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Abstract—For general multi-hop queueing networks, delay
optimal network control has unfortunately been an outstanding
problem. The dynamic backpressure (BP) algorithm elegantly
achieves throughput optimality, but does not yield good delay
performance in general. In this paper, we obtain an asymptotically
delay optimal control policy, which resembles the BP algorithm
in basing resource allocation and routing on a backpressure
calculation, but differs from the BP algorithm in the form of
the backpressure calculation employed. The difference suggests
a possible reason for the unsatisfactory delay performanceof
the BP algorithm, i.e., the myopic nature of the BP control.
Motivated by this new connection, we introduce a new class
of enhanced backpressure-based algorithms which incorporate a
general queue-dependent bias function into the backpressure term
of the traditional BP algorithm to improve delay performance.
These enhanced algorithms exploit queue state informationbeyond
one hop. We prove the throughput optimality and characterize the
utility-delay tradeoff of the enhanced algorithms. We further focus
on two specific distributed algorithms within this class, which have
demonstrably improved delay performance as well as acceptable
implementation complexity.

Index Terms—dynamic backpressure algorithms, congestion
control, delay optimal control, throughput optimal contro l, dy-
namic programming, Lyapunov drift.

I. I NTRODUCTION

With the significant increase in demand for real-time ser-
vices, it is well recognized that networks must be jointly
optimized across the physical, medium access control (MAC),
and network layers to support delay-sensitive applications.
Delay optimalnetwork control for general multi-hop queueing
networks, which seeks to minimize some function of average
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delay (or average queue size) by incorporating resource alloca-
tion and routing across different layers, has unfortunately been
an outstanding problem for some time. Often, even the basic
structural properties of the delay optimal control policy are not
known. While dynamic programming represents a systematic
approach for delay optimal control, there generally exist only
numerical solutions [1]–[5]. These solutions do not typically
offer many design insights and are usually impractical for
implementation in large-scale multi-hop networks, due to the
curse of dimensionality [6].

A notable success in networking research is the formulation
of the throughput optimalnetwork control problem and its
solution via thedynamic backpressure (BP) algorithm[7], [8].
Throughput optimal control seeks to ensure the stability of
general multi-hop queueing networks (all queue sizes remain
finite for all time) for any arrival rate vector within the network
stability region. The BP algorithm is obtained using Lyapunov
drift techniques. It incorporates resource allocation androuting
across the physical, MAC, and network layers, and elegantly
achieves throughput optimality via load balancing [7], [8]. The
algorithm has also been combined with flow control in the
transport layer to yield maximum network utility when the
data arrival rate is outside the network stability region [8]. One
major shortcoming of the BP algorithm, however, is that it does
not yield good delay performance in general. In routing packets,
the BP algorithm typically explores all possible paths between
sources and destinations (i.e., load balancing over the entire
network), without explicitly considering delay performance.
This extensive exploration is essential for maintaining stability
when the network is heavily loaded. Under light or moderate
loading, however, packets may be sent over unnecessarily long
routes, which leads to excessive delays.

For any arrival rate vector within the network stability
region, the delay optimal control minimizes average delay
(average queue size), while the BP algorithm ensures finite
average queue size and typically has good delay performance
only under heavy load. Therefore, two interesting questions
are: (1) whether there is any subtle connection between the
two network control solutions and (2) what accounts for the
delay performance gap between them. Better understanding
of these two questions may motivate the design of enhanced

http://arxiv.org/abs/1502.03276v3


2

BP algorithms with improved delay performance. There are
several potential challenges toward this direction. First, it is
not clear how one should improve the delay performance of
the BP algorithm by approximating the delay optimal control
in a tractable manner, in order to avoid the prohibitively
high complexity of dynamic programming. Second, it is not
clear how to maintain the desirable throughput optimality of
the BP algorithm when the BP control structure is modified
for improving the delay performance. In this paper, we shall
address the above questions and challenges.

A. Main Contributions

We first study the connection between delay optimal network
control and the BP algorithm (throughput optimal network
control). Using dynamic programming and Taylor’s theorem,
we obtain an asymptotically delay optimal control policy when
the scheduling slot duration is small. Surprisingly, we show
that the asymptotically delay optimal control, obtained using
dynamic programming, shares striking similarities with the BP
algorithm, obtained using Lyapunov drift techniques. Specif-
ically, the two algorithms both base resource allocation and
routing on a backpressure calculation, but differ in the form of
the backpressure calculation employed. In the BP algorithm,
the backpressure of a link is derived from the differences of
queue lengths at the two end nodes of the link. Thus, the
BP backpressure term reflectslocal queue state information
(QSI). In the asymptotically delay optimal control algorithm,
the backpressure of a link is derived from the differences of
the derivatives of the value function of the dynamic program
at the two end nodes of the link. Since in general the value
function depends on the global QSI, the backpressure term
for the asymptotically delay optimal control is a function of
the global QSI. This observation suggests a possible reason
for the poor delay performance of the BP algorithm, i.e., the
myopic nature of the control, which relies only on one-hop
queue size differences. To the best of our knowledge, this is
the first work which provides an analytical connection between
the two network control solutions.

Motivated by the above connection, we design enhanced BP
algorithms with improved delay performance via the use of
QSI beyond one hop. Specifically, we present a new class
of enhanced BP algorithmswhich maintain a generalized
notion of throughput optimality while exhibiting significantly
improved delay performance, relative to the traditional BP
algorithm. In lightly or moderately loaded networks, wherethe
delay performance of the traditional BP algorithm is poor, the
enhanced BP algorithms reduce average delay by (1) exploiting
the margin between the arrival rate vector and the boundary of
the network stability region, and (2) making use of QSI beyond
one hop in a simple and flexible manner, via the incorporation

of a QSI-dependent bias function into the backpressure calcu-
lation. We propose two specific algorithms, named BPnxt and
BPmin, within this class of enhanced BP algorithms. These
two algorithms promise to improve delay performance by using
downstream QSI to clarify congestion patterns, while allowing
for distributed implementation with manageable complexity.
BPnxt has the same implementation complexity (in order) as
the traditional BP algorithm. BPmin has an implementation
complexity which is higher (in order) than that for the tra-
ditional BP algorithm but lower than that for other BP-based
control algorithms with similar delay performance. Next, the
delay performance of both BPnxt and BPmin can be improved
further by incorporating an extra QSI-independent shortest path
bias term into the backpressure calculation. Finally, we present
a new class ofenhanced joint flow control and BP algorithms
for the case where the traffic arrival rate is outside the network
stability region, and demonstrate their superior utility-delay
performance tradeoff.

B. Related Work

A number of previous papers have focused on improving
the delay performance of the traditional BP-based algorithms.
References [9] and [10] improve the delay by incorporating the
shortest path (in terms of the number of hops) concept to avoid
the extensive exploration of paths in the BP algorithm. Specif-
ically, in [9], a (constant) shortest path bias, parameterized by
a per-link costB, is added to the backpressure term so that
nodes are inclined to route packets toward their destinations
using shorter paths. The algorithm proposed in [9] is called
BPbias here. In [10], a joint traffic-splitting and shortest-path-
aided BP routing algorithm, called BPSP here, is proposed,
where the traffic splitting is parameterized byK. A hop-
queue structure is used. The algorithm incorporates the shortest
path concept by minimizing the average number of hops
between sources and destinations, using the hop-queue length
difference in the backpressure term. The traditional BP and
BPbias algorithms requireO(N2C) computational complexity
for the backpressure calculation in each slot, whereN and
C are the number of nodes and the number of commodities
in the network, respectively. The BPSP algorithm, on the
other hand, requiresO(N4C) computational complexity for the
backpressure calculation in each slot. As shown in Section VII,
one potential challenge for BPbias and BPSP is that their delay
performance relies heavily on the choices for parametersB
and K. B and K must be selected for particular levels of
traffic loading, which may be difficult to predict beforehand
in practical networks.

Reference [11] improves the delay of the traditional BP
algorithm by introducing redundant traffic and a duplicate
queue structure with finite buffers, to avoid delay increase
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due to low queue occupancy. The one-hop (finite and local)
duplicate queue length difference is added to the backpressure
term, thereby capturing limited congestion information inthe
network. In [12], a shadow queueing architecture is proposed to
improve the delay performance of the traditional BP algorithm
by reducing the end-to-end queue length difference. The one-
hop shadow queue length difference is used as the backpressure
term. In [13], a delay-based BP algorithm is proposed to
improve the delay performance using a new delay metric. The
proposed algorithms in [12] and [13], however, are designed
for networks in which the routes of each flow are fixed before
the arrival of packets. Reference [14] improves the order ofthe
utility-delay tradeoff by forming a virtual backlog process and
using the LIFO service discipline on top of the traditional BP-
based algorithm. The order improvement, however, hinges on
the ability to drop a certain fraction of packets. In [15], [16],
receiver diversity is used to improve the delay performance
of the traditional BP algorithm for networks with unreliable
channel conditions.

The motivation, method and design for our proposed class of
enhanced BP algorithms are novel and differ significantly from
the algorithms proposed in the above papers. Our motivation
stems primarily from the connection we establish between
delay optimal network control and the throughput optimal
BP algorithm. Our proposed class of enhanced BP algorithms
improve delay performance by incorporating a general QSI-
dependent bias function into the backpressure calculation,
thereby mitigating the myopia of the traditional BP algorithm.

II. N ETWORK MODEL

In this section, we establish the network model. Consider a
(wireline or wireless) multi-hop network modeled by a directed
graphG = (N ,L), whereN andL denote sets ofN nodes
and L directed links, respectively. Time is slotted with slots
indexed byt ∈ {0, 1, 2, · · · }. The slot duration is∆ > 0
(sec). Data entering the network is associated with a particular
commodity. LetC represent the set ofC commodities in the
network. Assume that there is one destination nodedest(c) for
each commodityc ∈ C. Let A(c)

n (t)∆ ≥ 0 denote the amount
of exogenous arrivals (bits) for commodityc to noden during
slot t, assumed to enter the transmission buffer at the end of
slot t. Assume thatA(c)

n (t) ∈ [0, A
(c)
n,max] is i.i.d. with respect

to (w.r.t.) t with arrival rateλ(c)
n , E[A

(c)
n (t)] (bit/sec), where

A
(c)
n,max < ∞. In addition, assume that processes{A

(c)
n (t)} for

different node-commodity pairs are mutually independent.Let
A(t) , (A

(c)
n (t)) andλ , (λ

(c)
n ).

Let S(t) ∈ S denote the topology state of the network in
slot t, whereS is the finite topology state space. The topology
stateS(t) can be used to model channel fading in wireless
networks. AssumeS(t) is i.i.d. w.r.t. t. Let I(t) ∈ I denote

the resource allocation action at slott, whereI is the bounded
resource allocation action space. The resource allocationaction
I(t) may reflect a set of power allocations or a set of conflict
constraints in wireless networks. LetRab (S(t), I(t)) ≥ 0
denote the transmission rate (bit/sec) over link(a, b) underS(t)
and I(t), whereRab (S(t), I(t)) = 0 if (a, b) 6∈ L. Assume
Rab (S(t), I(t)) ≤ Rmax for all (a, b) ∈ L, S(t) ∈ S and
I(t) ∈ I, whereRmax < ∞ is an upper bound on the maximum
transmission rate over any link. Letν(c)ab (t)∆ ≥ 0 represent the
amount of commodityc data (bits) delivered over link(a, b)
during slott, satisfying:

∑

c∈C

ν
(c)
ab (t) ≤ Rab

(

S(t), I(t)
)

, ∀(a, b) ∈ L, c ∈ C (1)

ν
(c)
ab (t) = 0, ∀(a, b) 6∈ L(c), c ∈ C (2)

whereL(c) is the set ofL(c) links that are allowed to transmit
commodityc data. LetR denote the bounded routing action
space, which is the bounded set of non-negativeν(t) ,

(ν
(c)
ab (t)) satisfying (1) and (2), for allS(t) ∈ S andI(t) ∈ I.
Data corresponding to different commodities are queued sep-

arately at each node, in buffers of infinite size. LetU
(c)
n (t) ≥ 0

denote the amount of commodityc data (bits) at noden at the
beginning of slott in the network layer. LetU(t) , (U

(c)
n (t)) ∈

U denote the network layer queue state information (QSI) at
the beginning of slott, whereU denotes the nonnegative QSI
state space. Any data successfully delivered to its destination is
assumed to exit the network layer. Thus, for each commodity
c ∈ C, we setU (c)

n (t) = 0 for all t, if noden is the destination
node of commodityc. For each commodityc ∈ C and node
n ∈ N , n 6= dest(c), the network queue dynamics satisfies:1

U (c)
n (t+ 1) (3)

=U (c)
n (t)−

∑

b∈N

ν
(c)
nb (t)∆ +A(c)

n (t)∆ +
∑

a∈N

ν(c)an (t)∆

for all t. Note that
∑

b∈N ν
(c)
nb (t)∆ bits are removed from

the buffer at noden for commodity c beforeA
(c)
n (t)∆ and

∑

a∈N ν
(c)
an (t)∆ bits arrive. Thus, for allt, we require:

∑

b∈N

ν
(c)
nb (t)∆ ≤ U (c)

n (t), ∀n ∈ N , c ∈ C. (4)

In the following, we introduce some basic definitions.
Definition 1: A feasible stationary policyω : S×U → I×R

is a mapping from the system (topology and QSI) state space
to the system (resource allocation and routing) action space.

1Due to the constraint in (2), the summations in (3) can be written as
summations over all node indices. Note that we assume exogenous arrivals
during a slot arrive into the transmission buffer at the end of the slot.
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Given system state(s,u) ∈ S × U , ω determines the action
(I,ν) = ω(s,u) ∈ I ×R, whereI andν satisfy I ∈ I and

∑

c∈C

ν
(c)
ab ≤ Rab

(

s, I
)

, ∀(a, b) ∈ L, c ∈ C (5)

ν
(c)
ab = 0, ∀(a, b) 6∈ L(c), c ∈ C (6)
∑

b∈N

ν
(c)
nb ∆ ≤ u(c)

n , ∀n ∈ N , c ∈ C. (7)

Next, we define the notions of network stability and the
network stability region.

Definition 2 (Network Layer Queue Stability):A single net-
work layer queue is stable iflim supt→+∞

1
t

∑t−1
τ=0 E[U

(c)
n (τ)]

< ∞. A network of network layer queues is stable if all
individual network layer queues of the network are stable.

Definition 3 (Network Stability Region):The network sta-
bility region Λ is the closure of the set of all arrival ratesλ
for which all network layer queues can be stabilized by some
feasible policy.2

III. C ONNECTION BETWEENTHROUGHPUTOPTIMAL BP
ALGORITHM AND DELAY OPTIMAL CONTROL

In this section, we consider the case whereλ ∈ int(Λ)
and study the connection between the throughput optimal BP
algorithm and the delay optimal control.

A. Delay Optimal Control Problem

Under a given stationary policyω, the induced random pro-
cess{(S(t),U(t))} is a controlled markov chain with transition
probabilities given by:

P(s,u),(s′,u′)(I,ν)

,Pr[(S(t+ 1),U(t+ 1)) = (s′,u′)|(S(t),U(t)) = (s,u), I,ν]

=Pr[S(t+ 1) = s′]P(s,u),u′(I,ν) (8)

where P(s,u),u′(I,ν) , Pr[U(t + 1) = u′|(S(t),U(t)) =
(s,u), I,ν]. Note thatP(s,u),(s′,u′)(I,ν) denotes the proba-
bility that the next state will be(s′,u′) ∈ S × U given
that the current state is(s,u) ∈ S × U and the control
action is (I,ν) = ω(s,u). In addition, P(s,u),u′(I,ν) =
∑

s′∈S P(s,u),(s′,u′)(I,ν).
We now formulate the delay optimal control problem.
Problem 1 (Delay Optimal Control Problem):

min
ω

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n∈N ,c∈C

E[U (c)
n (τ)] (9)

where (S(0),U(0)) ∈ S × U and ω is a feasible stationary
policy defined in Definition 1. Note that the expectation is taken

2Here, the feasible policy is not required to be stationary.

w.r.t. the probability measure induced by the control policy ω.
Problem 1 is an infinite horizon average cost problem [6]. In the
remainder of this section, we restrict our attention to stabilizing
policies.

B. Delay Optimal Policy

In Sections III-B, III-C and III-D, for technical tractability,
we assumeA(c)

n (t) andν(c)n (t) both take on nonnegative ratio-
nal values for allt, ∆ is a nonnegative rational number, andI
andR are finite. These assumptions ensure thatU is countably
infinite. Under certain conditions (specified below), a delay
optimal policy ω∗ can be obtained by solving the following
Bellman equation.

Lemma 1 (Bellman Equation):Assume3 that a scalard and
a real-valued functionV (·) solve the Bellman equation:

d+ V (u) =

∑

s∈S

Pr[S = s]






min
I,ν











∑

n∈N
c∈C

u(c)
n +

∑

u′∈U

P(s,u),u′(I,ν)V (u′)

















(10)

for all u ∈ U and furthermoreV (·) satisfies:

lim
t→∞

1

t
E[V (U(t)|(S(0),U(0)) = (s,u), ω] = 0 (11)

for all ω and (s,u) ∈ S × U , where I and ν in
(10) satisfy I ∈ I, (5), (6) and (7). Then,d =

minω lim supt→∞
1
t

∑t−1
τ=0

∑

n∈N ,c∈C E[U
(c)
n (τ)] is the opti-

mal value to Problem 1 for all initial(S(0),U(0)) ∈ S × U
and V (·) is called the value function (potential function).
Furthermore, if4

ω∗(s,u) = argmin
I,ν

∑

u′∈U

P(s,u),u′(I,ν)V (u′) (12)

for all (s,u) ∈ S × U , whereI andν in (12) satisfyI ∈ I,
(5), (6) and (7), thenω∗ is the delay optimal policy achieving
the optimal valued.

Proof: Please refer to Appendix A for the proof.
The fact that the optimal valued does not change with

(S(0),U(0)) implies that the optimal policyω∗ is a unichain
policy [6]. From Lemma 1, we can see thatω∗ given by (12)
depends onu through the value functionV (·). ObtainingV (·)
involves solving the Bellman equation in (10) for allu ∈ U ,
which does not admit a closed-form solution in general. Brute
force numerical solutions such as value iteration and policy
iteration are not practical for multi-hop queueing networks [1],
[6] and do not yield many design insights.

3Assumption 4. 6. 2 and Assumption 4.6.3 in [6] provide the conditions for
the existence ofd andV (·).

4Note thatV (u) captures the average delay cost starting fromu.
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C. Asymptotically Delay Optimal Policy

In Sections III-C and III-D, for technical tractability, we
suppose that for all slot durations∆ > 0, a scalard and a
real-valued functionV (·) exist in Lemma 1, andV (·) is twice
differentiable. LetV ′

n,(c)(·) ,
∂V

∂u
(c)
n

(·).
It is difficult to directly study the features of delay optimal

control policy for a general multi-hop network by investigating
the properties of the value functionV (·). We therefore study the
asymptotic features of the delay optimal control. Specifically,
using Taylor’s theorem forV (·) [17], we can show that mini-
mizing the expected value function in the delay optimal policy
(cf. (12)) is the same as maximizing the gradient descent of
the value function (cf. (13)), as∆ → 0 (Please see Appendix
B for the proof). Consider the policy

ω†(s,u)

= argmax
I,ν

∑

(a,b)∈L

∑

c∈C

ν
(c)
ab

(

V ′
a,(c)(u)− V ′

b,(c)(u)
)

(13)

for all (s,u) ∈ S × U , where I and ν in (13) satisfy
I ∈ I, (5), (6) and (7). Suppose that policyω† is a
unichain policy. Denote the average queue length underω† by
d† = lim supt→∞

1
t

∑t−1
τ=0

∑

n∈N ,c∈C E[U
(c)
n (τ)], where the

expectation is taken w.r.t. the probability measure induced by
ω†. Note thatω†, d†, ω∗ and d are all functions of the slot
duration∆, asd andV (·) in Lemma 1 depend on∆ through
the transition probabilities. Therefore, we also writed† andd
as d†(∆) and d(∆), respectively, when studying the scaling
behavior w.r.t.∆.

Next, we show thatω† is asymptotically delay optimal.
Lemma 2 (Asymptotically Delay Optimal Policy):For all

slot durations∆ > 0, suppose policyω† is a unichain policy.
Then, we haved†(∆)− d(∆) = o(∆) as∆ → 0.

Proof: Please refer to Appendix B for the proof.
Note that by Lemma 2, we haved†(∆) − d(∆) → 0 as

∆ → 0. This shows that policyω† is asymptotically delay
optimal when the scheduling slot duration is small. It can be
easily shown that policyω† chooses resource allocation and
routing action according to the following corollary.

Corollary 1 (Asymptotically Delay Optimal Policy):Given
the observed(s,u) ∈ S × U , let I† and ν† be defined as in
(15) and (16). Ifν† satisfies (7), thenω† chooses the resource
allocation and routing actionω†(s,u) = (I†,ν†).

Resource Allocation: For each link(a, b) ∈ L and com-
modity c ∈ C, let

δV
(c)
ab (u) , V ′

a,(c)(u)− V ′
b,(c)(u) (14)

denote the asymptotically delay optimal back-
pressure of link (a, b) w.r.t. commodity c. Let
c†ab(u) , argmaxc∈{c:(a,b)∈L(c)} δV

(c)
ab (u) and

δV †
ab(u) ,

(

δV
(c†

ab
(u))

ab (u)

)+

, where (x)+ , max{x, 0}.

Choose the resource allocation action as:

I† = argmax
I∈I

∑

(a,b)∈L

δV †
ab(u)Rab

(

S, I
)

. (15)

Routing: For each link(a, b) ∈ L and commodityc ∈ C,
choose the routing action according to:

ν
(c)†
ab =

{

Rab

(

S, I†
)

, δV †
ab(u) > 0 andc = c†ab(u)

0, otherwise.
(16)

D. Connection to the BP Algorithm

We now discuss the connection between the asymptotically
delay optimal policy and the throughput optimal BP algorithm.
By Corollary 1, we can see that the asymptotically delay
optimal control, obtained using dynamic programming, shares
striking similarities with the BP algorithm [7], [8], obtained us-
ing Lyapunov drift techniques. Specifically, the two algorithms
both base resource allocation and routing on a backpressure
calculation. On the other hand, the two algorithms differ in
the form of the backpressure calculation employed. In the BP
algorithm, the backpressure of link(a, b) w.r.t. commodity
c is derived from the difference between the queue lengths
of commodity c at the two end nodesa and b of the link,
i.e., u(c)

a − u
(c)
b . In the asymptotically delay optimal control

algorithm, the backpressure of link(a, b) w.r.t. commodity
c is derived from the differences of the derivatives of the
value function at the two end nodesa and b of the link, i.e.,
V ′
a,(c)(u)− V ′

b,(c)(u).
The following lemma summarizes the property of the value

function. First, we introduce the BP controlω‡ as follows:

ω‡(s,u) = argmax
I,ν

∑

(a,b)∈L

∑

c∈C

ν
(c)
ab

(

u(c)
a − u

(c)
b

)

(17)

for all (s,u) ∈ S × U , whereI andν in (17) satisfyI ∈ I,
(5), (6) and (7). We know that the traditional BP algorithm [7],
[8] is closely related toω‡.5

Lemma 3 (Comparison betweenω† andω‡): For somen ∈
N and c ∈ C, there does not exist a functiong(c)n (u

(c)
n ), such

that V ′
n,(c)(u) = g

(c)
n (u

(c)
n ). Furthermore, there exists(s,u) ∈

S × U such thatω†(s,u) 6= ω‡(s,u).
Proof: Please refer to Appendix C for the proof.

Lemma 3 shows that the backpressure term for the asymptoti-
cally delay optimal control is in general a function of theglobal
QSI. On the other hand, the BP backpressure term reflectslocal

5The BP algorithm does not consider the constraint in (7), as (7) is
automatically satisfied when queue lengths are large and does not matter when
dealing with throughput optimality.



6

QSI. Therefore, the asymptotically delay optimal control and
the traditional BP algorithm are significantly different.

Suppose that policyω‡ is a unichain policy. De-
note the average queue length underω‡ by d‡ =

lim supt→∞
1
t

∑t−1
τ=0

∑

n∈N ,c∈C E[U
(c)
n (τ)], where the expec-

tation is taken w.r.t. the probability measure induced byω‡. We
also writed‡ asd‡(∆).

Lemma 4 (Comparison betweend‡ and d†): For all slot du-
rations∆ > 0, suppose policyω† and policyω‡ are unichain
policies. Then, there existsǫ > 0 such thatd‡(∆) − d†(∆) ≥
ǫ+ o(∆) as∆ → 0.

Proof: Please refer to Appendix D for the proof.
Lemma 4 shows that the BP algorithm has worse delay

performance than the asymptotically delay optimal controlω†.
By Lemma 2 and Lemma 4, we haved‡(∆)−d(∆) ≥ ǫ+o(∆).
Thus, d‡(∆) − d(∆) 6→ 0 as ∆ → 0. Therefore, the BP
algorithm is not asymptotically delay optimal.

Lemma 3 and Lemma 4 suggest a possible reason for the
generally unsatisfactory delay performance of the BP algorithm.
Namely, the BP delay performance suffers from themyopic
nature of the control, which relies only on one-hop queue size
differences. To the best of our knowledge, this is the first work
which provides an analytical connection between delay optimal
network control and the BP algorithm (throughput optimal
network control). The connection provides a theoretical basis
for designing enhanced BP algorithms with improved delay
performance via the use of QSI beyond one hop. Motivated by
this connection, we shall present a new class of enhanced BP-
based algorithms, for the cases whereλ ∈ int(Λ) andλ /∈ Λ
in Sections IV and VI, respectively.

IV. ENHANCED BP ALGORITHMS WITH

STABILIZABLE ARRIVAL RATES

In this section, we consider the case whereλ ∈ int(Λ), and
develop a new class ofenhanced BP algorithms.

A. Network Layer Queue Dynamics

Whenλ ∈ int(Λ), the arrival data can be directly admitted
to the network. Letµ(c)

ab (t)∆ ≥ 0 represent the amount of
commodity c data (bits) which can be transmitted over link
(a, b) during slott. Let µ(t) , (µ

(c)
ab (t)). Similar toν(t), µ(t)

also satisfies (1) and (2) (in terms ofµ
(c)
ab (t) instead ofν(c)ab (t)).

Unlike ν(t), µ(t) does not have to satisfy (4) (in terms of
µ
(c)
ab (t) instead ofν(c)ab (t)). In other words, for each noden ∈ N

and commodityc ∈ C, µ(c)
nb (t) = ν

(c)
nb (t) for all b ∈ N when

there are enough bits to be removed from the buffer at node
n for commodity c, i.e., (4) is satisfied (in terms ofµ(c)

ab (t)

instead ofν(c)ab (t)). Thus, for each commodityc ∈ C and node

n ∈ N , n 6= dest(c), the network queue dynamics satisfies:

U (c)
n (t+ 1) (18)

≤

(

U (c)
n (t)−

∑

b∈N

µ
(c)
nb (t)∆

)+

+A(c)
n (t)∆ +

∑

a∈N

µ(c)
an(t)∆.

Inequality holds in (18) because the actual amount of com-
modity c data arriving to noden during slot t may be less
than

∑

a∈N µ
(c)
an(t)∆ if the neighboring nodes have little or

no commodityc data to transmit. To facilitate the design of
throughput optimal control, we consider routing control in
terms ofµ(t) instead ofν(t), as in [7], [8].

B. Bias Function

Motivated by the connection between the asymptotically
delay optimal control and the throughput optimal BP algorithm
in Section III-D, we now propose a general QSI-dependent bias
function to incorporate QSI beyond one hop in order to mitigate
the myopic nature of the BP algorithm.

We first present a general nonnegative QSI-dependent bias
function for each noden ∈ N and commodityc ∈ C:

f (c)
n (u) =

∑

k∈N

η
(c)
nk (u)

u
(c)
k

z
(c)
k

. (19)

Here,η(c)nk (u) ∈ [0, 1] is the weight associated with QSIu(c)
k at

noden, representing the relative importance ofu
(c)
k in the bias

at noden. Note that in general,η(c)nk (u) is allowed to depend
on the global QSIu. The parameterz(c)k > 0 is designed to
guarantee network stability. The proper choice ofz

(c)
k > 0

will be discussed below in Theorem 1. We can treatu
(c)
k

z
(c)
k

as a

normalized version ofu(c)
k . Later, we shall see that the quantity

u
(c)
n + f

(c)
n (u) can be regarded as a tractable approximation of

V ′
n,(c)(u) (cf. (21) and (14)) in the asymptotically delay optimal

policy in (13).
While the bias functionf (c)

n (u) in (19) is generally written as
a function of the global QSI, one can choose the bias function
to depend only on the local QSI within one hop as follows:

f (c)
n

(

u(c)
n

)

=
∑

k∈{k:(n,k)∈L(c)}

η
(c)
nk

(

u(c)
n

) u
(c)
k

z
(c)
k

(20)

whereu(c)
n , (u

(c)
k )(n,k)∈L(c) is the local QSI within one hop.

Each specific choice of a bias functionf , (f
(c)
n ) cor-

responds to one enhanced BP algorithm (described in the
next subsection), and the amount of QSI contributing to the
bias function determines the implementation complexity of
the corresponding enhanced BP algorithm. The form of the
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bias function (cf. (19) and (20)) is carefully chosen to en-
able (generalized) throughput optimality (Theorem 1) of the
enhanced BP algorithms, while at the same time offering a
high degree of flexibility in choosing specific enhanced BP
algorithms with manageable complexity, distributed implemen-
tation, and significantly better delay performance. In Section V,
we shall describe two enhanced BP algorithms resulting from
two specific choices forf in (20) and (19), respectively, which
embody the desirable properties described above.

C. Enhanced BP Algorithm

We now present a new class of enhanced BP algorithms
by incorporating the general QSI-dependent bias functionsf

defined in (19) into the BP backpressure calculation.
Algorithm 1 (Enhanced BP):Let a set of bias functionsf �

0 be given.6 At each slott, the network controller observes
the network layer QSIU(t) and the topology stateS(t), and
performs the following resource allocation and routing actions.

Resource Allocation: For each link(a, b) ∈ L and com-
modity c ∈ C, let7

W
(c)
ab (U(t))

,

(

U (c)
a (t) + f (c)

a (U(t))
)

−
(

U
(c)
b (t) + f

(c)
b (U(t))

)

(21)

denote the enhanced BP backpressure of link(a, b) w.r.t. com-
modity c. Let c∗ab(U(t)) , argmaxc∈{c:(a,b)∈L(c)} W

(c)
ab (U(t))

and W ∗
ab(U(t)) ,

(

W
(c∗ab(U(t)))
ab (U(t))

)+

. Choose the re-
source allocation action as follows:

I(t) = argmax
I∈I

∑

(a,b)∈L

W ∗
ab(U(t))Rab

(

S(t), I
)

. (22)

Routing: For each link(a, b) ∈ L and commodityc ∈ C,
choose:

µ
(c)
ab (t) =

{

Rab

(

S(t), I(t)
)

, W ∗
ab(t) > 0 andc = c∗ab(t)

0, otherwise.

Note that based onµ(t), we can choose routing actions
ν(t). For each nodea ∈ N and commodityc ∈ C, if
∑

b∈N
(c)
out,a

µ
(c)
ab (t)∆ ≤ U

(c)
a (t), we choose routing action

ν
(c)
ab (t) = µ

(c)
ab (t) for all b ∈ N

(c)
out,a, whereN

(c)
out,a , {b :

(a, b) ∈ L(c)}. When
∑

b∈N
(c)
out,a

µ
(c)
ab (t)∆ > U

(c)
a (t), there

are multiple choices forν(t), which can guarantee generalized
throughput optimality shown in Theorem 1.

6The notation�, �, ≻, ≺ indicate component-wise≥, ≤, >, <.
7A QSI-independent bias, such as the shortest-path bias usedin [9], can

easily be incorporated into bias functions. It can be verified that, with any extra
QSI-independent bias, Theorem 1 (Theorem 2) still holds with a constant shift
of B̄ in (24) (B̂ in (40)) [9].

D. Performance Analysis

As mentioned above, the traditional BP algorithm can have
poor delay performance in networks with light to moderate
traffic loads. Note that in this situation, there exists a significant
margin between the arrival rate vector and the boundary of the
network stability region. Algorithm 1, with the bias functions
chosen according to (19), can exploit this margin (or a lower
bound on the margin) to incorporate QSI beyond one hop,
thereby reducing the average delay while maintaining a general-
ized notion of throughput optimality. This result is summarized
as follows. For notational simplicity, we assume∆ = 1.

Theorem 1 (Generalized Throughput Optimality of Alg. 1):
Given ǫ , (ǫ

(c)
n ) � 0 such thatλ + ǫ ∈ int(Λ), there exist

δ , (δ
(c)
n ) ≻ 0 such thatλ + ǫ + δ ∈ Λ, andz , (z

(c)
n ) ≻ 0

such thatǫz ,

(

2RmaxL
(c)

z
(c)
n

)

� ǫ. Then, the queueing network
under Algorithm 1, with the bias functions chosen according
to (19), satisfies:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n∈N ,c∈C

E[U (c)
n (τ)] ≤

NB̄

β̄z

(23)

where

B̄ ,
1

2N

∑

n∈N

(

(µout
n,max)

2 + (An,max + µin
n,max)

2
)

(24)

β̄z , sup
{(ǫ,δ):ǫ�ǫz,δ≻0,

λ+ǫ+δ∈Λ}

min
n∈N ,c∈C

{

ǫ(c)n + δ(c)n −
2RmaxL

(c)

z
(c)
n

}

(25)

with µout
n,max , sups∈S,I∈I

∑

b∈N Rnb(s, I), µin
n,max ,

sups∈S,I∈I

∑

a∈N Ran(s, I), andAn,max ,
∑

c∈C A
(c)
n,max.

Proof: Please refer to Appendix E.
Remark 1:Theorem 1 should be interpreted as follows.

When it is given that the arrival rate vectorλ is bounded away
from the boundary of the stability regionΛ by at leastǫ ≻ 0,
i.e., λ + ǫ ∈ int(Λ), one can choose afinite z ≻ 0 such that
ǫz ≺ ǫ. In this case, the limiting average total queue size under
Algorithm 1 is upper bounded as in (23). Thus, Algorithm 1
stabilizes the network for any arrival rate which is bounded
away from the boundary of the stability region by at leastǫ,
for any givenǫ ≻ 0. When it is only known thatλ ∈ int(Λ)
and no extra margin is given (ǫ = 0), then by Theorem 1,z(c)n

must be chosen to be infinity for alln ∈ N and c ∈ C (i.e.,
f = 0). In this case, Algorithm 1 reduces to the traditional BP
algorithm, and Theorem 1 reduces to the traditional throughput
optimality result (Lemma 4.1 in [8]).

The margin (or a lower bound on the margin)ǫ in Theorem 1
may be obtained in several possible ways. First, traffic mea-
surement is usually performed for practical networks (e.g., at
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different times of a day). The difference between the measured
peak traffic load during the busy traffic hour (assuming the
network remains stable) and the load during an off-peak non-
busy traffic hour can serve as a lower bound on the margin
during the non-busy traffic hour. Second, in the case where
the arrival rate vector, or an upper bound on the arrival rate
vector, can be estimated, one can calculate a lower bound on
the margin by solving a linear program (in a distributed manner)
maximizingminn∈N ,c∈C ǫ

(c)
n subject toλ+ ǫ ∈ int(Λ), where

Λ is characterized in [8, pp. 32].
Note that the choice ofz based onǫ as given by The-

orem 1 for throughput optimality may not be optimal from
the viewpoint of improving delay performance. In Section VII,
we shall show using numerical simulations that the proposed
enhanced BP algorithms with appropriately chosen parameters
z achieve significant delay improvement over the existing BP-
based algorithms under small or moderate loading.

V. TWO BIAS FUNCTIONS

In this section, we describe two enhanced BP algorithms
resulting from two specific choices forf . These enhanced BP
algorithms are designed to ameliorate the myopia of the tradi-
tional BP algorithm, thereby improving its delay performance.
In addition, the enhanced BP algorithms can be implemented
in a distributed manner with manageable complexity.

Algorithm Computational Complexity Signaling Overhead
BP (BPbias) O(N2C) O(N2C)

BPnxt (BPnxtbias) O(N2C) O(N2C)
BPmin (BPminbias) O(N3C) O(N3C)

BPSP O(N4C) O(N3C)

TABLE I: Comparisons on algorithm complexity.

A. Minimum Next-hop Queue Length Bias (BPnxt)

We consider a local QSI-dependent bias function which is
an example of (20) and allows the resulting enhanced BP
algorithm to incorporate QSI one more hop beyond what is
accounted for in the traditional BP algorithm. Specifically,
consider theminimum next-hop queue length bias function
defined as follows. For each noden ∈ N and commodityc ∈ C,
let H∗(c)

n

(

u
(c)
n

)

, min
k∈{k:(n,k)∈L(c)} u

(c)
k be the minimum

next-hop queue length, and chooseη
(c)
nk

(

u
(c)
n

)

as follows:

η
(c)
nk

(

u(c)
n

)

=

{

1

N
∗(c)
nxt,n

, k ∈ N
∗(c)
nxt,n

0, otherwise
(26)

whereN ∗(c)
nxt,n ,

{

k : u
(c)
k = H

∗(c)
n

(

u
(c)
n

)

, (n, k) ∈ L(c)
}

and

N
∗(c)
nxt,n , |N

∗(c)
nxt,n|. For any given marginǫ = (ǫ

(c)
n ) ≻ 0, we

choosez = (z
(c)
n ), z(c)n = z for all n ∈ N andc ∈ C, where

z ≥
2Rmaxdin

minn∈N ,c∈C ǫ
(c)
n

. (27)

Here,din denotes the largest node in-degree among all nodes
in the graph. Thus, the minimum next-hop queue length bias
function is given by:

f (c)
n

(

u(c)
n

)

=
1

z
H∗(c)

n

(

u(c)
n

)

. (28)

Given the bias function in (28), and using Algorithm 1, we
now obtain an enhanced BP algorithm, which will be referred
to as BPnxt. We show in Appendix F that for allz satisfying
(27), BPnxt stabilizes the network for anyλ satisfyingλ+ǫ ∈
int(Λ).

We now briefly discuss the implementation complexity of the
BPnxt algorithm, as illustrated in Table I. Since the difference
between the traditional BP algorithm and the BPnxt algorithm
lies in the backpressure calculation, we focus only on the
complexity for implementing (21). Consider the computational
complexity first. For each commodity, each node needs to
compute the minimum next-hop queue length bias, which
involves a minimization over no more thanN queue lengths,
and the summation of its queue length and the minimum
next-hop queue length bias. In addition, for each commodity,
each node needs to carry out one subtraction to compute the
enhanced BP backpressure of each outgoing link, involving
in total no more thanN operations for no more thanN
outgoing links. Thus, the total computational complexity for
the backpressure calculation of BPnxt (overN nodes andC
commodities) isO(N2C). It is easy to see that this is the
same in order as the computational complexity for calculating
the backpressure in the traditional BP algorithm and the BPbias
algorithm in [9]. Next, consider the signaling overhead forthe
backpressure calculation of BPnxt. During the signaling phase
of each slot, for each commodity, each node needs to report its
queue length and the sum of its queue length and its minimum
next-hop queue length bias (which can be obtained from the
information reported to the node from its next-hop neighbors)
to no more thanN previous-hop neighbors. Thus, the total
signaling overhead isO(N2C). Again, it is easy to see that this
is the same in order as the signaling overhead for calculating
the backpressure in the traditional BP algorithm and the BPbias
algorithm. In summary, the BPnxt algorithm has the same order
of implementation complexity as the traditional BP algorithm
and the BPbias algorithm.

B. Minimum Downstream Sum Queue Length Bias (BPmin)

Next, we consider a global QSI-dependent bias function
which is an example of (19) and incorporates multi-hop QSI
downstream toward the destinations of the respective traffic
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commodities. Consider theminimum downstream sum queue
length bias functiondefined as follows. For each noden ∈ N
and commodityc ∈ C, let M (c)

n denote the number of paths
from noden to the destination node of commodityc, dest(c).
Let P(c)

n,m denote the set of nodes on them-th path from node
n to nodedest(c), wherem = 1, · · · ,M

(c)
n . The sum queue

length excluding noden on pathP(c)
n,m is given byT (c)

n,m (u) ,
∑

i∈P
(c)
n,m,i6=n

u
(c)
i . Let T ∗(c)

n (u) , min
m=1,··· ,M

(c)
n

T
(c)
n,m (u)

be the sum queue lengthexcluding noden on the shortest path
(in terms of the sum queue length) todest(c). For each node
n ∈ N and commodityc ∈ C, chooseη(c)nk (u) as follows:

η
(c)
nk (u) =







1

N
∗(c)
min,n

, k ∈ P∗,P∗ ∈ N
∗(c)
min,n

0, otherwise
(29)

where

N
∗(c)
min,n ,

{

P(c)
n,m : T (c)

n,m (u) = T ∗(c)
n (u) ,m ∈

{

1, · · · ,M (c)
n

}}

is the set of shortest paths (in terms of the sum queue length)
from n to dest(c) andN∗(c)

min,n , |N
∗(c)
min,n|. As in BPnxt, for any

given marginǫ = (ǫ
(c)
n ) ≻ 0, we choosez = (z

(c)
n ), z(c)n = z

for all n ∈ N and c ∈ C, wherez satisfies (27). Thus, the
minimum downstream sum queue length bias function is given
by:

f (c)
n (u) =

1

z
T ∗(c)
n (u) . (30)

Given the bias function in (30), and using Algorithm 1, we
now obtain an enhanced BP algorithm, which will be referred
to as BPmin. We show in Appendix F that for allz satisfying
(27), BPmin stabilizes the network for anyλ satisfyingλ+ǫ ∈
int(Λ).

We now discuss the implementation complexity of the BPmin
algorithm, as illustrated in Table I. Again, we focus only on
the complexity for implementing the backpressure calculation
given in (21). Consider the computational complexity first.The
downstream sum queue length minimization is a shortest path
problem where the per-link cost is the instantaneous queue
length at the receive node of the link. Thus, the minimization
can be solved in a distributed and parallel manner using the
iterative Bellman-Ford algorithm [18]. In each iteration,for
each commodity, each node needs to compute no more thanN
summations and one minimization over no more thanN alter-
natives. The number of iterations is no more thanN . Thus, for
each node and each commodity, the computational complexity
of calculating the minimum downstream sum queue length bias
is O(N2). In addition, for each commodity, each node needs to
carry out the summation of its queue length and the minimum
downstream sum queue length bias, and then carry out one
subtraction to compute the enhanced BP backpressure of each

outgoing link, involving in total no more thanN operations for
no more thanN outgoing links. Thus, the total computational
complexity for the backpressure calculation of BPmin (overN
nodes andC commodities) isO(N3C), which is lower than
that of the BPSP algorithm in [10] (O(N4C)), but higher than
that of the traditional BP algorithm and the BPbias algorithm
(O(N2C)). Next, consider the signaling overhead. For each
commodity and each iteration of the Bellman-Ford algorithm,
each node needs to report one intermediate shortest path length
to no more thanN previous-hop neighbors. When the Bellman-
Ford algorithm converges within no more thanN iterations,
each node needs to report the sum of its queue length and
the minimum downstream sum queue length bias to no more
than N previous-hop neighbors, for each commodity. Thus,
the total signaling overhead isO(N3C), which is the same in
order as that of the BPSP algorithm, but higher in order than
that of the traditional BP algorithm and the BPbias algorithm
(O(N2C)). In summary, the BPmin algorithm has a higher
order of implementation complexity than the traditional BP
algorithm, the BPbias algorithm and the BPnxt algorithm, but
a lower order of implementation complexity than the BPSP
algorithm.

VI. ENHANCED JOINT FLOW CONTROL AND BP
ALGORITHMS WITH ARBITRARY ARRIVAL RATES

In this section, we consider the case whereλ /∈ Λ, and
develop a new class ofenhanced joint flow control and BP
algorithms.

A. Transport Layer and Network Layer Queue Dynamics

When λ /∈ Λ, the network cannot be stabilized by any
feasible resource allocation and routing policy. Rather, in order
to stabilize the network, a flow controller must be placed in
front of each network layer queue at the source nodes to control
the amount of data admitted into the network layer. Newly
arriving data first enter transport layer storage reservoirs before
being admitted to the network layer [8]. LetQ

(c)
n,max andQ(c)

n (t)
denote the transport layer buffer size and the QSI of commodity
c data (bits) at noden at the beginning of slott, respectively.
The buffer sizeQ(c)

n,max can be infinite or finite (possibly zero).
Similarly, for each commodityc ∈ C, we setQ(c)

n,max = 0

and Q
(c)
n (t) = 0 for all t, if node n is the destination node

of commodityc. Let r(c)n (t)∆ ≥ 0 denote the amount of data
admitted to the network layer queue of commodityc data (bits)
at noden from the transport layer queue during slott. Thus,
we requirer(c)n (t)∆ ≤ Q

(c)
n (t). We assumer(c)n (t) ≤ r

(c)
n,max,

wherer(c)n,max is a positive constant which limits the burstiness
of the admitted arrivals to the network layer [8]. For each



10

commodity c ∈ C and noden ∈ N , n 6= dest(c), we have
the following transport and network layer queue dynamics:

Q(c)
n (t+ 1) (31)

=min
{

Q(c)
n (t)− r(c)n (t)∆ +A(c)

n (t)∆, Q(c)
n,max

}

U (c)
n (t+ 1) (32)

≤

(

U (c)
n (t)−

∑

b∈N

µ
(c)
nb (t)∆

)+

+ r(c)n (t)∆ +
∑

a∈N

µ(c)
an(t)∆.

B. Enhanced Joint Flow Control and BP Algorithm

The goal of the flow control is to support a portion of
the traffic demandλ which maximizes the sum of utilities
when λ /∈ Λ. Let h(c)

n (·) be the utility function associated
with the input commodityc data at noden. Assumeh(c)

n (·) is
non-decreasing, concave, continuously differentiable and non-
negative. Define aθ-optimal admitted rate as follows:

r∗(θ) = argmax
r

∑

n∈N ,c∈C

h(c)
n

(

r(c)n

)

(33)

s.t. r+ θ ∈ Λ (34)

0 � r � λ (35)

wherer∗(θ) , (r
∗(c)
n (θ)), r , (r

(c)
n ) and0 � θ , (θ

(c)
n ) ∈ Λ.

The constraint in (34) ensures that the admitted rate to the
network layer is bounded away from the boundary of the
network stability region byθ. Due to the non-decreasing
property of the utility functions, the maximum sum utility over
all θ is achieved atr∗(0) whenθ = 0.

We now develop a new class of enhanced joint flow control
and BP algorithms that yield a throughput vector which can be
arbitrarily close to the optimal solutionr∗(0). Following [8,
pp. 90], we introduce the auxiliary variablesγ(c)

n (t) and the
virtual queuesY (c)

n (t) for all n ∈ N andc ∈ C.8

Algorithm 2 (Enhanced Joint Flow Control and BP):Let a
set of bias functionsf � 0 be given. In each slott, the
controllers observe the network layer QSIU(t), virtual QSI
Y(t) and topology stateS(t), and performs the following flow
control, resource allocation and routing actions.

Flow Control : For each noden ∈ N and commodityc ∈ C,
the flow controller observes the transport layer QSIQ

(c)
n (t) and

the virtual QSIY (c)
n (t), and chooses the admitted data rate at

slot t, which also serves as the output rate of the corresponding
virtual queue:

r(c)n (t) =

{

min
{

Q
(c)
n (t)/∆, r

(c)
n,max

}

, Y
(c)
n (t) > U

(c)
n (t)

0, otherwise.

8Note that the flow control part of Algorithm 2 is the same as that in the
traditional joint flow control and BP algorithm in [8, pp. 90]. The difference
lies in the resource control and routing part. We describe the flow control part
here for the purpose of completeness.

The flow controller then chooses the auxiliary variable, which
serves as the input rate to the corresponding virtual queue:

γ(c)
n (t) = argmax

γ
Mh(c)

n (γ)− Y (c)
n (t)γ∆ (36)

s.t. 0 ≤ γ ≤ r(c)n,max

whereM > 0 is a control parameter which affects the utility-
delay tradeoff of the algorithm. Based on the chosenr

(c)
n (t)

and γ
(c)
n (t), the transport layer QSI is updated according to

(31) and the virtual QSI is updated according to:

Y (c)
n (t+ 1) =

(

Y (c)
n (t)− r(c)n (t)∆

)+

+ γ(c)
n (t)∆ (37)

whereY (c)
n (0) = 0 for all n ∈ N andc ∈ C.

Resource Allocation and Routing: Same as Algorithm 1.

C. Performance Analysis

The following theorem summarizes the utility-delay tradeoff
of Algorithm 2. For notational simplicity, we assume∆ = 1.

Theorem 2 (Utility-Delay Tradeoff of Alg. 2):For an arbi-
trary arrival rate vector, for any transport layer buffer size, and
for any control parameterM > 0, given ǫ , (ǫ

(c)
n ) ∈ int(Λ),

there existδ , (δ
(c)
n ) ≻ 0 such thatǫ + δ ∈ Λ, and

z , (z
(c)
n ) ≻ 0 such thatǫz ,

(

2RmaxL
(c)

z
(c)
n

)

� ǫ. Then, the
queueing network under Algorithm 2, with the bias functions
chosen according to (19), satisfies:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n∈N ,c∈C

E[U (c)
n (τ)] ≤

NB̂ +MHmax

β̂z

(38)

lim inf
t→∞

∑

n∈N ,c∈C

h(c)
n

(

r(c)n (t)
)

≥
∑

n∈N ,c∈C

h(c)
n

(

r∗(c)n (ǫz)
)

−
NB̂

M
(39)

where

B̂ ,
1

2N

∑

n∈N

(

(µout
n,max)

2 + (rn,max + µin
n,max)

2 + 2(rn,max)
2
)

(40)

β̂z , sup
{(ǫ,δ):ǫ�ǫz,δ≻0,

ǫ+δ∈Λ}

min
n∈N ,c∈C

{

ǫ(c)n + δ(c)n −
2RmaxL

(c)

z
(c)
n

}

(41)

with rn,max ,
∑

c∈C r
(c)
n,max, Hmax ,

∑

n∈N ,c∈C h
(c)
n

(

r
(c)
n,max

)

, andr(c)n (t) , 1
t

∑t−1
τ=0 E[r

(c)
n (τ)].

Proof: Please refer to Appendix G.
Remark 2:Theorem 2 should be interpreted as follows.

When 0 ≺ ǫ ∈ int(Λ), one can choose afinite z ≻ 0 such
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that ǫz � ǫ. In this case, the limiting average total queue
size under Algorithm 2 is upper bounded as in (38). At the
same time, the limiting sum utility is lower bounded as in (39),
thereby specifying a utility-delay tradeoff. In Section VII, we
will demonstrate numerically that Algorithm 2 indeed yields
a better utility-delay tradeoff than the traditional flow control-
BP algorithm in [8, pp. 90]. Whenǫ = 0, i.e., no margin is
given,z(c)n is chosen to be infinity for alln ∈ N andc ∈ C (i.e.,
f = 0). In this case, Algorithm 2 reduces to the traditional flow
control-BP algorithm, and Theorem 2 reduces to the traditional
utility-delay tradeoff result (Theorem 5.8 in [8]).

VII. N UMERICAL EXPERIMENTS

In the numerical simulations, we consider the same simula-
tion setup as in [10] for ease of comparison. Specifically, we
consider a network with 64 nodes and four clusters as shown in
Fig. 1. Each cluster is a4× 4 regular grid with two randomly
added links. Two adjacent clusters are connected by two links.
All links are bidirectional with a maximum transmission rate
of one packet/slot for both directions. We consider the wireline
case, in which all links can transmit simultaneously. As in
[10], we consider 8 commodities corresponding to the fol-
lowing source-destination pairs:((1, 3), (2, 5)), ((2, 3), (2, 7)),
((2, 2), (1, 6)), ((3, 4), (2, 7)), ((1, 1), (1, 7)), ((4, 3), (5, 4)),
((4, 6), (6, 6)) and((5, 3), (5, 6)). The packet arrival processes
are Poisson. We compare the performance of our enhanced
BP algorithms discussed in Section V, i.e., BPnxt and BP-
min, and the shortest path biased versions of our enhanced
BP algorithms, i.e., BPnxtbias and BPminbias,9 with several
baseline schemes, such as the traditional BP algorithm [7],
[8], the BPbias algorithm [8], [9], and the BPSP algorithm
[10]. In the simulations, we use the average number of packets
in the network as the performance measure, a quantity which
is linearly related to the average delay by Little’s Law. The
average performance is evaluated over105 time slots.

A. Enhanced BP Algorithms

Figures 2, 3 and 4 show the average number of packets in
the network versus the arrival rate in the light and moderate
loading regimes. Here, all commodities have the same arrival
rate, i.e.,λ(c)

n = λ for n = src(c) and c ∈ C, wheresrc(c)
denotes the source node of commodityc. First, from Fig. 2,
we can see that with the minimum next-hop queue length bias
and the minimum downstream sum queue length bias, the delay
performance of the traditional BP can be improved, by using
BPnxt (z = 1, 2, 5) and BPmin (z = 1, 2, 5), respectively. It can

9As in BPbias, we add two QSI-independent shortest path bias termsBa

andBb to the instantaneous QSI at nodesa andb in (21), whereBa andBb

are parameterized by the per-link costB.

(1,1)

(8,1)

(1,8)

(8,8)

Fig. 1: Network topology and commodities [10].din = 5 andL =

224.
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Fig. 2: Delay of BPnxt and BPmin atz = 1, 2, 5.

be verified that arrival ratesλ ≤ 2.5 can be stabilized [8, p. 32].
Thus, whenλ ≤ 0.5, z = 5 satisfies the sufficient condition
in (27) for throughput optimality of BPnxt and BPmin. On
the other hand, as discussed in Section IV-D, the choice ofz
satisfying (27) is not necessarily optimal for delay performance.
From Fig. 2, it can be seen that the delay for BPnxt (BPmin)
with z = 1 is at most28.7% (12.1%) of the delay for BP for
λ = 0.1, · · · , 0.6. When z increases, the delay performance
gain of BPnxt (BPmin) over BP decreases, as the effect of
the queue length bias reduces. In addition, we see that the
delay performance of BPbias and BPSP is very sensitive to
the choices of parametersB and K, where B is the per-
link cost in obtaining the shortest path bias andK is the
control parameter for traffic splitting. Specifically, whenB and
K are small, the delay performance improvement of BPbias
and BPSP over traditional BP is not significant. WhenB
and K are large, as compared with traditional BP, BPbias
and BPSP have significantly lower delay in the small traffic
loading regime. On the other hand, in the moderate (and heavy)
traffic loading regime, a small delay reduction or even a delay
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Fig. 3: Delay of BPnxtbias and BPminbias atz = 1.
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Fig. 4: Delay of BPnxtbias and BPminbias atz = 5.

increase is observed. This is because BPbias and BPSP, by
improving delay performance using the shortest path concept,
may easily cause heavy congestion on the shorter paths when
B andK are large or when the traffic load is high. Thus, it
is difficult in general to determine beforehand the properB
and K parameters. In contrast, for smallz, the delay of the
proposed BPnxt and BPmin algorithms, which improve delay
performance by exploiting (dynamic) downstream congestion
information, is small across the light and moderate loading
regimes.

Next, from Fig. 3 and Fig. 4, we can see that with the
additional minimum next-hop queue length bias and minimum
downstream sum queue length bias, the delay performance
of BPbias (B = 1, 2, 10) can be further improved, under
the same parameterB. This supports our conjecture that by
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Fig. 5: Utility-delay tradeoff of BPnxt and BPmin atz = 1, 2, 5.

−10 −9 −8 −7 −6 −5 −4 −3
0

1000

2000

3000

4000

5000

6000

7000

Sum Utility of Admitted Rates

A
ve

ra
g

e
 N

u
m

b
e

r 
o

f 
P

a
ck

e
ts

 

 
BP
BPbias (B=1)
BPbias (B=2)
BPbias (B=10)
BPnxtbias(z=1,B=1)
BPnxtbias(z=1,B=2)
BPnxtbias(z=1,B=10)
BPminbias(z=1,B=1)
BPminbias(z=1,B=2)
BPminbias(z=1,B=10)
BPSP(K=1)
BPSP(K=2)
BPSP(K=5)

Fig. 6: Utility-delay tradeoff of BPnxtbias and BPminbias atz = 1.

considering more QSI, we can substantially improve the delay
performance of BP-based algorithms. Similar to BPbias, the
delay performance of BPnxtbias and BPminbias is also sensitive
to the choice ofB. However, with smallB and z, BPnxtbias
(BPminbias) can achieve good delay performance across the
light and moderate loading regimes. For example, the delay of
BPnxtbias (BPminbias) atz = 1 andB = 1 is at most11.2%
(4.1%) of the delay of BP forλ = 0.1, · · · , 0.6.

B. Enhanced Joint Flow Control and BP Algorithms

Fig. 5 and Fig. 6 illustrate the average number of packets
in the network versus the sum utility of the admitted rate
over all commodities. We consider proportional fairness by
choosing the logarithmic utility function. Specifically, for each
commodityc ∈ C, we chooseh(c)

n (x) = log(x) for n = src(c)
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and h
(c)
n (x) = 0 for all n 6= src(c). We chooseλ(c)

n = 3

and r
(c)
n,max = 1 for n = src(c). The utility-delay tradeoff

curve is obtained by choosing different control parametersM .
As in Section VII-A, we see that the utility-delay tradeoff for
BPnxt and BPmin are significantly improved when compared
with that of traditional BP. In addition, the performance for
BPnxtbias and BPminbias are very competitive when compared
with BPbias and BPSP.

C. Discussion

Algorithm Normalized Simulation Time
BP (BPbias) 1 (1.1)

BPnxt (BPnxtbias) 1.8 (1.9)
BPmin (BPminbias) 12.6 (12.7)

BPSP 110.5

TABLE II: Comparisons on average normalized simulation time.

Table II shows the average normalized simulation time of
all the considered algorithms for the network topology and
commodities in Fig. 1. We can see that the BP, BPbias, BPnxt,
BPnxtbias, BPmin, BPminbias and BPSP algorithms are in
increasing order of complexity. When only low computation
cost is acceptable, BPnxtbias, i.e., the combination of a small
shortest path bias (i.e., smallB) and the minimum next-hop
queue length bias with small parameter (i.e., smallz), seems
to result in delay performance close to or better than that
of BPbias and BPSP across the light and moderate loading
regimes. The small shortest path bias captures essential path
length information, and the minimum next-hop queue length
bias with small parameterz captures essential congestion
information on each path. Both bias terms help to correct
the myopic nature of the traditional BP algorithm. When high
computation cost is acceptable, e.g., in small networks, wecan
consider BPmin with smallz or BPminbias with smallB and
z for further delay performance improvement.

VIII. C ONCLUSION

In this paper, we show that the asymptotically delay optimal
control resembles the BP algorithm in basing resource alloca-
tion and routing on a backpressure calculation, but differsfrom
the BP algorithm in the form of the backpressure calculation
employed. Motivated by this connection, we introduce a new
class of enhanced BP-based algorithms which incorporate a
general queue-dependent bias function into the BP backpressure
term to substantially improve delay performance. We demon-
strate the throughput optimality and the utility-delay tradeoff
for the proposed algorithms. We further elaborate on two
specific algorithms within this class, which have demonstra-
bly improved delay performance while maintaining acceptable
implementation complexity.

APPENDIX A: PROOF OFLEMMA 1

First, define a real valued function

h(s,u) , min
I,ν











∑

n∈N
c∈C

u(c)
n +

∑

u′∈U

P(s,u),u′(I,ν)V (u′)











− d.

(42)

By (42) and (10), we haved + V (u) =
∑

s∈S Pr[S =
s](h(s,u) + d), implying:

V (u) =
∑

s∈S

Pr[S = s]h(s,u). (43)

Substituting (43) into (42), we have:

d+ h(s,u)

(a)
= min

I,ν











∑

n∈N
c∈C

u(c)
n +

∑

s′,u′

P(s,u),(s′,u′)(I,ν)h(s
′,u′)











, (44)

where (a) is due to (8). In addition, we have

E[h(S(t),U(t)|(S(0),U(0)) = (s,u), ω]
(b)
=
∑

u′ Pr[U(t) =

u′|(S(0),U(0)) = (s,u), ω]× (
∑

s′ Pr[S(t) = s′]h(s′,u′))
(c)
=

E[V (U(t))|(S(0),U(0)) = (s,u), ω], where (b) is due to the
i.i.d. property ofS(t) and (c) is due to (43). Thus, by (11),
we have:

lim
t→∞

1

t
E[h(S(t),U(t)|(S(0),U(0)) = (s,u), ω] = 0. (45)

Note that (44) and (45) correspond to conditions (4.121) and
(4.122) of Proposition 4.6.1 in [6, pp. 254]. In addition,S ×U
is countably infinite andI ×R is finite. Thus, by Proposition
4.6.1 [6, pp. 254], we can prove Lemma 1.

APPENDIX B: PROOF OFLEMMA 2

Let u′ , U(t + 1), u , U(t), A
(c)
n , A

(c)
n (t) and

ν
(c)
ab , ν

(c)
ab (t). The vector form of (3) can be written asu′ =

u−
(

∑

b∈N ν
(c)
nb ∆

)

+
(

A
(c)
n ∆

)

+
(

∑

a∈N ν
(c)
an∆

)

. By Taylor’s

theorem for multivariate functions, we haveV (u′) = V (u) +

∆
∑

n∈N ,c∈C V
′
n,(c)(u)

(

A
(c)
n +

∑

a∈N ν
(c)
an −

∑

b∈N ν
(c)
nb

)

+

o(∆) [17]. Thus, we have:
∑

u′∈U

P(s,u),u′(I,ν)V (u′) = V (u) + ∆
∑

n∈N ,c∈C

V ′
n,(c)(u)λ

(c)
n

−∆
∑

(a,b)∈L

∑

c∈C

ν
(c)
ab

(

V ′
a,(c)(u)− V ′

b,(c)(u)
)

+ o(∆). (46)

By (12) and (46), we have:

ω∗(s,u) = argmin
I,ν

∑

u′∈U

P(s,u),u′(I,ν)V (u′) =
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argmin
I,ν



−∆
∑

(a,b)∈L

∑

c∈C

ν
(c)
ab

(

V ′
a,(c)(u)− V ′

b,(c)(u)
)

+ o(∆)



 .

(47)

Let ω∗(s,u) = (I∗,ν∗), ω†(s,u) =

(I†,ν†), T ∗
(s,u)h ,

∑

n∈N ,c∈C u
(c)
n +

∑

s′,u′ P(s,u),(s′,u′)(I
∗,ν∗)h(s′,u′), and T †

(s,u)h ,
∑

n∈N ,c∈C u
(c)
n +

∑

s′,u′ P(s,u),(s′,u′)(I
†,ν†)h(s′,u′), where

h , (h(s,u)). By (46) and (47), we have:10

∑

u′∈U

P(s,u),u′(I∗,ν∗)V (u′)

=
∑

u′∈U

P(s,u),u′(I†,ν†)V (u′) + o(∆) (48)

(a)
⇒T ∗

(s,u)h = T †
(s,u)h+ o(∆)

(b)
⇒d(∆) + h(s,u) = T †

(s,u)h+ o(∆)

⇒T †
(s,u)h = d(∆) + h(s,u) + o(∆), (s,u) ∈ S × U , (49)

where (a) is due to (43) and (8), and (b) is due to (44). As in the
proofs of Proposition 4.1.6 in [6, pp. 191] and Proposition 4.6.1
in [6, pp. 254], from (49), we can showd†(∆) = d(∆)+o(∆)
as∆ → 0.

APPENDIX C: PROOF OFLEMMA 3

Let ω†(s,u) = (I†,ν†). By (10), (46) and (48), for allu ∈
U , we have:

d =
∑

n∈N ,c∈C

u(c)
n +∆

∑

n∈N ,c∈C

V ′
n,(c)(u)Fn,(c)(u) + o(∆)

(50)

where

Fn,(c)(u) = λ(c)
n +

∑

s∈S

Pr[S = s]

(

∑

a∈N

ν(c)†an −
∑

b∈N

ν
(c)†
nb

)

.

Suppose for alln ∈ N and c ∈ C, there exists a function
g
(c)
n (u

(c)
n ), such thatV ′

n,(c)(u) = g
(c)
n (u

(c)
n ). By (13), we know

thatFn,(c)(u) is still a function of the global QSIu. In addition,

by (50) andV ′
n,(c)(u) = g

(c)
n (u

(c)
n ), we have:

gk,(c′)(u
(c′)
k ) =

d−
∑

n∈N
c∈C

u
(c)
n + o(∆)

∆Fk,(c′)(u)

−

∆
∑

n∈N ,c∈C
(n,c) 6=(k,c′)

gn,(c)(u
(c)
n )Fn,(c)(u)

∆Fk,(c′)(u)
.

10Equality (48) is due to the following. Letf1(x) andf2(x) be two functions
of x. Let x∗ , argminx(f1(x) + f2(x)) andx† , argminx f1(x). Then,
we havef1(x†) + f2(x∗) ≤ f1(x∗) + f2(x∗) ≤ f1(x†) + f2(x†).

For this equality, the R.H.S. is a function ofu and the L.H.S.
is a function ofu(c′)

k . Thus, the above equality cannot hold. By
contradiction, we can show that for somen ∈ N and c ∈ C,
there does not exist a functiong(c)n (u

(c)
n ), such thatV ′

n,(c)(u) =

g
(c)
n (u

(c)
n ). Thus, we can always findu ∈ U , such thatc†ab(u) 6=

c‡ab(u) and δV †
ab(u) 6= δV ‡

ab(u) for some(a, b) ∈ L, where
c‡ab(u) andδV ‡

ab(u) are defined in a similar way toc†ab(u) and
δV †

ab(u) but with u
(c)
n instead ofV ′

n,(c)(u). Therefore, we can
find some(s,u) ∈ S × U such thatω†(s,u) 6= ω‡(s,u).

APPENDIX D: PROOF OFLEMMA 4

Let ω‡(s,u) = (I‡,ν‡) and T ‡
(s,u)h ,

∑

n∈N
c∈C

u
(c)
n +

∑

s′,u′ P(s,u),(s′,u′)(I
‡,ν‡)h(s′,u′). By (46), (13) and (17),

we know T ‡
(s,u)h ≥ T †

(s,u)h + o(∆) for all (s,u) ∈ S × U .
In addition, by Lemma 3, we know that there existǫ > 0
and (s,u) ∈ S × U , such thatT ‡

(s,u)h ≥ T †
(s,u)h + o(∆) + ǫ.

Combining (49), we have for all(s,u) ∈ S × U , T ‡
(s,u)h ≥

d(∆) + h(s,u) + o(∆), and for some(s,u) ∈ S × U ,
T ‡
(s,u)h ≥ d(∆) + h(s,u) + o(∆) + ǫ. As in the proofs of

Propositions 4.1.6 in [6, pp. 191] and 4.6.1 in [6, pp. 254], we
can showd‡(∆) ≥ d(∆) + o(∆) + ǫ. Thus, by Lemma 2, we
haved‡(∆)− d†(∆) ≥ ǫ+ o(∆) as∆ → 0.

APPENDIX E: PROOF OFTHEOREM 1

Define the Lyapunov functionL(u) ,
∑

n∈N ,c∈C(u
(c)
n )2.

The Lyapunov drift at slott is ∆(U(t)) , E[L
(

U(t + 1)
)

−
L
(

U(t)
)

|U(t)]. Squaring both sides of (18) and following steps
similar to those in [8], we have:11

L (U(t+ 1))− L (U(t))

≤ 2NB̄ + 2
∑

n∈N ,c∈C

U (c)
n (t)A(c)

n (t)− 2
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

×
((

U (c)
a (t) + f (c)

a (U(t))
)

−
(

U
(c)
b (t) + f

(c)
b (U(t))

))

+ 2
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

(

f (c)
a (U(t)) − f

(c)
b (U(t))

)

(a)

≤ 2NB̄ + 2
∑

n∈N ,c∈C

U (c)
n (t)A(c)

n (t)− 2
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

×
((

U (c)
a (t) + f (c)

a (U(t))
)

−
(

U
(c)
b (t) + f

(c)
b (U(t))

))

+ 2
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

(51)

where (a) is due to the following:
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

(

f (c)
a (U(t)) − f

(c)
b (U(t))

)

11Note thatµ(c)
ab

(t) denotes the action of Algorithm 1.
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=
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

∑

k∈N

η
(c)
ak (U(t)) − η

(c)
bk (U(t))

z
(c)
k

U
(c)
k (t)

≤
∑

c∈C

∑

(a,b)∈L(c)

Rmax

∑

k∈N

1

z
(c)
k

U
(c)
k (t)

=
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

. (52)

Taking conditional expectations on both sides of (51), we have:

∆(U(t))

(b)

≤ 2NB̄ + 2
∑

n∈N ,c∈C

U (c)
n (t)λ(c)

n − 2E

[

∑

(a,b)∈L

∑

c∈C

µ̃
(c)
ab (t)

×
((

U (c)
a (t) + f (c)

a (U(t))
)

−
(

U
(c)
b (t) + f

(c)
b (U(t))

)) ∣

∣

∣U(t)

]

+ 2
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

= 2NB̄ + 2
∑

n∈N ,c∈C

U (c)
n (t)λ(c)

n

− 2
∑

n∈N ,c∈C

U (c)
n (t)E

[(

∑

b∈N

µ̃
(c)
nb (t)−

∑

a∈N

µ̃(c)
an(t)

)

∣

∣

∣U(t)

]

+ 2
∑

(a,b)∈L

∑

c∈C

E

[

µ̃
(c)
ab (t)

(

f
(c)
b (U(t)) − f (c)

a (U(t))
) ∣

∣

∣
U(t)

]

+ 2
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

(53)

where (b) is due to the fact that Algorithm 1 minimizes the
R.H.S. of (b) over all possible alternative actionsµ̃

(c)
ab (t). Since

λ+ǫ+δ ∈ Λ, by Corollary 3.9 of [8], there exists a stationary
randomized policy that makes decisions based only onS(t)
(i.e. independent ofU(t)) such that

E

[(

∑

b∈N

µ̃
(c)
nb (t)−

∑

a∈N

µ̃(c)
an(t)

)

∣

∣

∣U(t)

]

= ǫ(c)n + δ(c)n + λ(c)
n .

(54)

On the other hand, similar to (52), we have:

E





∑

(a,b)∈L

∑

c∈C

µ̃
(c)
ab (t)

(

f
(c)
b (U(t)) − f (c)

a (U(t))
) ∣

∣

∣U(t)





≤
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

. (55)

Substituting (54) and (55) into (53), we have
∆(U(t)) ≤ 2NB̄−2minn∈N ,c∈C

{

ǫ
(c)
n + δ

(c)
n − 2RmaxL

(c)

z
(c)
n

}

×
∑

n∈N ,c∈C U
(c)
n (t). By Lemma 4.1 of [8] and by minimizing

the upper bound over all possible(ǫ, δ), we complete the
proof of Theorem 1.

APPENDIX F: PROOF OFSUFFICIENT CONDITION FORz

Using the proof of Theorem 1, we replace (52) with (56) to
show that for allz satisfying (27), BPnxt stabilizes the network
for anyλ satisfyingλ + ǫ ∈ int(Λ):

∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

(

f (c)
a

(

U(c)
a (t)

)

− f
(c)
b

(

U
(c)
b (t)

))

≤
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

H
∗(c)
a

(

U
(c)
a (t)

)

z

≤
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

∑

k∈N
(c)
out,a

U
(c)
k (t)

N
(c)
out,az

≤
∑

c∈C

∑

(a,b)∈L(c)

Rmax

∑

k∈N
(c)
out,a

U
(c)
k (t)

N
(c)
out,az

=
∑

c∈C

∑

a∈N

∑

b∈N
(c)
out,a

Rmax

∑

k∈N
(c)
out,a

U
(c)
k (t)

N
(c)
out,az

=
∑

c∈C

∑

a∈N

∑

k∈N
(c)
out,a

U
(c)
k (t)

Rmax

z

=
∑

n∈N ,c∈C

U (c)
n (t)

RmaxN
(c)
in,n

z

≤
∑

n∈N ,c∈C

U (c)
n (t)

Rmaxdin
z

. (56)

Here, N (c)
out,n , {k : (n, k) ∈ L(c)}, N

(c)
out,n , |N

(c)
out,n|,

N
(c)
in,n , {k : (k, n) ∈ L(c)}, N

(c)
in,n , |N

(c)
in,n|, and

din = maxn∈N ,c∈C N
(c)
in,n.

Similarly, we replace (52) with (57) to show that for all
z satisfying (27), BPmin stabilizes the network for anyλ
satisfyingλ+ ǫ ∈ int(Λ):
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

(

f (c)
a (U(t)) − f

(c)
b (U(t))

)

≤
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

T
∗(c)
b (U(t)) + U

(c)
b (t)− T

∗(c)
b (U(t))

z

=
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

U
(c)
b (t)

z

≤
∑

c∈C

∑

(a,b)∈L(c)

Rmax
U

(c)
b (t)

z
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=
∑

c∈C

∑

a∈N

∑

b∈N
(c)
out,a

Rmax
U

(c)
b (t)

z

=
∑

n∈N ,c∈C

U (c)
n (t)

RmaxN
(c)
in,n

z

≤
∑

n∈N ,c∈C

U (c)
n (t)

Rmaxdin
z

. (57)

APPENDIX G: PROOF OFTHEOREM 2

Define the Lyapunov function L(θ) ,
1
2

∑

n∈N ,c∈C

(

(u
(c)
n )2 + (y

(c)
n )2

)

, whereθ , (u,y). Denote

Θ(t) , (U(t),Y(t)). The Lyapunov drift at slott is
∆(Θ(t)) , E[L

(

Θ(t + 1)
)

− L (Θ(t)) |Θ(t)]. Squaring both
sides of (32) and (37) and following steps similar to those in
[8], we have:12

L (Θ(t+ 1))− L (Θ(t))

≤ NB̂ +
∑

n∈N ,c∈C

U (c)
n (t)r(c)n (t)−

∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

×
((

U (c)
a (t) + f (c)

a (U(t))
)

−
(

U
(c)
b (t) + f

(c)
b (U(t))

))

+
∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

(

f (c)
a (U(t)) − f

(c)
b (U(t))

)

−
∑

n∈N ,c∈C

Y (c)
n (t)

(

r(c)n (t)− γ(c)
n (t)

)

(a)

≤ NB̂ +
∑

n∈N ,c∈C

U (c)
n (t)r(c)n (t)−

∑

(a,b)∈L

∑

c∈C

µ
(c)
ab (t)

×
((

U (c)
a (t) + f (c)

a (U(t))
)

−
(

U
(c)
b (t) + f

(c)
b (U(t))

))

+
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

−
∑

n∈N ,c∈C

Y (c)
n (t)

(

r(c)n (t)− γ(c)
n (t)

)

(58)

where (a) is due to (52). Taking conditional expectations and
subtractingME

[

∑

n∈N ,c∈C h
(c)
n

(

γ
(c)
n (t)

) ∣

∣

∣Θ(t)
]

from both
sides of (58), we have:

∆(Θ(t))−ME





∑

n∈N ,c∈C

h(c)
n

(

γ(c)
n (t)

) ∣

∣

∣Θ(t)





(b)

≤ NB̂ −
∑

n∈N ,c∈C

(

Y (c)
n (t)− U (c)

n (t)
)

E

[

r̃(c)n (t)
∣

∣

∣Θ(t)
]

−
∑

n∈N ,c∈C

E

[

Mh(c)
n

(

γ̃(c)
n (t)

)

− Y (c)
n (t)γ̃(c)

n (t)
∣

∣

∣Θ(t)
]

12Note thatr(c)n (t), γ(c)
n (t) andµ(c)

ab
(t) denote the actions of Algorithm 2.

−
∑

n∈N ,c∈C

U (c)
n (t)E

[(

∑

b∈N

µ̃
(c)
nb (t)−

∑

a∈N

µ̃(c)
an(t)

)

∣

∣

∣Θ(t)

]

+
∑

(a,b)∈L

∑

c∈C

E

[

µ̃
(c)
ab (t)

(

f
(c)
b (U(t)) − f (c)

a (U(t))
) ∣

∣

∣Θ(t)
]

+
∑

n∈N ,c∈C

U (c)
n (t)

RmaxL
(c)

z
(c)
n

(59)

where (b) is due to the fact that Algorithm 2 minimizes
the R.H.S. of (b) over all possible alternativer̃(c)n (t), γ̃(c)

n (t)

and µ̃
(c)
ab (t). It is not difficult to construct alternative random

policies that choosẽr(c)n (t), γ̃(c)
n (t), µ̃(c)

ab (t) such that

E

[

r̃(c)n (t)
∣

∣

∣Θ(t)
]

= r∗(c)n (ǫ+ δ) (60)

γ̃(c)
n (t) = r∗(c)n (ǫ+ δ) (61)

E

[(

∑

b∈N

µ̃
(c)
nb (t)−

∑

a∈N

µ̃(c)
an(t)

)

∣

∣

∣Θ(t)

]

= r∗(c)n (ǫ+ δ) + ǫ(c)n + δ(c)n (62)

where r∗(ǫ + δ) =
(

r
∗(c)
n (ǫ+ δ)

)

is the target(ǫ + δ)-

optimal admitted rate given by (33).13 Equation (62)
follows from the same arguments leading to (54). Thus,
by (60), (61), (62) and (55), from (59), we obtain
∆(Θ(t)) − ME

[

∑

n∈N ,c∈C h
(c)
n

(

γ
(c)
n (t)

) ∣

∣

∣Θ(t)
]

≤ NB̂ −

minn∈N ,c∈C

{

ǫ
(c)
n + δ

(n)
n − 2RmaxL

(c)

z
(c)
n

}

∑

n∈N ,c∈C U
(c)
n (t) −

M
∑

n∈N ,c∈C h
(c)
n

(

r
∗(c)
n (ǫ+ δ)

)

. Applying Theorem 5.4 of
[8], we have:

lim sup
t→∞

1

t

t−1
∑

τ=0

∑

n∈N ,c∈C

E[U (c)
n (τ)]

≤
NB̂ +MHmax

minn∈N ,c∈C

{

ǫ
(c)
n + δ

(c)
n − 2RmaxL(c)

z
(c)
n

} (63)

lim inf
t→∞

∑

n∈N ,c∈C

h(c)
n

(

γ(c)
n (t)

)

≥
∑

n∈N ,c∈C

h(c)
n

(

r∗(c)n (ǫ+ δ)
)

−
NB̂

M
(64)

where γ
(c)
n (t) , 1

t

∑t−1
τ=0 E[γ

(c)
n (τ)]. It is easy to prove

γ
(c)
n (t) ≤ r

(c)
n (t) by showing the stability of the virtual queues.

As in [8, pp. 88], we optimize the R.H.S.s of (63) and (64)
over all possible(ǫ, δ). Thus, we can show (38) and (39).

13Specifically, (60) can be achieved by the randomized policy which sets
r̃
(c)
n (t) = A

(c)
n (t) with probability r

∗(c)
n (ǫ + δ)/λ

(c)
n and r̃

(c)
n (t) = 0 with

probability 1− r
∗(c)
n (ǫ+ δ)/λ

(c)
n .
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