < ¢, for
all ke {1,...,K}. This proves[(35) and (36).

To prove that- is on theboundaryof R, it suffices to note
that for anye > 0:

opt

(po '7TK)¢R

Indeed, if this were not true, it would be possible to congtru
a distributed algorithm that satisfies all desired constsaand
yields a time average expected valuggft) equal top)” —e,
which contradicts the definition gf}"". [

BecauseR = Conv({r(M ... .rO)1) Lemmal8 implies
there are probabilitieg,,, that sum to 1 such that:

M
.. ,TK) = Z Omr(m)
m=1

BecauseR is a (K + 1)-dimensional set, Caratheodory’s
theorem ensures the above can be written using at Kiasp

—€T1,..

opt
o »T1,-

(p

non-zerod,, values. However, because the above vector is

on theboundaryof R, a simple extension of Caratheodory’s
theorem ensures it can be written using at n#ést1 non-zero
0, valued This proves Theoref 1.

APPENDIXB — A COUNTEREXAMPLE

This appendix shows it is possible for an algorithm to satisf
the conditional independence assumptiod (10) while yigjdi
expected utility strictly larger than that of any distribdt

Proof: Fix q as a positive integer. Consider an algorithr!gorithm. Consider a two user system with (¢), wa (1)
that satisfies the distributed scheduling constrdint (Myye ndependent and i.i.d. Bernoulli processes with:

slot. Fork € {0,1,...,K}, let 5, (t) be the resulting time Prlw;(t) = 1] = Priw;(t) = 0] = 1/2 Vi € {1,2}
average expected penalties. Assume the algorithm satisfies
ont The actions are constrained to:
pop + 1/q (37)

al(t) € {_17 1} a2(t) € {_17 1}
c,. Veed{l,...,K 38 ] N )
g { bG8 Define the utility function:

pgP' < limsupPy(t) <
t—o0

)

<

limsuppy(t) <
t—o00

Such an algorithm must exist becaugs@%”t is the infimum
objective value for[{(12) over all algorithms that satisfye th
constraints[(TI3)E(14).

ﬁ(Oﬂ, Oéz,wl,wz) = g(w1,W2)01062
whereg(wy,ws) = 1 — 2wiws. Thend(-) € {—1,1}. Fig.[8
LemmalY implies thap(t) = (By(t).. ... Px(t)) € R for indicates when the utility is 1. _ _
all t > 0. Let t,, be a subsequence of times over whigft) Consider now the followingcentralized algorithm Every

achieves itdim sup. Sincep(t,,) is in the closed and boundedS!ot £, Observe(w: (1), w2(t)) and computey(ws (1), wa(t)).
setR for all ¢, > 0, the Bolzano-Wierstrass theorem implies « If g(wi(t),w2(t)) = 1, independently choose:

there is a subsequenpét,,, ) that converges to a poim{q) € (1,1) with probability 1/2

R, wherer(q) = (ro(g), ..., (q)). Thus: (cn(t), az()) = { (—1,—1)  with probability 1/2

rolg) = n}gnoopo(tnm) = llill)soljppo(t) (39) 2This extension to points on the boundary of a convex hull can b
_ S, : = proven using Caratheodory’s theorem together with the auipg hyperplane

mle) = mlﬂnoo Pi(tn,,) < h?isogppk () Vk e {l,.... K} theorem for convex set5 [21].
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wi | wy | g(wr,wp) | Conditions required fof = 1 whereA; = {0,1} fori € {1,..., N}, bis a real number, and
010 1 a1 = Q2 all functions¢;(w;) are non-decreasing ;. Thenp(a, w)
01 1 a1 = Qs is non-increasing in the vector. Furthermore, for any given
110 1 a1 = o i€{l,...,N}, anya; € A;, w; € Q;, and anyw,y € €,
11 -1 ) one has:
Fig. 6. A table showing the conditions needed fdkx1, a2, wi,w2) = 1.
p([eg, 0], [wy,w]) = —min {Z b; (wj)aj,b]
JFi

o If g(w1(t),ws(t)) = —1, independently choose:
(1,—1) with probability 1/2
(1 (t), a2(t)) = (-=1,1)  with probability 1/2 Thus, p(a, w) satisfies the requirements of Lemia 9. m
Proof: (Lemmal2) Suppose:

= p(leg, 0], [wz, 7))

The randomization ensures that regardles§gft), wa(t)):

N
1 A
Priog(t) = lwi(t) wa(t)] = 3 Ployw) ==Y wiei [J(1 - ay)
i=1 J#i
1
Prias(t) = 1w (t),wa(t)] = 5 whereq; € {0,1} andw; € {0,1,...,|Q;] — 1} forall i €
and hence the conditional independence assumpifion (10)1s- - '.’N}' Thenp(c, w) is non-increasing in the» vector.
satisfied. This algorithm guarantees the utility functisnli NOw fixi € {1,..., N}, fix oz, w;, and fixw,y € Q;. Then:
for all possible outcomes, and so the expected utility i als . - o o
However, it can be shown that an optinatributed algorithm (lo7, 0, [w,w]) - = ;wkak Hk(l ;)
is the pure strategy; (t) = o (t) = 1 for all ¢ (regardless of . i 0 7
w1 (t),ws(t)), which yields an expected utility of only/2. = (a7, 0 [wy, )
Thus, p(a, w) satisfies the requirements of Lemfda 9. =
APPENDIXC — PREFERREDACTION LEMMAS Proof: (Lemmal3) Suppose:
This appendix provides proofs of Lemnid§]1-4. The proofs N
of Lemmaﬂ an@2 follow frpm }he following lemma. Plo,w) = H@(wi)%(ai)
Lemma 9:A penalty functionp(a,w) has the preferred e

action property if it satisfies the following three propesti
e A;={0,1} forie {1,...,N}.
» p(a,w) is non-increasing in the vectar. That is, for all
a € A and all vectorsv, v € Q that satisfyw < ~ (with
inequality taken entrywise), one has

where ¢;(w;) is non-negative and non-increasing dp and
¥;(a;) 1s non-negative and non-decreasingdn Fix i €
{1,...,N}, fix a3, w;, and fixa, 8 € A;, w,vy € Q; that
satisfya > 8 andw < v. The goal is to show:

Pl al, [wy, w]) = p([eg, B]; [wy, w])

Pla, w) > pla,y) R R
> p([e, al, [wy,9]) — p([e, B, [ws,7])

« Givena; = 0, p(a, w) does not depend on;. That is,

forall i € {1,..., N}, all possible values of; € A;, By canceling common (non-negative) factors, it suffices to
w; € £, and allw,y € Q;, one has: show:
P([ey, 0], [wy, w]) = p([e, 0], [wy, 7]) bi(w)i(a) — di(w)vi(B) > ¢i(7)vi() — ds(7)i(B)

Proof: Fix i € {1, .. .,N}, fix o;, wy, and fixa, 8 € This is equiva|ent to:
{0,1}, w,~v € Q; that satisfya > 8 andw < ~. Sinceq, 8
are binary numbers that satisfiy> 3, it must be thaty = 1, Gi(w)(Yi(a) —i(B)) = ¢i(v)(Yila) — ¥i(B)) (42)

f# = 0. The goal is to show: Sincea > # and¢;(«) is non-decreasing, one has(a) —

(o, 1], [wr, w]) — p([az, 0], [wr, w]) ¥;(B) > 0. By canceling the common (non-negative) factor,
> pllaxz, 1), lwp, 1) = B, 0], [wr, 7)) t suffices to show:
Since the second term on the left-hand-side is the same as the di(w) > ¢i(7)

second term on the right-hand-side, it suffices to show:  1.c s true because < ~ and¢;(w) is non-increasing. m

(o, 1], [wy,w]) > p([as, 1], [ws,7]) Proof: (Lemmal[4) Suppose:

The above inequality is true because< ~ and p(a, w) is A R A
non-increasing in the vectes. [ ] ple,w) = ZprT(a""’)
Proof: (Lemma[l) Suppose: r=1
N where w, are non-negative constants, and each function
p(e, w) = —min lz ¢i(wi)ai7b] pr(a,w) has the preferred action property. Fik €
P {1,...,N}, fix a3, w;, and fixa, 8 € A;, w,y € Q; that
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satisfy« > 8 andw < ~. Since each functiop,.(a,w) has Such a valued,,., exists because all penalty functions

the preferred action property, one has forralt {1,...,R}: pr(a(t),w(t)) are bounded.

R ) Lemma 10:Let 6,4, be a positive value that satisfiés{48).
pr(log, o, lwy, w]) = pr(log, B, lwy W) Let A be a non-negative real number, anddet 0. Assume

> pr(log, o], [wy,7]) = pr([og, Bl [w7,7]) [|Q(0)|| = 0 with probability 1, and that for all slotsand all

Multiplying the above inequality byw, and summing over possibleQ(t) one has:

r € {1,..., R} proves that)(a, w) has the preferred action K
property. [ E[A®)|QH)] < A—€d Qu(t) (49)
k=1
VIIl. A PPENDIXD — THE SLATER CONDITION Then for all slotst € {1,2,...}:
For a given real number> 0, consider the following linear e®l <
program that is related to the linear progrdml (16)-(19): log(2) . 94 ¢ . log(2¢[e¥mer — 1))
|22 £
Minimize: M O™ (43) ro’ 2 r
Subject to: "M 6,,r™ < ¢, —€ Vk € {1,..., K}(44) wherer is defined:
Om >0V¥Yme{l,...,.M (45) - < 50
M { } " 53nam + E(anaz/:; ( )
D1 Om =1 (46)

Using A = B + FV in (@4) shows that the system under
If ¢ > 0, the penalty constraints are tighter above than iydy satisfies the requirements of the above lemma, which
the linear prograni(16]-(19) (compafe(44) ahdl (17)). Definoves that[(31) holds. The proof of the above lemma relies
G(e) as the the optimal objective value {43) as a function @feavily on drift analysis in[[23] and results for exponetetih

the parameter. ThenG(0) = pg™, wherep(™ corresponds martingales in[[24].

to the original linear prograni_(16)-(119). Defirg,., as the Proof: (Lemmal10) Suppose that:

largest value ofe for which (43)-[46) is feasible. Suppose

€maz > 0. This means it is possible to satisfy the desired time 1Q(t)]] = max [24/€, €/2] (51)
average penalty constraints with a slackness,f, in each gy definition of A(t), one has from[{49):

constraintk € {1,..., K}. The conditione,,,, > 0 is called )

the Slater condition[22]. E[llQ(t+1)|PlQ®)]

For simplicity of exposition, assum@ = 0. Since the drift-

K
1Q()I° +24 - 2¢ ) Qu(t)

plus-penalty algorithm takes actions that minimize théntrig <
hand-side of[(26) over all probability mass functigfs (¢), k=1
one has: < IQMI* +24 = 2¢[|Q(1)]| (52)
2
E[A(1) + Vpo(£)|Q(t)] < B < QM) —€||Q2(t)|| (53)
by K N < (Rl —e€/2)
14 Z 9m7°((Jm) + ZQk(f) Z 9m7°1(gm) —Ck where [52) holds because the sum of the components of a
m=1 k=1 m=1 non-negative vector is greater than or equal to its norm, and
for any values,,, that satisfy [45)i46). Using,,, values that (53) holds becausé (b1) implie§Q(¢))|| > 2A. By Jensen's
solve [@3){(@b) for the case= €,,q. gives: inequality:
E[A(t) 4+ Vpo(t)|Q(t)] < B E[|Q(t + DIQ®))* < (Q()| - /2)*

Taking the square root of both sides and us[ng (51) gives:

K
VG €mazx) — €mazx Q 3
(o) kz::l 0 EfllQ+DIQRMI] < Q)| — /2 (54)

Therefore, for all slotg € {0,1,2,...} one has: Define C' by:
K C2max [24/e¢,¢/2]
E[AMB)IQM)] < B+ FV —emar y_ Qk(t)  (47) g0 that [(54) holds whenevéiQ(t)|| > C. Defined(t) by:
k=1
where I is a constant that satisfies the following for all slots s(O2Qx+ DIl - [lRMI
t and all possible values @(t): and note thatd(t)| < d,nq. for all ¢. It follows that:

F > G(emaz) = E[po(1)|Q(1)]

Now defined,,., as the largest possible change|j6)(t)||
from one slot to the next, so that regardless of the controlDefine Y(t) = ¢"lIQUll for a positive value ofr to be
decisions, one has: determined. Assume thatsatisfies:

1QEt+ D = QW] < dmae YVt €{0,1,2,...} (48) 0 < 76maz <3 (56)

maz Otherwise (55)

E[5()|Q(1)] < { ~2 1 QW > ¢
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Then: By Jensen’s inequality for the convex functiefi one has:
Y(t+1)=Y(t) = e 1RWIero® _y(y) BRI _ 1 < ¢rCleromas _ 1)t

= Y@ 1] Thus:

Y()ler’® —1] if Q)| = C rCpr
< { ¢"Clermar — 1] otherwise rE[|QM)|] < log(l+ e Cemmes —1]t)
) ) o _ < max[log(2),log(2e"C[e"0mes — 1]t)]
Now defineg(z) as the function that satisfies the following o

for all real numbers:: < max(log(2),7C + log(2t[e — 1))

. 22 Dividing the above by gives the following, which holds for
e* —1=x+—g(z) (57)  all integerst > 0:
By resqlts_ in. [24], the functiory(x) is non-decreasing im: E[|Q(t)|[] < max 10g(2)7c+ log(2t[emOmas — 1])
and satisfies: r r
(1) < — Yz e[0,3) (58) -
=73 TED
It follows from (57) that: APPENDIXE — THE CONSTANT IN THEOREMI[3]
(rd(¢))? This appendix proves the inequality involving ti2e3D
O 1 = i) + LR () constant at the end of the proof of Theoréin 3. Frém (25)
( 52 )2 one has for all queues € {1,2,..., K} and all slotsr:
r max
< t max
= Ty o) Qu(r +1) = Qu()| < lpn(r = D) —
< ré(t)+ (rdmas) Thus, for all slotst:

2(1 — r6max/3)

where the final inequality usels {58), which is justified besgau |Qr(t+ D) — Qi(t)| < Z 1Qr(t+d) — Qr(t +d—1)|
T0maz Satisfies[(86). Thus: =

D
Y{e+1)-Y(@) 5 . < Z|pk(t+d—1—D)—ck|
o ] YOI + gplre=ls] i Q) > C d=1
- e"Clermas — 1] otherwise D
= Z |pi(ta) — ckl
Taking expectations and using {55) gives: d=1
EY(t+1)-Y(1)|Q()] where for notational simplicity,; has been defined:
—re Omaz )’ .
< YO+ gety] QM= C At d—1-D
e"Clerdmas — 1] otherwise
Thus:
Now chooser so that: K
re __ (rfmaa)® > (@Qult + D) = Qu()) (pi(t) - )
2 2(1 = rdmaz/3) k=1
K D
This holds forr as defined in[{50), and this choice of <
ta) — —
maintains the inequality (56). Thus: - kz;:dz;: Ipr(ta) = exllp(t) = el
EY(t+1)—-Y(®)|Q(1)) Taking expectations of the above and using the Cauchy-
0 if |Q(1)]| > C Schwartz inequalitf:
= { rClerdmaz — 1] otherwise K
Therefore, for all slots: E [Z(Qk(t +D) = Q) (pu(t) — Ck)]
k=1
E[Y(t41) = Y(t)] < e Clemomas — 1] K D
_ _ < DY VEIlpk(ta) — celPIVE [Ipe(t) — cxl?]
Summing the above overe {0, 1,...,t—1} for some integer el d—1
t > 0 gives: D
E[Y(t)] —E[Y(0)] < e [emmes — 1]t < Z\l E [k (ta) — cxl?] JZE [lpx(t) — cxl?]

I
Il

1
SinceY (0) = 1 with probability 1, andy (t) = e"llR®II one
has: 3Strictly speaking, these expectations should be conditioan Q(t) to
Q|| PO 16man match with the inequalities at the end of Theofédm 3. Thatiekmglonditioning
E [6 } —1<e™] —1Jt has been suppressed to simplify the expressions.



where the final inequality follows because the inner product
of two vectors is less than or equal to the product of norms.
The right hand side is less than or equal to:

(1]

(2]

(3]

(4]
(5]

(6]
(7]
(8]
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[12]

[13]

[14]

[15]
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[17]
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[20]

[21]
[22]

(23]

[24]

D
Z V2BvV2B = 2BD
d=1
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