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Abstract—This paper considers a heterogeneousad hoc net-
work with multiple transmitter-receiver pairs, in which al l
transmitters are capable of harvesting renewable energy from
the environment and compete for one shared channel by random
access. In particular, we focus on two different scenarios:the
constant energy harvesting (EH) rate model where the EH rate
remains constant within the time of interest and the i.i.d. EH
rate model where the EH rates are independent and identically
distributed across different contention slots. To quantify the roles
of both the energy state information (ESI) and the channel
state information (CSI), a distributed opportunistic scheduling
(DOS) framework with two-stage probing and save-then-transmit
energy utilization is proposed. Then, the optimal throughput and
the optimal scheduling strategy are obtained via one-dimension
search, i.e., an iterative algorithm consisting of the following two
steps in each iteration: First, assuming that the stored energy level
at each transmitter is stationary with a given distribution, the
expected throughput maximization problem is formulated asan
optimal stopping problem, whose solution is proven to existand
then derived for both models; second, for a fixed stopping rule,
the energy level at each transmitter is shown to be stationary and
an efficient iterative algorithm is proposed to compute its steady-
state distribution. Finally, we validate our analysis by numerical
results and quantify the throughput gain compared with the best-
effort delivery scheme.

Index Terms—Distributed opportunistic scheduling, energy
harvesting, optimal stopping.

I. I NTRODUCTION

Conventional wireless communication devices are usually
powered by batteries that can provide stable energy supplies.
However, the battery lifetime limits the operation time of
such devices. Recently, energy harvesting (EH) techniques
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have been proposed as a promising alternative to the con-
ventional constant power supplies [2], [3], which is capable
of transferring the renewable energy from the environment
into electrical energy. In this way, the node lifetime can
be prolonged significantly. Compared with the conventional
constant energy suppliers, transmitters powered by energy
harvesters are restricted by a new class of EH constraints,
i.e., the consumed energy up to any time is bounded by the
harvested energy until this point [4]. Therefore, to meet certain
performance requirements, such as throughput, stability,delay,
etc., these EH constraints should be carefully taken into
account in the design of EH-based communication systems.

A. Related Works and Motivations

Communication systems powered by energy harvesters have
been investigated in recent years. For the point-to-point wire-
less systems, the authors in [4] [5] considered the throughput
maximization problem over a finite horizon for both the
cases that the harvested energy information is non-causally
and causally known to the transmitter, where the optimal
solutions were obtained by the proposed one-dimension search
algorithm and dynamic programming (DP) techniques, respec-
tively. In [6], the authors extended the results to the classic
three-node Gaussian relay channel with EH source and relay
nodes, where the optimal power allocation algorithms were
proposed. With a more practical circuit model by considering
the half-duplex constraint of the battery, the authors in [7]
proposed a save-then-transmit protocol, which divides each
transmission frame into two parts: the first one for harvesting
energy and the other for data transmission. For wireless
networks with EH constraints, the authors in [8] investigated
the performance of some standard medium access control
protocols, e.g., TDMA, framed-Aloha, and dynamic-framed-
Aloha.

In related works onad hoc networking, opportunistic
scheduling has been known as an effective method to utilize
the wireless resource [9]–[11]. In particular, a distributed
opportunistic scheduling (DOS) scheme was introduced in
[12], [13], where only local channel state information (CSI)
is available to each transmitter. By applying optimal stopping
theory [14], it has been shown in [12], [13] that the optimal
solution for the expected throughput maximization problem
has a threshold-based structure. When channel estimation is
imperfect, the authors in [15] proposed a two-level channel
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probing framework that allows the accessing transmitter to
perform one more round of channel estimation before data
transmission to improve the quality of estimated CSI and pos-
sibly increase the system throughput. The optimal scheduling
policy of the two-level probing framework was proven to be
threshold-based as well by referring to the optimal stopping
with two-level incomplete information [16].

Different from the traditional energy supplies (e.g., non-
rechargeable batteries, power grid) in the conventional net-
works [9]–[13], [15], we consider the network powered by
energy harvesters that could generate electric energy from
different renewable energy sources. Among various types of
renewable energy sources, we consider two typical energy
harvesting rate models in this paper1:

1) Constant energy harvesting rate model: The EH rate
(specifically, the amount of harvested energy per unit
time) can be approximated as a constant within the
entire time duration of interest. For example, the power
variation coherence time of wind and solar EH systems
is on the order of multiple seconds [17], [18], while the
duration of one communication block is about several
milliseconds. Thus, over thousands of communication
blocks, the EH rate keeps almost the same.

2) Independent and identically distributed (i.i.d.) energy
harvesting rate model: Compared to the constant rate
model, the EH rate for this case changes much faster, i.e.,
comparable to the duration of one communication block.
For example, the energy from light, thermal, kinetic, or
ambient-radiation sources, usually changes every several
milliseconds. Accordingly, EH rates can be modeled as
an i.i.d. [5], [8] random process.

With the above two EH models, we investigate the DOS
problem for a heterogeneous EH-based network, where the
channel gains across different links and the EH rates across
different transmitters are non-identical. The system works in a
two-stage pattern as follows. In the first stage, all transmitters
adopt random access and do channel probing (CP), during
which the successful link can obtain the CSI via channel
contentions, similar to those in [12], [13], [15]. In the second
stage, the successful transmitter at the first stage has the option
to spend certain time to harvest more energy, i.e., executes
energy probing (EP); and then, with the updated energy state
information (ESI), it decides either to transmit in the restof the
transmission block, or to stop probing and give up the channel.
With EP, since the total duration of the transmission block is
fixed, although spending more time on harvesting energy could
increase the energy level, it decreases the portion of the time
for data transmission, which leads to a tradeoff to optimize.

B. Summary of Contributions

We propose a DOS framework for anad hoc network
powered by energy harvesters, which efficiently utilizes both
the CSI and the ESI at each transmitter. In this framework,
we adopt a “save-then-transmit” scheme, i.e., the transmitter

1A more general case is that the transmitter only has causal information
about EH rates, which could be modeled as a Markov process. This model
has been used in the point-to-point wireless system [4], [5].

keeps harvesting energy before it initiates the transmission that
uses up all the available energy in the battery. Note that such
a greedy power utilization scheme is suboptimal in general,
while it is sensible when the number of transmitters is large.

The main contributions of this paper are summarized as
follows:

1) First, by assuming that the battery state at each transmitter
is stationary with a certain distribution, the throughput
maximization problem for the considered network is cast
as a rate-of-return problem. We prove the existence of the
optimal stopping rules for both EP and CP, and further
obtain:

• For the constant EH model, the optimal stopping rule
of EP is determined by maximizing the throughput
over the transmission block before starting EP, and
it is either zero or a finite value according to the
given CSI and ESI. Then, based on the stopping rule
of EP, the optimal stopping rule of CP is shown to
be a pure threshold policy (the threshold does not
change over time) and the transmission decision is
made right after each round of CP.

• For the i.i.d. EH model, the optimal stopping rule
for EP is shown to be dynamic and threshold based,
which is obtained by solving a stopping problem over
a finite-time horizon. The stopping rule of CP is also
threshold based and obtained based on the decision of
EP, i.e., either transmit or start a new CP. Unlike the
constant case, the transmission decision under i.i.d.
EH model is made during the process of EP.

2) Next, with a fixed stopping rule, we show the existence
of the steady-state distribution of the battery state by
constructing a “super” Markov chain with its states being
jointly determined by all transmitters. Moreover, we
propose an efficient iterative algorithm to compute the
steady-state distribution, executed at each transmitter in
parallel. Particularly, it is shown that with the constant EH
model, if the network consists ofn transmitters and each
one is withm possible energy states, the computational
complexity for one iteration of the proposed algorithm is
on the order ofO

(
n2m2

)
, which is more efficient (when

n andm are large) than that of the super Markov chain
case, whose complexity for one iteration is on the order
of O

(
2m2n

)
.

3) Finally, by exploiting the structure of the rate-of-return
problem, we show that the maximum throughput and the
optimal scheduling strategy of the DOS framework could
be obtained for both the two EH rate models, via one-
dimension search by repeating the above two steps.

The rest of this paper is organized as follows. Section II
introduces the system model. In Section III, the throughput
maximization problem is formulated and solved under the
assumption that the stationary distribution of the batteryat
each transmitter is known. Then, with the obtained stopping
rule, we prove in Section IV the existence of the steady-
state distribution for each transmitter, and propose an iterative
algorithm to compute it. Section V discusses the computation
for the optimal throughput. In Section VI, numerical results are
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Fig. 1. One realization for the DOS with two-stage probing.

provided to validate our analysis and evaluate the throughput
gain of our proposed scheduling scheme against the best-effort
delivery. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

We consider a heterogeneous single-hopad hoc network,
where all theI transmitter-receiver pairs have independent but
not necessarily identical statistical information of CSI and ESI.
All pairs contend for one shared channel by random access.
For each link, the transmitter is powered by a renewable energy
source and utilizes a small rechargeable battery to temporally
store the harvested energy. Note that the transmitter could
keep harvesting energy until it initiates a data transmission.
In addition, we do not consider the effect of inefficiency in
energy storage and retrieval, nor the energy consumed other
than data transmission, which can be approximately neglected
by properly adjusting the energy model [4]–[6], [8]. Denote
the duration of one channel contention asl > 0, and the length
of one transmission block asL, which is an integer multiple
of l.

As illustrated in Fig. 1, the DOS procedure of the whole
network takes place in two stages: First, each transmitter
probes the channel via random access and harvests energy at
the same time; and then the successful transmitter may startthe
EP (to potentially increase the average transmission rate over
the transmission block2) before the data transmission process.

1) Channel probing:In the first stage, a successful channel
contention is defined as follows: All transmitters first inde-
pendently contend for the channel until there is only one
contending in a particular time slot. Furthermore, one round of
CP is defined as the process to achieve one successful channel
contention. Denote the probability that transmitteri contends
for the channel asqi, 1 ≤ i ≤ I, with 0 ≤ qi ≤ 1. As such,
the probability that thei-th transmitter successfully occupies
the channel is given byQi = qi

∏
j 6=i(1 − qj). Then, the

probability to achieve one successful channel contention at
each time slot is given byQ =

∑I
i=1 Qi, and it is easy to

check thatQ ≤ 1 [19]. Accordingly, for then-th round of
CP, n ≥ 1, we useKn to denote the number of time slots
needed to achieve a successful channel contention, which isa
random variable and satisfies the geometric distribution with
parameterQ [12], [13], [15]. In this way, the expected duration
of one round of CP is given asl/Q. Denote the transmitted

2If the successful transmitter experiences a bad channel condition and a
low energy level, it may skip the transmission.

signal at transmitteri as xi, and the received signalyi is
thus given byyi = hixi + zi, where hi is the complex
channel gain andzi is the circularly symmetric complex
Gaussian (CSCG) noise with zero mean and varianceσ2 at
the receiver. Across different links,{hi}1≤i≤I are independent
with finite mean and variance, while not necessarily identically
distributed. After one round of CP, the successful transmitter
can perfectly estimate the corresponding channel gain via
certain feedback mechanisms, and thushi is assumed a known
constant during the whole transmission block. After CP, the
successful transmitter chooses one of the following actions
based on its local CSI and ESI:

(a) releases the channel (if the CSI and ESI indicate that the
transmission rate is lower than a threshold) and let all links
re-contend; or

(b) directly transmits until the end of the transmission block;
or

(c) holds the channel, starts EP.
Note that to complete one data transmission, it may take
n rounds of CPs as depicted in Fig. 1. It is worth noting
that each transmitter keeps harvesting energy until it starts a
transmission, and after each round of CP, only the successful
transmitter makes a choice among three actions as listed above.

2) Energy Probing: When the successful transmitter de-
cides not to take action (a) or (b) defined above, it starts the
second stage EP, i.e., action (c), to obtain more energy. During
this stage, the transmitter chooses to continue harvesting
energy slot by slot, and then ends EP by action (a) or (b),
i.e., either releasing the channel or transmitting over therest
of the transmission block. As it is depicted in Fig. 1, one
transmission is fulfilled withn rounds of CPs andmn extra
slots of EP.

For transmitteri, let Bi
n,m ∈ ∆ denote the energy level of

the battery after then-th round of CP andm additional time
slots for EP, where∆ = {0, δ, 2δ, · · · , Bmaxδ} is the set of all
possible energy states, withδ being the minimum energy unit
andBmaxδ the capacity of the battery. We useEi

t to denote
the EH rate of transmitteri at timet. As noted in the previous
section, we consider the following two types of scenarios:

1) Constant EH rate model:
{
Ei

t

}
t≥1

are constants for each
i, i.e., Ei

t = Ei ∈ ∆ for all t ≥ 1, and {Ei} can
thus be learned and assumed non-causally known before
transmissions.

2) I.i.d EH rate model: The EH rates among different
transmitters are independent. For transmitteri,

{
Ei

t

}
t≥1

are i.i.d. acrosst, with finite mean and the probability
mass function (PMF)Pr{Ei

t = eδ} = F i(e), where
e ∈ {0, 1, 2, · · · }.

Under the save-then-transmit scheme, the energy level will
keep non-decreasing and drop to zero after the transmission,
which forms a Markov chain (as described in Section IV later).
Thus, the energy levelBi

n,m can be written as

Bi
n,m = min

{
Bi

n,0 + l

m∑

k=0

Ei
k, Bmaxδ

}
, (1)

where n ≥ 1, 0 ≤ m ≤ L/l, and min{x, y} denotes the
smaller value between two real numbersx and y. Note that
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Bi
n,0 indicates the energy level after the successful contention

round before taking any action. Ifm = 0, i.e., transmitteri
does not do EP, we let

∑m
k=0 E

i
k = Ei

0 = 0.

III. T RANSMISSION SCHEDULING

In this section, we target to derive the optimal scheduling
policy that maximizes the average throughput for the con-
sidered network with the proposed two-stage access strategy,
conditioned on the given battery state distribution. We point
out that the results obtained in this section are based on the
assumption that the energy level at transmitteri is stationary
with a given distributionΠi, for 1 ≤ i ≤ I, which will be
validated in Section IV.

A. Problem Formulation

After the n-th round of CP andm additional time slots,
the CSI and the ESI at the successful transmitter are given as
F i

n,m =
{
hi
n, B

i
n,m

}
. Note that the channel gainhi

n is now
indexed byn, which is determined at the end of then-th round
of CP and assumed fixed during the whole data transmission
block. In particular,F i

n,0 =
{
hi
n, B

i
n,0

}
denotes the initial

information right after then-th round of CP. For convenience,
we omit the indexi for either the CSI or the ESI in the sequel,
and retrieve it when necessary.

By adopting the save-then-transmit scheme at the trans-
mitters to fully take advantage of each channel use, the
transmission rate overL/l time slots with stateFn,m is defined
as

Rn(m) =

(
1−

ml

L

)
log

(
1 + |hn|

2 Bn,m

(L−ml)σ2

)
. (2)

When ml = L, we set Rn(m) = 0 since there is no
transmission in this case.

Remark 3.1:Some important properties ofRn(m) are
listed as follows.

• E [Rn(m)] < ∞ andE
[
(Rn(m))2

]
< ∞, which results

from the fact thathn has finite mean and variance and
the energy levelBn,m is also finite.

• {Rn(m)}n≥1 are approximately independent random
variables overn. To see this, recall that the channel gains
and the battery states are independent across different
transmitters at a given time slot; moreover, the probability
is small for a transmitter to occupy the channel in two
consecutive contentions when the number of user pairs
is large. For example, in anad hoc network with K
pairs where each pair fairly competes for the channel
use with probability1/K, such a probability is 1

K2 (1 −
1/K)2(K−1) [19], which is as small as 0.0625 even when
K = 2. Thus,{Fn,m}n≥1 are nearly independent over
n, which implies that{Rn(m)}n≥1 are independent over
n.

Let N be the stopping rule for CP, andMn be the stopping
rule for EP associated with then-th CP for1 ≤ n ≤ N , which
together tell the transmitter when to start the data transmission.
Then, under these stopping rules, the transmission rate would
be RN (MN ), and we let TN be the total time duration
for completing one data transmission. Here,TN contains the

duration ofN−1 rounds of CP, which is given byl
∑N−1

n=1 Kn,
andl

∑N−1
n=1 Mn time slots in which the transmitter probes the

energy but gives up the channel after EP. Also, after theN -th
round of CP with the timeKN l, the transmitter may useMN

slots for the EP and transmit within the durationL − MN l
afterwards. Accordingly, we obtain

TN = l

N−1∑

n=1

Mn + l

N∑

n=1

Kn + L. (3)

If such a process is executedJ times withRNj
(MNj

)L bits
transmitted at each transmission,1 ≤ j ≤ J , we obtain the
average throughputλ per transmission of the network:

L
∑J

j=1 RNj
(MNj

)
∑J

j=1 TNj

−→ λ =
LE [RN (MN)]

E [TN ]
a.s.

as J → ∞ by the renewal theory [20]. Again, we point out
that the energy level is stationary at theNj-th round of CP
for j ≥ 1, as we assumed.

Our target is to maximizeλ by adjusting the stopping rule
N and{Mn}1≤n≤N . It is easy to see that maximizingλ is in
fact a “rate-of-return” stopping problem [14], [21] (for which
the specific definition is given later). Instead of directly solving
this problem, we examine the “net reward” of the considered
network, which is given as

rN (λ) = RN (MN )L− λTN

=(RN (MN)− λ)L − λl

[
KN +

N−1∑

n=1

(Kn +Mn)

]
, (4)

for someλ > 0. The term(RN (MN )−λ)L can be interpreted
as the reward of transmission,λlKn as the cost of CP, and
λlMn as the cost of failed EP for1 ≤ n ≤ N − 1. We set
r−∞(λ) = −∞ since it is irrational that the system does not
send any data forever. Then, we define the maximum value of
the expected net reward withλ > 0 as

S∗(λ) = sup
N∈N ,{Mn}1≤n≤N

E [rN (λ)] , (5)

wheresup(·) denotes the least upper bound for a set of real
numbers, and

N , {N : N ≥ 1, E [TN ] < ∞,

for Mn ∈ [0, L/l] with 1 ≤ n ≤ N} . (6)

Remark 3.2:One important property of problem (5) is time
invariance. We observe that before the system starts theN -th
round of CP, the accumulated costλl

∑N−1
n=1 (Kn +Mn) over

the pastN − 1 rounds of CP has already been finalized, with
no need to be further considered in the remaining decision
process. Moreover,{Rn(Mn)}1≤n≤N are independent overn
as we mentioned before; it follows that the expected optimal
reward before theN -th round of CP is the same as that of any
previous round of CP. In other words, the system can obtain
the expected optimal rewardS∗(λ) whenever a new round of
CP is about to start. Therefore, we conclude that problem (5)
is time invariant.

Recall from Section II that after each round of CP, the
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successful transmitter will choose one of three actions (i.e.,
transmitting, giving up the channel, or starting EP) according
to the stopping rule of CP, which needs the expected reward
of EP depending on the stopping rule of EP. Thus, we will
first introduce the formulation and the optimal stopping rule
for EP, and then for CP.

1) Formulation for EP: When the successful transmitter
starts EP after then-th round of CP, where1 ≤ n ≤ N , it will
end up with one of the two actions: transmitting or giving up
the channel without transmission. Specifically, we define the
expected optimal reward at thek-th slot of EP,0 ≤ k ≤ L/l,
as

Uk(Fn,k) = max
k≤Mn≤L/l

E [max {(Rn(Mn)− λ)L,

−λlMn + S∗(λ)} | Fn,k] , (7)

where−λlMn+S∗(λ) is the expected value of giving up the
channel afterMn slots of EP. Ifk = 0, U0(Fn,0) denotes the
maximum of the expected net reward right after then-th round
of CP. In other words, we want to find the optimal stopping
rule M∗

n of EP which attains

U0(Fn,0) = max
0≤Mn≤L/l

E [max {(Rn(Mn)− λ)L,

−λlMn + S∗(λ)} | Fn,0] . (8)

Note thatM∗
n exists since problem (8) is an optimal stopping

problem over a finite time horizon [14], [22].
2) Formulation for CP: By choosing{M∗

n}1≤n≤N , we
define

λ∗ = sup
N∈N

LE [RN (M∗
N)]

E [TN ]
, N∗ = arg sup

N∈N

LE [RN (M∗
N )]

E [TN ]
.

(9)
Note that if the optimal stopping ruleN∗ /∈ N , we would
claim thatN∗ does not exist. Thus,λ∗ is the optimal average
throughput of the original rate-of-return problem.

The connection between the transformed problem (5) and
the original problem (9) is introduced in the following lemma.
It is worth noticing that with the optimal stopping rule
{M∗

n}1≤n≤N for EP, problem (5) boils down to a one-level
stopping problem with stopping ruleN .

Lemma 3.1:(i) If there existsλ∗ such thatS∗(λ∗) = 0,
this λ∗ is the optimal throughput defined in (9). Moreover,
if S∗(λ∗) = 0 is attained atN∗(λ∗), the stopping ruleN∗

defined in (9) is the same asN∗(λ∗), i.e.,N∗ = N∗(λ∗).
(ii) Conversely, if (9) is true, there isS∗(λ∗) = 0, which is

attained atN∗ given by (9).
This lemma directly follows Theorem 1 in Chapter 6 of [14].

The next proposition secures the existence of the optimal
stopping rule for CP.

Proposition 3.1:With the EP stopping rule{M∗
n}0≤n≤N ,

the optimal stopping ruleN∗(λ) for problem (5) exists.
Moreover, forN ≥ 1, the following equation holds

S∗(λ) = U0(FN,0)− λlKN . (10)

The proof is given in Appendix A.
Remark 3.3:The equation (10) is obtained from theop-

timality equationof the CP. The calculation of the optimal
throughput relies on this equation, which will be shown in

Section V.
Now, we are ready to derive the optimal stopping rulesN∗

and{M∗
n} that jointly maximize the expected value ofrN (λ)

for the two different EH models. As we mentioned above, the
stopping ruleN for CP relies on the form ofMN (the stopping
rule for EP). We will find the optimal stopping ruleM∗

N before
N∗. After obtaining the forms of the optimal stopping rules,
the calculation for the optimal throughput will be discussed.

B. Optimal Stopping Rule for Constant EH Model

For notation simplicity, we omit the indexN of CP when
we derive the stopping ruleM in this subsection. Then, we
will derive the stopping ruleN based on the results of EP.

When the EH rate is constant, the transmission rateR(M)
is deterministic for a givenF0 over the transmission block.
Then, we obtain a simplified version ofU0(F0) (8) as

U0(F0) = max
0≤M≤L/l

max {(R(M)− λ)L,−λlM + S∗(λ)} .

The value ofU0(F0) can be obtained simply by comparing
−λlM+S∗(λ) and(R(M)−λ)L, whose values can be com-
puted individually. Clearly, the first one achieves its maximum
S∗(λ) atM = 0. For the second term, onlyR(M) is changing
over M with a givenF0. Therefore, we settle down to the
following auxiliary problem:

V ∗ = arg max
0≤V ≤L/l

R(V ). (11)

Then, we could use the optimalV ∗ to find M∗ without
difficulty. Note that whenV l = L, it follows thatR(V ) = 0
according to our definition in Section II, which implies that
V = L/l cannot be optimal, and thus we take0 ≤ V ≤
L/l − 1. We first consider a related continuous version of
R(V ) by relaxingV l/L asρ, 0 ≤ ρ < 1:

max
0≤ρ<1

R(ρ) = max
0≤ρ<1

(1− ρ)

· log

(
1 + |h|2

min{B0 + ρLE,Bmaxδ}

(1− ρ)Lσ2

)
. (12)

After solving (12), we will show how to obtain the optimal
solution of problem (11).

First, we establish some properties for the objective function
of problem (12).

Proposition 3.2:For arbitrarya, b ≥ 0, we have that

1) the functiony(x) = (1 − x) log
(
1 + a+bx

1−x

)
is concave

over [0, 1), and limx→1− y′(x) < 0;

2) the functiong(x) = (1 − x) log
(
1 + a

1−x

)
is concave

and non-increasing over[0, 1).

Proof: Please see Appendix B.
Since ρ ∈ [0, 1), when Bmaxδ−B0

LE ≥ 1, R(ρ) is simply
concave overρ on [0, 1) according to part 1) of Proposition
3.2. When Bmaxδ−B0

LE < 1, according to Proposition 3.2,
RN (ρ) is concave over

[
0, Bmaxδ−B0

LE

]
, and is non-increasing

on
[
Bmaxδ−B0

LE , 1
)
. Thus,R(ρ) cannot achieve its maximum

on
(
Bmaxδ−B0

LE , 1
)
. Therefore, we treat this fact as a new
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constraint overρ, and rewrite problem (12) as

maxG(ρ) = max(1− ρ) log

(
1 + |h|2

B0 + ρLE

(1− ρ)Lσ2

)

s.t. B0 + ρLE ≤ Bmaxδ, 0 ≤ ρ < 1. (13)

Next, we establish the following proposition to solve prob-
lem (13), where the obtained solution is optimal for problem
(12) as well.

Proposition 3.3:The optimal solutionρ∗ for problem (13)
is given by:

ρ∗ =

{
min

{
ρ0,

Bmaxδ−B0

LE

}
, when C+D

1+C ≥ log(1 + C);
0, otherwise,

where C = |h|2B0

Lσ2 , D = |h|2E
σ2 , and ρ0 is the unique

solution for the equationlog
(
1 + C+Dρ

1−ρ

)
= C+D

1−ρ+C+Dρ

when C+D
1+C ≥ log(1 + C).

Proof: Please see Appendix C.
Based on the optimal solutionρ∗, the optimalV ∗ for R(V )

in (11) can be obtained easily: We only need to compare
R(⌊ρ∗L/l⌋) againstR(⌈ρ∗L/l⌉), and V ∗ should attain the
larger value. Specifically, we have the following result.

Proposition 3.4:The optimalV ∗ of the problem (11) is
given by

V ∗ =






⌊ρ∗L/l⌋ , if R(⌊ρ∗L/l⌋) ≥ R(⌈ρ∗L/l⌉);
⌈ρ∗L/l⌉ , if R(⌈ρ∗L/l⌉) > R(⌊ρ∗L/l⌋);
0, otherwise.

(14)

whereρ∗ is obtained by Proposition 3.3. Thus, the optimal
stopping ruleM∗ is given by

M∗ =

{
0, if (R(V ∗)− λ)L < S∗(λ);
V ∗, otherwise.

(15)

The optimal rewardU0(F0) with constant EH rate model is

U0(F0) = max {(R(V ∗)− λ)L, S∗(λ)} . (16)

Next, the following proposition formally quantifies the
optimal stopping ruleN∗ and the equation to compute the
optimal throughputλ∗.

Proposition 3.5:The optimal stopping rule to solve prob-
lem (5) is given by

N∗ = min {n ≥ 1 : Rn(V
∗) ≥ λ∗} , (17)

with V ∗ given in Proposition 3.4. Moreover,λ∗ satisfies the
following equation

I∑

i=1

QiE

[(
Ri (V ∗)− λ∗

)+]
=

λ∗l

L
, (18)

where the function(x)+ meansmax{x, 0} for some real
numberx, andQi is the probability of a successful channel
contention at transmitteri, defined in Section II. The index
n for Ri (V ∗) in (18) is removed since{Rn (V

∗)}n≥1 are
ergodic for1 ≤ i ≤ I.

Proof: Following (16) in Proposition 3.4, the stopping
rule N∗ has the form

N∗ = min {n ≥ 1 : (Rn(V
∗)− λ∗)L ≥ S∗(λ∗)} . (19)

Thus, we can obtainN∗ by pluggingS∗(λ∗) = 0 into (19),
which results in (17). Finally, equation (18) can be obtained
by pluggingS∗(λ∗) = 0 into (10) and taking the expectation
on both sides.

Remark 3.4:Note that the stopping rule (19) implies that
each transmitter has the same threshold that is globally deter-
mined even when all transmitters have different statisticsof the
CSI and ESI. The intuition is similar to that in [13]: In order
to guarantee the overall system performance, the transmitter
with a bad channel condition and a low energy level should
“sacrifice” its own reward, while the one with good conditions
should transmit more data.

Directly following Propositions 3.4 and 3.5, the next propo-
sition gives the DOS under the constant EH model.

Proposition 3.6:After the n-th round of CP, it is optimal
for the successful transmitter to take one of the following two
options:

1) release the channel immediately ifRn(V
∗) < λ∗ (which

is equivalent toM∗ = 0), and let all transmitters perform
the next round of CP;

2) otherwise, transmit afterV ∗ slots for EH, whereV ∗ is
given by Proposition 3.4.

C. Optimal Stopping Rule for i.i.d. EH Model

Similarly as in the previous subsection, we first consider
problem (8) to find the optimal stopping ruleM∗, then the
optimal stopping ruleN∗ afterwards.

Under the i.i.d. EH model,U0(F0) has the form in (8). As
we mentioned in Section III-A, it is a finite-horizon stopping
problem [14], [22], and the solution of problem (8) could be
directly generalized in the next proposition.

Proposition 3.7:For 0 ≤ k ≤ L/l and someλ > 0, the
optimality equationfor problem (8) is given by

Uk(Fk) = max {(R(k)− λ)L,−λkl + S∗(λ),

E[Uk+1(Fk+1) | Fk]} , (20)

and the optimal stopping rule has the following form:

M∗ = min {0 ≤ k ≤ L/l :

Uk(Fk) = max{(R(k)− λ)L,−λkl + S∗(λ)}} . (21)

The stopping ruleM∗ given in (21) suggests that the EP
would stop atM∗ by either transmitting or giving up the
channel, which also indicates the final decision for the current
round of CP. Thus, the optimal stopping ruleN∗ could be
obtained by reorganizing (21).

Proposition 3.8:The optimal stopping rule of CP under the
i.i.d. EH model has the form as:

N∗ = min {n ≥ 1 : UM∗(Fn,M∗) = (Rn(M
∗)− λ∗)L} ,

(22)
whereM∗ is the optimal stopping rule of EP given in Propo-
sition 3.7. The optimal throughputλ∗ satisfies the following
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equation

I∑

i=1

QiE

[
E
[
max{Ri(M∗)− λ∗,−λ∗M∗l/L} | F0

]+]

=
λ∗l

L
. (23)

The proof is analogous to the constant EH rate case, which is
omitted here.

The next proposition, which directly follows Propositions
3.7 and 3.8, concludes the overall DOS under i.i.d. EH model.

Proposition 3.9:After the n-th round of CP, it is optimal
for the successful transmitter to take one of the following two
options:

1) if max {(Rn(0)− λ∗)L,E[U1(Fn,1) | Fn,0]} < 0, re-
lease the channel immediately and let all transmitters start
the next round of CP.

2) otherwise, start EP following the optimal stopping rule
M∗

n given in Proposition 3.7.

Remark 3.5:Propositions 3.6 and 3.9 summarize the DOS
under the constant and i.i.d. EH models, respectively. We
observe that under the constant EH model, the EP could be
“forecasted” by finding the optimalV ∗; then the decision
of transmission would be made before starting EP. On the
contrary, when the EH rates are i.i.d., such decision can only
be made step by step during the EP.

IV. BATTERY DYNAMICS

In this section, we validate the assumption made in Section
III that the energy level at each transmitter is stationary with
some distribution. Firstly, we show that under the constant
EH model, the energy level stored at each transmitter forms a
Markov chain over time, while the state transition probabilities
for different transmitters are coupled together. However,we
propose an iterative algorithm to compute the corresponding
steady-state distribution, which is shown converging to the
global optimal point. Then, we extend our analysis to the case
with i.i.d. EH rate model.

A. Battery with Constant EH Model

Note that after CP, if the successful transmitter releases
the channel immediately, then the next round of CP starts,
and the battery continues to be charged. If the transmitter
starts the transmission, its energy level will become zero at
the end of the transmission block according to Section II.
During this time, all other transmitters will keep harvesting
energy within this period. Thus, the energy level transition
over the transmission block can be determined. To simplify our
analysis, the transmission block is treated as one time slotwith
lengthL for the purpose of counting battery state transitions.
In addition, we assume that the battery works in half-duplex
mode, i.e., it cannot be charged when the transmitter transmits
data.

For transmitter i with EH rate Ei, 1 ≤ i ≤ I,
the set of its energy states is given byBi

t ∈ ∆i ={
0, Eil, 2Eil · · · ,

⌊
Bmaxδ
Eil

⌋
Eil, Bmaxδ

}
, wheret ≥ 1 is the

0 l E L
i

E (L+l)
i Bmax

B
max

E
i

E ilE il

Fig. 2. The state transition of the energy level at transmitter i under the
constant EH rate model.

slot index. The state transition is depicted in Fig. 2. In addition,
we denote the distribution of the energy level for transmitter
i at time t asΠi

t =
[
πi
t,0 · · ·π

i
t,Bmax

]
.

Next, we consider the state transition probability. Suppose
that transmitteri is at energy levelui ∈ ∆i, there are three
events that may happen at time slott:

(i) It occupies the channel and transmits. According to
Section II, transmitteri consumes all the energy for the
transmission, and transfers to the energy level 0 after the
transmission. Thus, the transition probability is given by

piui,0 = Qip
i
tr(ui), (24)

whereQi is the probability that thei-th transmitter occupies
the channel, andpitr(ui) is the probability that it successfully
transmits with the energy levelui. Furthermore, according to
(17), pitr(ui) can be computed as

pitr(ui) = P
{
Ri(V ∗) ≥ λ∗

}

=P

{
log

(
1 + |hi|2

ui + V ∗lEi

(L/l− V ∗)lσ2
i

)
≥

λ∗

1− V ∗l
L

}
, (25)

whereV ∗ is defined by (14) in Proposition 3.4. Note that in
(25), |hi|2 is the only random variable and its distribution is
known.

(ii) Other transmitters occupy the channel and transmit.
If anyone among the otherI − 1 transmitters sends data,
transmitter i will harvest EiL units of energy during this
period, and then attain levelvi = min

{
u+ EiL,Bmaxδ

}
.

Suppose that thej-th transmitter transmits. Similar to the
first case, the probability of transmission performed by the
j-th transmitter is given byQj

∑Bmax

b=0 πj
t,bp

j
tr(bE

jl), where
bEjl ∈ ∆j and thusb ∈

{
0, 1, 2, · · · ,

⌊
Bmaxδ
Ej l

⌋
, Bmax

}
.

Since there are in totalI − 1 transmitters, the transition
probability for the transmitteri from levelui to vi is given by

piui,vi =
∑

j 6=i

Qj

Bmax∑

b=0

πj
t,bp

j
tr(bE

j l). (26)

(iii) No transmission happens. In this case, transmitteri
just harvestsEil units of the energy and goes into state
wi = min

{
ui + Eil, Bmaxδ

}
. The probability of this case

happening can be directly obtained as

piui,wi
= 1− piui,0 − piui,vi . (27)

Note that wheñui = vi = wi, the transition probability is just
given by

piui,ũi
= piui,vi + piui,wi

= piu,vi + 1− piui,0 − piui,vi

= 1− piui,0. (28)
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In this way, we can compute all{piui,ũi
} for 1 ≤ i ≤ I,

where ui ∈ ∆i and ũi ∈ {0, vi, wi, Bmaxδ}. The transi-
tion probability matrix is nothing butPi

t = {piui,ũi
} with

dimension
(⌈

Bmaxδ
Eil

⌉
+ 1
)
×
(⌈

Bmaxδ
Eil

⌉
+ 1
)
. Obviously,Pi

t is
a stochastic matrix, i.e, a square matrix in which all elements
are nonnegative and the row sum is 1. However,P

i
t depends

on t sincepiui,vi depends on the state distributionΠj
t for all

j 6= i. Therefore,
{
Bi

t

}
t≥0

is a non-homogeneous Markov
chain, whose state evolution is given by

Πi
t+1 = Πi

tP
i
t, t ≥ 0. (29)

We propose Algorithm I, which is summarized in Table I, to
compute the steady-state distribution for all transmitters. Here,
the infinity norm is applied, which is defined as‖ a ‖∞=
max1≤i≤n |ai| for a = [a1 · · ·an].

TABLE I
ALGORITHM I: COMPUTE THE STEADY-STATE DISTRIBUTION FOR ALL

TRANSMITTERS.

• Initialize Πi
0 for 1 ≤ i ≤ I, ε, and computepiui,0 by (24)

for all ui ∈ ∆i and1 ≤ i ≤ I;
• Set t = 0, computePi

0 by (26)–(28) for all1 ≤ i ≤ I,
and computeΠi

1 by (29) for all 1 ≤ i ≤ I. Then:

– While max1≤i≤I ‖ Πi
t+1 −Πi

t ‖∞> ε, repeat:

1) t = t+ 1;
2) UpdatePi

t by (26)–(28) for all1 ≤ i ≤ I;
3) ComputeΠi

t+1 by (29) for all 1 ≤ i ≤ I;

– end.

• Algorithm ends.

Proposition 4.1:For any given initial state distributionΠi
0,

Πi
t =

[
πi
t,0 · · ·π

i
t,Bmax

]
that is generated by Algorithm I,

converges to a unique steady-state distributionΠi for all
1 ≤ i ≤ I.
The proof is given in Appendix D.

Remark 4.1:The steady-state distribution for all transmit-
ters can be obtained by the iterative computationΠt+1 =
ΠtP over the “super” Markov system as well, which is
constructed in Appendix D. However, this is not as efficient
as Algorithm I. From the computational complexity point
of view, suppose that each transmitter hasm energy levels,
and there aren transmitters in total. The number of the
states in the “super” Markov chain ismn. If there is only
one processer, the floating-point calculation for one iteration
of the state distribution for the “super” Markov chain is
approximately on the order ofO

(
2m2n

)
. On the contrary,

by using Algorithm I, (26) requiresn2m2 calculations, and
updating{Pi

t} requires aboutnm calculations according to
(27). In addition,{Πi

tP
i
t} requires2nm2 calculations. Overall,

one iteration for all transmitters is approximately on the order
of O

(
n2m2

)
, which is more efficient than the case for the

“super” Markov chain especially whenm and n are large.
Moreover, our algorithm can also be operated in a parallel
way, i.e., computingΠi

t+1 = Πi
tP

i
t for 1 ≤ i ≤ n at the same

time over different cores.

B. Battery with i.i.d. EH Model

The argument that the battery state evolves as a Markov
process for the random case is analogous to that of the constant
case in the previous subsection. The main difference is thatthe
probability pitr(ui) defined by (25) is changed, which needs
to be further developed under the i.i.d. EH rate model.

We now consider the calculation ofpitr(ui). When transmit-
ter i grabs the channel with energy levelui, according to the
stopping ruleM∗ (21) andN∗ (22), the transmitter checks the
conditionmax {(R(0)− λ)L,−λl + E[U1(F1) | F0]} ≥ 0. If
it is true, the transmitter starts EP until theM∗-th slot and
transmits when(R(M∗)−λ∗)L ≥ −λ∗M∗l according to (22).
Specifically, givenU0(ui, |h

i|2) ≥ 0, the transmitter continues
EP at slotk for 0 ≤ k ≤ M∗ − 1, which is equivalent to
max{(R(k) − λ∗)L,−λ∗kl} < E[Uk+1(Fk+1) | Fk], where
Fk = {ui + l

∑k
j=0 E

i
j , |h

i|2}. Then, at slotM∗ = m ≤ L/l,
the transmitter stops EP and transmits when(R(m)−λ∗)L ≥
max{−λ∗ml,E[Um+1(Fm+1) | Fm]}. Thus, we obtain

pitr(ui) =

∫ ∞

0

P
{

Transmits atM∗ | U0(ui, d|h
i|2) ≥ 0

}
·

P
{
U0(ui, d|h

i|2) ≥ 0
}
f(|hi|2)d|hi|2, (30)

wheref(|hi|2) is the probability density function (PDF) of the
channel power gain. The probabilityP

{
U0(ui, d|hi|2) ≥ 0

}

can be computed based on Proposition 3.7. For notation
simplicity, we omit the conditionU0(ui, d|hi|2) ≥ 0, and the
first term in the integral of (30) can be expanded as

P {Transmits atM∗} =

L/l∑

m=0

(
m−1∏

k=0

P {αk < 0}

)
P {βm ≤ 0}

(31)

whereαk = max{(R(k) − λ∗)L,−λkl} − E[Uk+1(Fk+1) |
Fk], and βm = max{−λml,E[Um+1(Fm+1) | Fm]} −
(R(m) − λ∗)L. Note that in P {αk < 0}, R(k) and
E[Uk+1(Fk+1) | Fk] are random since they are the functions
of
∑k

j=0 E
i
j , where

{
Ei

j

}
1≤j≤k

are i.i.d. with a known

distribution andEi
0 = 0. Thus,P {αk < 0} can be computed.

Using the similar argument, it is easy to see thatP {βm ≤ 0}
can be computed as well. Therefore, the probability given in
(31) is computable. Overall, we could obtainpitr(ui) after
plugging (31) into (30).

After obtainingpitr(ui), the transition probability{piui,ũi
},

where ui ∈ ∆, and ũi ∈ {0, ui, ui + δ, · · · , Bmaxδ}, can
be calculated similarly as the case of constant EH rate. In
addition, Algorithm I and Proposition 4.1 could be modified,
such that they could suit the i.i.d. EH model, which is omitted
in this paper.

V. COMPUTATION OF THEOPTIMAL THROUGHPUT

The optimal throughputλ∗ hinges upon the optimal stop-
ping rules in (17) and (22). Thus, to fully obtain the optimal
scheduling policy of the proposed DOS, we next turn our
attention to computing the value ofλ∗.

By Propositions 3.5 and 3.8,λ∗ can be obtained by solving
(18) or (23) under the constant or i.i.d. EH model, respectively.
Next, we briefly introduce the idea why there existsλ∗ such
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that the equation (18) or (23) holds, and how to searchλ∗.
For brevity, we focus the constant EH rate case.

Note thatR(V ∗) is a function of random variableshi and
Bi

0; we could calculate the expectation on the left-hand side
of (18) for each givenλ ≥ 0. Such expectation requires the
distribution ofBi

0, i.e., the steady-state distributionΠi, which
could be approximately computed as shown in Section IV. In
addition, for a givenλ, an upper bound of this expectation can
be obtained by fixingΠi = [0, · · · 0, 1]. As λ increases from
zero to infinity, this upper bound decreases to zero at some
λ̃ < ∞. Since the right-hand side of (18) is strictly increasing
overλ within the range[0,+∞), there at least exists oneλ∗

satisfying (18). Therefore, an exhaustive one-dimension search
can be applied to obtain the optimal throughput over the range[
0, λ̃
]
. Note that during each iteration of the exhaustive search,

Algorithm I (given in Section IV) is used to obtain the steady-
state distribution for a givenλ ∈

[
0, λ̃
]
, and then we check

if the equation (18) or (23) holds. Finally,λ∗ should be the
largest one in

[
0, λ̃
]

that makes the equation (18) or (23) hold.

In summary, the above search can characterize the optimal
stopping rules given in Propositions 3.5 and 3.8, which com-
pletes the proposed DOS framework.

VI. N UMERICAL RESULTS

In this section, we first validate Propositions 3.5 and 3.8 to
show that the optimal throughputλ∗ exists and can be found
via one-dimension search. Second, we investigate the through-
put gain of our proposed DOS with two-level probing over
the best-effort delivery method, where the data is transmitted
whenever the channel contention is successful. Note that such
a method can be realized in the proposed DOS framework
by fixing M = 0 and settingN = 1 in (17) and (22). Let
λ0 denote the throughput obtained by the best-effort scheme,
which can be calculated as

λ0 =

∑I
i=1

Qi

Q E

[
L log

(
1 + |hi

n|
2Bi

n,0

Lσ2

)]

l
Q + L

. (32)

In general, a typical button cell battery has the capacity
of 150 mAh with the end-point voltage of 0.9 V, which is
equal to 150 mAh× 3600 s/h× 0.9 V = 486 J. A thin-film
rechargeable battery can offer 50µAh with 3.3 V, which is
equal to 0.594 J. Since a typical transmission time intervalis
on the time scale of milliseconds, we let the energy unit be
δ = 10−3 J in the simulation. Accordingly, we set the capacity
of the batteryBmaxδ = 105δ, which falls between the capacity
volume of a thin-film battery and that of a button cell battery.
Also, the current commercial solar panel can provide power
from 1 W to about 400 W, which is equivalent to1δ·ms−1

∼ 400δ·ms−1. According to this fact, in our simulation, we
let the EH rate vary within the range[0, 40δ]. In addition,
the channel gains are i.i.d for different links and the channel
power gains follow an exponential distribution with mean 5.
The variance of the noise is set to be 10 mW. The length
of one time slot is unified asl = 1 ms and the length of a
transmission block isL = 100l.
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Fig. 3. λ v.s. the average throughput.

1) Validation of Propositions 3.5 and 3.8:In Fig. 3, we
illustrate the variation of the average throughput as the “thresh-
old” λ changes. Without loss of generality, we first consider
a homogeneous network with10 user pairs, i.e., all pairs are
identical. For the constant EH model, the EH rate is set to be
E = 10δ for all transmitters. For the i.i.d. EH case, we choose
the Bernoulli model [25], [26]: The EH rate is either zero or
of a finite value with probability 0.5. In our simulation, we
consider three cases for the mean values in i.i.d. EH model:
7.5δ, 10δ, and20δ.

First, we observe in Fig. 3 that asλ increases from zero,
the average throughput is increasing then decreasing. Then, the
optimal point is achieved atλ∗, where the average throughput
is at its apex that is also approximately of the same value
asλ∗. Taking the case of i.i.d. EH model with mean20δ as
an example in Fig. 3, the value of the optimal throughput
λ = λ∗ is approximately 4.5, and the actual optimal average
throughput is about 4.5 as well. Therefore, this observation
validates our Propositions 3.5, 3.8 and discussions in Section
V. Second, we observe that the average throughput is almost
the same when the mean of the EH rate in the i.i.d. EH model
is equal to the EH rate in the constant EH model. Thus, the
type of EH rate models does not directly determine the average
throughput performance.

2) Throughput gain:We useλEP to denote the throughput
where only EP is adopted, i.e., settingN = 1 andM = M∗,
andλCP to denote the throughput where only CP is adopted,
i.e., settingN = N∗ andM = 0. Thus, the throughput gains
are defined as:




GEP = λEP−λ0

λ0

, gain from EP;
GCP = λCP−λ0

λ0

, gain from CP;

GDOS = λ∗−λ0

λ0

, gain from CP + EP.
(33)

In Fig. 4, we evaluate the above throughput gains for the
network withI = 3 user pairs. Recall from Section II that our
analysis is applicable forI ≥ 2. Since the constant and i.i.d.
EH rate models could attain the same throughput performance
overλ, we only consider the constant EH model in this case.
Particularly, we study a heterogeneous case where the first two
transmitters have the same EH rates2δ, while the EH rate of
the third transmitter varies from2δ to 100δ.
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Fig. 4. The throughput gain v.s. EH rate of the third transmitter.

We observe in Fig. 4 that as the EH rate of the third
transmitter increases,GEP almost keeps constant and can
achieve a gain about 19%. It implies that after the channel
contention, the successful transmitter with any EH rate could
do EP to enhance its average transmission rate over the
transmission block. Thus, the ESI of the successful transmitter
does not have obvious impact on the throughput. However, we
notice thatGCP achieves its maximum when all transmitters
are identical (with the same EH rate2δ) and then decreases
slowly as the EH rate of the third transmitter increases.
The intuition is that when the difference among EH rates
becomes larger, the stopping rule of CP will more likely let
the transmitter with relatively low energy level to give up the
channel, which results in a longer time on CP and then the
throughput gain is lower than the case when all transmitters
are identical. RegardingGDOS , our proposed DOS with two-
stage probing can achieve the highest throughput gain among
three schemes. It is worth noticing that as the EH rate of
the third transmitter increases, the efficiency of DOS becomes
more apparent, although slowly, than the scheme with pure
CP, which implies that the second stage probing brings more
benefits. Our intuition is that a larger difference among theEH
rates leads to a bigger difference of energy levels. Since EP
allows the successful transmitter with relatively lower energy
level to possibly harvest more energy after CP, EP will plays
a more important role as the difference among the EH rates
increases.

In Fig. 5, we illustrate how the size of the network influ-
ences the throughput gains. In this scenario, we start from a
three-pair network with EH rates2δ, 2δ, and80δ, respectively.
Then, we keep adding pairs with EH rate2δ at the transmitter
side. We observe that the throughput gainGCP is increasing
a little as the size of the network is increasing. It is reasonable
since CP could utilize the multi-user diversity of both channel
gains and energy levels. We see thatGCP increases slowly,
since we only add a low-EH-rate transmitter at each time.
We also observe thatGEP is decreasing. The reason is that
the more transmitters in the network, the less probability to
transmit for each transmitter, and then more transmitters would
maintain a high energy level. Thus, EP is rarely triggered
after a channel contention. For the same reason,GDOS would
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Fig. 5. The throughput gain v.s. the size of the network.

approachGCP as the size of the network increases.

VII. C ONCLUSION

In this paper, we proposed a DOS framework for a hetero-
geneous single-hopad hocnetwork, in which each transmitter
is powered by a renewable energy source and accesses the
channel randomly. Our DOS framework includes two succes-
sive processes: All transmitters first probe the channel via
random access, and then the successful transmitter decides
whether to give up the channel or to optimally probe the energy
before data transmission. The optimal scheduling policy of
the DOS framework is obtained as follows: First, assuming
the battery state is stationary at each transmitter, the expected
throughput maximization problem was formulated as a rate-
of-return optimal stopping problem, which was solved for
both the constant and i.i.d. EH rate models; second, by fixing
the stopping rule, the stored energy level at each transmitter
was shown to own a steady-state distribution as time goes to
infinity, where we also proposed an efficient iterative algorithm
for its computation; finally, the optimal throughput and the
scheduling policy is obtained via one-dimension search with
the above two steps (i.e., finding the form of the optimal
stopping rule and calculating the steady-state distribution)
repeated in each iteration. Numerical results were also pro-
vided to validate our analysis; the proposed DOS with two-
level probing was shown to outperform the best-effort delivery
method.

APPENDICES

A. Proof of Proposition 3.1

For the first part of Proposition 3.1, it follows by Theorem
1 in Chapter 3 of [14] thatN∗(λ) exists andS∗(λ) is attained
by thisN∗(λ) if the following two conditions are satisfied:

(C1) lim supN→∞ rN (λ) ≤ r−∞(λ) a.s.;
(C2) E

[
supN≥1 rN (λ)

]
< ∞,

whererN (λ) is given by (4). As we pointed out in Section
II, the energy levelBN,0 is stationary forN ≥ 1. Although
{RN(M∗

N )}N≥1 are independent, it may not be identically
distributed with respect tohN andBN,0. However, it is not too
difficult to show that (C1) and (C2) hold. The idea is that we
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first consider that every transmitter has the same statistics; then
we apply the channel contention probability as the summation
coefficients over all transmitters.

For (C1), if we assume that all transmitters have
the same statistics as transmitteri, then {Ri

N (M∗
N)}N≥1

become i.i.d.. SinceE
[
Ri

N (M∗
N )
]

< ∞ according
to Section III, and the accumulated costλTN =

λl
(
KN +

∑N−1
n=1 (Kn +M∗

n)
)

→ ∞ as N → ∞ a.s., we

obtain thatP
{
lim supN→∞ riN (λ) = −∞

}
= 1. Recall from

Section II that the channel is occupied by transmitteri with
probabilityQi and

∑I
i=1

Qi

Q = 1, we obtain that

1 =

I∑

i=1

Qi

Q
P

{
lim sup
N→∞

riN (λ) = −∞

}

= P

{
lim sup
N→∞

rN (λ) = −∞

}
,

which proves that (C1) holds.
For (C2), it can be shown that

E

[
sup
N≥1

riN (λ)

]
= E

[
sup
N≥1

((
Ri

N (M∗
N )− λ

)
L− λTN

)]

≤ E

[
sup
N≥1

(
Ri

N (M∗
N )− λ(lN + L)

)]
, (34)

due to the fact thatKn ≥ 1 andM∗
n ≥ 0 for 1 ≤ n ≤ N . Since

E

[(
Ri

N (M∗
N )
)2]

< ∞, it follows that the right-hand side of
(34) is finite by Theorem 1 in Chapter 4 of [14]. Similar to
the technique in the proof of (C1), we have

E

[
sup
N≥1

rN (λ)

]
=

I∑

i=1

Qi

Q
E

[
sup
N≥1

riN (λ)

]
< ∞,

which shows that (C2) also holds.
For the second part, we know that with the costλlKN at

theN -th CP for anyN ≥ 1, the successful transmitter could
choose one of three actions: transmits immediately with reward
(RN (0) − λ)L; or gives up the channel immediately, and
obtains the optimal expected net rewardS∗(λ) based on the
property of time invariance described in Section III-A; or starts
EP and obtains the expected net rewardE [U1(FN,1) | FN,0].
Thus, by the optimal stopping theory [14], [21],S∗(λ) satisfies
the optimality equationunder (C2) as

S∗(λ) = −λlKN+

max {S∗(λ), (RN (0)− λ)L,E [U1(FN,1) | FN,0]} ,

which is equivalent to (10).

B. Proof of Proposition 3.2

For 1), we show the concavity of functiony(x) by checking
its second-order derivative over[0, 1), which is given by

y′′(x) = −
(a+ b)2

(1− x) [a+ 1 + (b− 1)x]2
≤ 0.

Therefore,y(x) is concave over[0, 1) [23]. To prove the
second part of 1), we check the first-order derivative ofy(x),

which is given by

y′(x) = − log

(
1 +

a+ bx

1− x

)
+

a+ b

1− x+ a+ bx
. (35)

It is easy to see that asx → 1−, the first term of the right-
hand side of (35) goes to negative infinity, while the second
term is bounded. Hence,y′(x) is strictly negative asx → 1−.
Therefore, part 1) is proved.

Next, we prove 2). By checking the second-order derivative
of g(x), we obtain

g′′(x) = −
a2

(1− x)(a + 1− x)2
≤ 0,

which implies thatg(x) is concave. For the second part of 2),
we consider the first-order derivative ofg(x), which is given
by

g′(x) = − log

(
1 +

a

1− x

)
+

a

1− x+ a
. (36)

Sinceg′′(x) ≤ 0, it follows that

max
0≤x<1

g′(x) = g′(0) = − log (1 + a) +
a

1 + a
.

Moreover, due to the fact thatdda

(
− log (1 + a) + a

1+a

)
=

− a
(1+a)2 ≤ 0 for arbitrarya ≥ 0, we obtain

max
0≤x<1

g′(x) = g′(0) ≤

(
− log (1 + a) +

a

1 + a

)∣∣∣∣
a=0

= 0,

which proves the second part of 2).

C. Proof of Proposition 3.3

According to Part 1) of Proposition 3.2, we obtain thatG(ρ)

is concave overρ ∈ [0, 1), which means thatG′(ρ) = dG(ρ)
dρ

is decreasing over[0, 1) and attains its maximum atρ = 0.
Then, finding the maximum ofG(ρ) boils down to two cases:

1) G′(ρ)|ρ=0 < 0: It follows that G(ρ) is decreasing over
[0, 1), andρ∗ = 0 is the optimum.

2) G′(ρ)|ρ=0 ≥ 0: The pointρ0, satisfying G′(ρ)|ρ=ρ0
=

0, lies on the right-hand side ofρ = 0. By Part 1) of
Proposition 3.2,G′(ρ) < 0 as ρ → 1−, which implies
that ρ0 ∈ [0, 1). Since the optimal pointρ∗ ≤ Bmaxδ−B0

LE

due to (13), it follows thatρ∗ = min
{
ρ0,

Bmaxδ−B0

LE

}
.

Note thatG′(ρ)|ρ=0 ≥ 0 is equivalent toC+D
1+C ≥ log(1+C),

whereC = |h|2B0

Lσ2 ≥ 0, D = |h|2E
σ2 ≥ 0, and G′(ρ)|ρ=ρ0

= 0
is equivalent to

log

(
1 +

C +Dρ0
1− ρ0

)
=

C +D

1− ρ0 + C +Dρ0
. (37)

Next, we show that whenC+D
1+C ≥ log(1 + C), (37) has a

unique solution. Forρ ∈ [0, 1), the left-hand side of (37) is
increasing overρ from log (1 + C) to +∞. For its right-hand
side, we have the following two cases:

1) D ≥ 1: The right-hand side of (37) decreases fromC+D
1+C

to 1. Since C+D
1+C ≥ log(1 + C), there exists a unique

solutionρ0 for (37);
2) 0 ≤ D < 1: The right-hand side of (37) increases from

C+D
1+C to 1. If the first-order derivative of the left-hand side
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of (37) is always greater than that of the right-hand side,
there must be only one solution for (37) whenC+D

1+C ≥
log(1 + C). Thus, we check their first-order derivatives:
For the left-hand side of (37), we obtain

d

dρ
log

(
1 +

C +Dρ

1− ρ

)
=

C +D

(1− ρ) (1 + C + (D − 1)ρ)
;

(38)

for the right-hand side, we have

d

dρ

(
C +D

1− ρ+ C +Dρ

)
=

(C +D)(1 −D)

(1 + C + (D − 1)ρ)
2 .

(39)

Thus, by calculating the difference between (38) and (39),
we arrive at

C +D

(1− ρ) (1 + C + (D − 1)ρ)
−

(C +D)(1−D)

(1 + C + (D − 1)ρ)2

=
(C +D)2

(1− ρ) (1 + C + (D − 1)ρ)
2 ≥ 0. (40)

Therefore, there exists a unique solutionρ0 satisfying
(37).

In conclusion, the proposition is proved.
Remark: Since it is proved thatρ0 is unique in (37),ρ0 can

be found just by adopting a simple one-dimension searching
method, e.g., bisection search.

D. Proof of Proposition 4.1

To prove this proposition, we construct an axillary “super”
Markov chain in which each state is a “super” vector of
aggregated energy levels across the whole network, whose
transition probability matrix does not change over timet.
Afterwards, we prove that such a “super” Markov chain has
a unique steady-state distribution. Then, we show that for any
time t in the original Markov chain, one iteration for updating
Πi

t for 1 ≤ i ≤ I in Algorithm I is equivalent to the evolution
of the state distribution in the “super” Markov chain, thereby
proving the convergence of Algorithm I.

To construct such a “super” Markov chain, we need to
jointly consider the states of energy levels across all transmit-
ters. LetΣ denote the set of all possible battery states over
the whole system, i.e.,

Σ = {u = (u1 · · · uI) : u1 ∈ ∆1, · · · , uI ∈ ∆I} . (41)

Furthermore, we useBt to denote the battery state of the sys-
tem at timet, and thus we haveBt ∈ Σ. Note that the number
of elements inΣ is

(⌈
Bmaxδ
E1l

⌉
+ 1
)
× · · · ×

(⌈
Bmaxδ
EI l

⌉
+ 1
)
.

Suppose thatBt = u. There areI + 1 possible events at
time t: A transmission is performed by transmitteri, where
1 ≤ i ≤ I, or no transmission happens.

If the i-th transmitter transmits, there isBt+1 = vi, where
vi ∈ Σ and

vi =




min{u1 + E1L,Bmaxδ}
· · ·
0
· · ·
min{uI + EIL,Bmaxδ}




T

,

in which the i-th element is zero. According to (24), the
corresponding transition probability is given by

pu,vi
= Qip

i
tr(ui), 1 ≤ i ≤ I. (42)

If no transmission happens, all transmitters just harvest
energy for one time slot. Then, we obtainBt+1 = w, where
w ∈ Σ and

w =




min{u1 + E1l, Bmaxδ}
· · ·
min{ui + Eil, Bmaxδ}
· · ·
min{uI + EI l, Bmaxδ}




T

.

The corresponding transition probability is just the comple-
ment of the transmission probability over all other possible I
cases, which is given by

pu,w = 1−
I∑

i=1

Qip
i
tr(ui). (43)

Therefore,{Bt}t≥0 is a unichain [24], i.e., a finite-state
Markov process that contains a single recurrent class. By cal-
culating the transition probability for eachu ∈ Σ, we obtain
the transition probability matrixP for {Bt}t≥0. Clearly,P is
a stochastic matrix and is invariant over time. Therefore, there
exists a unique probability vectorΠ such thatΠ = ΠP holds
[24]. In fact,Π is the steady-state distribution of{Bt}t≥0.

So far, we have constructed a “super” Markov chain
{Bt}t≥0 for the whole system, for which the steady-state
distribution exists and is unique. Therefore, by the iteration
Πt+1 = ΠtP, we havelimt→∞ Πt = Π. Thus, it suffices to
show that

Πt+1 = ΠtP ⇔






Π1
t+1 = Π1

tP
1
t ,

· · ·
Πi

t+1 = Πi
tP

i
t,

· · ·
ΠI

t+1 = ΠI
tP

I
t .

t ≥ 0, (44)

If (44) is true, the state distribution of each transmitter
converges to the unique steady-state distribution.

Next, we are going to show that both the directions “⇒”
and “⇐” of (44) hold. For notational simplicity, we omit
the time indext. In fact, the direction “⇐” is the same as
constructing the “super” Markov chain as discussed earlier.
If the system is at stateu =

(
b1E

1l · · · bIEI l
)
, where

bi ∈
{
0, 1, 2, · · · ,

⌊
Bmaxδ
Eil

⌋
, Bmax

}
, 1 ≤ i ≤ I, the prob-

ability Π(u) is the joint probability over all transmitters,
i.e., Π(u) =

∏I
i=1 π

i
bi

. The way of constructing transition
probability matrixP is given by (42) and (43), which can be
obtained directly from (24) for{Pi}. Thus, bothΠ and P

can be obtained from the right-hand side of (44).

For the direction “⇒” of (44), we need to show how
we obtain{Πi} and {Pi} from the left-hand side of (44).
We consider{Πi} first. Given the state distributionΠ of
the system, there exists an one-to-one mapping from each
element ofΣ to that ofΠ. Let Π(u) denote the probability
of the system staying at stateu ∈ Σ. Obviously, there is∑

u∈Σ
Π(u) = 1. Then, we consider the subset ofΣ such
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that transmitteri stays at stateu ∈ ∆i, i.e.,

Σui=u = {u = (u1 · · ·ui · · ·uI) :

u1 ∈ ∆1, · · · , ui = u, · · · , uI ∈ ∆I} . (45)

Clearly, (45) satisfies
⋃

u∈∆i
Σui=u = Σ. Then, the prob-

ability that transmitteri stays at stateu = bEil, where
b ∈

{
0, 1, 2, · · · ,

⌊
Bmaxδ
Eil

⌋
, Bmax

}
, is equal to the probability

that the system is staying atΣui=u, i.e.,

πi
b = P {Σui=u} =

∑

u∈Σui=u

Π(u). (46)

In this way, we can obtain the state distributionΠi for
transmitteri such thatΠi = [πi

0 · · ·π
i
b · · ·π

i
Bmax

].

Next, we consider{Pi}. When transmitteri stays at
the energy stateu ∈ ∆i, it can transfer to state0, v1,
or v2 , where v1 = min

{
u+ EiL,Bmaxδ

}
, and v2 =

min
{
u+ Eil, Bmaxδ

}
. Accordingly, fromΣui=u, there are

three possible cases:

1) Σui=u → Σui=0: For each stateu ∈ Σui=u, there
is only one possible route toΣui=0 with probability
Qip

i
tr(u) such that transmitteri transmits and goes into

state0. In fact, such transition probability does not change
for any u ∈ Σui=u. Thus, by taking all possible states
into account, the transition probability can be computed
by

piu,0 = P {Σui=u → Σui=0 | Σui=u}

=
Qip

i
tr(u)P {Σui=u}

P {Σui=u}
= Qip

i
tr(u), (47)

which is equal to (24).
2) Σui=u → Σui=v1 : For each stateu ∈ Σui=u, there

are I − 1 possible routes toΣui=v1 . We pick the route
caused by transmitterj 6= i, i.e., the j-th transmitter
transmits. Suppose that at stateu, the transmitterj is in
the energy statebEjl ∈ ∆j . The probability of staying at
Σui=u,uj=bEj l is given asπj

bP {Σui=u} by (46). Thus,
the transitionΣui=u,uj=bEj l → Σui=v1,uj=0 describes
the transition of transmitteri from stateu to statev1
caused by transmitterj with energy leveluj = bEj l.
Similarly as in (47), the transition probability for this
case is given by

P
{
Σui=u,uj=bEj l → Σui=v1,uj=0 | Σui=u,uj=bEj l

}

=
Qjp

j
tr(bE

j l)P
{
Σui=u,uj=bEj l

}

P
{
Σui=u,uj=bEj l

}

=Qjp
j
tr(bE

j l).

When we extend to other transmitters besidesi, and con-
sider all possible states for each transmitter, we obtain the
probability of the one step transitionΣui=u → Σui=v1

as

P {Σui=u → Σui=v1 | Σui=u}

=
P {Σui=u → Σui=v1 , Σui=u}

P {Σui=u}

=
1

P {Σui=u}

∑

j 6=i

Bmax∑

b=0

(
P
{
Σui=u,uj=bEj l

}

· P
{
Σui=u → Σui=v1 | Σui=u,uj=bEj l

})

=
1

P {Σui=u}

∑

j 6=i

Bmax∑

b=0

(
P
{
Σui=u,uj=bEj l

}

· P
{
Σui=u,uj=bEj l → Σui=v1,uj=0 | Σui=u,uj=bEj l

})

=
1

P {Σui=u}

∑

j 6=i

Bmax∑

b=0

πj
bP {Σui=u}Qjp

j
tr(bE

j l)

=
∑

j 6=i

Bmax∑

b=0

πj
bQjp

j
tr(bE

j l). (48)

Thus, (48) is equivalent to (26).
3) Σui=u → Σui=v2 : The transition probability for this case

can be obtained by taking the complement of (47) and
(48), which is equivalent to (27).

Therefore, we obtain all possible transitions for transmitter i
at time t, for which the corresponding transition probabilities
can be computed as well. Thus,{Πi} and{Pi} are obtained
from Π andP, which proves the direction “⇒” of (44).

Overall, the convergence of Algorithm I is proved.
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