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Abstract—This paper considers a heterogeneousad hoc net-
work with multiple transmitter-receiver pairs, in which al |
transmitters are capable of harvesting renewable energy fim

the environment and compete for one shared channel by random

access. In particular, we focus on two different scenariosthe
constant energy harvesting (EH) rate model where the EH rate
remains constant within the time of interest and the i.i.d. BH
rate model where the EH rates are independent and identicajl
distributed across different contention slots. To quantif/ the roles
of both the energy state information (ESI) and the channel
state information (CSl), a distributed opportunistic scheduling
(DOS) framework with two-stage probing and save-then-trasmit
energy utilization is proposed. Then, the optimal throughput and
the optimal scheduling strategy are obtained via one-dimesion
search, i.e., an iterative algorithm consisting of the fotbwing two
steps in each iteration: First, assuming that the stored engy level
at each transmitter is stationary with a given distribution, the
expected throughput maximization problem is formulated asan
optimal stopping problem, whose solution is proven to exisand
then derived for both models; second, for a fixed stopping rg,
the energy level at each transmitter is shown to be stationgrand
an efficient iterative algorithm is proposed to compute its teady-
state distribution. Finally, we validate our analysis by numerical
results and quantify the throughput gain compared with the best-
effort delivery scheme.

Index Terms—Distributed opportunistic scheduling, energy
harvesting, optimal stopping.

|. INTRODUCTION

Conventional wireless communication devices are usua
powered by batteries that can provide stable energy suppli
However, the battery lifetime limits the operation time o
such devices. Recently, energy harvesting (EH) techniq
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have been proposed as a promising alternative to the con-
ventional constant power supplies [2]] [3], which is cagabl
of transferring the renewable energy from the environment
into electrical energy. In this way, the node lifetime can
be prolonged significantly. Compared with the conventional
constant energy suppliers, transmitters powered by energy
harvesters are restricted by a new class of EH constraints,
i.e., the consumed energy up to any time is bounded by the
harvested energy until this point [4]. Therefore, to meetair
performance requirements, such as throughput, statuktgy,

etc., these EH constraints should be carefully taken into
account in the design of EH-based communication systems.

A. Related Works and Motivations

Communication systems powered by energy harvesters have
been investigated in recent years. For the point-to-poirg-w
less systems, the authors [ [4] [5] considered the throughp
maximization problem over a finite horizon for both the
cases that the harvested energy information is non-cgusall
and causally known to the transmitter, where the optimal
solutions were obtained by the proposed one-dimensiogisear
algorithm and dynamic programming (DP) techniques, respec
tively. In [6], the authors extended the results to the dtass
three-node Gaussian relay channel with EH source and relay
nodes, where the optimal power allocation algorithms were

roposed. With a more practical circuit model by considgrin

e half-duplex constraint of the battery, the authors[ih [7

roposed a save-then-transmit protocol, which dividesheac
g%nsmission frame into two parts: the first one for harwgsti
energy and the other for data transmission. For wireless
networks with EH constraints, the authors [in [8] investight
the performance of some standard medium access control
protocols, e.g., TDMA, framed-Aloha, and dynamic-framed-
Aloha.

In related works onad hoc networking, opportunistic
scheduling has been known as an effective method to utilize
the wireless resource |[9]=[11]. In particular, a distrémt
opportunistic scheduling (DOS) scheme was introduced in
[12], [13], where only local channel state information (TSI
is available to each transmitter. By applying optimal siogp
theory [14], it has been shown in [12],]13] that the optimal
solution for the expected throughput maximization problem
has a threshold-based structure. When channel estimation i
imperfect, the authors if_[15] proposed a two-level channel
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probing framework that allows the accessing transmitter keeps harvesting energy before it initiates the transorndsiat
perform one more round of channel estimation before daiaes up all the available energy in the battery. Note that suc
transmission to improve the quality of estimated CSI and pos greedy power utilization scheme is suboptimal in general,
sibly increase the system throughput. The optimal scheduliwhile it is sensible when the number of transmitters is large
policy of the two-level probing framework was proven to be The main contributions of this paper are summarized as
threshold-based as well by referring to the optimal stogpirfollows:

with two-level incomplete informatiori [16]. 1) First, by assuming that the battery state at each tratesmit
Different from the traditional energy supplies (e.9., non- s stationary with a certain distribution, the throughput

rechargeable batteries, power grid) in the convention&l ne  4yimization problem for the considered network is cast

works [9]-[13], [15], we consider the network powered by g 3 rate-of-return problem. We prove the existence of the

energy harvesters that could generate electric energy from optimal stopping rules for both EP and CP, and further
different renewable energy sources. Among various types of piain:

renewable energy sources, we consider two typical energy
harvesting rate models in this paﬂxer

1) Constant energy harvesting rate maddhe EH rate
(specifically, the amount of harvested energy per unit
time) can be approximated as a constant within the
entire time duration of interest. For example, the power
variation coherence time of wind and solar EH systems
is on the order of multiple seconds [17], [18], while the
duration of one communication block is about several
milliseconds. Thus, over thousands of communication
blocks, the EH rate keeps almost the same.

2) Independent and identically distributed (i.i.d.) energy
harvesting rate modelCompared to the constant rate
model, the EH rate for this case changes much faster, i.e.,
comparable to the duration of one communication block.
For _examplg, t.he energy from light, thermal, kinetic, or constant case, the transmission decision under i.i.d.
ambient-radiation sources, usually changes every several

- ) EH model is made during the process of EP.
milliseconds. Accordingly, EH rates can be modeled a32 Next. with a fixed stoppi | how th ist
an i.i.d. [8], [8] random process. ) Next, with a fixed stopping rule, we show the existence

. _ . of the steady-state distribution of the battery state by
With the above two EH models, we investigate the DOS constructing a “super” Markov chain with its states being
problem for a heterogeneous EH-based network, where the jointly determined by all transmitters. Moreover, we
channel gains across different links and the EH rates across y : : . '
different ?ransmitters are non-identical. The system wanka propose an efficient iterative algorithm to compute the
- y . steady-state distribution, executed at each transmitter i
two-stage pattern as follows. In the first stage, all trattems

k . parallel. Particularly, it is shown that with the constaht E
ad(_)pt random access _and do chan_nel probing (_CP)’ during model, if the network consists of transmitters and each
which t.he SU(.:CG.SSfUI link can obtain the CSI via channel one is withm possible energy states, the computational
contentions, similar to those.|E|J12]:[I13_]:[|15]. In the ead complexity for one iteration of the proposed algorithm is
stage, the succgssful transmitter at the first stage _ha:ptlwo on the order oD (ngmg)’ which is more efficient (when
to spend certain time to harvest_more energy, i.e., executes .4 oo large) than that of the super Markov chain
energy probing (EP); and then, with the updated energy state case, whose complexity for one iteration is on the order
information (ESI), it decides either to transmit in the refsthe of O ' om2n).
transmission block, or to stop probing and give up the chlannes)
With EP, since the total duration of the transmission block is
fixed, although spending more time on harvesting energydcoul
increase the energy level, it decreases the portion of the ti
for data transmission, which leads to a tradeoff to optimize

« For the constant EH model, the optimal stopping rule
of EP is determined by maximizing the throughput
over the transmission block before starting EP, and
it is either zero or a finite value according to the
given CSI and ESI. Then, based on the stopping rule
of EP, the optimal stopping rule of CP is shown to
be a pure threshold policy (the threshold does not
change over time) and the transmission decision is
made right after each round of CP.

o For the i.i.d. EH model, the optimal stopping rule
for EP is shown to be dynamic and threshold based,
which is obtained by solving a stopping problem over
a finite-time horizon. The stopping rule of CP is also
threshold based and obtained based on the decision of
EP, i.e., either transmit or start a new CP. Unlike the

Finally, by exploiting the structure of the rate-of-netu
problem, we show that the maximum throughput and the
optimal scheduling strategy of the DOS framework could
be obtained for both the two EH rate models, via one-
dimension search by repeating the above two steps.

B S ¢ Contributi The rest of this paper is organized as follows. Secfidn I
- summary ot Lontributions introduces the system model. In Sectlod Ill, the throughput
We propose a DOS framework for aad hoc network maximization problem is formulated and solved under the

powered by energy harvesters, which efficiently utilizethboassumption that the stationary distribution of the battery

the CSI and the ESI at each transmitter. In this frameworkach transmitter is known. Then, with the obtained stopping
we adopt a “save-then-transmit” scheme, i.e., the tramsmitryle, we prove in Sectiofi IV the existence of the steady-
1 _ _ . state distribution for each transmitter, and propose aatite
A more general case is that the transmitter only has cauaimation . . . . .
about EH rates, which could be modeled as a Markov process. mibdel algorlthm _tO compute It. SeCt'dE\( discusses the computatio
has been used in the point-to-point wireless system [[4], [5] for the optimal throughput. In Sectién VI, numerical reswdte
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signal at transmitter as z?, and the received signaj’ is
ki Lmil thus given byy’ = hiz’® + 2%, where h’ is the complex
channel gain and:’ is the circularly symmetric complex
Gaussian (CSCG) noise with zero mean and variarcat
the receiver. Across different link§h'}1 <;<; are independent
with finite mean and variance, while not necessarily idextific
distributed. After one round of CP, the successful transmit
Successful channel L . . . .
contentions «—Transmission block—>, can perfectly estimate the corresponding channel gain via
certain feedback mechanisms, and thugs assumed a known
Fig. 1. One realization for the DOS with two-stage probing. constant during the whole transmission block. After CP, the
successful transmitter chooses one of the following astion
based on its local CSI and ESI:

provided to validate our analysis and evaluate the throughp 5y rejeases the channel (if the CSI and ESI indicate that the
gain of our proposed scheduling scheme against the best-eff , g missjon rate is lower than a threshold) and let allgiink
delivery. Finally, Sectiofi V]l concludes the paper. re-contend: or

(b) directly transmits until the end of the transmissiondto
Il. SYSTEM MODEL or

L
%
N
L
g
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[«CP—> [«EP» («—EP—»<«Transmitting—>|

(c) holds the channel, starts EP.
Note that to complete one data transmission, it may take
n rounds of CPs as depicted in Figl 1. It is worth noting

All pairs contend for one shared channel by random acceg@t ea_ch.transmitter keeps harvesting energy until itsser
For each link, the transmitter is powered by a renewablegglnettransm!ss'on' and after _each round of CP, 9”'3’ the_sucdessfu
source and utilizes a small rechargeable battery to te[m)om[ransm|tter makes a choice among three actions as listactabo

store the harvested energy. Note that the transmitter coul ) Energy Probmg:When the succ_essful transr_nﬂter de-
keep harvesting energy until it initiates a data transmissi ©'9€S hot to take action (a) or (b) defined above, it starts the

In addition, we do not consider the effect of inefficiency iﬁgcond stagehEP, .e., a(_:tion (Cg' to obtain more energjrn@ur_
energy storage and retrieval, nor the energy consumed ot stagle, Le Itransm(;ttehr ¢ oo;es to bcontmue arvesttllng
than data transmission, which can be approximately negiec?nerg,y slot by S_Ot' and then ends EP y-a_c'uon (@) or (b),
by properly adjusting the energy modgl [4]-[6]] [8]. Denot&€- either releasing the channel or transmitting overrdst

the duration of one channel contention/as 0, and the length of the _tra_nsrms?l(?fr?”b(ljoclf.hf\s I '3 defpg:ed mobs. 1, one
of one transmission block ak, which is an integer multiple transmission Is Tuliilled withe rounds o S anan, extra

of L. slots of EP.

As illustrated in Fig[1L, the DOS procedure of the whol F%r 'gansmflttterihlettf;,m edAdeeFr’loteéze ggi_rgy Ile;_/el of
network takes place in two stages: First, each transmitlt e ? egaa Er e&@-— Bogn%o Ban 5 a tr;lonat IfmTI
probes the channel via random access and harvests ener ofp for EP, wher =1{0,0,20,- -+, Bnas0} isthe setofa

the same time; and then the successful transmitter maytiséart ozsf;ble (-gntehrgy statei, w?:ﬁewg)g ttthe m\llr\}lmum‘ (:nedrgy utnlt
EP (to potentially increase the average transmission nate o2Nd bmas0 the Capacily ol the battery. vve udg to denote

the transmission bIoEk before the data transmission proceséhe I_EH rate of tra_nsm|tterat tlm_et. As noted in the preV|_ou§

1) Channel probing:In the first stage, a successful channéﬁecnon' we consider the followmg two types of scenarios:
contention is defined as follows: All transmitters first inde 1) Constant EH rate mode{ £}, ., are constants for each
pendently contend for the channel until there is only one i, i-e, By = E* € A forall ¢+ > 1, and {£"} can
contending in a particular time slot. Furthermore, one thoh thus be learned and assumed non-causally known before
CP is defined as the process to achieve one successful channeltransmissions.
contention. Denote the probability that transmitterontends ~ 2) l.i.d EH rate model The EH rates among different

We consider a heterogeneous single-taaphoc network,
where all thel transmitter-receiver pairs have independent b
not necessarily identical statistical information of CBH&SI.

for the channel ag;, 1 < i < I, with 0 < ¢; < 1. As such, transmitters are independent. For transmitief £ } . |
the probability that the-th transmitter successfully occupies ~ are i.i.d. acrosg, with finite mean and the probability
the channel is given by); = ¢;[], (1 — ¢;). Then, the mass function (PMFPr{E; = ed} = F'(e), where

probability to achieve one successful channel contention a ¢ € {0,1,2,---}.

each time slot is given by) = Zle Q;, and it is easy to Under the save-then-transmit scheme, the energy level will
check thatQ) < 1 [19]. Accordingly, for then-th round of keep non-decreasing and drop to zero after the transmijssion
CP,n > 1, we usekK, to denote the number of time slotswhich forms a Markov chain (as described in Secfioh IV later)
needed to achieve a successful channel contention, whizh iBhus, the energy leveB;, ,, can be written as

random variable and satisfies the geometric distributiott wi m
parametet) [12], [13], [15]. In this way, the expected duration i i i

of one round of CP is given a5Q. Denote the transmitted B = min {B”’O +lkZ_OEk’BmM§} ’ @)

2if the successful transmitter experiences a bad channalitcmm and a wheren > 1, 0 < m < L/I, andmin{z,y} denotes the
low energy level, it may skip the transmission. smaller value between two real numbarsandy. Note that



B}, , indicates the energy level after the successful contentidaration ofN 1 rounds of CP, which is given blyz Kn,
round before taking any action. th = 0, i.e., transmitter; andlz M time slots in which the transmitter probes the

does not do EP, we 1€} E} = Ej = 0. energy but gives up the channel after EP. Also, afterNhth
round of CP with the timd{y, the transmitter may us&/
Ill. TRANSMISSION SCHEDULING slots for the EP and transmit within the duratidn— Myl

In this section, we target to derive the optimal schedulirftérwards. Accordingly, we obtain
policy that maximizes the average throughput for the con-
sidered network with the proposed two-stage access sfrateg Ty =1 Z M, +1 Z K, + L. 3)
conditioned on the given battery state distribution. Wenpoi

out that the results obtained in this section are based on {gych a process is executedtimes with Ry, (My;,)L bits
assumptlon that the energy level at transmﬂt&r statlonary transmitted at each transm|SS|o]n< j<J, we obtaln the

validated in Sectiofi V.

LZj:l RNj(']\/[Nj) = LE [RN(MN)]
A. Problem Formulation S T, E[TN]

After the n-th round of CP andn additional time slots, as.j — oo by the renewal theory [20]. Again, we point out
the CSl and the ESI at the successful transmitter are giventgat the energy level is stationary at thg-th round of CP
= {ni,Bi . }. Note that the channel gaiki, is now for j > 1, as we assumed.
|ndexed byn, whrch is determined at the end of theth round Our target is to maximize\ by adjusting the stopping rule
of CP and assumed frxed durrng the whole data transmissianand {11, },<,<x. It is easy to see that maximizingis in
block. In particular,F, {ni, B o} denotes the initial fact a “rate-of-return” stopping probler [14],]21] (for vah
information right after thez th round of CP. For convenience the specific definition is given later). Instead of directiving

we omit the index for either the CSI or the ESI in the sequelthis problem, we examine the “net reward” of the considered
and retrieve it when necessary. network, which is given as

By adopting the save-then-transmit scheme at the trans-
mitters to fully take advantage of each channel use, the rn(A) = By (My)L = ATy

transmission rate ovdy/! time slots with state,, ,, is defined N-
as =(Rn(My) = AL =N Z (Kn+M,)|, (4

a.s.

Ry(m) = (1 - mfl) log (1 + |hn|2ﬁ%) - (2) for some\ > 0. The term(Ry (Mxy)— )L can be interpreted
as the reward of transmission]K,, as the cost of CP, and
When ml = L, we setR,(m) = 0 since there is no y;3s, as the cost of failed EP fof < n < N — 1. We set
transmission in this case. _ r_oo(\) = —oo since it is irrational that the system does not
~ Remark 3.1:Some important properties of,(m) are send any data forever. Then, we define the maximum value of
listed as follows. the expected net reward with > 0 as
o E[R,(m)] < oo andE [(R,(m))?] < oo, which results .
from the fact thath,, has finite mean and variance and S*(A) = Nen sup E[rv(N)], %)
the energy leveB,, ,, is also finite. SN AMnhigngn
e {R.(m)},>1 are approximately independent randoriwheresup(-) denotes the least upper bound for a set of real
variables oven. To see this, recall that the channel gaingumbers, and
and the battery states are independent across different NL2{N:N>1, E[Ty] < oo
transmitters at a given time slot; moreover, the probabilit -7 , ’
is small for a transmitter to occupy the channel in two for M, € [0, L/I] with 1 <n < N}. (6)
consecutive contentions when the number of user pairs

is large. For example, in aad hoc network with K Remark 3.2:0ne important property of problerl (5) is time
pairs where each pair fairly competes for the channglariance. We observe that before the system starts\iie
use with probabilityl /K, such a probability isgz (1 —  round of CP, the accumulated cogty” " —! (K, + M,) over
1/K)?% =1 [19], which is as small as 0.0625 even whefhe pastV — 1 rounds of CP has already been finalized, with
K = 2. Thus,{F,, m}n>1 are nearly independent overng need to be further considered in the remaining decision
n, which implies thaf{ iz, (m)},>1 are independent over process. Moreover,R,,(M,,)}1<n<n are independent over
n. as we mentioned before; it follows that the expected optimal
Let N be the stopping rule for CP, and,, be the stopping reward before theV-th round of CP is the same as that of any
rule for EP associated with theth CP forl < n < N, which previous round of CP. In other words, the system can obtain
together tell the transmitter when to start the data trassiom. the expected optimal rewartgf*(A\) whenever a new round of
Then, under these stopping rules, the transmission ratédwoGP is about to start. Therefore, we conclude that problém (5)
be Ry(My), and we letTy be the total time duration is time invariant
for completing one data transmission. HeTg; contains the  Recall from Sectiori ]l that after each round of CP, the



successful transmitter will choose one of three actiores, (i. Sectior[ V.
transmitting, giving up the channel, or starting EP) acowyd  Now, we are ready to derive the optimal stopping ruls
to the stopping rule of CP, which needs the expected rewaidd { 1/;"} that jointly maximize the expected value of ()
of EP depending on the stopping rule of EP. Thus, we wiibr the two different EH models. As we mentioned above, the
first introduce the formulation and the optimal stoppingerulstopping ruleN for CP relies on the form ai/y (the stopping
for EP, and then for CP. rule for EP). We will find the optimal stopping rule/ 3, before
1) Formulation for EP: When the successful transmittery*. After obtaining the forms of the optimal stopping rules,
starts EP after the-th round of CP, wheré <n < N, itwill  the calculation for the optimal throughput will be discusse
end up with one of the two actions: transmitting or giving up
the channel without transmission. Specifically, we defire th
expected optimal reward at theth slot of EP,0 < k < L/I, B. Optimal Stopping Rule for Constant EH Model
as
For notation simplicity, we omit the inde¥ of CP when
UelFre) = kgzr\?gL/lE [max {(Rn (Mn) — AL, we derive the stopping rul@/ in this subsection. Then, we
—MNM, +S*0N} | Furl, () will derive the stopping ruleV based on the results of EP.
) - When the EH rate is constant, the transmission rat&/)
where—AIM,, 4+ 5%()) is the expected value of giving up thejs geterministic for a giverF, over the transmission block.

channel afterV, slots of EP. Ifk = 0, Uy(Fy,0) denotes the Then we obtain a simplified version 6 (F,) (8) as
maximum of the expected net reward right after thth round

of CP. In other words, we want to find the optimal stopping’/o(#o) = max —max {(B(M) —A)L, =AM +5*(A)} .
rule A of EP which attains =M=t
The value ofUy(Fy) can be obtained simply by comparing
Uo(Fn0) = O<ﬁ?§L/1E [max {(Rn(Mn) — A)L, — MM +S*(\) and(R(M) — \) L, whose values can be com-
o . puted individually. Clearly, the first one achieves its nmaxim
=AM, +S*(N)} | Fuol - (8) S*(\) at M = 0. For the second term, onlg()) is changing
Note thatM exists since probleni]8) is an optimal stoppingver M with a given 7,. Therefore, we settle down to the

problem over a finite time horizon [14], [22]. following auxiliary problem:
2) Formulation for CP: By choosing {M;}1<,<n, We V' —arg max R(V). (11)
define 0<V<L/l
N = sup LE[RN(MR)] s — arg sup LE[RN(MY)]  Then, we could use the optimal* to find M* without
venv  E[Tn] nen  E[T] difficulty. Note that whenV’l = L, it follows that R(V) = 0

. . ) . according to our definition in Sectidnl Il, which implies that
Note that if the optimal stopping rul&* ¢ N, we would y, _ L/l cannot be optimal, and thus we take< V <

claim that/V* does not exist. Thus\" is the optimal average 1, /; — 1. we first consider a related continuous version of

throughput of the original rate-of-return problem. R(SV) by relaxingVl/L asp, 0 < p < 1:
The connection between the transformed problem (5) an -
the original problem((9) is introduced in the following leram Jmax R(p) = Olggfl(l =)
It is worth noticing that with the optimal stopping rule - _min{B + pLE, Brawd)
{M;}1<n<n for EP, problem[{5) boils down to a one-level -log (1 + |h|? E)l pp)L;Q e > . (12)

stopping problem with stopping rul®'.
Lemma 3.1:(i) If there existsA\* such thatS*(\*) = 0, After solving [12), we will show how to obtain the optimal
this \* is the optimal throughput defined ihl(9). Moreoversolution of problem[{T1).
if S*(A\*) = 0 is attained atN*()\*), the stopping ruleN* First, we establish some properties for the objective fionct
defined in [9) is the same a@g*(\*), i.e., N* = N*(\*). of problem [12).
(ii) Conversely, if [9) is true, there i§*(\*) = 0, which is  proposition 3.2: For arbitrarya, b > 0, we have that
attained atN* given by [9).
This lemma directly follows Theorem 1 in Chapter 6 bfl[14]. 1) the functiony(z) = (1 — z)log (1 + %) is concave
The next proposition secures the existence of the optimal over|0, 1), andlim,_,;- ¥'(x) < 0;
stopping rule for CP. _ 2) the functiong(z) = (1 — z)log (1 + %) is concave
Proposition 3.1: With the EP stopping rul§ M} o<n<n, and non-increasing ovéo, 1) *
the optimal stopping ruleN*(\) for problem [b) exists. e
Moreover, forN > 1, the following equation holds Proof: Please see Appendéix B. u
. Sincep € [0,1), when Bzed=Bo > 1 R(p) is simply
57 () =Uo(Fn0) — MK (19 concave ove[z[) on) [0,1) accoréliEng to part 1)(0)1c Proposition
The proof is given in Appendix A. [B2. When Zmezd=Bo 1, according to Propositiof 3.2,
Remark 3.3:The equation[{10) is obtained from ttwp- R (p) is concave ovef0, £=e0—Fo] and is non-increasing
timality equationof the CP. The calculation of the optimalon [Bmgi‘;*B", 1). Thus, R(p) cannot achieve its maximum
throughput relies on this equation, which will be shown ion (%,1). Therefore, we treat this fact as a new




constraint ovep, and rewrite problen{{12) as Thus, we can obtaiV* by plugging S*(\*) = 0 into (I9),

By + pLE which results in[(1l7). Finally, equatiofi {18) can be obtdine
max G(p) = max(1 — p) log (1 + |h|2ﬁ) by plugging S*(A\*) = 0 into (I0) and taking the expectation
(1=p)Lo on both sides. ]

.z < < . . . .
St Bo+pLE < Brazd, 0<p <1 (13) Remark 3.4:Note that the stopping rul€ _(1L9) implies that

Next, we establish the following proposition to solve probeach transmitter has the same threshold that is globalgrdet
lem (I3), where the obtained solution is optimal for problerfined even when all transmitters have different statisifdbe

(12) as well. CSl and ESI. The intuition is similar to that in [13]: In order
Proposition 3.3: The optimal solutiorp* for problem [I3) f0 guarantee the overall system performance, the trarsmitt
is given by: with a bad channel condition and a low energy level should

. Byund—Bo 4D “sacrifice” its own reward, while the one with good conditson
ot = { min {po, Fuezg=0} . when$3F >1log(1+C);  ghould transmit more data.

0, otherwise, Directly following Propositiong 314 arid 3.5, the next prepo

where ¢ — |hL\ZJ290’ D — |hg\22E’ and po is the unique sition gives the DOS under the constant EH model.
solution for the equatioriog (1 4 C+Dp) _ C+D Proposition 3.6: After the n-th round of CP, it is optimal
C+D 1=r 1=p+C+Dr for the successful transmitter to take one of the followiwg t
when 355 > log(1 + C). options:
Proof: Please see Appendix C. [ |

Based on the optimal solutigst, the optimalV* for R(V) 1) release the channel immediatelyRf,(V*) < A\* (which
in (II) can be obtained easily: We only need to compare is equivalent taM/* = 0), and let all transmitters perform
R(|p*L/l]) againstR([p*L/l]), and V* should attain the the next round of CP;

larger value. Specifically, we have the following result. 2) otherwise, transmit aftev’* slots for EH, wherel* is
Proposition 3.4: The optimal V* of the problem [(Tl1) is given by Propositiofi 3]4.
given by

[p* L/, if R([p"L/l]) > R([p"L/l]);  (14)

Lo*L/t], if R([p"L/l]) = R([p"L/l]);
V=
0, otherwise. C. Optimal Stopping Rule for i.i.d. EH Model

where_p* isl obtfi_ned_ by Eropositio@.& Thus, the optimal Similarly as in the previous subsection, we first consider
stopping ruleM™ is given by problem [8) to find the optimal stopping rule/*, then the
M — { 0, if (R(V*)—=X)L <S*(\); (15) optimal stopping ruleV* afterwards.
~ | V¥, otherwise. Under the i.i.d. EH modell/s(Fo) has the form in[(8). As

The optimal rewardJy(F,) with constant EH rate model is W€ mentioned in Sectidn 1I[HA, it_is a finite-horizon stopgin
problem [14], [22], and the solution of problef (8) could be

Uo(Fo) = max {(R(V") — A)L, S*(A)} . (16) directly generalized in the next proposition.

Next, the following proposition formally quantifies the Proposition 3.7:For0 < k < L/l and some\ > 0, the
optimal stopping ruleN* and the equation to compute the®Ptimality equatiorfor problem [8) is given by

optimal throughput\*. Up(Fi) = max {(R(k) — AL, —\kl + S*(\),
Proposition 3.5: The optimal stopping rule to solve prob-
lem (B) is given by ElUk+1(Fesr) [ Frl} (20)

N* —min{n > 1: Ra(V*) > A}, (17) and the optimal stopping rule has the following form:

M*=min{0<k<L/l:

with V* given in Propositioh_3]4. Moreoveh* satisfies the
Ur(Fi) = max{(R(k) — N)L, =Xkl + S*(A\)}}. (21)

following equation

I oo ot ] The stopping ruled/* given in [21) suggests that the EP
> QE [(R (V*) = X") } =7 (18) would stop atM* by either transmitting or giving up the
i=1 channel, which also indicates the final decision for theenitrr

where the function(z)™ meansmax{z,0} for some real round of CP. Thus, the optimal stopping ruté* could be
numberz, andQ; is the probability of a successful channepbtained by reorganizing (21).
contention at transmitte#, defined in Sectiofilll. The index Proposition 3.8: The optimal stopping rule of CP under the
n for R* (V*) in (I8) is removed sincg R, (V*)},>1 are ii.d. EH model has the form as:
ergodic forl < < I.

Proof: Following (I8) in Propositioi_3]4, the stopping
rule N* has the form

N*=min{n > 1: Uy (Fom+) = (Rp(M*) — X*)L},
(22)
where M* is the optimal stopping rule of EP given in Propo-
N*=min{n >1: (R, (V*) =X)L > S*(A\*)}. (19) sition[37. The optimal throughput* satisfies the following



equation -
z[:Q”E [E [max{R (M") = 3", -\ M1/} | o] '] Ge @ J @ >
Z:1/\*1

= . (23) Fig. 2. The state transition of the energy level at trangmittunder the
L constant EH rate model.

The proof is analogous to the constant EH rate case, which is
omitted here.
The next proposition, which directly follows Propositionslot index. The state transition is depicted in Eig. 2. Initidd,
[ and 3B, concludes the overall DOS under i.i.d. EH mod&le denote the distribution of the energy level for transenitt
i attimet asll} = [n} -7} 5 |
Proposition 3.9: After the n-th round of CP, it is optimal  Next, we consider the state transition probability. Suppos
for the successful transmitter to take one of the followwg t that transmitter is at energy levek; € A;, there are three
options: events that may happen at time slot
1) if max {(R,(0) — X\*)L,E[U1(Fn1) | Fnol} < 0, re- (i) It occupies the channel and transmits. According to
lease the channel immediately and let all transmitters st®ection[], transmitter; consumes all the energy for the
the next round of CP. transmission, and transfers to the energy level 0O after the
2) otherwise, start EP following the optimal stopping ruléransmission. Thus, the transition probability is given by
M given in Propositiol317. ; ;
Remark 3.5:Proposition$ 316 and 3.9 summarize the DOS Pus0 = Qipir (), (24)
under the constant and i.i.d. EH models, respectively. Wehere; is the probability that the-th transmitter occupies
observe that under the constant EH model, the EP could the channel, ang:,.(u;) is the probability that it successfully
“forecasted” by finding the optimal’*; then the decision transmits with the energy level;. Furthermore, according to
of transmission would be made before starting EP. On ti€47), p:, (u;) can be computed as
contrary, when the EH rates are i.i.d., such decision cap onl P )
be made step by step during the EP. pir(us) = P{RI(V") = A7}

io Uit V*IE? A*
= >
IV. BATTERY DYNAMICS F {1Og (1 +In] @/ —Vie?) = 1T [ (25)

L

In this section, we validate the assumption made in SectiQfhere 1+ is defined by[[I¥) in Propositidi3.4. Note that in
[Mthat the energy Ieyel at each transmitter is stationaithw @5), |h'|? is the only random variable and its distribution is
some distribution. Firstly, we show that under the constapfqn

EH model, the energy level stored at each transmitter forms a,.. . .
) . . L L i) Other transmitters occupy the channel and transmit.
Markov chain over time, while the state transition prohiéibs :
) . If anyone among the othef — 1 transmitters sends data,
for different transmitters are coupled together. Howewver, L " . . :
ropose an iterative algorithm to compute the corres diHansmltterz will harvest E*L units of energy during this
prop 9 P P ariod, and then attain level, = min {u+ E'L, Byaz0}.

steady-state distribution, which is shown converging to t uppose that thg-th transmitter transmits. Similar to the

glpba_l_optlmal point. Then, we extend our analysis to th@Caﬁrst case, the probability of transmission performed by the
with i.i.d. EH rate model. j

j-th transmitter is given by); f;’g)” wfybpir(bEjl), where

_ bE’l € A; and thusb € {0,1,2,---,|Zzel| B, .. 1.

A. Battery with Constant EH Model Since there are in total — 1 transmitters, the transition
Note that after CP, if the successful transmitter releaspgobability for the transmittei from levelu; to v; is given by

the channel immediately, then the next round of CP starts,

BTILQ(E
and the battery continues to be charged.. If the transmitter Py, = ZQJ Z 7 ,ph (bED). (26)
starts the transmission, its energy level will become zéro a o —o

the end of the transmission block according to Seclidn II. o ) )
During this time, all other transmitters will keep harvagti (i) NO transmission happens. In this case, transmiiter
energy within this period. Thus, the energy level tranaitiuSt harvestsE*l units of the energy and goes into state
over the transmission block can be determined. To simplify 0% = min {ui + Ell’_Bmaw‘S}- The probability of this case
analysis, the transmission block is treated as one timengtbt Nappening can be directly obtained as
length L for the purpose of counting battery state transitions. Pl =1—pl o—pi (27)
In addition, we assume that the battery works in half-duplex o o
mode, i.e., it cannot be charged when the transmitter triagsniNote that wheni; = v; = w;, the transition probability is just
data. given by

For transmitteri with EH rate £, 1 < i < 1, i i i i i i
the set of its energy states is given by, ¢ A; = Pug iy = Pusvp F Pugw; = Puw, T1 = Puyo = Pugo;

{0,E1,2E - | B2l | '], B,,,,0}, wheret > 1 is the =1-py,0 (28)



In this way, we can compute a{lpiui ﬂi} forl1 < <1,
whereu; € A; andu; € {O,vi,wi,Bmazd}. The transi-
tion probability matrix is nothing buP; = {pi .} with
dimension( [ Zze0] + 1) x ([ | 4+ 1). Obviously,P; is

Bmaxd

Eil

max

El

B. Battery with i.i.d. EH Model

The argument that the battery state evolves as a Markov
process for the random case is analogous to that of the cdnsta
case in the previous subsection. The main difference ishieat

a stochastic matrix, i.e, a square matrix in which all eletserpropability pi, (u;) defined by [2b) is changed, which needs

are nonnegative and the row sum is 1. Howe®rdepends
ont sincep;, ,. depends on the state distributi®l for all

to be further developed under the i.i.d. EH rate model.
We now consider the calculation pf,(u;). When transmit-

j # i. Therefore,{B}} _ is a non-homogeneous Markovter ; grabs the channel with energy level, according to the

chain, whose state evolution is given by

I, , = ILP;, t > 0. (29)

stopping ruleM* (21) andN* (22), the transmitter checks the
conditionmax {(R(0) — \)L, =\l + E[Uy (F1) | Fo]} > 0. If
it is true, the transmitter starts EP until ti&*-th slot and

We propose Algorithril I, which is summarized in Table |, téransmits wher R(M*)—\*)L > —\*M*[ according to[(2R).

compute the steady-state distribution for all transmsttetere,
the infinity norm is applied, which is defined dsa ||..=
maxi<;<n |al| fora = [a1 e -an].

TABLE |
ALGORITHM[I} COMPUTE THE STEAD¥STATE DISTRIBUTION FOR ALL
TRANSMITTERS.

o Initialize IT{, for 1 < i < I, ¢, and compute’, , by (24)
forall u; € A, and1 <i < I; '
« Sett = 0, computeP} by (28)-[28) for alll <i < I,
and computdl} by (29) for all1 < < I. Then:
— While maxy<i<y || I ;1 — II{ || o> €, repeat:
1) t=t+1,
2) UpdateP: by (28)-{28) for alll <i < I;
3) Computell;,, by (29) for all1 < i < I;
— end.

o Algorithm ends.

Proposition 4.1:For any given initial state distributioH},
I = [nig---m Bmw] that is generated by Algorithrid |,
converges to a unique steady-state distributidh for all
1 <<
The proof is given in Appendix D.

Remark 4.1:The steady-state distribution for all transmit
ters can be obtained by the iterative computatldp,; =
IT,P over the “super” Markov system as well, which i
constructed in Appendix D. However, this is not as efficie
as Algorithm[J. From the computational complexity poin
of view, suppose that each transmitter hasenergy levels,
and there aren transmitters in total.
states in the “super” Markov chain ™. If there is only
one processer, the floating-point calculation for one fiena
of the state distribution for the “super”
approximately on the order of (2m?"). On the contrary,
by using Algorithm0, [26) requires?m? calculations, and
updating {P:} requires about:m calculations according to
(21). In addition {I1:P¢} requires2nm? calculations. Overall,

The number of the

Markov chain is

Specifically, givenly(u;, |h¢|?) > 0, the transmitter continues
EP at slotk for 0 < k < M* — 1, which is equivalent to
max{(R(k) — \*)L, =\*kl} < E[Uk41(Fr+1) | Fr), where
Fr={u; +155_o EL,|h'[?}. Then, at sloth* = m < L/1,
the transmitter stops EP and transmits wii&tm) — \*)L >
max{—Nml, E[Up+1(Fm+1) | Fm]}. Thus, we obtain

Pt (ui) :/ P {Transmits athM* | U (u;, d|h*[*) > 0} -
0

P {Uo(us, d|h'|?) > 0} f(|R?) (30)

wheref(|h¢|?) is the probability density function (PDF) of the
channel power gain. The probabili§{ Us(u;, d|h'|?) > 0}
can be computed based on Propositionl 3.7. For notation
simplicity, we omit the conditiory(u;, d|h'|?) > 0, and the
first term in the integral of (30) can be expanded as

d|hz|2

L/l m—1
P {Transmits atM*} = » (H P{ay < 0}) P{B,, <0}
m=0 \ k=0

(31)

where a;, = max{(R(k) — \*)L, =Akl} — E[Ups1(Frs1) |
Fil, and B, = max{—Aml E[Upn1(Fm+1) | Fml} —
R(m) — X)L. Note that in P{ay <0}, R(k) and
E[Uk+1(Fk+1) | Fi] are random since they are the functions
of Y% Ei, where {Ej},.,, are iid. with a known
distribution andE5 = 0. Thus, ]P’{ak < 0} can be computed.
Using the similar argument, it is easy to see tBd(3,, < 0}
can be computed as well. Therefore, the probability given in

—~

Al;[l) is computable. Overall, we could obtajf.(u;) after

Plugging [31) into [(3D). N -
After obtainingp:, (u;), the transition prObabI|Ity{p;iﬂi},
whereu, € A, andu; € {0,u;,u; + 0, -, Baad}, Can
be calculated similarly as the case of constant EH rate. In
addition, Algorithm and Proposition 4.1 could be modified,
such that they could suit the i.i.d. EH model, which is onditte
in this paper.

V. COMPUTATION OF THEOPTIMAL THROUGHPUT
The optimal throughpuA* hinges upon the optimal stop-

one iteration for all transmitters is approximately on thides ping rules in [I¥V) and{22). Thus, to fully obtain the optimal
of O (n*m?), which is more efficient than the case for thescheduling policy of the proposed DOS, we next turn our
“super” Markov chain especially whem and n are large. attention to computing the value of.

Moreover, our algorithm can also be operated in a parallelBy Propositiong 3)5 arld 3.8, can be obtained by solving
way, i.e., computindl; , = II{P} for 1 <i < n at the same (I8) or [23) under the constant or i.i.d. EH model, respebfiv
time over different cores. Next, we briefly introduce the idea why there exiats such



that the equation(18) of (23) holds, and how to seaxth
For brevity, we focus the constant EH rate case.
Note thatR(V*) is a function of random variablgs and

B{; we could calculate the expectation on the left-hand side
of (@8) for each giver\ > 0. Such expectation requires the
distribution of BY, i.e., the steady-state distributiéH, which
could be approximately computed as shown in Sedfidn IV. In
addition, for a given\, an upper bound of this expectation can
be obtained by fixingl’ = [0, ---0, 1]. As X increases from
zero to infinity, this upper bound decreases to zero at some
A < oo. Since the right-hand side df{[18) is strictly increasing
over A within the rangel0, +c0), there at least exists onef
satisfying [18). Therefore, an exhaustive one-dimensianch
can be applied to obtain the optimal throughput over theeang

0, \|. Note that during each iteration of the exhaustive seardfig- 3. A v.s. the average throughput.

Igorithm(ll (given in Sectiom V) is used to obtain the steady

§tate distrib_ution for a given € O,X , and then we check 1) Validation of Proposition§ 35 and3.8n Fig. @, we
if the equation[(I18) or[(23) holds. Finally* should be the jjystrate the variation of the average throughput as thesth-
largest one if{oa /\} that makes the equation {18) 6r{23) holdeld” )\ changes. Without loss of generality, we first consider
In summary, the above search can characterize the optiradhomogeneous network witth user pairs, i.e., all pairs are
stopping rules given in Propositiohs B.5 3.8, which coridentical. For the constant EH model, the EH rate is set to be
pletes the proposed DOS framework. E =100 for all transmitters. For the i.i.d. EH case, we choose
the Bernoulli model[[25],[[26]: The EH rate is either zero or
of a finite value with probability 0.5. In our simulation, we
VI. NUMERICAL RESULTS consider three cases for the mean values in i.i.d. EH model:

. . ) . " .54, 106, and206.
In this section, we first validate Propositidns]3.5 3.8 167 ’ N )
show that the optimal throughput exists and can be found First, we observe in F'Q.DS tha_t as increases fr_om Zero,
: . i . : the average throughputis increasing then decreasing., Theen
via one-dimension search. Second, we investigate theghrou™ . . .
put gain of our proposed DOS with two-level probing 0Ve(r)ptlmal point is achieved at*, where the average throughput
the best-effort delivery method, where the data is trartechit Is at its apex that is also approximately of the same value

whenever the channel contention is successful. Note tlot 533/\ ’ Takmg_the.case of i.i.d. EH model W't.h means as
R example in Fig[]3, the value of the optimal throughput

a method can be realized in the proposed DOS framewo? = \* is approximately 4.5, and the actual optimal average

?\y gzﬁ(iej\fhe—tr(])rggdhsettlng]\f_ = 1in (7) anle [2p). Let I,ﬁhroughput is about 4.5 as well. Therefore, this obseraatio
0 ghput obtained by the best-effort scheme,. . . . o
which can be calculated as validates our Propositiois 3/5, B.8 and discussions inigect
. [Vl Second, we observe that the average throughput is almost

S %E [L log (1 + |h, Qigg’)} the same when the mean of the EH rate in the i.i.d. EH model

(32) is equal to the EH rate in the constant EH model. Thus, the
type of EH rate models does not directly determine the aeerag

In general, a typical button cell battery has the capacitjroughput performance.

of 150 mAh with the end-point voltage of 0.9 V, which is 2) Throughput gain:We useAgp to denote the throughput
equal to 150 mAhx 3600 s/hx 0.9 V = 486 J. A thin-film Where only EP is adopted, i.e., setting= 1 and M = M~,
rechargeable battery can offer 5@h with 3.3 V, which is andAcp to denote the throughput where only CP is adopted,
equal to 0.594 J. Since a typical transmission time inteiszali-€., settingV' = N* and M = 0. Thus, the throughput gains
on the time scale of milliseconds, we let the energy unit s&€ defined as:
§=10"2Jin the simulatiron. Accordingly, we set the capacity Gpp = Msziio—ko’ gain from EP;
of the batteryB,_nw_(S = 10°4, which falls between the capacity Gop = Ac;;\f)\o’ gain from CP; (33)
volume of a thin-film battery and that of a button cell battery °
Also, the current commercial solar panel can provide power
from 1 W to about 400 W, which is equivalent t@-ms-! In Fig.[d, we evaluate the above throughput gains for the
~ 4006-ms~'. According to this fact, in our simulation, we network withI = 3 user pairs. Recall from Secti@d Il that our
let the EH rate vary within the rangl®, 404]. In addition, analysis is applicable fof > 2. Since the constant and i.i.d.
the channel gains are i.i.d for different links and the cldnnEH rate models could attain the same throughput performance
power gains follow an exponential distribution with mean Sver A\, we only consider the constant EH model in this case.
The variance of the noise is set to be 10 mW. The lengBarticularly, we study a heterogeneous case where thewiost t
of one time slot is unified as = 1 ms and the length of a transmitters have the same EH ra®ds while the EH rate of
transmission block i€ = 1001. the third transmitter varies frord to 1004.

&

—6— Constant, E = 19 .
—6— Random, mean = 20| A - (Random, mean = 2)

-9 —%— Random, mean = 50 7
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Fig. 4. The throughput gain v.s. EH rate of the third trantemit Fig. 5. The throughput gain v.s. the size of the network.

We observe in Fig[J4 that as the EH rate of the thirdpproachGcp as the size of the network increases.
transmitter increases/gp almost keeps constant and can
achieve a gain about 19%. It implies that after the channel VII. CONCLUSION
Contention, the successful transmitter with any EH ratddtou In this paper, we proposed a DOS framework for a hetero-
do EP to enhance its average transmission rate over Hheous single-hopd hocnetwork, in which each transmitter
transmission block. Thus, the ESI of the successful trattsmi is powered by a renewable energy source and accesses the
does not have obvious impact on the throughput. However, Wgannel randomly. Our DOS framework includes two succes-
notice thatGcp achieves its maximum when all transmittersjve processes: All transmitters first probe the channel via
are identical (with the same EH ra®) and then decreasesrandom access, and then the successful transmitter decides
SlOle as the EH rate of the third transmitter increaseﬁrhetherto give up the channel or to opt|ma||y probe the energ
The intuition is that when the difference among EH ratésefore data transmission. The optimal scheduling policy of
becomes larger, the stopping rule of CP will more likely lehe DOS framework is obtained as follows: First, assuming
the transmitter with relatively low energy level to give Ut the battery state is stationary at each transmitter, theazd
channel, which results in a longer time on CP and then ti&oughput maximization problem was formulated as a rate-
throughput gain is lower than the case when all transmitt%ﬁreturn optima| Stopping prob|em, which was solved for
are identical. Regarding pos, our proposed DOS with two- hoth the constant and i.i.d. EH rate models; second, by fixing
stage probing can achieve the highest throughput gain amaRg stopping rule, the stored energy level at each trarsmitt
three schemes. It is worth noticing that as the EH rate @fas shown to own a steady-state distribution as time goes to
the third transmitter increases, the efficiency of DOS brﬁnfinity, where we also proposed an efficient iterative am
more apparent, although slowly, than the scheme with pue its computation; finally, the optimal throughput and the
CP, which implies that the second stage probing brings maggheduling policy is obtained via one-dimension searcl wit
benefits. Our intuition is that a larger difference amongihe the above two steps (i.e., finding the form of the optimal
rates leads to a bigger difference of energy levels. Since EBpping rule and calculating the steady-state distim)ti
allows the successful transmitter with relatively loweesy repeated in each iteration. Numerical results were alse pro
level to possibly harvest more energy after CP, EP will playgded to validate our analysis; the proposed DOS with two-
a more important role as the difference among the EH rae§e| probing was shown to outperform the best-effort deljv

increases. method.
In Fig.[8, we illustrate how the size of the network influ-
ences the throughput gains. In this scenario, we start from a APPENDICES

three-pair network with EH rate®y, 24, and804, respectively.

Then, we keep adding pairs with EH raté at the transmitter A. Proof Of. Propositio 311 N )
side. We observe that the throughput géipp is increasing For the first part of Propositidn_3.1, it follows by Theorem

a little as the size of the network is increasing. It is reatte L iN Chapter 3 of [14] thatv™(A) exists and5™(}) is attained
since CP could utilize the multi-user diversity of both chan PY this N*(}) if the following two conditions are satisfied:
gains and energy levels. We see tidatp increases slowly, (C1) limsupy_, . rn(A) <7o()) as.;

since we only add a low-EH-rate transmitter at each time.(C2) E [supys;7n ()] < oo,

We also observe that'zp is decreasing. The reason is thatvherery()) is given by [4). As we pointed out in Section
the more transmitters in the network, the less probabitity ] the energy levelBy o is stationary forN > 1. Although
transmit for each transmitter, and then more transmittendav  { Rx(M7,)}n>1 are independent, it may not be identically
maintain a high energy level. Thus, EP is rarely triggeratistributed with respect thy andBy . However, it is not too
after a channel contention. For the same reaéhsy, s would  difficult to show that (C1) and (C2) hold. The idea is that we
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first consider that every transmitter has the same statigstien which is given by
we apply the channel contention probability as the summatio

coefﬁcients over all transmitters.
r (Cl), if we assume that all

the same statistics as transmitter then { Ry (M%)} n>1

become iid.. SinceE [Ry(M})] < oo according
to Section EI]] and the accumulated costTy =
)\l(KN—i—Z K, —|—M)>—>ooasN—>ooa.s.,we

obtain thatP {hm SUP N o0 iy (A) = —00} = 1. Recall from
Section[dl that the channel is occupied by transmittevith
probability @; and¥~;_, % = 1, we obtain that

0
1= Z 611? {1imsupr§\,()\) = —oo}

=1 N —oc0

=P {limsuprN()\) = —oo} ,
N—o0
which proves that (C1) holds.
For (C2), it can be shown that

E [sup r;‘vm} _E [sup (Ry (M) -

)\) L— /\TN)}
N>1 N>1

<E [sup (R (My) —

A(IN + L))} . (34)
N>1

due to the fact thak(,, > 1 andM; > 0for1 <n < N. Since

E [ (R (M3))*] < oo, it follows that the right-hand side of (24, g'(x) =4'(0) <
) is finite by Theorem 1 in Chapter 4 of [14]. Similar to

the technique in the proof of (C1), we have
I Q
E |sup ry(A :E—lEsuri)\ < 00,
[Nﬁ vl )] ~Q [Nz% w )]

which shows that (C2) also holds.
For the second part, we know that with the casKy at

the N-th CP for anyN > 1, the successful transmitter could
choose one of three actions: transmits immediately witlardw
(Rn(0) — A)L; or gives up the channel immediately, and

obtains the optimal expected net rewsft(\) based on the
property of time invariance described in SecfionTlI-A; tarss
EP and obtains the expected net rew&rd/; (Fx.1) | Fu.o].
Thus, by the optimal stopping theofy [14], [2H)i (\) satisfies
the optimality equatiorunder (C2) as
S*(\) = =M Kn+
max {5*(A), (Rn (0) —

which is equivalent to[{10).

ML E[UL(Fn1) | Frolts

B. Proof of Propositioh_3]2

For 1), we show the concavity of functiaiiz) by checking
its second-order derivative ové, 1), which is given by

won (a+b)?
V) = T a1 6D

Therefore,y(z) is concave overl0,1) [23]. To prove the
second part of 1), we check the first-order derivatives@f),

transmitters have

a+b
1l—xz+a+bx

, a+ bx
y'(x) = 10g(1+ 1—x)+
It is easy to see that as — 17, the first term of the right-
hand side of[(35) goes to negative infinity, while the second
term is bounded. Hence/(z) is strictly negative ag — 1.
Therefore, part 1) is proved.

Next, we prove 2). By checking the second-order derivative

of g(x), we obtain
a

9"(@) = _(1 —z)(a+1-—12)2 <0

which implies thaty(x) is concave. For the second part of 2),
we consider the first-order derivative gfz), which is given

by
, a a
g() 1Og<1+1—x)+1—x+a

Sinceg”’(z) < 0, it follows that

(35)

2

(36)

max ¢'(z) = ¢'(0) = —log (1 +a)+

0<z<1 1+a

Moreover, due to the fact thaf- (—1og(1 +a)+ 1+a) =
(1+ 7z < 0 for arbitrarya > 0, we obtain

(—log(l ta)+ 1;%)

a=0
which proves the second part of 2).

C. Proof of Propositiofi 313

According to Part 1) of Propositidn 3.2, we obtain th&p)
is concave ovep € [0, 1), which means tha€’(p) = 952
is decreasing ovej0, 1) and attains its maximum at = 0.
Then, finding the maximum af(p) boils down to two cases:
1) G'(p)| ,=o < 0: It follows that G(p) is decreasing over
[0,1), andp* = 0 is the optimum.
2) G'(p)|,—o = 0: The pointp, satisfying G'(p)|,_,,
0, lies on the right-hand side gf = 0. By Part 1) of
Proposition 3.P,G'(p) < 0 asp — 1~, which implies
that po € [0, 1). Since the optimal poing* < Bmezd-Bo

due to [IB), it follows thap* = min { o, Bmag%*%%}.
Note thatG’(p)|,_, = 0 is equivalent t ?Ig >log(1+ (),
whereC = "o B“ >0, D=5 >0, and ¢'(p MNpepy =0
is equivalent to
D D
log<1+c+ ”0>_ ¢ . @n
1 —po 1—po+ C+ Dpog

Next, we show that wheA=2 > log(1 + C), (B1) has a
unique solution. Fop € [0,1), the left-hand side of(37) is
increasing ovep from log (1 + C') to 4+oc0. For its right-hand
side, we have the following two cases:

1) D > 1: The right-hand side of(37) decreases fréif—

to 1. Since ?Ig > log(1 + C), there exists a unique

solution py for (31);
2) 0 < D < 1: The right-hand side of (37) increases from

fj;g to 1. If the first-order derivative of the left-hand side
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of (31) is always greater than that of the right-hand sid& which the i-th element is zero. According td_(24), the
there must be only one solution fdr {37) Wh% > corresponding transition probability is given by
log(1 + C). Thus, we check their first-order derivatives:

For the left-hand side of 37), we obtain Puv, = Qpiy (i), 1 <i< 1. (42)
d C+ Dp C+D If no transmission happens, all transmitters just harvest
—log [ 1+ = ; i =

1— (1—p)(1+C+(D—1)p)’ energy for one time slot. Then, we obtdB}, = w, where

(38) we X and

for the right-hand side, we have min{uy + E', Baz6} \

i( C+D ) __(@+D)(1-D) N w = | min{u; + El, Byau6}
dp \1-p+C+ Dp (1+C+(D-1)p)
(39) min{u1 +EIZ,Bma15}

Thus, by calculating the difference betwegnl (38) &ndl (39,6 corresponding transition probability is just the cosapl

we arrive at ment of the transmission probability over all other possibl
C+D ~ (@+D)1-D) cases, which is given by
(1-p)1+C+(D-1)p) (1+C+(D-1)p) S
2 —1_ b (a1

(1-p)(1+C+(D—1)p) _ - | N
Therefore, there exists a unique solutipp satisfying 1herefore, {B;}:>o is a unichain [24], i.e., a finite-state
@2). Markpv process th‘,’“‘t contalns.f_;l single recurrent class. By ca
culating the transition probability for eaal € X, we obtain
the transition probability matri® for {B;},>¢. Clearly,P is

tochastic matrix and is invariant over time. Therefdrere
exists a unique probability vect@ such thafll = ITP holds
[24]. In fact, II is the steady-state distribution ¢B;}:>.

D. Proof of PropositioriZ]1 So far, we have constructed a “super” Markov chain

To prove this proposition, we construct an axillary “super{Bt}t20 for the whole system, for which the steady-state

L ) ! B N istribution exists and is unique. Therefore, by the iierat
Markov chain in which each state is a “super” vector . : :
+1 = IL;P, we havelim;_, ., IT; = II. Thus, it suffices to
aggregated energy levels across the whole network, whosé
oS = . : show that
transition probability matrix does not change over time

In conclusion, the proposition is proved.

Remark Since it is proved thap, is unique in[(3F) o can
be found just by adopting a simple one-dimension searchi
method, e.g., bisection search.

Afterwards, we prove that such a “super” Markov chain has I, =1, Py,

a unique steady-state distribution. Then, we show thatrigr a e o

time ¢ in the original Markov chain, one iteration for updating ~ He+1 =ILP < ¢ 1L, =1LP;,  ¢>0,  (44)

IT¢ for 1 <4 < I in Algorithm[is equivalent to the evolution T

of the state distribution in the “super” Markov chain, tHeye HtI+1 = II{P/.

proving the convergence of Algorithih I. If (@4) is true, the state distribution of each transmitter

~ To construct such a “super” Markov chain, we need tgonverges to the unique steady-state distribution.
jointly consider the states of energy levels across allsirat Next, we are going to show that both the directions
ters. LetX denote the set of all possible battery states OVEFRq <: of (B4) hold. For notational simplicity, we omit

the whole system, i.e., the time indext. In fact, the direction £&” is the same as
S={u=(u - ur):u €A, ---,ur € Ar}. (41) constructing the “super” Markov chain as discussed earlier

If the system is at statmm = (byE'l---b;E'l), where

Furthermore, we usB; to denote the battery state of the sysj_ c {0 1.9.... LBmaméJ B } 1 < i < I, the prob-
. 7 Y Y Bl Y max | = = ’
tem at timef, and thus we havB, ¢ 3. Note that the number gpijity 11(u) is the joint probability over all transmitters,

5" ic ([ Bumazd Bunazd :
of elements in® is ([ 22| +1) x - x ([ g +1). o I(u) = [[,_, 7 . The way of constructing transition
_ Suppose thaB,t B u._There arel + 1 p035|bl_e gvents at probability matrixP is given by [42) and{43), which can be
time ¢: A transmission is performed by transmitterwhere obtained directly from[{24) fo{Pi}. Thus, bothII and P
1 <i <1, or no transmission happens. can be obtained from the right-hand side [ofl (44).
If the i-th transmitter transmits, there B, = v;, where ey
v. €S and For the direction =" of (44), we need to show how
! we obtain {II'} and {P?} from the left-hand side of[(44).
We consider{II‘} first. Given the state distributiodil of
the system, there exists an one-to-one mapping from each
vi=| 0 , element ofX to that ofII. Let II(u) denote the probability
of the system staying at state € 3. Obviously, there is
min{u; + E'L, Byaz0} > wes I(u) = 1. Then, we consider the subset Bf such

min{u; + E'L, Bpazd} \



that transmitter stays at state, € A, i.e.,

zui:u :{u: (Ul"'ui"'ul) :
UleAl,"',Ui:U,"',UJEA]}. (45)
Clearly, [4%) satisfieg ), .o, Xu,=« = X. Then, the prob-
ability that transmitter; stays at statew = bE‘l, where

be{0,1,2,--, | Bmed| B .1, is equal to the probability

that the system is staying at,,,—.,, i.e.,

=P{Zu -} = Z II(u)

uezui:u

(46)

In this way, we can obtain the state distributidif for

transmitteri such thafll’ = [x{-- -7} -- -7 ].

Next, we consider{P?}. When transmitteri stays at
the energy statax € A;, it can transfer to stat®, vy,
or vy , where vy min {u + E'L, Byaz0}, and vy
min {u + E'l, Byaz0 }. Accordingly, fromX,,—,, there are
three possible cases:

by
pZ,o =P{Ey,=u = Bu,=0 | Bu;=u}

.l
= Qi Buzil _ o ()
{Bui=u}

which is equal toIIZ4)
Y=u — Xu,—,. FOr each statan € %,,—,, there
are I — 1 possible routes t&,,,—,,. We pick the route
caused by transmittef # i, i.e., the j-th transmitter
transmits. Suppose that at statethe transmitteyj is in
the energy statéE’l € A ;. The probability of staying at
X —uu,—bEs1 IS given asmP{%, —,} by (48). Thus,
the transitionX, ., ,—vpii — Zu,=v,,u;=0 describes
the transition of transmittet from stateu to statewv;
caused by transmittej with energy levelu; = bEJL.
Similarly as in [4Y), the transition probability for this
case is given by

(47)

2)

P{E0,—uu;=bEil = Bus=v1,u;=0 | Buymuu;=bEil}
. ijir(bEjl)]P’ {Euizu,uj:bEjl}
- P {Eui:u,uj :bEjl}
=Q,pi, (bEL).

When we extend to other transmitters besitleand con-

3)

13

Bmaz

SN (P{Sumuuy—bmi}

]P’{Eul_u}
j#i b=0
P {Em:u = By=v, | zui:u,uj:bEjl})

Bmaz

Z Z P {Eul—u uj:bEJl}

P{zul_u} Jj#i b=0

P {zui:u,uj:bEjl — Eui:ul,uj:O | Eui:u,uj:bEjl})
B’V?‘Lal’

Z Z TP {Z 0=} Qjpl, (bED)

j#i b=0

{ul u}

Brax

=>_ > mQpl, (bED).

Jj#i b=0
Thus, [48) is equivalent td_(26).
Su—u — Zu,—v,. The transition probability for this case
can be obtained by taking the complement[of] (47) and
(48), which is equivalent td_(27).

(48)

Therefore, we obtain all possible transitions for trangenit

1) ¥,,—, — X.,—o For each statamx € X,._,, there attimet, for which the corresponding transition probabilities
is only one possible route t&, _, with probability can be computed as well. ThugI’} and {P?} are obtained
Qqpi,.(u) such that transmittei transmits and goes into from IT and P, which proves the direction=%" of (£4).
state0. In fact, such transition probability does not change Overall, the convergence of Algorithih | is proved.
for anyu € ¥,,,—,. Thus, by taking all possible states
into account, the transition probability can be computed

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]
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