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Abstract—This paper considers a problem where multiple
users make repeated decisions based on their own observed
events. The events and decisions at each time step determine
the values of a utility function and a collection of penalty
functions. The goal is to make distributed decisions over time to
maximize time average utility subject to time average constraints
on the penalties. An example is a collection of power constrained
sensor nodes that repeatedly report their own observationsto
a fusion center. Maximum time average utility is fundamentally
reduced because users do not know the events observed by others.
Optimality is characterized for this distributed context. It is
shown that optimality is achieved by correlating user decisions
through a commonly known pseudorandom sequence. An optimal
algorithm is developed that chooses pure strategies at eachtime
step based on a set of time-varying weights.

I. I NTRODUCTION

Consider a multi-user system that operates over discrete
time with unit time slotst ∈ {0, 1, 2, . . .}. There areN users.
At each time slott, each useri observes arandom eventωi(t)
and makes acontrol actionαi(t) based on this observation.
Let ω(t) andα(t) be vectors of these values:

ω(t) = (ω1(t), ω2(t), . . . , ωN(t))

α(t) = (α1(t), α2(t), . . . , αN (t))

For each slott, these vectors determine the values of a
system utility u(t) and a collection ofsystem penalties
p1(t), . . . , pK(t) (for some non-negative integerK) via real-
valued functions:

u(t) = û(α(t),ω(t))

pk(t) = p̂k(α(t),ω(t)) ∀k ∈ {1, . . . ,K}

The functionŝu(·) andp̂k(·) are arbitrary and can possibly be
negative. Negative penalties can be used to represent desirable
system rewards.

The goal is to make distributed decisions over time that
maximize time average utility subject to time average con-
straints on the penalties. Central to this problem is the
assumption that each useri can only observeωi(t), and
cannot observe the value ofωj(t) for other usersj 6= i.
Further, each useri only knows its own actionαi(t), but
does not know the actionsαj(t) of others. Therefore, each
user only knows a portion of the arguments that go into the
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functions û(α(t),ω(t)) and p̂k(α(t),ω(t)) for each slott.
This uncertainty fundamentally restricts the time averages that
can be achieved.

Specifically, assume the random event vectorω(t) is inde-
pendent and identically distributed (i.i.d.) over slots (possibly
correlated over entries in each slot). The vectorω(t) takes
values in some abstractevent spaceΩ = Ω1×Ω2×· · ·×ΩN ,
where ωi(t) ∈ Ωi for all i ∈ {1, . . . , N} and all slotst.
Similarly, assumeα(t) is chosen in some abstractaction
spaceA = A1 × A2 × · · · × AN , whereαi(t) ∈ Ai for
all i ∈ {1, . . . , N} and all slotst. Let u and pk be the time
average expected utility and penalty incurred by a particular
algorithm:1

u = lim
t→∞

1

t

t−1
∑

τ=0

E [u(τ)]

pk = lim
t→∞

1

t

t−1
∑

τ=0

E [pk(τ)]

The following problem is considered:

Maximize: u (1)

Subject to: pk ≤ ck ∀k ∈ {1, . . . ,K} (2)

Decisions are distributed (3)

whereck are a given collection of real numbers that specify
constraints on the time average penalties.

The constraint that decisions must be distributed, specified
in (3), is not mathematically precise. This constraint is more
carefully posed in Section III. Without the distributed schedul-
ing constraint, the problem (1)-(2) reduces to a standard prob-
lem of stochastic network optimization and can be solved via
thedrift-plus-penalty method[1]. Such a centralized approach
would allow users to coordinate to form an action vectorα(t)
based on full knowledge of the event vectorω(t). The time
average utility achieved by the best centralized algorithmcan
be strictly larger than that of the best distributed algorithm.
This is shown for an example sensor network problem in
Section II.

A. Applications to sensor networks

The above formulation is useful for a variety of stochastic
network optimization problems where distributed agents make
their own decisions based on partial system knowledge. An
important example is a network of wireless sensor nodes that

1For simplicity, it is temporarily assumed that the time averages exist. A
more precise formulation is specified in Section III usinglim inf andlim sup.
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repeatedly send reports about system events to a fusion center.
The goal is to make distributed decisions that maximize time
averagequality of information. This scenario was previously
considered by Liu et al. in [2]. There, sensors can provide
reports every slott using one of multiplereporting formats,
such as text, image, or video. Sensors can also choose to
remain idle on slott. Thus, the action spacesAi are the same
for all sensorsi:

αi(t) ∈ Ai
△

={idle, text, image, video} ∀i ∈ {1, . . . , N}

where the notation “△=” representsdefined to be equal to. Each
format requires a different amount of power and provides a
different level of quality. For example, definepi(t) as the
power incurred by sensori on slot t, where:

pi(t) =















0 if αi(t) = idle
ptext if αi(t) = text
pimage if αi(t) = image
pvideo if αi(t) = video

whereptext, pimage, pvideo represent powers required for each
of the three reporting formats and satisfy:

0 < ptext < pimage < pvideo

Assume thatωi(t) represents thequality that sensori would
bring to the fusion center if it reports the event it observeson
slot t using the video format. Definef(αi(t)) as the fraction
of this quality that is achieved under formatαi(t):

f(αi(t)) =















0 if αi(t) = idle
ftext if αi(t) = text
fimage if αi(t) = image
1 if αi(t) = video

where
0 < ftext < fimage < 1

The prior work [2] considers the problem of maximizing
time average utility subject to a time average power constraint:

N
∑

i=1

pi ≤ c

where c is some given positive number. Further, that work
restricts to the special case when the utility function is a
separable sumof functions of useri variables, such as:

u(t) =

N
∑

i=1

fi(αi(t))ωi(t)

Such separable utilities cannot model the realistic scenario
of information saturation, where, once a certain amount of
utility is achieved on slott, there is little value of having ad-
ditional sensors spend power to deliver additional information
on that slot. The current paper considers the case ofarbitrary,
possibly non-separableutility functions. An example is:

u(t) = min

[

N
∑

i=1

f(αi(t))ωi(t), 1

]

This means that once a total quality of1 is accumulated from
one or more sensors on slott, there is no advantage in having

other sensors report information on that slot. This scenario is
significantly more challenging to solve in a distributed context.
For example, suppose theωi(t) variables are binary valued,
representing whether or not sensori observes an event on slot
t. Supposeω1(t) = ω2(t) = 1. Utility is maximized if either
sensor 1 or sensor 2 decides to report in the video format.
Power is wasted if they both send video reports. However,
sensor 1 does not know the value ofω2(t), sensor 2 does
not know the value ofω1(t), and neither sensor knows what
format will be selected by the other.

B. Applications to wireless multiple access

The general formulation of this paper can also treat simple
forms of distributed multiple access problems. Again suppose
there areN wireless sensors that report to a fusion center.
For eachi ∈ {1, . . . , N}, define ωi(t) as thequality that
a transmission from sensori would bring to the system if
it transmits on slott. Define αi(t) as a binary value that
is 1 if sensori transmits on slott, and 0 else. Assume the
network operates according to a simple collision model, where
a transmission from sensori is successful on slott if and only
if it is the only sensor that transmits on that slot:

u(t) =

N
∑

i=1

ωi(t)



αi(t)
∏

j 6=i

(1 − αj(t))



 (4)

The above utility function is non-separable. Concurrent work
in [3] considers a similar utility function for wireless energy
harvesting applications.

C. Contributions and related work

The framework of partial knowledge at each user is similar
in spirit to a multi-player Bayesian game[4][5]. There, the
goal is to design competitive strategies that lead to a Nash
equilibrium. This is significantly different from the goal of the
current paper. The current paper is not concerned with compe-
tition or equilibrium. Rather, there is a single utility function
that all users desire to maximize. Distributed algorithms are
developed to maximize time average utility subject to time
average penalty constraints.

This paper shows that an optimal distributed algorithm can
be designed by having users correlate their decisions through
an independent source of common randomness (Section III).
Related notions of commonly shared randomness are used
in game theory to define acorrelated equilibrium, which is
typically easier to compute than a standard Nash equilibrium
[6][7][5][4]. For the current paper, the shared randomnessis
crucial for solving the distributed optimization problem.This
paper shows that optimality can be achieved by using a shared
random variable withK + 1 possible outcomes, whereK is
the number of penalty constraints. The solution is computable
through a linear program. Unfortunately, the linear program
can have a very large number of variables, even for 2-user
problems. A reduction to polynomial complexity is shown
to be possible in certain cases (Section IV). This paper also
develops an online algorithm that chooses pure strategies every
slot based on a set of weights that are updated at the end
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of each slot (Section V). The online technique is based on
Lyapunov optimization concepts [1][8][9].

Much prior work on network optimization treats scenarios
where it is possible to find distributed solutions with no
loss of optimality. For example, network flow problems that
are described by linear or separable convex programs can
be optimally solved in a distributed manner [10][11][12][9].
Problems where network nodes want to average sensor data
[13] or compute convex programs [14] have distributed solu-
tions. Work in [15] solves for an optimal vector of parameters
associated with an infinite horizon Markov decision problem
using distributed agents. Work in [16][17][18] develops dis-
tributed multiple access methods that converge to optimality.
However, the above problems do not have random events that
create a fundamental gap between centralized and distributed
performance.

Recent work in [19] derives structural results for distributed
optimization in Markov decision systems with delayed infor-
mation. Such problemsdo exhibit gaps between centralized
and distributed scheduling. The use ofprivate informationin
[19] is similar in spirit to the assumption in the current paper
that each user observes its own random eventωi(t). The work
[19] derives a sufficient statistic for dynamic programming. It
does not consider time average constraints and its solutions
do not involve correlated scheduling via a pseudorandom
sequence. Recent work in [3] considers distributed reporting of
events with different qualities, but considers a more restrictive
class of policies that do not use correlated scheduling. The
current paper treats a different model than [19] and [3], and
shows that correlated scheduling is necessary in systems with
constraints. Further, the current paper provides complexity
reduction results under a preferred action property (Section
IV) and provides an online algorithm that does not require
a-priori knowledge of event probabilities (Section V).

II. EXAMPLE SENSOR NETWORK PROBLEM

This section illustrates the benefits of using a common
source of randomness for a simple example network. Suppose
the network has two sensors that operate over time slots
t ∈ {0, 1, 2, . . .}. Every slot, the sensors observe the state
of a particular system and choose whether or not to report
their observations to a fusion center. Letωi(t) be a binary
variable that is 1 if sensori observes an event on slott, and
0 else. Letα1(t) andα2(t) be the slott decision variables,
so thatαi(t) = 1 if sensori reports on slott, andαi(t) = 0
otherwise. Suppose the fusion center trusts sensor 1 more than
sensor 2. The utilityu(t) is:

u(t) = min[ω1(t)α1(t) + ω2(t)α2(t)/2, 1]

so that the deterministic function̂u(·) is given by:

û(α1, α2, ω1, ω2) = min[ω1α1 + ω2α2/2, 1] (5)

Therefore,u(t) ∈ {0, 1/2, 1} for all slots t. If ω1(t) = 1 and
sensor 1 reports on slott, there is no utility increase if sensor
2 also reports.

Each report uses one unit of power. Letpi(t) be the
power incurred by sensori on slot t, being 1 if it reports

its observation, and0 otherwise. The power penalties for
i ∈ {1, 2} are:

pi(t) = αi(t) (6)

so thatp̂i(α1, α2, ω1, ω2) = αi for i ∈ {1, 2}. Each sensori
can choosenot to report an observation in order to save power.
The difficulty is that neither sensor knows what event was
observed by the other. Therefore, a distributed algorithm might
send reports fromboth sensors on a given slot. A centralized
scheduler would avoid this because it wastes power without
increasing utility.

Suppose thatω1(t) andω2(t) are independent of each other
and i.i.d. over slots, with:

Pr[ω1(t) = 1] = 3/4, P r[ω1(t) = 0] = 1/4

Pr[ω2(t) = 1] = 1/2, P r[ω2(t) = 0] = 1/2

To fix a specific numerical example, consider the following
problem:

Maximize: u (7)

Subject to: p1 ≤ 1/3 , p2 ≤ 1/3 (8)

Decisions are distributed (9)

A. Independent reporting

Consider the following class ofindependent scheduling
algorithms: Each sensori independently decides to report with
probability θi if it observesωi(t) = 1 (it does not report
if ωi(t) = 0). Sinceω(t) is i.i.d. over slots, the resulting
sequences{u(t)}∞t=0, {p1(t)}∞t=0, {p2(t)}∞t=0 are i.i.d. over
slots. The time averages are:

p1 =
3

4
θ1 , p2 =

1

2
θ2

u = E [u(t)|ω1(t) = 1, ω2(t) = 0]
3

4

1

2

+E [u(t)|ω1(t) = 0, ω2(t) = 1]
1

4

1

2

+E [u(t)|ω1(t) = ω2(t) = 1]
3

4

1

2

=
3

4

1

2
θ1 +

1

4

1

2
(θ2/2) +

3

4

1

2
(θ1 + (1− θ1)θ2/2)

For this class of algorithms, utility is maximized by choos-
ing θ1 andθ2 to meet the power constraints with equality. This
leads toθ1 = 4/9, θ2 = 2/3. The resulting utility is:

u = 4/9 ≈ 0.44444

B. Correlated reporting

As an alternative, consider the following three strategies:

• Strategy 1:ω1(t) = 1 =⇒ α1(t) = 1 (else,α1(t) = 0).
Sensor 2 always choosesα2(t) = 0.

• Strategy 2:ω2(t) = 1 =⇒ α2(t) = 1 (else,α2(t) = 0).
Sensor 1 always choosesα1(t) = 0.

• Strategy 3:ω1(t) = 1 =⇒ α1(t) = 1 (else,α1(t) = 0).
ω2(t) = 1 =⇒ α2(t) = 1 (else,α2(t) = 0).

The above three strategies arepure strategiesbecauseαi(t)
is a deterministic function ofωi(t) for each sensori. Now let
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X(t) be an external source of randomness that is commonly
known at both sensors on slott. AssumeX(t) is independent
of everything else in the system, and is i.i.d. over slots with:

Pr[X(t) = 1] = θ1

Pr[X(t) = 2] = θ2

Pr[X(t) = 3] = θ3

whereθ1, θ2, θ3 are probabilities that sum to 1. Consider the
following algorithm: On slott, if X(t) = m then choose
strategym, where m ∈ {1, 2, 3}. This algorithm can be
implemented by lettingX(t) be a pseudorandom sequence
that is installed in both sensors at time 0. The resulting time
averages are:

p1 = (θ1 + θ3)
3
4 , p2 = (θ2 + θ3)

1
2

u = θ1
3
4 + θ2

1
2
1
2 + θ3(

3
4 + 1

4
1
2
1
2 )

A simple linear program can be used to compute the optimal
θ1, θ2, θ3 probabilities for this algorithm structure. The result
is θ1 = 1/3, θ2 = 5/9, θ3 = 1/9. The resulting time average
utility is:

u = 23/48 ≈ 0.47917

This is strictly larger than the time average utility of0.44444
achieved by the independent reporting algorithm. Thus, per-
formance can be strictly improved by correlating reports via a
common source of randomness. Alternatively, the same time
averages can be achieved bytime sharing: The two sensors
agree to use a periodic schedule of period 9 slots. The first3
slots of the period use strategy 1, the next 5 slots use strategy
2, and the final slot uses strategy 3.

C. Centralized reporting

Suppose sensors coordinate by observing(ω1(t), ω2(t)) and
then cooperatively selecting(α1(t), α2(t)). It turns out that
an optimal centralized policy is as follows [1]: Every slott,
observe(ω1(t), ω2(t)) and choose(α1(t), α2(t)) as follows:

• (ω1(t), ω2(t)) = (0, 0) =⇒ (α1(t), α2(t)) = (0, 0).
• (ω1(t), ω2(t)) = (0, 1) =⇒ (α1(t), α2(t)) = (0, 1).
• If (ω1(t), ω2(t)) = (1, 0), independently choose:

(α1(t), α2(t)) =

{

(1, 0) with probability 8/9
(0, 0) with probability 1/9

• If (ω1(t), ω2(t)) = (1, 1), independently choose:

(α1(t), α2(t)) =

{

(0, 1) with probability 5/9
(0, 0) with probability 4/9

The resulting optimal centralized time average utility is:

u = 0.5

This is larger than the value0.47917 achieved by the dis-
tributed algorithm of the previous subsection.

The question remains: Is it possible to construct some other
distributed algorithm that yieldsu > 0.47917? Results in the
next section imply this is impossible. Thus, the correlated
reporting algorithm of the previous subsection optimizes time
average utility over all possible distributed algorithms that
satisfy the constraints. Therefore, for this example, there
is a fundamental gapbetween the performance of the best
centralized algorithm and the best distributed algorithm.

III. C HARACTERIZING OPTIMALITY

This section considers the generalN user problem and char-
acterizes optimality over all possible distributed algorithms.
Recall that:

ω(t) ∈ Ω = Ω1 × · · · × ΩN

α(t) ∈ A = A1 × · · · × AN

where the vectorsω(t) are i.i.d. over slots (possibly correlated
over entries in each slot). Assume that the setsΩi andAi are
finite with sizes denoted|Ωi| and|Ai|. For eachω ∈ Ω define:

π(ω) = Pr[ω(t) = ω]

Define thehistoryH(t) by:

H(t)△={(ω(0),α(0)), . . . , (ω(t− 1),α(t− 1))}

This section considers all distributed algorithms, including
those where all users know the full historyH(t). Such
information might be available through a feedback message
that specifies(α(t),ω(t)) at the end of each slott. Theorem
1 shows that optimality can be achievedwithout this history
information.

First, it is important to make the distributed scheduling
constraint (3) mathematically precise. One might attempt to
use the following condition. For all slotst, the decisions made
by each useri ∈ {1, . . . , N} must satisfy:

Pr[αi(t) = αi|ωi(t) = ωi,H(t)]

= Pr[αi(t) = αi|ω(t) = ω,H(t)] (10)

for all vectorsω = (ω1, . . . , ωN ) ∈ Ω1 × · · · × ΩN and
all αi ∈ Ai. The condition (10) specifies thatαi(t) is
conditionally independent of(ωj(t))|j 6=i given ωi(t), H(t).
While this condition is indeed required, it turns out that itis
not restrictive enough. Appendix B provides an example utility
function for which there is an algorithm that satisfies (10) but
yields expected utility strictly larger than that of any “true”
distributed algorithm (as defined in the next subsection).

A. The distributed scheduling constraint

An algorithm for selectingα(t) over slotst ∈ {0, 1, 2, . . .}
is distributed if:

• There is an abstract setX , called acommon information
set.

• There is a sequence ofcommonly known random elements
X(t) ∈ X such thatω(t) is independent ofX(t) for each
t ∈ {0, 1, 2, . . .}.

• There are deterministic functionsfi(ωi, X) for eachi ∈
{1, . . . , N} of the form:

fi : Ωi ×X → Ai

• The decisionsαi(t) satisfy the following for all slotst:

αi(t) = fi(ωi(t), X(t)) for all i ∈ {1, . . . , N} (11)

The above definition includes a wide class of algorithms.
Intuitively, the random elementsX(t) can be designed as any
source of common randomness on which users can base their
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decisions. For example,X(t) can be designed to have the
form:

X(t) = (t,H(t), Y (t))

whereY (t) is a random element with support and distribution
that can possibly depend onH(t) as well as past valuesY (τ)
for τ < t. The only restriction is thatX(t) is independent of
ω(t). Because theω(t) vectors are i.i.d. over slots,X(t) can
be based on any events that occur before slott.

B. The optimization problem

For notational convenience, define:

p0(t)
△

= −u(t)
p̂0(α(t),ω(t)) △

= −û(α(t),ω(t))

Maximizing the time average expectation ofu(t) is equivalent
to minimizing the time average expectation ofp0(t). For each
k ∈ {0, 1, . . . ,K} and each slott > 0 define:

pk(t)
△

=
1

t

t−1
∑

τ=0

E [pk(τ)]

The goal is to design a distributed algorithm that solves the
following:

Minimize: lim supt→∞ p0(t) (12)

Subject to: lim supt→∞ pk(t) ≤ ck ∀k ∈ {1, . . . ,K} (13)

Condition (11) holds∀t ∈ {0, 1, 2, . . .} (14)

It is assumed throughout this paper that the constraints (13)-
(14) arefeasible. Define popt0 as the infimum of all limiting
p0(t) values (12) achievable by algorithms that satisfy the
constraints (13)-(14). The infimum is finite becausep0(t) takes
values in the same bounded set for all slotst.

C. Optimality via correlated scheduling

A pure strategyis defined as a vector-valued function:

g(ω) = (g1(ω1), g2(ω2), . . . , gN (ωN ))

wheregi(ωi) ∈ Ai for all i ∈ {1, . . . , N} and allωi ∈ Ωi.
The functiong(ω) specifies a distributed decision rule where
each useri choosesαi as a deterministic function ofωi.
Specifically,αi = gi(ωi). The total number of pure strategy
functionsg(ω) is

∏N
i=1 |Ai||Ωi|. DefineM as this number, and

enumerate all these vectors byg(m)(ω) for m ∈ {1, . . . ,M}.
For eachm ∈ {1, . . . ,M} andk ∈ {0, 1, . . . ,K} define:

r
(m)
k

△

=
∑

ω∈Ω

π(ω)p̂k(g
(m)(ω),ω) (15)

The valuer(m)
k is the expected value ofpk(t) given that users

implement strategyg(m)(ω) on slot t.
Consider a randomized algorithm that, every slott, indepen-

dently uses strategyg(m)(ω) with probability θm. For each

k ∈ {0, 1, . . . ,K}, the expected penaltyE [pk(t)] under such
a strategy is:

E [pk(t)] =

M
∑

m=1

θmE

[

p̂k

(

g(m)(ω(t)),ω(t)
)]

=

M
∑

m=1

θmr
(m)
k

The following linear program optimizes over theθm probabil-
ities for this specific algorithm structure:

Minimize:
M
∑

m=1

θmr
(m)
0 (16)

Subject to:
M
∑

m=1

θmr
(m)
k ≤ ck ∀k ∈ {1, . . . ,K} (17)

θm ≥ 0 ∀m ∈ {1, . . . ,M} (18)
M
∑

m=1

θm = 1 (19)

The objective (16) corresponds to minimizingE [p0(t)], the
constraints (17) ensureE [pk(t)] ≤ ck for k ∈ {1, . . . ,K},
and the constraints (18)-(19) ensure theθm values form a
valid probability mass function. Such a randomized algorithm
does not use the historyH(t). The next theorem shows this
algorithm structure is optimal.

Theorem 1:Suppose the problem (12)-(14) is feasible.
Then the linear program (16)-(19) is feasible, and the optimal
objective value (16) is equal topopt0 . Furthermore, there exist
probabilities(θ1, . . . , θM ) that solve the linear program and
satisfyθm > 0 for at mostK +1 values ofm ∈ {1, . . . ,M}.

Proof: See Appendix A.

IV. REDUCED COMPLEXITY

The linear program (16)-(19) uses variables
(θ1, θ2, . . . , θM ), whereM is the number of pure strategies:

M =
N
∏

i=1

|Ai||Ωi|

The 2-user sensor network example from Section II has
|Ai| = |Ωi| = 2 for i ∈ {1, 2}, for a total of 22 = 4
strategy functionsgi(ωi) for each user—hence a total of
M = 16 functionsg(ω). However, for each useri, the two
strategy functionsgi(ωi) that givegi(0) = 1 can be removed
from consideration (as it is useless for useri to report if it
observes no event). Thus, the effective number of strategy
functionsgi(ωi) for each user is only two, leaving only four
functionsg(ω) = (g1(ω1), g2(ω2)). The optimal probabilities
for switching between these four is given in Section II-B,
where it is seen that onlyK + 1 = 3 strategies have non-
zero probabilities.

For general problems, the value ofM can be very large. The
remainder of this section shows that, if certain conditionshold,
the set of strategy functions can be pruned to a smaller set
without loss of optimality. For example, consider a two-user
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problem with binary actions, so that|Ai| = 2 for i ∈ {1, 2}.
Then:

M = 2|Ω1|+|Ω2|

If certain conditions hold, strategies can be restricted toa set
of sizeM̃ , where:

M̃ = (|Ω1|+ 1)(|Ω2|+ 1)

Thus, an exponentially large set is pruned to a smaller set with
polynomial size.

A. The preferred action property

Suppose the setsAi andΩi for each useri ∈ {1, . . . , N}
are given by:

Ai = {0, 1, . . . , |Ai| − 1} (20)

Ωi = {0, 1, . . . , |Ωi| − 1} (21)

For notational convenience, for eachi ∈ {1, . . . , N} let
[αi, αi] denote theN -dimensional vectorα = (α1, . . . , αN ),
whereαi is the(N−1)-dimensional vector ofαj components
for j 6= i. This notation facilitates comparison of two vectors
that differ in just one coordinate. DefineAi and Ωi as the
set of all possible(N − 1)-dimensional vectorsαi and ωi,
respectively.

Definition 1: A penalty functionp̂(α,ω) has thepreferred
action propertyif for all i ∈ {1, . . . , N}, all αi ∈ Ai, and all
ωi ∈ Ωi, one has:

p̂([αi, α], [ωi, ω])− p̂([αi, β], [ωi, ω])

≥ p̂([αi, α], [ωi, γ])− p̂([αi, β], [ωi, γ])

wheneverα, β are values inAi that satisfyα > β, andω, γ
are values inΩi that satisfyω < γ.

Intuitively, the above definition means that if useri com-
pares the difference in penalty under the actionsαi(t) = α and
αi(t) = β (whereα > β), this difference is non-increasing in
the useri observationωi(t) (assuming all other actions and
eventsαi andωi are held fixed).

For example, any function̂p(α,ω) that does not depend on
ω trivially satisfies the preferred action property. This is the
case for thêp1(·) and p̂2(·) functions in (6) used to represent
power expenditures for the sensor network example of Section
II. Further, the utility function (5) in that example yields
p̂0(·) = −û(·) that satisfies the preferred action property, as
shown by the next lemma.

Lemma 1:SupposeAi = {0, 1} for i ∈ {1, . . . , N}, Ωi is
given by (21), and define:

û(α,ω) = min

[

N
∑

i=1

φi(ωi)αi, b

]

for some (real-valued) constantb and some (real-valued)
non-decreasing functionsφi(ωi). Then the penalty function
p̂0(α,ω) = −û(α,ω) has the preferred action property.

Lemma 2:SupposeAi = {0, 1} for i ∈ {1, . . . , N}, Ωi

is given by (21), and define the utility function̂u(α,ω)
according to the multi-access example equation (4). Then
the penalty function̂p0(α,ω) = −û(α,ω) has the preferred
action property.

Lemma 3:SupposeAi and Ωi are given by (20)-(21).
Define p̂(α,ω) by:

p̂(α,ω) =

N
∏

i=1

φi(ωi)ψi(αi)

whereφi(ωi), ψi(αi) are non-negative functions for alli ∈
{1, . . . , N}. Suppose that for eachi ∈ {1, . . . , N}, φi(ωi) is
non-increasing inωi andψi(αi) is non-decreasing inαi. Then
p̂(α,ω) has the preferred action property.

Lemma 4:SupposeAi andΩi are given by (20)-(21). Sup-
posep̂1(α,ω), . . . , p̂R(α,ω) are a collection of functions that
have the preferred action property (whereR is a given positive
integer). Then for any non-negative weightsw1, . . . , wR, the
following function has the preferred action property:

p̂(α,ω) =

R
∑

r=1

wrp̂r(α,ω)

The proofs of Lemmas 1-4 are given in Appendix C.

B. Independent events and reduced complexity

Consider the special case when the components ofω(t) =
(ω1(t), . . . , ωN (t)) are mutually independent, so that:

π(ω) =

N
∏

i=1

qi(ωi) (22)

where:
qi(ωi)

△

=Pr[ωi(t) = ωi]

Without loss of generality, assumeqi(ωi) > 0 for all i ∈
{1, . . . , N} and allωi ∈ Ωi. Recall that a pure strategyg(ω)
is composed of individualstrategy functionsgi(ωi) for each
useri:

g(ω) = (g1(ω1), . . . , gN(ωN ))

Theorem 2:(Non-decreasing strategy functions) Suppose
Ai and Ωi are given by (20)-(21). If all penalty functions
p̂k(α,ω) for k ∈ {0, 1, . . . ,K} have the preferred action
property, and if the random event processω(t) satisfies the
independence property (22), then it suffices to restrict attention
to strategy functionsgi(ωi) that are non-decreasing inωi.

Proof: The proof uses an interchange argument. Fix
m ∈ {1, . . . ,M}, i ∈ {1, . . . , N}, and fix two elements
ω and γ in Ωi that satisfy ω < γ. Suppose the linear
program (16)-(19) places weightθm > 0 on a strategy
function g(m)(ω) that satisfiesg(m)

i (ω) > g
(m)
i (γ) (so the

non-decreasing requirement is violated). The goal is to show
this can be replaced by new strategies that do not violate the
non-decreasing requirement for elementsω andγ, without loss
of optimality.

Defineα = g
(m)
i (ω) andβ = g

(m)
i (γ). Thenα > β. Define

two new functions:

g
(m),low
i (ωi) =

{

g
(m)
i (ωi) if ωi /∈ {ω, γ}
β if ωi ∈ {ω, γ}

g
(m),high
i (ωi) =

{

g
(m)
i (ωi) if ωi /∈ {ω, γ}
α if ωi ∈ {ω, γ}
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Unlike the original functiong(m)
i (ωi), these new functions

satisfy:

g
(m),low
i (ω) ≤ g

(m),low
i (γ)

g
(m),high
i (ω) ≤ g

(m),high
i (γ)

Define g(m),low(ω) and g(m),high(ω) by replacing theith
component functiong(m)

i (ωi) of g(m)(ω) with new compo-
nent functionsg(m),low

i (ωi) and g(m),high
i (ωi), respectively.

Let poldk (t) be thekth penalty incurred in the (old) strategy
that usesg(m)(ω) with probability θm. Let pnewk (t) be the
corresponding penalty under a (new) strategy that, insteadof
usingg(m)(ω) with probability θm, uses:

• g(m),low(ω) with probability θmqi(γ)/(qi(ω) + qi(γ)).
• g(m),high(ω) with probability θmqi(ω)/(qi(ω) + qi(γ)).

Let ωi(t) denote the(N − 1)-dimensional vector of com-
ponentsωj(t) for j 6= i. Fix any vectorωi ∈ Ωi. Defineαi

as the corresponding(N − 1)-dimensional vector ofg(m)
j (ωj)

values forj 6= i. Then:

• If ωi(t) = ωi, ωi(t) = ω, andg(m),low(ω) is used by
the new strategy, thenω(t) = [ωi, ω] and:

pnewk (t) = p̂k

(

g(m),low ([ωi, ω]) , [ωi, ω]
)

= p̂k ([αi, β], [ωi, ω])

Further, since the old strategy usedg(m)
i (ω) = α:

poldk (t) = p̂k

(

g(m) ([ωi, ω]) , [ωi, ω]
)

= p̂k ([αi, α], [ωi, ω])

• If ωi(t) = ωi, ωi(t) = γ, andg(m),high(ω) is used by
the new strategy, thenω(t) = [ωi, γ] and:

pnewk (t) = p̂k

(

g(m),high ([ωi, γ]) , [ωi, γ]
)

= p̂k ([αi, α], [ωi, γ])

Further, since the old strategy usedg(m)
i (γ) = β:

poldk (t) = p̂k

(

g(m) ([ωi, ω]) , [ωi, ω]
)

= p̂k ([αi, β], [ωi, γ])

• Supposeωi(t) = ωi, but neither of the above two events
are satisfied on slott. That is, neither of the eventsE1 or
E2 are true, where:

E1 △

= {ωi(t) = ω} ∩ {g(m),low(ω) is used}
E2 △

= {ωi(t) = γ} ∩ {g(m),high(ω) is used}

Thenpnewk (t)− poldk (t) = 0.

It follows that:

E
[

pnewk (t)− poldk (t)|ωi(t) = ωi

]

= θmqi(ω)

(

qi(γ)

qi(ω) + qi(γ)

)

×

[p̂k ([αi, β], [ωi, ω])− p̂k ([αi, α], [ωi, ω])]

+θmqi(γ)

(

qi(ω)

qi(ω) + qi(γ)

)

×

[p̂k ([αi, α], [ωi, γ])− p̂k ([αi, β], [ωi, γ])] (23)

where the above uses the fact thatωi(t) is independent of
ωi(t), so conditioning onωi(t) = ωi does not change the
distribution of ωi(t). Becausep̂k(·) satisfies the preferred
action property andα > β, ω < γ, one has:

[p̂k ([αi, α], [ωi, ω])− p̂k ([αi, β], [ωi, ω])]

≥ [p̂k ([αi, α], [ωi, γ])− p̂k ([αi, β], [ωi, γ])]

and hence (23) is less than or equal to zero. This holds when
conditioning on all possible values ofωi(t), and so:

E
[

pnewk (t)− poldk (t)
]

≤ 0

This holds for all penaltiesk ∈ {0, 1, . . . ,K}, and so the
modified algorithm still satisfies all constraints with an optimal
value forE [p0(t)]. The interchange can be repeated a finite
number of times until all strategy functions are non-decreasing.

In the special case of binary actions, so thatAi = {0, 1}
for all i ∈ {1, . . . , N}, all non-decreasing strategy functions
gi(ωi) have the following form:

gi(ωi) =

{

0 if ωi < h∗i
1 if ωi ≥ h∗i

(24)

for some thresholdh∗i ∈ {0, 1, . . . , |Ωi|}. There are|Ωi| + 1
such threshold functions, whereas the total number of strategy
functions for useri is 2|Ωi|. Restricting to the threshold
functions significantly decreases complexity.

V. ONLINE OPTIMIZATION

This section presents a dynamic algorithm to solve the
problem (12)-(14). The algorithm can also be viewed as an
online solution to the linear program (16)-(19). Let̃M be
the number of pure strategies required for consideration in
the linear program (wherẽM is possibly smaller thanM ,
as discussed in the previous section). Reorder the functions
g(m)(ω) if necessary so that every slott, the system chooses
a strategy function in the set{g(1)(ω), . . . , g(M̃)(ω)}.

Suppose all users receive feedback specifying the values of
the penaltiesp1(t), . . . , pK(t) at the end of slott+D, where
D is a non-negative integer that represents a system delay. For
each constraintk ∈ {1, . . . ,K}, define avirtual queueQk(t)
and initializeQk(0) to a commonly known value (typically
0). For eacht ∈ {0, 1, 2, . . .} the queue is updated by:

Qk(t+ 1) = max[Qk(t) + pk(t−D)− ck, 0] (25)

Each user can iterate the above equation based on information
available at the end of slott. Thus, all users know the value
of Qk(t) at the beginning of each slott. If D > 0, define
pk(−1) = pk(−2) = · · · = pk(−D) = 0.

Lemma 5:Under any decision rule for choosing strategy
functions over time, for allt > 0 one has:

1

t

t−1
∑

τ=0

E [pk(τ −D)] ≤ ck +
E [Qk(t)]

t
− E [Qk(0)]

t

Proof: From (25) the following holds for all slotsτ ∈
{0, 1, 2, . . .}:

Qk(τ + 1) ≥ Qk(τ) + pk(τ −D)− ck
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Thus:

Qk(τ + 1)−Qk(τ) ≥ pk(τ −D)− ck

Summing overτ ∈ {0, 1, . . . , t− 1} for t > 0 gives:

Qk(t)−Qk(0) ≥
t−1
∑

τ=0

pk(τ −D)− ckt

Rearranging terms proves the result.
Lemma 5 ensures the constraints (13) are satisfied when-

ever the conditionlimt→0 E [Qk(t)] /t = 0 holds for all
k ∈ {1, . . . ,K}, a condition calledmean rate stability[1].

A. Lyapunov optimization

Define Q(t) = (Q1(t), . . . , QK(t)). Define L(t) as the
squared norm ofQ(t) (divided by 2 for convenience later):

L(t)△=
1

2
||Q(t)||2 =

1

2

K
∑

k=1

Qk(t)
2

Define ∆(t)△=L(t + 1) − L(t), called theLyapunov drift.
Consider the following structure for the control decisions:
Every slot t the queuesQ(t) are observed. Then a collec-
tion of non-negative valuesβm(t) are created that satisfy
∑M̃

m=1 βm(t) = 1 (if desired, theβm(t) values can be
chosen as a function of theQ(t) values). Then an index
m ∈ {1, . . . , M̃} is randomly and independently chosen
according to the probability mass functionβm(t), and the
decision ruleg(m)(ω(t)) is used for slott. Thus, a specific
algorithm with this structure is determined by specifying how
the βm(t) probabilities are chosen on each slott.

Motivated by the theory in [1], the approach is to choose
probabilities every slot to greedily minimize a bound on the
drift-plus-penalty expressionE [∆(t+D) + V p0(t)|Q(t)],
whereV is a non-negative weight that affects a performance
tradeoff. TheD-shifted drift term∆(t+D) is different from
[1] and is used because of the delayed feedback structure of the
queue update (25). The intuition is that minimizing∆(t+D)
maintains queue stability, while adding the weighted penalty
termV p0(t) biases decisions in favor of lower penalties. The
following lemma provides a bound on the drift-plus-penalty
expression under anyβm(t) probabilities.

Lemma 6:Fix V ≥ 0. Under the above decision structure,
one has for slott:

E [∆(t+D) + V p0(t)|Q(t)] ≤ B(1 + 2D)

V
M̃
∑

m=1

βm(t)r
(m)
0 +

K
∑

k=1

Qk(t)





M̃
∑

m=1

βm(t)r
(m)
k − ck



 (26)

wherer(m)
k is thekth component ofr(m) as defined in (15),

and the constantB is defined:

B △

= max
m∈{1,...,M̃}

1

2

K
∑

k=1

∑

ω∈Ω

π(ω)
∣

∣

∣
p̂k

(

g(m)(ω),ω
)

− ck

∣

∣

∣

2

Proof: Note that for allk ∈ {0, 1, . . . ,K}:

E [pk(t)|Q(t)] = E [p̂k(α(t),ω(t))|Q(t)]

=

M̃
∑

m=1

∑

ω∈Ω

βm(t)π(ω)p̂k

(

g(m)(ω),ω
)

=

M̃
∑

m=1

βm(t)r
(m)
k

Therefore, to prove (26) it suffices to prove:

E [∆(t+D)|Q(t)] ≤ B(1 + 2D)

+

K
∑

k=1

Qk(t)E [pk(t)− ck|Q(t)] (27)

To this end, squaring the queue equation (25), using
max[a, 0]2 ≤ a2, and evaluating at timet+D yields:

Qk(t+D + 1)2 ≤ Qk(t+D)2 + (pk(t)− ck)
2

+2Qk(t+D)(pk(t)− ck)

Summing overk ∈ {1, . . . ,K} and dividing by2 gives:

∆(t+D) ≤ 1

2

K
∑

k=1

(pk(t)− ck)
2

+

K
∑

k=1

Qk(t+D)(pk(t)− ck)

=
1

2

K
∑

k=1

(pk(t)− ck)
2

+
K
∑

k=1

Qk(t)(pk(t)− ck)

+

K
∑

k=1

(Qk(t+D)−Qk(t))(pk(t)− ck)

Taking conditional expectations of the above proves (27) upon
application of the following inequalities (see Appendix E):

1

2

K
∑

k=1

E
[

(pk(t)− ck)
2|Q(t)

]

≤ B

K
∑

k=1

E [(Qk(t+D)−Qk(t))(pk(t)− ck)|Q(t)] ≤ 2BD

B. The drift-plus-penalty algorithm

Observe that the probability mass functionβm(t) that
minimizes the right-hand-side of (26) is the one that, with
probability 1, chooses the indexm ∈ {1, . . . , M̃} that mini-
mizes the expression (breaking ties arbitrarily):

V r
(m)
0 +

K
∑

k=1

Qk(t)r
(m)
k (28)

This gives rise to the followingdrift-plus-penalty algorithm:
Every slott:
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• Users observe the queue vectorQ(t).
• Users select the pure decision strategyg(m)(ω), where
m is the index that minimizes the expression (28).

• The delayed penalty informationpk(t − D) is observed
and queues are updated via (25).

C. Performance Analysis

Theorem 3:If the problem (12)-(14) is feasible, then under
the drift-plus-penalty algorithm for anyV ≥ 0:

• All desired constraints (13)-(14) are satisfied.
• For all t > 0, the time average expectation ofp0(t)

satisfies:

1

t

t−1
∑

τ=0

E [p0(τ)] ≤ popt0 +
B(1 + 2D)

V
+

E [L(D)]

V t
(29)

• For all t > 0, the time average expectation ofpk(t)
satisfies the following for allk ∈ {1, . . . ,K}:

1

t

t−1
∑

τ=0

E [pk(τ)] ≤ ck +O(
√

V/t) (30)

The above theorem shows the time average expectation of
p0(t) is within O(1/V ) of optimality. It can be pushed as
close to optimal as desired by increasing theV parameter. The
tradeoff is in the amount of time required for the time average
expected penalties to be close to their desired constraints. It
can be shown that ifD = 0 and a mild Slater condition
is satisfied, then the bound (30) can be improved to (see
Appendix D):

1

t

t−1
∑

τ=0

E [pk(τ)] ≤ ck +O(V/t) +O(log(t)/t) (31)

Proof: (Theorem 3) Every slotτ ∈ {0, 1, 2, . . .} the
drift-plus-penalty algorithm chooses probabilitiesβm(τ) that
minimize the right-hand-side of the expression (26). Thus:

E [∆(τ +D) + V p0(τ)|Q(τ)] ≤ B(1 + 2D)

V

M̃
∑

m=1

θmr
(m)
0 +

K
∑

k=1

Qk(τ)





M̃
∑

m=1

θmr
(m)
k − ck





whereθm is any alternative probability mass function defined
overm ∈ {1, . . . , M̃}. Using the probabilitiesθm that opti-
mally solve the linear program (16)-(19) gives:

E [∆(τ +D) + V p0(τ)|Q(τ)] ≤ B(1 + 2D) + V popt0

Taking expectations of both sides and using iterated expecta-
tions gives:

E [∆(τ +D)] + V E [p0(τ)] ≤ B(1 + 2D) + V popt0

Summing overτ ∈ {0, 1, . . . , t− 1} gives:

E [L(t+D)]− E [L(D)] + V

t−1
∑

τ=0

E [p0(τ)] ≤

B(1 + 2D)t+ V popt0 t (32)

Using the fact thatE [L(t+D)] ≥ 0 and rearranging terms
proves (29).

Again rearranging (32) yields:

E [L(t+D)] ≤ (C + FV )t (33)

whereC is defined:

C △

=E [L(D)] +B(1 + 2D)

andF is defined as a constant that satisfies the following for
all slotsτ :

F ≥ popt0 − E [p0(τ)]

Such a constant exists becausep0(τ) has a finite number of
possible outcomes. Using the definition ofL(t + D) in (33)
gives:

E
[

||Q(t+D)||2
]

≤ 2(C + FV )t

By Jensen’s inequality:

E [||Q(t+D)||]2 ≤ 2(C + FV )t

Thus:
E [||Q(t+D)||]

t
≤

√

2(C + FV )

t

Using this with Lemma 5 proves (30). The inequality (30)
immediately implies that all desired constraints are satisfied.

D. The approximate drift-plus-penalty algorithm

The algorithm of Section V-B assumes perfect knowledge
of ther(m)

k values. These can be computed by (15) if the event
probabilitiesπ(ω) are known. Suppose these probabilities are
unknown, but delayed samplesω(t −D) are available at the
end of each slott. LetW be a positive integer that represents
a sample size. The r(m)

k values can be approximated by:

r̃
(m)
k (t) =

1

W

W−1
∑

w=0

p̂k

(

g(m)(ω(t−D − w)),ω(t−D − w)
)

The approximate algorithm uses̃r(m)
k (t) values in replace of

r
(m)
k in the expression (28). Analysis in [20] shows that the

performance gap between exact and approximate drift-plus-
penalty implementations isO(1/

√
W ), so that the approxi-

mate algorithm is very close to the exact algorithm whenW
is large.

E. Separable penalty functions

A simpler and exact implementation is possible, without
requiring knowledge of the probability distribution forω(t),
when penalty functions have the following separable form for
all k ∈ {0, 1, . . . ,K}:

p̂k(α,ω) =
N
∑

i=1

p̂ik(αi, ωi) (34)

where p̂ik(αi, ωi) are any functions of(αi, ωi) ∈ Ai × Ωi.
Choosing anm ∈ {1, . . . , M̃} that minimizes the expression
(28) is equivalent to observing the queuesQ(t) and then



10

choosing a strategy functiong(ω) = (g1(ω1), . . . , gN (ωN ))
to minimize:

∑

ω∈Ω

π(ω)

[

V p̂0(g(ω),ω) +
K
∑

k=1

Qk(t)p̂k(g(ω),ω)

]

With the structure (34), this expression becomes:

∑

ω∈Ω

K
∑

i=1

π(ω)

[

V p̂i0(gi(ωi), ωi) +

K
∑

k=1

Qk(t)p̂ik(gi(ωi), ωi)

]

The above is minimized by the following for eachi ∈
{1, . . . , N}:

gi(ωi) = arg min
αi∈Ai

[

V p̂i0(αi, ωi) +

K
∑

k=1

Qk(t)p̂ik(αi, ωi)

]

Thus, the minimization step in the drift-plus-penalty algorithm
reduces to having each user observe its ownωi(t) value and
then settingαi(t) = gi(ωi(t)), where the functiongi(ωi) is
defined above. The queue update (25) is the same as before.

In the special caseD = 0, this is the same algorithm as
the optimal (centralized) drift-plus-penalty algorithm of [1].
Hence, for separable problems, there is no optimality gap
between centralized and distributed algorithms.

VI. SIMULATIONS

A. Ergodic performance for a 2 user system

This subsection presents simulation results for the 2 user
sensor network example of Section II. The approximate drift-
plus-penalty algorithm of Section V-D is used with a delay of
D = 10 slots and a moving average window size ofW = 40
slots. The algorithm is not aware of the system probabilities.
The objective of this simulation is to find how close the
achieved utility is to the optimal valueuopt = 23/48 ≈
0.47917 computed in Section II-B. Recall that the desired
power constraints arepi ≤ 1/3 for each useri ∈ {1, 2}. The
table in Fig. 1 presents performance for various values ofV .
For V ≥ 50 the achieved utility differs from optimality only
in the fourth decimal place.

V u p1 p2
1 0.344639 0.259764 0.219525
5 0.454557 0.333158 0.267161
10 0.472763 0.333335 0.300415
25 0.478186 0.333346 0.326948
50 0.479032 0.333369 0.332873
100 0.479218 0.333406 0.333334

Fig. 1. Algorithm performance overt = 106 slots (D = 10, W = 40).
Recall thatuopt = 23/48 ≈ 0.47917.

B. Ergodic performance for a 3 user system

Consider a network of 3 sensors that communicate reports
to a fusion center, similar to the example considered in Section
II. The event processesωi(t) for each sensori ∈ {1, 2, 3} take
values in the same 10 element setΩ:

Ω△

={0, 1, 2, 3, . . . , 9}

Consider binary actionsαi(t) ∈ {0, 1}, where αi(t) = 1
corresponds to sensori sending a report, and incurs a power
cost of1 for that sensor. The penalty and utility functions are:

p̂i(αi, ωi) = αi ∀i ∈ {1, 2, 3}

û(α,ω) = min

[

α1ω1

10
+
α2ω2 + α3ω3

20
, 1

]

Thus, sensor 1 brings more utility than the other sensors.
Assumeω1(t), ω2(t), ω3(t) are mutually independent and

uniformly distributed overΩ. The requirements for Theorem
2 hold, and so one can restrict attention to the11 threshold
functionsgi(ωi) of the type (24). As it does not make sense to
report whenωi(t) = 0, the functionsgi(ω) = 1 for all ω can
be removed. This leaves only 10 threshold functions at each
user, for a total of103 = 1000 strategy functionsg(m)(ω) to
be considered every slot. The approximate drift-plus-penalty
algorithm of Section V-D is simulated overt = 106 slots
with a delayD = 10 and for various choices of the moving
average window sizeW and the parameterV . All average
power constraints were met for all choices ofV andW . The
achieved utility is shown in Fig. 2. The utility increases to
a limiting value asV is increased. This limiting value can
be improved by adjusting the number of samplesW used in
the moving average. IncreasingW from 40 to 200 gives a
small improvement in performance. There is only a negligible
improvement whenW is further increased to400 (the curves
for W = 200 andW = 400 look identical).
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Fig. 2. Achieved utilityu versusV for various choices ofW .

Fig. 4 demonstrates how theV parameter affects the rate
of convergence to the desired constraints. The window size
is fixed toW = 40 and the valuemax[p1(t), p2(t), p3(t)] is
plotted for t ∈ {0, 1, . . . , 2000} (wherepi(t) is the empirical
average power expenditure of useri up to slott). This value
approaches the desired constraint of1/3 more slowly when
V is large. The following table presents time averages after a
longer duration of106 slots.

V u p1 p2 p3
1 0.259400 0.258000 0.251310 0.251342
10 0.406263 0.333301 0.316371 0.316418
50 0.464545 0.333357 0.333341 0.333342
100 0.467642 0.333387 0.333354 0.333354

Fig. 3. Time averages aftert = 106 slots (W = 40).
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Fig. 4. An illustration of the rate of convergence to the desired constraint1/3
for various choices ofV . The curves plotmax[p

1
(t), p

2
(t), p

3
(t)] versust.

C. Adaptation to non-ergodic changes

The initial queue state determines the coefficient of an
O(1/t) transient in the performance bounds of the system
(consider theE [L(D)] /(V t) term in (29)). Thus, if system
probabilities change abruptly, the system can be viewed as
restarting with a different initial condition. Thus, one expects
the system to react robustly to such changes.

To illustrate this, consider the same 3-user system of the
previous subsection, usingV = 50,W = 40. The event
processesωi(t) have the same probabilities as given in the
previous subsection for slotst < 4000 andt > 8000. Call this
distribution type 1. However, for slotst ∈ {4000, . . . , 8000},
theωi(t) processes are independently chosen with a different
distribution as follows:

• Pr[ω1(t) = 0] = Pr[ω1(t) = 9] = 1/2.
• Pr[ω2(t) = k] = 1/4 for k ∈ {6, 7, 8, 9}.
• Pr[ω3(t) = k] = 1/4 for k ∈ {6, 7, 8, 9}.

This is calleddistribution type 2.
Fig. 5 shows average utility and average power over the

first 12000 slots. Values at each slott are averaged over2000
independent system runs. The two dashed horizontal lines in
the top plot of the figure are long term time average utilities
achieved over106 slots under probabilities that are fixed at
distribution type 1 and type 2, respectively. It is seen thatthe
system adapts to the non-ergodic change by quickly adjusting
to the new optimal average utility. The figure also plots average
power of user1 versus time, with a dashed horizontal line at
the power constraint1/3. A noticeable disturbance in average
power occurs at the non-ergodic changes in distribution.

It was observed that system performance is not very sen-
sitive to inaccurate estimates of ther(m)

k values (results not
shown in the figures). This suggests that, for this example, the
virtual queues alone are sufficient to ensure the average power
constraints are met, which, together with loose estimates for
r
(m)
k , are sufficient to provide an accurate approximation to

optimality.

VII. C ONCLUSIONS

This paper treated distributed scheduling in a multi-user
system where users know their own observations and actions,
but not those of others. In this context, there is a funda-
mental performance gap between distributed and centralized
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Fig. 5. A sample path of average utility and power versus time. Values at
each time slott are obtained by averaging the actual utility and power used
by the algorithm on that slot over 2000 independent simulation runs.

decisions. Optimal distributed policies were constructedby
correlating decisions via a source of common randomness.
The optimal policy is computable via a linear program if
all system probabilities are known, and through an online
algorithm with virtual queues if probabilities are unknown.
The online algorithm assumes there is delayed feedback about
previous penalties and rewards. The algorithm was shown
in simulation to adapt when system probabilities change. In
the special case when the events observed at each user are
independent and when penalty and utility functions satisfya
preferred action property, the number of pure strategies for
consideration on each slot can be significantly reduced. In
some cases, this reduces an exponentially complex algorithm
to one that has only polynomial complexity.

APPENDIX A — PROOF OFTHEOREM 1

This appendix proves Theorem 1. Define the(K + 1)-
dimensionalpenalty vectors:

p(t) = (p0(t), p1(t), . . . , pK(t))

p̂(α,ω) = (p̂0(α,ω), p̂1(α,ω), . . . , p̂K(α,ω))

For eachm ∈ {1, . . . ,M}, define:

r(m) △
=

∑

ω∈Ω

π(ω)p̂(g(m)(ω),ω) = (r
(m)
0 , r

(m)
1 , . . . , r

(m)
K )

DefineR as the convex hull of these vectors:

R△

=Conv
(

{r(1), . . . , r(M)}
)

The setR is convex, closed, and bounded. From the nature of
the convex hull operation, the setR can be viewed as the set
of all average penalty vectors achievable by timesharing over
theM different pure strategies.

Lemma 7:Let α(t) be decisions of an algorithm that sat-
isfies the distributed scheduling constraint (11) on every slot.
Then:

(a) For all slotst ∈ {0, 1, 2, . . .}:

E [p(t)] ∈ R

(b) For all slotst ∈ {1, 2, 3, . . .}:

p(t) ∈ R
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where

p(t)△=
1

t

t−1
∑

τ=0

E [p(τ)]

Proof: Part (b) follows immediately from part (a) together
with the fact thatR is convex. To prove part (a), fix a slot
t ∈ {0, 1, 2, . . .}. By (11), the users make decisions:

α(t) = (f1(ω1(t), X(t)), . . . , fN(ωN (t), X(t)))

For eachX(t) ∈ X andω ∈ Ω, define:

gX(t)(ω) = (f1(ω1, X(t)), . . . , fN(ωN , X(t)))

Then, givenX(t), the functiongX(t)(ω) is a pure strategy.
Hence,gX(t)(ω) = g(m)(ω) for somem ∈ {1, . . . ,M}.
DefinemX(t) as the valuem ∈ {1, . . . ,M} for which this
holds. Thus,gX(t)(ω) = g(mX(t))(ω), and:

E [p(t)|X(t)] = E [p̂(α(t),ω(t))|X(t)]

= E

[

p̂
(

g(mX(t))(ω(t)),ω(t)
)

|X(t)
]

=
∑

ω∈Ω

π(ω)p̂
(

g(mX(t))(ω),ω
)

= r(mX(t))

Taking expectations of both sides and using the law of iterated
expectations gives:

E [p(t)] =
M
∑

m=1

Pr[mX(t) = m]r(m)

The above is a convex combination of{r(1), . . . , r(M)}, and
hence is inR.

Lemma 8:There exist real numbersr1, r2, . . . , rK that sat-
isfy the following:

rk ≤ ck ∀k ∈ {1, . . . ,K} (35)

(popt0 , r1, r2, . . . , rK) ∈ R (36)

Furthermore, the vector in (36) is on theboundaryof R.
Proof: Fix q as a positive integer. Consider an algorithm

that satisfies the distributed scheduling constraint (11) every
slot. For k ∈ {0, 1, . . . ,K}, let pk(t) be the resulting time
average expected penalties. Assume the algorithm satisfies:

popt0 ≤ lim sup
t→∞

p0(t) ≤ popt0 + 1/q (37)

lim sup
t→∞

pk(t) ≤ ck ∀k ∈ {1, . . . ,K} (38)

Such an algorithm must exist becausepopt0 is the infimum
objective value for (12) over all algorithms that satisfy the
constraints (13)-(14).

Lemma 7 implies thatp(t) = (p0(t), . . . , pK(t)) ∈ R for
all t > 0. Let tn be a subsequence of times over whichp0(t)
achieves itslim sup. Sincep(tn) is in the closed and bounded
setR for all tn > 0, the Bolzano-Wierstrass theorem implies
there is a subsequencep(tnm

) that converges to a pointr(q) ∈
R, wherer(q) = (r0(q), . . . , rK(q)). Thus:

r0(q) = lim
m→∞

p0(tnm
) = lim sup

t→∞
p0(t) (39)

rk(q) = lim
m→∞

pk(tnm
) ≤ lim sup

t→∞
pk(t) ∀k ∈ {1, . . . ,K}

Using (38) in the last inequality above gives:

rk(q) ≤ ck ∀k ∈ {1, . . . ,K} (40)

Further, substituting (39) into (37) gives:

popt0 ≤ r0(q) ≤ popt0 + 1/q (41)

This holds for all positive integersq. Thus,{r(q)}∞q=1 is
an infinite sequence of vectors inR such thatr(q) satisfies
(40) and (41) for allq ∈ {1, 2, 3, . . .}. BecauseR is closed
and bounded, the sequence{r(q)}∞q=1 has a limit pointr =

(r0, r1, . . . , rK) ∈ R that satisfiesr0 = popt0 andrk ≤ ck for
all k ∈ {1, . . . ,K}. This proves (35) and (36).

To prove thatr is on theboundaryof R, it suffices to note
that for anyǫ > 0:

(popt0 − ǫ, r1, . . . , rK) /∈ R
Indeed, if this were not true, it would be possible to construct
a distributed algorithm that satisfies all desired constraints and
yields a time average expected value ofp0(t) equal topopt0 −ǫ,
which contradicts the definition ofpopt0 .

BecauseR = Conv({r(1), . . . , r(M)}), Lemma 8 implies
there are probabilitiesθm that sum to 1 such that:

(popt0 , r1, . . . , rK) =

M
∑

m=1

θmr(m)

BecauseR is a (K + 1)-dimensional set, Caratheodory’s
theorem ensures the above can be written using at mostK+2
non-zeroθm values. However, because the above vector is
on theboundaryof R, a simple extension of Caratheodory’s
theorem ensures it can be written using at mostK+1 non-zero
θm values.2 This proves Theorem 1.

APPENDIX B — A COUNTEREXAMPLE

This appendix shows it is possible for an algorithm to satisfy
the conditional independence assumption (10) while yielding
expected utility strictly larger than that of any distributed
algorithm. Consider a two user system withω1(t), ω2(t)
independent and i.i.d. Bernoulli processes with:

Pr[ωi(t) = 1] = Pr[ωi(t) = 0] = 1/2 ∀i ∈ {1, 2}
The actions are constrained to:

α1(t) ∈ {−1, 1} , α2(t) ∈ {−1, 1}
Define the utility function:

û(α1, α2, ω1, ω2) = g(ω1, ω2)α1α2

whereg(ω1, ω2) = 1 − 2ω1ω2. Then û(·) ∈ {−1, 1}. Fig. 6
indicates when the utility is 1.

Consider now the followingcentralized algorithm: Every
slot t, observe(ω1(t), ω2(t)) and computeg(ω1(t), ω2(t)).

• If g(ω1(t), ω2(t)) = 1, independently choose:

(α1(t), α2(t)) =

{

(1, 1) with probability 1/2
(−1,−1) with probability 1/2

2This extension to points on the boundary of a convex hull can be
proven using Caratheodory’s theorem together with the supporting hyperplane
theorem for convex sets [21].
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ω1 ω2 g(ω1, ω2) Conditions required for̂u = 1
0 0 1 α1 = α2

0 1 1 α1 = α2

1 0 1 α1 = α2

1 1 -1 α1 6= α2

Fig. 6. A table showing the conditions needed forû(α1, α2, ω1, ω2) = 1.

• If g(ω1(t), ω2(t)) = −1, independently choose:

(α1(t), α2(t)) =

{

(1,−1) with probability 1/2
(−1, 1) with probability 1/2

The randomization ensures that regardless of(ω1(t), ω2(t)):

Pr[α1(t) = 1|ω1(t), ω2(t)] =
1

2

Pr[α2(t) = 1|ω1(t), ω2(t)] =
1

2

and hence the conditional independence assumption (10) is
satisfied. This algorithm guarantees the utility function is 1
for all possible outcomes, and so the expected utility is also 1.
However, it can be shown that an optimaldistributed algorithm
is the pure strategyα1(t) = α2(t) = 1 for all t (regardless of
ω1(t), ω2(t)), which yields an expected utility of only1/2.

APPENDIX C — PREFERREDACTION LEMMAS

This appendix provides proofs of Lemmas 1-4. The proofs
of Lemmas 1 and 2 follow from the following lemma.

Lemma 9:A penalty function p̂(α,ω) has the preferred
action property if it satisfies the following three properties:

• Ai = {0, 1} for i ∈ {1, . . . , N}.
• p̂(α,ω) is non-increasing in the vectorω. That is, for all

α ∈ A and all vectorsω,γ ∈ Ω that satisfyω ≤ γ (with
inequality taken entrywise), one has

p̂(α,ω) ≥ p̂(α,γ)

• Given αi = 0, p̂(α,ω) does not depend onωi. That is,
for all i ∈ {1, . . . , N}, all possible values ofαi ∈ Ai,
ωi ∈ Ωi, and allω, γ ∈ Ωi, one has:

p̂([αi, 0], [ωi, ω]) = p̂([αi, 0], [ωi, γ])

Proof: Fix i ∈ {1, . . . , N}, fix αi, ωi, and fix α, β ∈
{0, 1}, ω, γ ∈ Ωi that satisfyα > β andω < γ. Sinceα, β
are binary numbers that satisfyα > β, it must be thatα = 1,
β = 0. The goal is to show:

p̂([αi, 1], [ωi, ω])− p̂([αi, 0], [ωi, ω])

≥ p̂([αi, 1], [ωi, γ])− p̂([αi, 0], [ωi, γ])

Since the second term on the left-hand-side is the same as the
second term on the right-hand-side, it suffices to show:

p̂([αi, 1], [ωi, ω]) ≥ p̂([αi, 1], [ωi, γ])

The above inequality is true becauseω < γ and p̂(α,ω) is
non-increasing in the vectorω.

Proof: (Lemma 1) Suppose:

p̂(α,ω) = −min

[

N
∑

i=1

φi(ωi)αi, b

]

whereAi = {0, 1} for i ∈ {1, . . . , N}, b is a real number, and
all functionsφi(ωi) are non-decreasing inωi. Then p̂(α,ω)
is non-increasing in theω vector. Furthermore, for any given
i ∈ {1, . . . , N}, anyαi ∈ Ai, ωi ∈ Ωi, and anyω, γ ∈ Ωi,
one has:

p̂([αi, 0], [ωi, ω]) = −min





∑

j 6=i

φj(ωj)αj , b





= p̂([αi, 0], [ωi, γ])

Thus, p̂(α,ω) satisfies the requirements of Lemma 9.
Proof: (Lemma 2) Suppose:

p̂(α,ω) = −
N
∑

i=1

ωiαi

∏

j 6=i

(1− αj)

whereαi ∈ {0, 1} andωi ∈ {0, 1, . . . , |Ωi| − 1} for all i ∈
{1, . . . , N}. Then p̂(α,ω) is non-increasing in theω vector.
Now fix i ∈ {1, . . . , N}, fix αi, ωi, and fixω, γ ∈ Ωi. Then:

p̂([αi, 0], [ωi, ω]) = −
∑

k 6=i

ωkαk

∏

j 6=k

(1− αj)

= p̂([αi, 0], [ωi, γ])

Thus, p̂(α,ω) satisfies the requirements of Lemma 9.
Proof: (Lemma 3) Suppose:

p̂(α,ω) =

N
∏

i=1

φi(ωi)ψi(αi)

whereφi(ωi) is non-negative and non-increasing inωi and
ψi(αi) is non-negative and non-decreasing inαi. Fix i ∈
{1, . . . , N}, fix αi, ωi, and fix α, β ∈ Ai, ω, γ ∈ Ωi that
satisfyα > β andω < γ. The goal is to show:

p̂([αi, α], [ωi, ω])− p̂([αi, β], [ωi, ω])

≥ p̂([αi, α], [ωi, γ])− p̂([αi, β], [ωi, γ])

By canceling common (non-negative) factors, it suffices to
show:

φi(ω)ψi(α) − φi(ω)ψi(β) ≥ φi(γ)ψi(α) − φi(γ)ψi(β)

This is equivalent to:

φi(ω)(ψi(α)− ψi(β)) ≥ φi(γ)(ψi(α)− ψi(β)) (42)

Sinceα > β andψi(α) is non-decreasing, one hasψi(α) −
ψi(β) ≥ 0. By canceling the common (non-negative) factor,
it suffices to show:

φi(ω) ≥ φi(γ)

This is true becauseω < γ andφi(ω) is non-increasing.
Proof: (Lemma 4) Suppose:

p̂(α,ω) =

R
∑

r=1

wrp̂r(α,ω)

where wr are non-negative constants, and each function
p̂r(α,ω) has the preferred action property. Fixi ∈
{1, . . . , N}, fix αi, ωi, and fix α, β ∈ Ai, ω, γ ∈ Ωi that
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satisfyα > β andω < γ. Since each function̂pr(α,ω) has
the preferred action property, one has for allr ∈ {1, . . . , R}:

p̂r([αi, α], [ωi, ω])− p̂r([αi, β], [ωi, ω])

≥ p̂r([αi, α], [ωi, γ])− p̂r([αi, β], [ωi, γ])

Multiplying the above inequality bywr and summing over
r ∈ {1, . . . , R} proves thatp̂(α,ω) has the preferred action
property.

VIII. A PPENDIX D — THE SLATER CONDITION

For a given real numberǫ ≥ 0, consider the following linear
program that is related to the linear program (16)-(19):

Minimize:
∑M

m=1 θmr
(m)
0 (43)

Subject to:
∑M

m=1 θmr
(m)
k ≤ ck − ǫ ∀k ∈ {1, . . . ,K}(44)

θm ≥ 0 ∀m ∈ {1, . . . ,M} (45)
∑M

m=1 θm = 1 (46)

If ǫ > 0, the penalty constraints are tighter above than in
the linear program (16)-(19) (compare (44) and (17)). Define
G(ǫ) as the the optimal objective value (43) as a function of
the parameterǫ. ThenG(0) = popt0 , wherepopt0 corresponds
to the original linear program (16)-(19). Defineǫmax as the
largest value ofǫ for which (43)-(46) is feasible. Suppose
ǫmax > 0. This means it is possible to satisfy the desired time
average penalty constraints with a slackness ofǫmax in each
constraintk ∈ {1, . . . ,K}. The conditionǫmax > 0 is called
the Slater condition[22].

For simplicity of exposition, assumeD = 0. Since the drift-
plus-penalty algorithm takes actions that minimize the right-
hand-side of (26) over all probability mass functionsβm(t),
one has:

E [∆(t) + V p0(t)|Q(t)] ≤ B

V

M̃
∑

m=1

θmr
(m)
0 +

K
∑

k=1

Qk(t)





M̃
∑

m=1

θmr
(m)
k − ck





for any valuesθm that satisfy (45)-(46). Usingθm values that
solve (43)-(46) for the caseǫ = ǫmax gives:

E [∆(t) + V p0(t)|Q(t)] ≤ B

V G(ǫmax)− ǫmax

K
∑

k=1

Qk(t)

Therefore, for all slotst ∈ {0, 1, 2, . . .} one has:

E [∆(t)|Q(t)] ≤ B + FV − ǫmax

K
∑

k=1

Qk(t) (47)

whereF is a constant that satisfies the following for all slots
t and all possible values ofQ(t):

F ≥ G(ǫmax)− E [p0(t)|Q(t)]

Now defineδmax as the largest possible change in||Q(t)||
from one slot to the next, so that regardless of the control
decisions, one has:

|||Q(t+ 1)|| − ||Q(t)||| ≤ δmax ∀t ∈ {0, 1, 2, . . .} (48)

Such a valueδmax exists because all penalty functions
p̂k(α(t),ω(t)) are bounded.

Lemma 10:Let δmax be a positive value that satisfies (48).
Let A be a non-negative real number, and letǫ > 0. Assume
||Q(0)|| = 0 with probability 1, and that for all slotst and all
possibleQ(t) one has:

E [∆(t)|Q(t)] ≤ A− ǫ

K
∑

k=1

Qk(t) (49)

Then for all slotst ∈ {1, 2, . . .}:

E [||Q(t)||] ≤

max

[

log(2)

r
,max

[

2A

ǫ
,
ǫ

2

]

+
log(2t[erδmax − 1])

r

]

wherer is defined:

r =
ǫ

δ2max + ǫδmax/3
(50)

UsingA = B + FV in (47) shows that the system under
study satisfies the requirements of the above lemma, which
proves that (31) holds. The proof of the above lemma relies
heavily on drift analysis in [23] and results for exponentiated
martingales in [24].

Proof: (Lemma 10) Suppose that:

||Q(t)|| ≥ max [2A/ǫ, ǫ/2] (51)

By definition of∆(t), one has from (49):

E
[

||Q(t+ 1)||2|Q(t)
]

≤ ||Q(t)||2 + 2A− 2ǫ

K
∑

k=1

Qk(t)

≤ ||Q(t)||2 + 2A− 2ǫ||Q(t)|| (52)

≤ ||Q(t)||2 − ǫ||Q(t)|| (53)

≤ (||Q(t)|| − ǫ/2)2

where (52) holds because the sum of the components of a
non-negative vector is greater than or equal to its norm, and
(53) holds because (51) impliesǫ||Q(t))|| ≥ 2A. By Jensen’s
inequality:

E [||Q(t+ 1)|||Q(t)]2 ≤ (||Q(t)|| − ǫ/2)2

Taking the square root of both sides and using (51) gives:

E [||Q(t+ 1)|Q(t)||] ≤ ||Q(t)|| − ǫ/2 (54)

DefineC by:
C △

=max [2A/ǫ, ǫ/2]

so that (54) holds whenever||Q(t)|| ≥ C. Defineδ(t) by:

δ(t)△=||Q(t+ 1)|| − ||Q(t)||
and note that|δ(t)| ≤ δmax for all t. It follows that:

E [δ(t)|Q(t)] ≤
{

−ǫ/2 if ||Q(t)|| ≥ C
δmax otherwise

(55)

Define Y (t) = er||Q(t|| for a positive value ofr to be
determined. Assume thatr satisfies:

0 ≤ rδmax < 3 (56)
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Then:

Y (t+ 1)− Y (t) = er||Q(t)||erδ(t) − Y (t)

= Y (t)[erδ(t) − 1]

≤
{

Y (t)[erδ(t) − 1] if ||Q(t)|| ≥ C
erC [erδmax − 1] otherwise

Now defineg(x) as the function that satisfies the following
for all real numbersx:

ex − 1 = x+
x2

2
g(x) (57)

By results in [24], the functiong(x) is non-decreasing inx
and satisfies:

g(x) ≤ 1

1− x/3
∀x ∈ [0, 3) (58)

It follows from (57) that:

erδ(t) − 1 = rδ(t) +
(rδ(t))2

2
g(rδ(t))

≤ rδ(t) +
(rδmax)

2

2
g(rδmax)

≤ rδ(t) +
(rδmax)

2

2(1− rδmax/3)

where the final inequality uses (58), which is justified because
rδmax satisfies (56). Thus:

Y (t+ 1)− Y (t)

≤
{

Y (t)[rδ(t) + (rδmax)
2

2(1−rδmax/3)
] if ||Q(t)|| ≥ C

erC [erδmax − 1] otherwise

Taking expectations and using (55) gives:

E [Y (t+ 1)− Y (t)|Q(t)]

≤
{

Y (t)[−rǫ
2 + (rδmax)

2

2(1−rδmax/3)
] if ||Q(t)|| ≥ C

erC [erδmax − 1] otherwise

Now chooser so that:

rǫ

2
=

(rδmax)
2

2(1− rδmax/3)

This holds for r as defined in (50), and this choice ofr
maintains the inequality (56). Thus:

E [Y (t+ 1)− Y (t)|Q(t)]

≤
{

0 if ||Q(t)|| ≥ C
erC [erδmax − 1] otherwise

Therefore, for all slotst:

E [Y (t+ 1)− Y (t)] ≤ erC [erδmax − 1]

Summing the above overτ ∈ {0, 1, . . . , t−1} for some integer
t > 0 gives:

E [Y (t)]− E [Y (0)] ≤ erC [erδmax − 1]t

SinceY (0) = 1 with probability 1, andY (t) = er||Q(t)||, one
has:

E

[

er||Q(t)||
]

− 1 ≤ erC [erδmax − 1]t

By Jensen’s inequality for the convex functionex one has:

erE[||Q(t)||] − 1 ≤ erC [erδmax − 1]t

Thus:

rE [||Q(t)||] ≤ log(1 + erC [erδmax − 1]t)

≤ max[log(2), log(2erC [erδmax − 1]t)]

≤ max[log(2), rC + log(2t[erδmax − 1])]

Dividing the above byr gives the following, which holds for
all integerst > 0:

E [||Q(t)||] ≤ max

[

log(2)

r
, C +

log(2t[erδmax − 1])

r

]

APPENDIX E — THE CONSTANT IN THEOREM 3

This appendix proves the inequality involving the2BD
constant at the end of the proof of Theorem 3. From (25)
one has for all queuesk ∈ {1, 2, . . . ,K} and all slotsτ :

|Qk(τ + 1)−Qk(τ)| ≤ |pk(τ −D)− ck|

Thus, for all slotst:

|Qk(t+D)−Qk(t)| ≤
D
∑

d=1

|Qk(t+ d)−Qk(t+ d− 1)|

≤
D
∑

d=1

|pk(t+ d− 1−D)− ck|

=

D
∑

d=1

|pk(td)− ck|

where for notational simplicitytd has been defined:

td
△

=t+ d− 1−D

Thus:
K
∑

k=1

(Qk(t+D)−Qk(t))(pk(t)− ck)

≤
K
∑

k=1

D
∑

d=1

|pk(td)− ck||pk(t)− ck|

Taking expectations of the above and using the Cauchy-
Schwartz inequality:3

E

[

K
∑

k=1

(Qk(t+D)−Qk(t))(pk(t)− ck)

]

≤
K
∑

k=1

D
∑

d=1

√

E [|pk(td)− ck|2]
√

E [|pk(t)− ck|2]

≤
D
∑

d=1

√

√

√

√

K
∑

k=1

E [|pk(td)− ck|2]

√

√

√

√

K
∑

k=1

E [|pk(t)− ck|2]

3Strictly speaking, these expectations should be conditioned onQ(t) to
match with the inequalities at the end of Theorem 3. That explicit conditioning
has been suppressed to simplify the expressions.
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where the final inequality follows because the inner product
of two vectors is less than or equal to the product of norms.
The right hand side is less than or equal to:

D
∑

d=1

√
2B

√
2B = 2BD
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