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Scalable Algorithms for NFA Multi-striding and
NFA-based Deep Packet Inspection on GPUs

Matteo Avalle, Fulvio Risso, Member, IEEE, and Riccardo Sisto, Senior Member, ACM

Abstract—Finite State Automata (FSA) are used by many
network processing applications to match complex sets of regular
expressions in network packets. In order to make FSA-based
matching possible even at the ever increasing speed of modern
networks, multi-striding has been introduced. This technique
increases input parallelism by transforming the classical FSA
that consumes input byte-by-byte into an equivalent one that
consumes input in larger units. However, the algorithms used
today for this transformation are so complex that they often result
unfeasible for large and complex rule sets. This paper presents
a set of new algorithms that extend the applicability of multi-
striding to complex rule sets. These algorithms can transform
Nondeterministic Finite Automata (NFA) into their multi-stride
form with reduced memory and time requirements. Moreover,
they exploit the massive parallelism of Graphical Processing
Units for NFA-based matching. The final result is a boost of the
overall processing speed on typical regex-based packet processing
applications, with a speedup of almost one order of magnitude
compared to the current state of the art algorithms.

I. INTRODUCTION

Regular expression (regex) pattern matching is currently
one of the most widely used techniques to inspect network
traffic, also because of the possibility to be transformed into
equivalent Finite State Automata (FSA), which provides a
solid mathematical foundation and enables the use of well-
known algorithms. For instance, simple algorithms exist to
determine if a particular input matches a regular expression
and for composing multiple FSAs together, such as when
multiple rules (e.g., the several thousands patterns used by
a NIDS) have to be checked within a single scan of the input.

FSAs come in two different forms with equivalent ex-
pressiveness, namely Deterministic FSA (DFA) and Non-
deterministic FSA (NFA). A DFA guarantees a bounded
execution time for the matching operation on any execution
architecture, because for each input string a single path in
the automaton has to be followed. However, the bounded
execution time is achieved at the expense of a potentially
huge memory consumption, particularly when complex regular
expressions (e.g., with frequent use of repetition wildcards
‘.*’) are used, or when many expressions are combined
together in a single DFA. While this problem can be alleviated
by using variations of the DFA, important limitations still exist
on the number and the complexity of the rule sets that can be
handled using this form. This may force application developers
to use approximate (and simpler) regular expressions, which
may either impair the capability to filter out exactly the desired
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traffic or potentially generate many false positives, which may
be particularly critical in security applications.

The NFA form solves the previous problem because the
number of states in the automaton is directly proportional
to the length of the regular expressions used to create the
FSA. However, this may lead to a non-predictable execution
time, which may grow dramatically when strictly sequential
matching algorithms are used. In fact, with a NFA, the
matching of a given input may require to follow a number of
paths in the automaton which is not predictable and depends
on the complexity of the automaton and on the particular input
data that are being processed. For this reason, software-based
implementations with strict processing time constraints (such
as packet processing applications running on general purpose
CPUs) are usually based on DFA or on some of its variations.

Recently, we proposed iNFAnt [1], a new software solution
for regex matching based on NFA that exploits the high
parallelism of Graphical Processing Units (GPU) in order to
reduce the variability of NFA processing times and make this
approach usable in practice. This paper extends that work by
exploring the possibility to improve the throughput by means
of multi-striding, i.e. the transformation of the automaton into
one that processes more than one byte of input at each step.
Using this technique, if a DFA takes N steps to perform a
matching, where N is the length of the input data (e.g., the
size of a network packet), a 2-stride version of the DFA returns
the same result in N/2 steps. With a NFA, similar reductions
can be achieved, hence potentially doubling the throughput at
each stride doubling.

Figure 1 presents an example of a simple regular expression
with its corresponding standard and 2-stride NFA. In the
figure, the states with the dashed border are the initial states
while those with thick borders are the final (i.e. accepting)
states. The notation ‘0|255’ stands for “any symbol in the
range from 0 to 255”. This means that the transition with
that label is in fact a set of transitions, one for each possible
input symbol. In the 2-stride NFA each transition consumes
two input symbols and corresponds to the combination of
two adjacent transitions of the original NFA. For instance,
in the original automaton the input string ‘ac’ triggers two
transitions: a transition from state q0 to state q1 that consumes
‘a’, followed by a transition to state q2 that consumes ‘c’.
In the 2-stride automaton, instead, a single transition leads
directly from q0 to q2 and consumes the pair of symbols ‘ac’.

Although, in theory, multi-striding can be applied by group-
ing together an arbitrary number of input symbols, in practice
the use of too many symbols leads to so complex automata
that the building process cannot be completed in reasonable
time (and memory). Therefore, multi-striding is usually im-
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Fig. 1. A simple regular expression in its (a) “textual” representation, (b)
NFA form and (c) 2-stride NFA form.

plemented by iteratively doubling the stride level until further
doubling becomes unfeasible, i.e. first the NFA is transformed
into a 2-stride NFA, then the latter is transformed into a 4-
stride NFA, and so on. As shown intuitively in Figure 1, at
each stride doubling the number of states does not change,
but the number of transitions may increase quadratically in
the worst case. For this reason, multi-striding is usually
coupled with Alphabet Compression [2], [3], which reduces the
number of transitions by performing a compression of its input
alphabet. Unfortunately, current state-of-the-art algorithms for
multi-striding and alphabet compression show poor scalability
properties, hence supporting only very simple automata. Hence
they are not compatible with the complex FSA that result from
real-life rule sets for network packet inspection.

This paper addresses the above problem in two directions.
First, it enhances in various ways the current multi-striding
and alphabet compression techniques in order to cope with the
complexity of the typical rule sets used in real applications.
Second, it shows how the GPU-based algorithm of iNFAnt [1]
can be adapted to efficiently execute the resulting multi-stride
automata. The final result is the possibility to match complex
rule sets in real time on high-speed networks, which was not
possible with the previous software-based techniques.

This paper is structured as follows. Section II presents the
state of the art, Section III provides background information
about iNFAnt, multi-striding, and alphabet compression, while
Sections IV to VII describe the new algorithms. Section VIII
presents benchmark results of the new algorithms while,
finally, Section IX draws conclusions.

II. RELATED WORK

Although the idea of processing more than one character at
a time appeared in various previous papers, an algorithm for
computing multi-stride DFAs by stride doubling was described
for the first time in [2]. The same paper also proposed to
combine multi-striding with alphabet compression, in order
to reduce the quadratic increase of the number of transitions
that occurs at each stride doubling step. Some improvements
of these techniques, in terms of computational complexity,
have been presented in [3] (later extended in [4]) and in
[5] that provided, respectively, a new algorithm for alphabet
compression and a new stride doubling algorithm, both with
reduced computational complexities compared with the previ-
ous ones. [5] also presented the extension of these algorithms
to NFA. Another algorithm for NFA stride doubling with
similar complexity but without alphabet compression was
presented in [6], while in [7] we showed our preliminary
results toward more scalable algorithms for multi-striding.

An alternative NFA representation based on Ordered Binary
Decision Diagrams (NFA-OBDD) is proposed in [8]. This
approach is shown to outperform PCRE, a popular tool for
regex matching based on NFA algorithms, when dealing with
large rule sets. However, the throughput reported using the
proposed approach is quite modest if compared to the one
of [1], which exploits the parallelism of GPUs in order to
counter the increase and variability of execution times. [8]
also explores multi-striding with alphabet compression by
applying the old algorithms proposed by [2] on the NFA
before generating the OBDD representation. Of course, the
introduction of multi-striding gives some improvement, but
the scalability problems of the multi-striding and alphabet
compression techniques proposed in [2] are confirmed here,
as they cannot exceed the 2x stride level.

A common limitation of all the algorithms presented so far
for computing the multi-stride versions of automata is their
high CPU and memory consumption. As a consequence, when
dealing with the complex rule sets found in real-life network
applications, the multi-stride automata cannot be computed at
all, or only very limited stride levels can be achieved with
reasonable resources, as shown in [8].

These limitations are overcome by our improvements on
the state of the art algorithms. Particularly, the alphabet
compression algorithm has been redesigned to use multiple
(but smaller) conversion tables at the same time, rather than
just a single one, a technique that was originally proposed in
[9] for standard (non multi-stride) automata. In addition, we
also propose a more effective heuristic to distribute symbols
across the multiple tables.

Other papers propose very efficient techniques for regular
expression matching that are either not adequate for software
implementation or not applicable to the general problem
of regex matching with complex patterns. For instance, [2]
proposes also a run-length encoding for automata that relies
on priority encoders and TCAMs while [10] proposes another
solution based on TCAMs, both best suited to implementations
based on ASICs or FPGAs. Another example is the variable-
stride technique presented in [11] which applies only to string
matching and does not support regular expressions. Along this
line, several papers [12] [13] [14] [15] propose fast GPU-
oriented algorithms that operate on DFA-based representa-
tions. In order to deal with complex regex rule sets, the
patterns that generate an excessive amount of states are kept
in the NFA form and executed on the main CPU but this leads
to poor performance.

Recently, [16] and [17] proposed new regex matching
algorithms that are specifically designed for running NFA on
GPUs and that improve the solution of iNFAnt [1], mainly by
removing the useless processing of the transitions that start
from inactive states. Our optimized algorithms for creating
multi-stride automata provide a contribution that has more
general validity, i.e. the multi-stride NFA created by our
algorithms could be exploited, in principle, by any NFA-based
regex processors, including the ones proposed in [16] and [17],
after proper adaptation. In particular, adaptation is necessary
if multimap alphabet compression (Section VI) is used. Then,
the above papers can represent a valid alternative to our GPU-
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based run-time regex engine presented in Section VII (based
on [1]), but further work is necessary to adapt them to support
our multimap algorithms.

III. NOTATION AND BACKGROUND

Table I lists the main symbols used in this paper along with
a short description of their meaning.

TABLE I
COMMON SYMBOLS AND NOTATION USED IN THIS PAPER

Q Set of states of an NFA
δ Set of transitions of an NFA
Σ Set of symbols of an NFA (alphabet)
A Set of accepting states of an NFA
|X| Number of elements of set X (cardinality)
Nfo Average number of states of an NFA that can be reached

starting from a single state, by following all its outgoing
transitions (average fan-out)

Ls Average number of transitions of an NFA connecting the same
pair of states (average label size)

R Average number of transition ranges of an NFA connecting
the same pair of states (similar to Ls but it counts ranges
instead of single transitions)

A. NFA

A NFA can be formalized as a 5-tuple 〈Q,Σ, q0, δ, A〉 where
Q is the set of states, Σ is the set of symbols (the alphabet),
q0 ∈ Q is the initial state, δ ⊆ Q × Σ × Q is the transition
function, i.e. a set of transitions, where each transition is a
triple (q1, s, q2) with initial state q1 ∈ Q, label s ∈ Σ and
final state q2 ∈ Q, and A ⊆ Q is the set of accepting states.

A NFA takes as input a sequence of symbols s1, . . . , sn,
with si ∈ Σ. A match is found at symbol sk if there exists
a sequence of k + 1 states q0, . . . , qk starting with the initial
state and terminating with an accepting state qk, and there
exists a sequence of transitions labeled s1, . . . , sk that bind
each state of the sequence to the next state, i.e. ∀i ∈ [1, k] :
(qi−1, si, qi) ∈ δ.

The classical sequential NFA matching algorithm keeps
track of all the states that can be reached after each input
symbol and reports a match when an accepting state is reached.
The algorithm is based on keeping a set of active states that,
at the beginning, includes only the initial state. Input symbols
are read sequentially and for each input symbol the next set
of active states is computed by following all the enabled
transitions, i.e., the ones that fire based on the given input
symbol and that start from any of the current active states.

When the NFA represents a set R of regular expressions,
it is possible to add the information about which regular
expressions are matched in each acceptance state by means
of a function rules : A→ 2R that maps each acceptance state
onto the set of matched regular expressions.

B. Multi-striding

Algorithm 1 shows a simplified version of the state-of-the
art stride doubling algorithm presented in [5] which builds the
new set of transitions δ′ by enumerating, for each reachable

Algorithm 1 The stride doubling algorithm of [5].
1: δ′ = {}
2: queue = {q0}; processed = {q0}
3: while !queue.empty() do
4: q0 = queue.pop()
5: for all sA ∈ Σ, q1 ∈ Q | (q0, sA, q1) ∈ δ do
6: for all sB ∈ Σ, q2 ∈ Q | (q1, sB , q2) ∈ δ do
7: δ′ = δ′ ∪ {(q0, (sA, sB), q2)}
8: if q2 /∈ processed then
9: queue.push(q2)

10: processed = processed ∪ {q2}
11: end if
12: end for
13: end for
14: end while

state q0, all the possible combinations of two consecutive
transitions (lines 4-6).

For each of those combinations, the algorithm generates a
transition in the new automaton that is equivalent to the two
original transitions. For example, the new transition that brings
directly from q0 to q2 will be labeled with the concatenation
of the labels associated with the two original transitions (line
7). The algorithm starts by processing the initial state (line 2)
and then it iterates through all the states that can be reached
by using the generated compound transitions (lines 8-10). For
simplicity, the presented pseudo-code does not include the
particular case where the intermediate state q1 is an accepting
state while q2 is not. This case is handled in [5] by also keeping
the information about the rules matched in each acceptance
state: for each rule r matched in q1, an extra transition is
added leading to a (possibly extra) accepting state qa with no
outgoing transitions such that rules(qa) = {r}.

The asymptotic time complexity of the algorithm can be
evaluated as |Q| · (Nfo · Ls)

2 where the meaning of Nfo

and Ls is explained in Table I. This formula derives from
the observation that, starting from each of the |Q| states of
the NFA, it is necessary to iterate through all its Nfo · Ls

outgoing transitions and, then, for each reached state, Nfo ·Ls

compound transitions are added.

C. Alphabet compression

This step reduces the exponential growth of the alphabet
size |Σ| with the stride level (the size becomes |Σ|k for the
k-stride NFA). This size is directly proportional to the Ls

factor of the stride doubling asymptotic complexity formula.
Hence, its growth impacts not only on the complexity of the
resulting NFA but also on the possibility for the stride doubling
algorithm to terminate in a reasonable time. As a consequence,
alphabet compression is executed after each stride doubling
step, in order to decrease the cardinality of the new alphabet.

The main idea behind any alphabet compression algorithm
is that often there are symbols that are equivalent, i.e. they
always trigger exactly the same set of transitions. This happens
because often the patterns used to scan the network traffic are
limited to alphanumeric characters (e.g., ‘0-9A-Za-z’) and
to a few other symbols, while the rest are ignored. If two (or
more) input symbols (e.g., ‘aa’ and ‘bb’) always originate the
same transitions, they are replaced with a single one (e.g., ‘α’),
thus decreasing the number of input symbols in the alphabet.
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In essence, this process enables each new symbol of the new
alphabet to represent an entire class of symbols of the original
alphabet; as a consequence, the translated NFA that uses this
dictionary has a smaller number of transitions than the original
one although the two NFA are functionally equivalent.

Obviously, as alphabet compression changes the alphabet
of the NFA, each input string (i.e., each packet) has to
be translated to the new alphabet by substituting pairs of
consecutive symbols with the new symbols assigned to their
equivalence classes. However, as the time required to perform
this operation is generally lower than the time required for
matching, the overhead of this data translation can be con-
sidered negligible and it can be pipelined with the regular
expression matching task.

Figure 2 shows the equivalence classes built for a simple
2-stride NFA. The map on the right hand side is a graphical
representation of the space of symbol pairs to be partitioned
into equivalence classes (each cell in the map represents a
single symbol pair). Symbol pairs are partitioned into equiv-
alence classes according to the transitions they can trigger.
For example, the equivalence class of symbol pairs that can
trigger only a transition from q0 to q1 (the area labeled with
q0 → q1) is made up of the symbol pairs ‘a|f,a|f’ with
the exclusion of ‘e|f,e|f’. In fact, the pairs ‘e|f,e|f’
trigger two transitions, from q0 to q1 and from q1 to q2, so that
they constitute another equivalence class. The total number of
classes is 4: the other 2 classes are made up of the symbol
pairs that can trigger only a transition from q1 to q2, and those
that can trigger no transition (the area of the map not covered
by rectangles). Consequently, the new alphabet is made up of
only 4 symbols, each one assigned to one equivalence class,
and the translation dictionary replaces all the symbols of each
equivalence class with the new symbol assigned to that class.

Determining the equivalence classes by building the sets
of transitions triggered by each symbol pair is unfeasible with
large automata, mainly because of the huge amount of memory
required: the size would be O(|Σ|2|Q|2), as for each cell of
the map a set of state pairs should be stored.

The algorithm proposed in [2] can perform the same oper-
ation using just one integer and one boolean for each symbol
pair, but its time complexity is O(|Σ|4|Q|). The algorithm that
can be considered the current state of the art [4] trades a slight
increase in memory consumption (it requires 2 integers and 2
booleans per symbol pair) for a noticeable improvement in
time efficiency. When combining this algorithm with stride
doubling, [4] proposes to perform a preliminary compression
step, followed by one or more stride-doubling steps, each one

followed by a compression step.
Algorithm 2 shows the alphabet compression algorithm

proposed in [4], adapted to the case of an input NFA having
an alphabet made of pairs of symbols (the alphabet is Σ×Σ),
like the one obtained from a stride doubling step. With this
algorithm the translation dictionary (an array of integers called
map) is built in an iterative way that the authors call cluster
division: initially all the elements of the dictionary are filled
with the same value (0), meaning that all the possible symbol
pairs are translated to the same equivalence class, and then it
iteratively divides the classes by considering separately each
possible combination of states (q1, q2) ∈ Q × Q (lines 2-3).
The main idea of each division step is that a symbol pair ‘ab’
has to be remapped to a new class if from q1 to q2 there is no
transition labeled with it but there are transitions labeled with
other symbol pairs that previously belonged to the same class
as ‘ab’. The algorithm uses the two arrays of booleans named
char and class to record respectively the set of symbol
pairs that label the transitions from q1 to q2 and the classes
covered by these symbol pairs. A first iteration computes these
arrays and a second iteration does the necessary remapping,
using a support array of integers named remap, which records
the already performed remapping operations.

Algorithm 2 The alphabet compression algorithm presented
in [4], rewritten for a stride-2 NFA

1: map[|Σ|][|Σ|] = 0; size = 0
2: for all q1 ∈ Q do
3: for all q2 ∈ Q do
4: char[|Σ|][|Σ|] = false
5: class[|Σ| × |Σ|] = false
6: remap[|Σ| × |Σ|] = 0
7: for all (a, b) ∈ Σ× Σ | (q1, (a, b), q2) ∈ δ do
8: char[a][b] = true
9: class[map[a][b]] = true

10: end for
11: for all (a, b) ∈ Σ× Σ do
12: if !char[a][b] & class[map[a][b]] then
13: if remap[map[a][b]] = 0 then
14: remap[map[a][b]] = + + size
15: end if
16: map[a][b] = remap[map[a][b]]
17: end if
18: end for
19: end for
20: end for

The asymptotic time complexity of this algorithm can be
evaluated as |Q|2 · |Σ|2. The |Σ|2 factor is due to the iteration
through the |Σ|2 elements of the alphabet, while the |Q|2 factor
comes from the repetition of these iterations for every pair of
states. |Σ|2 represents the most critical factor, as |Σ| rapidly
increases with the stride level while |Q| is almost constant.
Also memory consumption is a concern, as the size of the
data structures used by the algorithm are proportional to |Σ|2.

Due to these limiting factors, reaching high stride levels
with big rule sets by using the current state-of-the-art algo-
rithms results unfeasible.

D. iNFAnt

iNFAnt [1] is an efficient NFA-based regex matching pro-
cessor that runs on GPUs. Its algorithm consists of iteratively



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X 2015 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3 0 
0 0 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

... ... ...

Input byte: 'a'

1 | 0 | 0 | 0 | 0

Active states bitmap iNFAnt 1 | 1 | 0 | 0 | 0

Active states bitmap

thread 1

thread 2

thread 3

iNFAnt

Input: 'a'
Transitions:
 1 -> 2
 1 -> 1
 3 -> 3

Input: 'c'
Transitions:
 1 -> 1
 3 -> 4
 3 -> 3
 4 -> 3

Input: 'b'
Transitions:
 1 -> 1
 2 -> 3
 3 -> 3

Input: 'z'
Transitions:
 1 -> 1
 3 -> 3

'a' 'e' 'f' 'z'

'a'

'e'

'f'

'z'

q0->q1

q0->q1

q1->q2 q1->q2

a|f,a|f

e|z,e|z

q0

q1

q2

a     c

b

d

a,b c,d
a     c

b

d

1

2

4
1 4

1

2

4 y

1           

2

4

z

c,[d|z]

2

1,4

1,2

y

z

(a) Uncompressed 2-stride NFA

(b) Compressed 2-stride NFA

(c) Uncompressed 4-stride NFA

(d) Compressed 4-stride NFA

(e) Translation maps 
at first stride iteration

(f) Translation maps 
at second stride iteration

q1 q2 q3

q4

q1 q2 q3

q4

q1 q2 q3

q4

q1 q2 q3

q4

0 0

0 0

x x

y y

I II

I II

t1 t2 t3 t4
t5 t6 t7 t8

Group 1

  t9 t10 t11 t12
t13 t14 t15 t16

t17 t18 t19 t20
t21 t22 t23 t24

t25 t26 t27 t28
t29 t30 t31 t32

Group 2

a a

b b

I II

I II Input #2

Thread Block (32 threads)

Input #1

(c) 2-Stride NFA(b) NFA

1

a c

d
1

0|255,a

a,c d,0|255

b,b0|255 0|255,0|255

q0 q1 q2

q3

q0 q1 q2 q3
ab*cd

(a) Regexp

b

a,b
b,c

c,d

'a' 'f'

'a'

'f'

a|f,a|f e|z,e|z
q0 q1 q2

'a' 'e' 'f' 'z'

'a'

'e'

'f'

'z'

a|f,a|f e|z,e|z
q0 q1 q2Fig. 3. Overview of the iNFAnt processing structure.

reading input symbols and updating the set of active states,
represented by a bit vector where each bit corresponds to
a state of the NFA. After reading a new input symbol, the
algorithm looks for the transitions that can be triggered by that
symbol. This operation is made simple by storing transitions
already grouped by input symbol. These transitions are then
used to update a bit vector that keeps the active states. As
shown in Figure 3, several transitions are processed in parallel
by assigning them to different threads, which contributes to
alleviate the dependency of the update time on the number
of transitions triggered by the input symbol. This is made
possible by exploiting the high number of threads that can
run on a GPU and the high memory bandwidth that can be
obtained by adopting a clever memory access policy. Thread
divergence is almost non-existent, as (by design) all threads
perform exactly the same operations, although on different
data (i.e., different transitions). However, some useless pro-
cessing may occur: some threads analyze transitions that are
not active in the current starting state and may become idle.

In addition to this form of parallelism, iNFAnt can also
process several input strings in parallel, by assigning each
string to a different group of threads. The scheduler can then
exploit the large number of threads to hide memory latency,
by scheduling new groups of threads when the current ones
are waiting for data from main memory (memory access time
is far beyond the processor cycle time), hence keeping the
processor busy almost all the time.

Thanks to the two forms of parallelism, iNFAnt has a
reasonably stable throughput, which depends on the average
number of transitions per symbol. When the number of tran-
sitions triggered by a symbol exceeds the maximum number
of threads supported by the GPU, the algorithm has to iterate
transition processing, hence decreasing throughput.

IV. MULTI-STRIDING WITH RANGE NOTATION

The asymptotic time complexity of the state of the art
stride-doubling algorithm depends mostly on the number of
compound transitions to be generated, which tends to increase
rapidly at each stride step. Hence, the time required for stride
doubling becomes quite large even after the first doubling.

In order to reduce the impact of this problem, we change
the way transitions are represented: transitions are grouped
according to their source and destination states and the labels
of the transitions of each group are stored by using ranges
instead of individual symbols. For example, if we consider
a NFA with the transitions that link q0 to q1 labeled by

all the symbols between ‘97’ and ‘122’, these transitions
could be replaced by a single transition labeled with the range
‘97|122’. When the symbols are not completely contiguous,
more ranges are used.

The range notation is exploited in the stride doubling
algorithm by treating ranges as atomic entities during the
creation of compound transitions: rather than iterating on
symbols, the algorithm just iterates on ranges and it creates
compound transitions by combining ranges together. For ex-
ample, a transition set labeled by the ranges ‘97|122’ and
‘200|200’, when combined with another set labeled only by
the range ‘50|100, generates a combined set of transitions
labeled with just two pairs of ranges: ‘97|122,50|100’
and ‘200|200,50|100’. Moreover, the generation of these
compound transitions requires only two iterations of the algo-
rithm, compared to the huge number of iterations necessary
if working with individual symbols1. With range notation, the
asymptotic time complexity of stride doubling changes from
|Q|(Nfo · Ls)

2 to |Q|(Nfo · R)2, i.e. the Ls factor, which
counts the average number of transitions that link two states,
is replaced by R, which is the average number of ranges that
are necessary to represent these transitions.

In the worst case, if a set of transitions does not include any
contiguous symbols, a number of ranges equal to the number
of symbols labeling the transition is generated. However, as
regular expressions usually handle human-readable alphanu-
meric characters and the ASCII code represents them with
contiguous values, the vast majority of NFA are expected to
benefit from the range notation. Moreover, the advantages of
this notation tend to be more visible when the NFA is more
complex. In fact, complex NFA have more states and more
transitions, hence higher probability to have transitions with
contiguous symbols.

Finally, even with “unluckily incompressible” rule sets, it
is still possible to greatly exploit the range notation starting
from the second stride doubling iteration: as it will be shown
in Section V, our alphabet compression algorithm generates
equivalence classes in a way that increases (if possible) the
amount of contiguous labels in each transition set.

V. IMPROVING ALPHABET COMPRESSION

The state-of-the-art algorithm for alphabet compression [4]
is appropriate with small to medium sized NFA but still
requires prohibitive resources with multiple-stride NFA re-
sulting from rule sets of realistic sizes. Our new algorithm
(shown in Algorithm 3) is more efficient in terms of both
memory and processing requirements which allows it to handle
larger automata. Furthermore, the algorithm also improves
the effectiveness of the range notation. From the memory
standpoint, the algorithm requires approximately four times
less memory than the one in [4], as it needs only an integer
per symbol pair (i.e., only the transition map itself) compared

1For the sake of precision, with individual symbols, the Cartesian product
between symbols would have generated (122−96+200−199)·(100−49) =
1377 pairs of symbols.
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Fig. 4. Example of the improved alphabet compression algorithm.

to the two integers and two booleans2 required by [4]3. From
the processing standpoint, our algorithm can potentially run at
twice the speed of [4] as it performs a single iteration through
the main data structure instead of two.

Algorithm 3 Improved alphabet compression algorithm.
1: map[|Σ|][|Σ|] = 0
2: size = 0
3: for all q1 ∈ Q do
4: for all q2 ∈ Q do
5: buffer = {}
6: for all (a, b) ∈ Σ× Σ | (q1, (a, b), q2) ∈ δ do
7: if map[a][b] /∈ keys(buffer) then
8: buffer = buffer ∪ {map[a][b],+ + size}
9: end if

10: map[a][b] = buffer[map[a][b]]
11: end for
12: end for
13: end for

The main idea of the new algorithm is to use a different
criterion for the cluster division step (proposed in [4]): all the
symbol pairs that can lead from q1 to q2 are remapped onto
new equivalence classes, taking care of using the same new
class for symbol pairs that previously belonged to the same
class. For example, if pairs (‘aa’), (’bb’), and (‘cc’) can lead
from q1 to q2 and pairs (‘aa’) and (‘bb’) were previously
mapped to the equivalence class 1 while (‘cc’) was mapped
to 0, then (‘aa’) and (‘bb’) will be mapped to the same new
symbol (e.g. 2) and (‘cc’) to a new other symbol (e.g. 3).
In this way, correctness is still guaranteed, i.e. if two symbol
pairs lead to the same destination states from each state, they
are mapped to the same class.

The buffer hash-map is used to store the re-mapping
operations performed at each cluster division step (it maps
classes onto new classes). Initially there are no re-mapping
operations (line 5). For each symbol pair that can lead from
q1 to q2, if it was previously mapped to a class for which a
re-mapping does not already exist in the buffer (line 7) a new
class is created and a new re-mapping from the previous class
to the new class is added to the buffer (line 8). Vice versa, if
a re-mapping already exists in the buffer, this is simply used
to remap the symbol pair.

Figure 4 shows how the algorithm works for the same FSA
presented in Figure 2. The left-hand side of the figure shows
the translation map resulting after processing the transitions

2The vast majority of the compilers use an integer to store a boolean for
performance reasons.

3For the sake of precision, our algorithm uses also an hashed map whose
number of entries is equal to the average number of equivalence classes the
transitions connecting two states belong to; however the size of this data
structure can be considered negligible compared to the main data structure.

from state q0 to state q1. All the symbol pairs that can
lead from q0 to q1, corresponding to the square area with
coordinates from ‘a,a’ to ‘f,f’, have been re-mapped to the
same new class 1. In the second step, the transitions from
state q1 to q2 are examined. They are labeled by symbol pairs
corresponding to the square area with coordinates from ‘e,e’
to ‘z,z’. This area can be divided into two parts: the former
that overlaps with the area previously filled with class 1 and
the latter that does not overlap with it and is still filled with
the original class 0. These two parts are re-filled with two
different new classes, namely 2 and 3, thus leading to the
situation shown in the rightmost part of the figure.

Hence, as expected the algorithm has generated four dif-
ferent classes: class 0, corresponding to unused symbol pairs,
class 1 corresponding to the symbol pairs that can trigger only
the q0 → q1 transitions, class 3 corresponding to the symbol
pairs that can trigger only the q1 → q2 transitions, and class
2, corresponding to the symbols that can trigger both.

The only difference in terms of output between the new
algorithm and [4] is that we perform a remapping even when
it is not strictly necessary, possibly leading to non-contiguous
class numbers. For example, if the algorithm generates 4
classes it is possible that those are numbered 0, 2, 3, and
4, as the class 1 was overwritten in some intermediate
steps of the algorithm. Even if the way integer values are
assigned to classes is irrelevant from a theoretical point of
view, the assignment of non-contiguous values may negatively
affect stride doubling, because the effectiveness of the range
notation decreases. For this reason, an additional phase is
added to the algorithm where the generated classes are re-
numbered in order to guarantee that they are identified by
contiguous integers.This step is performed inside the algorithm
that translates the NFA to the new alphabet (which has to be
executed anyway after alphabet compression), hence adding
a very small overhead to the overall process. The translation
algorithm is very simple: it iterates through each transition
of the NFA and substitutes the old symbol pair with the
corresponding class number. When doing so, the class is
also renumbered (if needed). This adds a couple of memory
accesses at each iteration and it requires keeping a dictionary
to remember which classes have already been renumbered.
Clearly, the additional cost of class renumbering is negligible
compared to the rest of the algorithm. The same applies for
memory requirements, as the size of the additional dictionary
is equal to the cardinality of the compressed alphabet, which
is way less than the size of the support map.

Finally, as an added value, class renumbering chooses new
class indexes with an heuristic that increases the amount of
contiguous values in each set of transitions that connect two
states: this is done in order to increase the efficiency of the
range notation (i.e., to reduce R). As the asymptotic time com-
plexity of the stride doubling algorithm is proportional to R

2
,

reducing R speeds up the next stride doubling iteration. The
heuristic is based on the following idea. Let us consider the
first state pair that is processed. If, for instance, the transitions
that link these states are labeled by the 3 equivalence classes
563, 236 and 1243, the algorithm renames class 563 to
1, class 236 to 2 and class 1243 to 3, thus guaranteeing
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the contiguousness of their symbols. For the next state pairs,
only the classes that occur for the first time are re-mapped to
new (consecutive) integers. Hence, the labels of the transitions
connecting the state pairs that are processed first will more
likely have more contiguous symbols, while the ones of the
state pairs processed last will probably have more sparse
sets. By processing state pairs with more complex transition
sets first, the overall number of ranges is reduced. This can
be achieved in practice by sorting the state pairs according
to the complexity of their transition sets before performing
renumbering.

The time complexity of the new alphabet compression
algorithm can be expressed as |Q|2·Ls

2
. Compared to the com-

plexity of the algorithm in [4] and reported in Section III-C,
it can be noted that the Ls

2
factor replaces |Σ|2. This is an

important improvement because usually Ls is lower than |Σ|,
as typically in an NFA only few states are connected to each
other with all the possible symbols of the alphabet.

A. Optimized remapping

In our experiments we found that often different state pairs
are connected by transitions with the same symbols, i.e. the
symbols that can lead from qx to qy are the same that can
lead from qz to qt. In this case, the remapping done by the
algorithm for the first pair of states would be completely
overwritten when processing the second pair of states, as they
refer exactly to the same area in the map, which means that
the processing of the second pair of states could be safely
omitted. As this case is frequent, this optimization leads to an
important reduction of the processing time.

The high frequency of this case in real situations depends
on several different causes. One is the already mentioned
alphanumeric nature of most regular expressions. Another one
is the way the NFA is typically generated from a set of
regular expressions. For instance, the combination of two sub-
expressions by the AND operator results in a duplication of the
initial set of transitions. However, most frequently the presence
of state pairs with exactly the same transition sets is caused
by the ‘.*’ pattern, included in many regular expressions,
which causes the generation of state pairs qx, qy such that any
symbol in the alphabet can trigger a transition from qx to qy .
A state pair with this set of transitions forces the algorithm
to update the entire support map, and, being these state pairs
frequent, they are also responsible for a considerable portion of
the time required to process the entire NFA. For this reason,
omitting the processing of transition sets that have already
been processed for previous state pairs represents a simple
but very effective optimization.

In order to recognize and skip state pairs whose transition
sets have already been processed, the proposed algorithm
exploits the above mentioned sorting of state pairs according
to the complexity of their transition sets. However, in order
to guarantee that state pairs with identical transition sets
are adjacent, this sorting has to be refined by introducing a
secondary sorting criterion. The criterion used is not relevant,
provided that a precedence relationship is defined for any
two different transition sets. A simple way is to represent

transition sets as strings of alphabetically ordered lists of state
pair ranges (e.g. ‘{(a|f,a|f),(a|f,i|k)}’), and to use the
alphabetic order of transition sets as the secondary sorting
criterion. With state pairs sorted in this way, the algorithm
compares the transition set of the n-th state pair to the one of
the (n-1)-th state pair and, if they are found to be the same, it
skips the remapping step.

Using a O(n·log(n)) sorting algorithm, the asymptotic time
complexity of the sorting phase is |Q|2 ·R·log(|Q|2 ·R), which
is negligible compared to the asymptotic time complexity
of the algorithm that generates the equivalence classes. This
stems from the fact that Ls, which is the most critical factor
in the formula, cannot be smaller than R.

VI. MULTI-MAP ALPHABET COMPRESSION

Although alphabet compression is usually very efficient in
terms of symbol compression ratio, it is not always sufficient to
enable further stride doubling steps with the current hardware.
The inability to further reduce the alphabet size mainly de-
pends on the necessity to create additional equivalence classes
when transition sets overlap: for instance, in Figure 2 three
equivalence classes are needed to represent the symbol pairs
of two transition sets due to the overlap of their labels

As it would be difficult to further increase the compression
ratio of the current alphabet compression technique, another
way to enable further stride doubling is to increase the degree
of parallelism of the packet processing problem. Let us denote
N the number of input symbols to be processed and T the
time taken to process them with a single processor. The idea
is that if we are unable to process one string of N/2 symbols
in a time T/2 with one processor because stride doubling is
unfeasible, we may manage to process two different strings of
length N/2 in T/2 by using two processors in parallel.

In order to split the matching problem into two separate
problems, the transition sets of the NFA are partitioned into
two disjoint groups in such a way that the amount of over-
lapping transition sets is minimized in each group. Then, the
alphabet compression algorithm is applied separately on each
group of transitions, generating two translation dictionaries,
i.e. two target alphabets and two translation maps, instead of
a single one. This operation is likely to be feasible even if
alphabet compression is unfeasible on the whole transition
sets. The two dictionaries are then used to build a NFA in
which the two different alphabets coexist: some transitions are
labeled by the symbols of the first dictionary, while the others
are labeled by the symbols of the second one. If the transition
sets are partitioned into the two groups by minimizing the
number of overlaps, each group can be compressed more
efficiently than the original set, hence reducing the overall
number of generated symbols. This more efficient compression
originates a simpler NFA (i.e. with fewer transitions) than the
one generated by using the normal alphabet compression tech-
nique. As finding the optimum partitioning is NP-complete, a
heuristic is used.

Because the new NFA contains symbols belonging to two
different alphabets at the same time, both the input translation
and the matching algorithm change: input translation generates
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two strings, one for each dictionary, and the two resulting
strings are then processed in parallel: a first process considers
only symbols belonging to the first alphabet while the second
one considers only symbols belonging to the second alphabet,
but both processes update the same set of active states. In
this way, the set is updated correctly, since in each state each
possible transition of the original NFA is either applied by the
first or by the second process.

From a practical point of view, using more processing
units to perform the matching is not a problem as the target
hardware is a GPU with hundreds of available processing
elements. Moreover, each processing unit works on a NFA
with, in average, half of the transitions per symbol, thus
hopefully halving the per-symbol processing cost of each unit.
At the same time, having simpler NFA makes it more likely
to be able to complete an additional stride doubling step.

The modified compression algorithm (Algorithm 4) is sim-
ilar to the one presented in Section V, but uses two maps,
map1 and map2. For each state pair, the algorithm uses the
map on which the update causes the generation of the smallest
number of new equivalence classes. This is achieved by first
updating both maps (ApplySymbols corresponds to lines 5-
11 of Algorithm 3, with the addition of the recording of the
old state of the modified cells of the map) and then keeping
only the one that has reached the smallest size (Undo restores
the map to its previous state).

Algorithm 4 The multimap alphabet compression algorithm.
1: map1[|Σ|][|Σ|] = 0; map2[|Σ|][|Σ|] = 0
2: size1 = 0; size2 = 0
3: for all q1 ∈ Q do
4: for all q2 ∈ Q do
5: ApplySymbols(map1, size1, q1, q2)
6: ApplySymbols(map2, size2, q1, q2)
7: if size1 < size2 then
8: Undo(map2, size2, q1, q2)}
9: else

10: Undo(map1, size1, q1, q2)
11: end if
12: end for
13: end for

The greedy algorithm used for the selection of the map
has been chosen after having considered different possible
alternatives:

• GRASP (Greedy Randomized Adaptive Search Proce-
dure), which alternates greedy optimizations to random-
izations in order to overcome local minimums;

• Top-Down, similar to the algorithm proposed in [9],
which creates a different map per each transition and then
it works by merging the maps and minimizing the amount
of additional generated symbols at each pass;

• Top-Down2, which adds a randomization pass to the
previous technique to avoid local minimums.

The considered algorithms have been evaluated in terms
of both time and compression efficiency, by applying them
to the NFA obtained using the same real rule sets used
for our experiments (see section VIII for details). As the
greedy algorithm is the simplest one, it is also the most time
efficient. For what concerns compression efficiency, the results

TABLE II
ALPHABET SIZE WITH DIFFERENT MULTIMAP HEURISTICS.

Rule set No compress. Greedy GRASP Top-down Top-down2
Snort FTP 463 313 310 313 310
Snort SMTP 1078 721 1050 695 695
Snort 534 4842 2094 3632 2094 2094
Snort HTTP 8272 6097 7568 10251 9420
ET HTTP 4353 2805 3256 3195 2934
Snort Full 16644 24123 18349 21020 21020

in Table II show that no heuristic outperforms the others in all
cases. The greedy algorithm represents the best choice because
it combines best time efficiency with good compression results
on average.

The multi-map algorithm requires approximately twice the
time and memory compared to the original algorithm, because
of the necessity to update two maps instead of a single
one. However, thanks to the better compression provided,
subsequent stride doubling steps will be performed faster and
with less memory compared to the original technique.

A. Run-time packet processing

Even if, in theory, multi-map alphabet compression should
be able to greatly improve the maximum achievable stride level
and the processing throughput, applying further stride doubling
and alphabet compression iterations to an NFA that has been
compressed with the multi-map algorithm causes additional
issues that must be properly handled, and that can be explained
by taking into account the example in Figure 5. When a 2-
map alphabet compression is performed on the uncompressed
2-stride NFA of Figure 5a, the transition from q1 to q2 and
those from q2 to q4 are assigned to the first support map, while
the transition from q2 to q3 is assigned to the second support
map. The support maps generated in this way are shown in
Figure 5e, while the compressed NFA is shown in Figure 5b.

If the input string is ‘a,b,c,d’, the following two strings
are generated by applying the two translation dictionaries: 1,2
(by using the first map), and 0,4 (by using the second map).
The packet processor has to concurrently process symbols 1
and 0 at the first iteration, and symbols 2 and 4 at the next
one. At the first iteration, if the active state set includes only
state q1, the transition from q1 to q2 is triggered by symbol 1,
thus adding q2 to the new active state set. Then, at the next
iteration, the active state set includes only q2 and both the
transitions from q2 to q3 and from q2 to q4 are triggered by
symbols 4 and 2 respectively. Thus, the final active state set
includes exactly states q3 and q4, as expected.

If a new stride doubling step is performed, e.g., to get the
4-stride NFA of Figure 5c, the presence of two translation
maps complicates the input string translation and the matching
algorithm. In fact, let us assume we apply exactly the same
algorithms explained above. The input string ‘a,b,c,d’ is
translated into the two strings ‘1,2’ and ‘0,4’, using the
two maps. Then, the matching algorithm consumes the pairs
of symbols ‘1,2’ and ‘0,4’ concurrently. If initially the only
active state is q1, the pair ‘1,2’ triggers the transition from
q1 to q4, while the pair ‘0,4’ does not trigger any transition.
Thus, the final active state set includes only state q4, which
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is wrong, the reason being because the transition ‘1,4’ has
not been fired while it should have been. The particularity
of the symbol pair 1,4 is that its two components belong to
different translation maps while our translation algorithm only
generates two translations: one made only of symbols of the
first alphabet, another made only of symbols of the second
alphabet. In order to make sure that we get the right result
of matching at stride level 4, it is then necessary to generate
more translations of the input string, including all the possible
combinations of the two translation maps. In our example this
implies generating 4 translations, i.e. the strings ‘1,2’, ‘1,4’,
‘0,2’ and ‘0,4’, where the first string is obtained by using
the first map for both symbols in each pair, the second one is
obtained by using the first map for the first symbol and the
second map for the second symbol in each pair, and so on.

Applying again the 2-map alphabet compression algorithm
on the 4-stride NFA, we get two new translation maps, shown
in Figure 5f, and the new compressed NFA shown in Figure 5d.
Having introduced two new alphabet translations, the 4 input
strings we had for the uncompressed 4-stride NFA have to be
translated into 8 strings: 4 obtained by applying the first new
translation map and 4 obtained by applying the second one.
Taking again the above example, the string 1,4 is translated
by the leftmost map of Figure 5f into y while the remaining
strings are translated into 0. Using the rightmost map, the
same four strings are translated into ‘z’ (generated from string
1,2), and three equal symbols ‘0’, ‘0’, ‘0’.

In general, our approach increases the compression rate
but the number of strings to be processed in parallel is
multiplied by the number of maps (with 2 maps it is doubled)
at each alphabet compression step. At each stride doubling
step, instead, the number of strings to be processed in parallel
is squared, and the length of the input strings is halved. Then,
after n combined stride doubling and alphabet compression
steps, the number of strings that we must process in parallel
becomes Sn = m2n−1 where m is the number of maps used
for alphabet compression, and the length of the input strings
becomes N/n, where N is the original length of the input
string. However, increasing the number of input strings to be
processed in parallel is not necessarily an issue: it just makes
the problem more parallel. Furthermore, even if some threads
are “wasted”, the GPU code can minimize this overhead by
greatly reducing the total amount of memory accesses, which
is the actual main bottleneck of iNFAnt. In fact, we can note
that multiple occurrences of the same symbol in different
strings at the same offset are redundant because they lead
to the same target states. Detecting redundant symbols and
avoiding their processing is a way to reduce memory accesses.

Redundancies happen frequently and can be observed even
in our simple example: of the 8 1-symbol strings generated
from the translation of the original 4-symbol input, 6 strings
are identical (‘0’). Hence, five of them could be ignored.

B. Redundancy in input string translations

Experimentally, it is easy to show that the phenomenon of
symbol redundancy occurs with any rule set, and that, after a
certain stride level, redundant symbols tend to increase. The
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Fig. 5. Multi-map compression of a sample NFA at 2x and 4x stride levels
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Fig. 6. Amount of non-repeated symbols present in random input data streams
when translated to be processed with 2-map multistrided NFA

experiment consists of generating the NFA at different stride
levels for the considered rule set, using the stride doubling and
the 2-map alphabet compression algorithms proposed here.
Then, various pseudo-random input packets are generated,
and, for each stride level they are translated by using the
dictionaries originated by the alphabet compression, as previ-
ously explained. Then, the input strings so generated for each
stride level are reduced by removing redundant symbols (i.e.,
symbols that are equal to other symbols occurring in other
strings at the same position). For example, if we have the
two strings ‘1,2,3,4’, and ‘1,0,3,3’, we can remove the
symbols in bold as they are the repetition of symbols occurring
at the same position in the other string, hence leaving only the
meaningful symbols. Finally, the total length of all the reduced
strings, which represents the total number of non-redundant
symbols, is computed.

Figure 6 plots the results of this experiment using 1500
bytes packets and the rule sets used by the popular Snort NIDS
to analyze FTP and SMTP packets (each plot refers to a single
rule set). These rule sets have been chosen because of the
possibility to reach high stride levels thanks to their reduced
size, consisting in about 20 simple regular expressions (more
details on the rule sets will be presented in Section VIII).

In absence of symbol duplications there would be no length
change when moving from 1x to 2x (because 2 strings of
length N/2 each are generated), but there would be a length
increase of two times when moving from 2x to 4x (because
8 strings of length N/4 each are generated), an increase of
16 times when moving from 4x to 8x (because 128 strings
of length N/8 each are generated) and so on. In Figure 6,
instead, we can see that from 2x to 4x the data increase is
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way less than the doubling that would occur in the absence
of symbol duplications, while at further stride levels there is
even a linear reduction of the total number of symbols rather
than the exponential growth that would occur in the absence
of symbol duplications.

Intuitively, as the stride level increases, overlapping transi-
tion sets that need to be separated in order to avoid generating
extra equivalence classes are less likely to occur. This happens
because at each stride level transition sets are compressed
into fewer single classes and, at the same time, the size of
the support maps increases. For this reason, support maps
become increasingly less populated (particularly the secondary
ones), and the amount of input string patterns with several
different possible translations dramatically decreases at each
stride level. This trend can also be understood considering the
asymptotic behavior: in the hypothesis that we can compute
the 2k-stride NFA for arbitrarily large values of k using 2-map
compression, we would reach a limit situation where the input
string is translated into strings of length 1. In this extreme
case, if N is the number of accepting states (which typically
corresponds to the number of regular expressions in the rule
set), we would necessarily end up with N + 1 meaningful
symbols, each one leading from the initial state to one of
the accepting states, plus an extra symbol representing all the
other cases. Hence, asymptotically, the number of meaningful
symbols tends to N + 1, where N is the number of accepting
states of the NFA. Consequently, as the rule sets used in the
experiments presented in Figure 6 are composed of about 20
regular expressions each, it can be expected that the number
of meaningful symbols to be processed will tend to about 20,
as well as the alphabet size. This explains the reduction that
we can already observe starting from the 8-stride NFA (where
128 strings are generated when translating each input string).

The behavior in the “transient phase”, represented by the
first stride levels, as well as the maximum number of useful
symbols, depends on the complexity of the rule set taken in
consideration. However, in our test cases, all the rule sets for
which it was possible to go beyond the “4x barrier” have
generated a huge amount of redundant, useless symbols.

Based on these considerations, iNFAnt has been optimized
to take advantage from this phenomenon and avoid to process
useless symbols, with the consequence that it can achieve high
performance at any stride level, as shown in the next section.

Finally, it is worth noting that the maximum number of
useful symbols to be processed does not depend on the input
string: there is, in fact, an “upper bound” that depends only on
the rule sets, thus making it impossible to forge a malicious
incompressible input data string.

VII. INFANT IMPROVEMENTS

After presenting the algorithms that improve the generation
of multi-stride NFA, which are independent from the actual
regex processor, this section presents the adaptations of iN-
FAnt to the above mentioned algorithms. The modifications
were designed to maintain the excellent properties of the
original implementation in terms of (limited) code divergence
and coalesced memory access patterns.
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Fig. 7. Thread task scheduling during the processing of 2 input messages
translated in 2 different strings each

nVidia GPUs are composed of multiple processing units,
each one able to execute one or more thread blocks in parallel,
with 32 to 1024 threads per block. The original version
of iNFAnt followed this architecture closely, by assigning a
different network packet to each block and by using one thread
per transition in the computation of the next active states.
However, when operating at high stride levels this choice
becomes no longer adequate because the average number of
transitions per symbol tends to decrease, often becoming much
lower than 32. In this case, the architectural constraint of
having a minimum of 32 threads per block implies that some
threads will remain idle, thus wasting resources.

For this reason, our new thread hierarchy defines a “thread
group” that does no longer coincide with the hardware thread
block. Particularly, each thread block is logically partitioned
into several thread groups, each one processing a different in-
put string, which comes from either different network packets,
different maps, or both. This re-organization of threads not
only enables a reduction of the number of inactive threads
(achieved also in [16] and [17]), but also helps to better
manage the parallel processing of the several string transla-
tions that originate from multi-map compression. In the new
algorithm, the threads of each group cooperatively process all
the translations of a single input string.

Figure 7 shows an example where a 32-wide thread block
has been logically partitioned to process two packets, each
one translated into two different input strings because of the
2-stride NFA with 2-map compression, hence resulting in 4
distinct thread groups (8 threads wide) running in parallel. In
that picture, each byte from each input packet (i.e., packets
Input #1 and Input #2) is in fact translated into two different
symbols (e.g., x’ and x” for the first packet, a’ and a” for the
second), which represent the actual input for a different thread
group. In this way we maintain the parallel processing of the
transitions associated to each input symbol (in the example,
each symbol is processed by eight threads), as in the original
iNFAnt version, but reducing the number of useless threads.

Thanks to the nVidia GPU hardware architecture, process-
ing different strings in the same thread block also enables
a reduction of memory accesses. In fact, as discussed in
Section VI, the probability that two or more threads have to
process the same symbol at the same time in the same thread
block is very high, due to the symbol redundancy phenomenon
discussed in Section VI-B. When this happens, the memory
management unit of the GPU can recognize the presence of
memory requests for the same location and join them together,
thus reducing the real amount of accesses to the main memory.
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TABLE III
THE RULE SETS USED FOR TESTING.

Type Name Rules Size States TpS Thr
(#) (KB) (#) (#) (Mpps)

Small Snort FTP 17 4 132 15 951.55
Snort SMTP 26 12 433 30 809.48

Medium Snort 534 534 208 9538 127 289.89
Snort HTTP 189 92 3538 295 273.71

Large ET HTTP 457 428 18425 525 500.68
Snort Full 1514 1100 47168 1696 25.62

Thanks to this feature, as far as we manage to process all the
translations of an input string by threads belonging to the same
block, the amount of actual memory accesses corresponds
to the numbers plotted in Figure 6. This means that even
if the number of symbols that must be processed increases
at each stride doubling, the code can actually get rid of this
(theoretical) additional load.

However, this is possible as far as the number of translations
is small enough to fit into a single block. In order to make this
possible in a broader range of cases, an additional optimization
has been added to the code that performs input translation: the
data translator “compresses” its output by completely dropping
the strings that contain only redundant symbols. This trivial
compression mechanism dramatically reduces the number of
translations that must be processed for each input string. This
was confirmed by our experiments: even at the highest stride
levels and with the most complex rule sets, we never had to
process more than 16 translations per input string.

This reduction of the number of translations also reduces the
total number of threads required, which contributes to increase
the scalability of the solution, because the maximum number
of threads is an hardware constraint. Moreover, if the number
of strings to process increases too much it is even possible
that the data transfer between the CPU and the GPU becomes
the main bottleneck of the system, thus limiting the maximum
achievable throughput.

VIII. EXPERIMENTAL EVALUATION

The experimental evaluation of our algorithms has been
carried out on an Intel i7-960 quad core workstation running
at 3.20Ghz, 12GB RAM with an nVidia Tesla c2050 GPU.

Table III lists all the rule sets used in our tests along with
their size, average number of transitions per symbol (TpS),
and average throughput as obtained by vanilla iNFAnt, without
multi-striding. The throughput has been measured by taking
into account only the GPU kernel execution time; more details
about the overall processing costs will be shown in Sec-
tion VIII-D. Rule sets have been classified as small, medium
or large, depending on the complexity of the generated NFA;
some have been extracted from the Snort and EmergingThreats
(ET) commercial ruleset databases. Snort Full includes the full
Snort rule set, with the only exclusion of the rules that have no
standard PERL syntax. Snort 534 is a selection of 534 rules
used as benchmark in [3]. The other Snort and ET rule sets
have been built by selecting only the rules of a single protocol,
specified in the name of each rule set.

A. Multi-stride NFA building process

This section compares the performance of our algorithms
for building multi-stride NFA (named “new” in the single-map
form and “2-new” in the 2-map form) with the state-of-the-
art algorithms by Becchi and Crowley [4], named “TACO13”,
implemented based on the pseudo-code presented in [4]. Other
algorithms presented in Section II, such as [2], [8], [1], are
so inefficient that often they cannot even complete our tests
and hence they have not been considered in our analysis. In
order to evaluate the contribution of the state pair sorting
and the consequent elimination of the redundant transitions
(Section V-A), we present also the results obtained with a
version of our single-map algorithms (named “unopt”) that
does not include this optimization.

The performance of building the multi-stride NFA has been
evaluated by measuring the total time and the maximum
amount of memory taken by each algorithm on our rule sets.
The time taken for 2- and 4-stride NFA have been measured
separately. Measurements have been repeated in order to
obtain statistical significance. Results, plotted in Figure 8,
have been normalized taking the performance of the TACO13
algorithm (executed with a preliminary compression of the
initial alphabet, as proposed in [4]) as reference. Vertical lines
represent the min and max obtained values while rectangles
represent the average value plus and minus standard deviation.

Figure 8 shows that the various algorithms behave nearly
the same when considering the 2-stride level, particularly with
respect to the memory requirements (Figure 8b). The reason is
that the size of the most critical memory structure (the support
map of size |Σ|2) is negligible compared to the memory
required by the software to load (e.g., run-time libraries).

The situation changes when moving to stride level 4 (Fig-
ures 8c,d), where unopt is, on average, 10 times faster than
TACO13. Adding state pair sorting and redundant string elimi-
nation further reduces the time by another order of magnitude,
while the 2-map compression is more than three orders of mag-
nitude faster than TACO13. Memory consumption improves
considerably as well: the new algorithm halves the require-
ments compared to TACO13; the theoretical 4x improvement
(our algorithm uses one fourth of the memory used by TACO13
for each item in the map) cannot be reached because of the
additional data structures needed by the algorithms, whose
occupancy is not negligible in the case of simple NFA. Instead,
multi-map alphabet compression greatly reduces the alphabet
size, thus decreasing the size of the support structures as well.

Figure 9a shows the results of another experiment that has
been performed to evaluate the maximum stride level that can
be obtained in a 24-hours time span. For a given algorithm
and rule set, the experiment consists of applying the algorithm
to iteratively double the stride level of the NFA until the 24
hours limit is reached. The maximum obtained stride level is
shown in the graph. In four cases out of six new outperforms
TACO13, while 2-new does even better because it iterates at
least one time more than TACO13 with all the rule sets, and
even more times in the simplest cases.

One of the motivations for the run-time processing im-
provement when using multi-map alphabet compression is the
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Fig. 9. Per-ruleset and per-algorithm performance comparison: (a) maximum stride level reachable in a 24-hour timespan, (b) maximum throughput boost of
iNFAnt and (c) average amount of transitions per symbol

expected reduction of the average amount of transitions per
symbol when the stride level increases. This value greatly
influences the average processing cost per symbol in iNFAnt
and, as described in Section VI, it is expected to be at least
halved at every iteration of the multi-striding algorithm. This
reduction has been experimentally observed on the selected
rule sets, as shown in Figure 9c, which reports this number at
different stride levels for various rule sets. This reduction is
always present at all stride levels and with any rule set; even,
this effect seems to be amplified with very large rule sets. For
example, Snort 1504 achieves a reduction rate >80%.

B. Run-time traffic processing

This section analyzes the run-time performance in regex
matching that can be achieved by using the new algorithms.
The throughput of the new iNFAnt was measured for each rule
set with the NFA obtained by the new and 2-new algorithms,
using a set of real traffic captures taken from our University
network. TACO13 has been omitted as its NFA coincides with
new. Each result has been normalized with respect to the
throughput obtained by using iNFAnt with the 1-stride NFA
for the same rule set, which was reported in the last column
of Table III; the resulting speedups are shown in Figure 9b.
The tests were repeated also with two types of synthetic
traffic, the first one made of packets filled with randomly
generated payloads, and the second one built as a worst
case, by maximizing the number of active states generated
during processing. The measured throughput was rather stable,
resulting (in the worst case) in a 20% worsening compared to
the real traffic. For the sake of brevity, we reported in Figure 9b
only the results obtained with real traces.

In this experiment, the NFA with the largest stride level that
could be computed and loaded in the GPU has been used for
each ruleset. These stride levels are indicated in the columns

of Figure 9b. By comparing them with the ones reported in
Figure 9a, it is possible to notice that often the NFA with the
maximum stride level that can be computed in a 24 hours time
span is too large to be loaded in the GPU.

As already noted in [1], a 2x throughput boost can be
expected at each stride doubling. Figure 9b substantially
confirms the above findings, showing that there are cases in
which the boost is even higher and cases for which it is
slightly lower. The results also show that, although with 2-
new the throughput boost at each stride doubling is usually
slightly less than 2x, the overall speedup is almost always
greater than that achievable with 1-new. The only exceptions
are SnortHTTP and Snort1504, for which the same boost is
achieved with 1-new and 2-new, which is due to the memory
limitations of the GPU which prevent the largest NFA from
being loaded. However, this problem should disappear with
future generations hardware, as GPU vendors are constantly
increasing the amount of memory on their video boards.

Divergence, as measured by the nVidia profiler, is usually
below 5% and never exceeds 10%.

C. Multi-map alphabet compression efficiency

As the NFA generated by the multi-map algorithm are
completely different from the ones obtained with the other
techniques, additional tests have been performed in order to
show that the benefits of multi-map do not depend on the rule
sets. This is important in order to guarantee that the efficiency
of alphabet compression cannot be compromised by malicious
rule sets, carefully created in order to decrease the throughput
of the pattern matching algorithm.

These additional tests exploit randomly generated rule sets,
obtained by using a generator that extends the algorithm de-
scribed in [18] with the possibility to generate “nested” regular
expressions such as ab(c. ∗ d)+, thus yielding more realistic
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Fig. 10. Compression efficiency of 1-map and 2-map alphabet compression

rule sets. Moreover, this generator includes a parameter (ρ) that
controls the percentage of wildcards that occur in the generated
expressions. With ρ = 0, pure plain sequences of characters
(or sets of characters) are generated, while with ρ = 0.5 each
generated character (or set of characters) is associated to one
of the possible wildcards, like repetition operators such as +,
∗, {a, b} or the optionality operator ?.

Three different classes of rule sets have been generated:
“small” rule sets, made by 20 regular expressions of 20
characters each, “medium” rule sets, made by 50 regexps
of 50 characters each, and “large” rule sets, made by 100
regexps of 100 characters each. For each class, rule sets with
different values of ρ have been generated in order to study the
compression efficiency when varying this parameter.

For each generated rule set, the 2-stride NFA has been
built by using both new and 2-new. Then, for each NFA a
compression efficiency ratio has been calculated as Ceff =
(|Σ| − |Σ′|)/|Σ|, where |Σ| and |Σ|′ are the alphabet sizes of
the NFA measured before and after compression (1 means that
the alphabet size has been reduced to a negligible value, while
0 means that the compressor was unable to reduce the alphabet
size). For each value ρ, 10 rule sets have been generated for
each class and the average compression efficiency has been
plotted in Figure 10. The graph shows that the efficiency
of the 2-map algorithms (dashed lines) is always better than
that of the 1-map algorithms (continuous lines). Moreover, it
clearly shows that, even if with medium or large rule sets
the efficiency drops to 0 with complex rules (i.e., when ρ
increases), multi-map compression can support more complex
rules than its single-map counterpart.

D. System-wide run-time processing

The last tests aim at assessing run-time performance from a
system-wide perspective, hence considering that packets com-
ing from the network are (i) buffered, (ii) translated according
to the multiple maps in use, (iii) transferred to the GPU
through the PCI Express bus, and finally (iv) processed by
the NFA algorithm. Figure 11(a) shows the system throughput
(bars) and the maximum latency experienced by each packet
(line) with batches of different sizes. Experiments use the real
traffic traces and the 4-stride Snort 534 dataset, with 2 maps.
The used network is a 10 Gigabit Ethernet. Although the
throughput is maximum with the largest batch, it decreases
slowly with smaller batches, while at the same time latency
improves considerably. For instance, a batch of 1400 packets
achieves 92% of the throughput of the largest batch (28000
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Fig. 11. (a): Throughput (bars) and latency (line) with different sizes of the
processing batch; (b): latency breakdown in case of a batch of 5400 packets.

packets), but latency drops from 926 to 49 ms. This confirms
that our system does not trade throughput for latency and it
can achieve high throughput while keeping latency small.

Figure 11(b) explores the contribution of the above steps to
the overall latency. While, by definition, buffering and GPU
processing take the same time because we feed our system
with the maximum amount of data that can be processed, the
CPU-to-GPU transferring time is negligible in all conditions.
Instead, translation time, which increases with higher stride
levels, can contribute significantly to the overall latency and
it can also potentially limit the throughput when its duration
exceeds the GPU processing time (as in some of our 8x tests),
as the usual parallelization strategy (i.e., the CPU translates
the n-th packet while the GPU analyzes the (n-1)-th packet)
is no longer enough. However, the symbol translation code
used in the experiment could be greatly improved: features
like the data compression presented in Section VII can reduce
the global amount of memory accesses, thus increasing the
translation throughput; furthermore several CPU cores can be
used to translate (i) multiple packets in parallel, (ii) multiple
maps in parallel, and (iii) even partition the same input packet
on different cores, as the translation process is stateless.

Finally, it can be noted that the throughput of the translation
algorithm depends mainly on the number of memory lookups,
which can be safely assumed having a fixed cost because
dictionaries are so large to prevent the CPU to cache them.
Since the amount of memory accesses is only affected by the
number of used dictionaries and not by their size, the cost of
the translation depends only on the stride level. Consequently,
the NFA (hence the rule set) has almost no influence on the
translation process. In conclusion, the translation process does
not represent a problem for the time being, while several
possible improvement strategies are available for the future.

IX. CONCLUSION

Multi-striding, a well-known technique to improve the effi-
ciency of regex matching, presents some critical issues in the
process of building the multi-stride automaton. This paper has
presented new algorithms to overcome these limits, focusing
on NFA-based regex matching. First, a more efficient set of al-
gorithms (in terms of processing time and memory) to perform
stride doubling and single-map alphabet compression has been
proposed. Second, a new algorithm for alphabet compression



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. X, X 2015 14

based on the multi-map technique has been presented, along
with a companion GPU-based matching algorithm that makes
it particularly effective because of the capability to better
exploit the parallelism allowed by multi-map compression in
the NFA matching at run-time.

The experimental results show that the new algorithms for
building multi-stride NFA outperform the existing ones in
terms of both time and memory, hence enabling either to
handle more complex rule sets or to reach higher stride levels.
This result, coupled with the more efficient run-time matching
algorithm on GPUs, yields faster processing of network traffic.
Furthermore, tests with randomly generated and worst case
patterns show that the results do not depend on the chosen
rule sets nor are sensible to properly-crafted malicious traffic.

Two future research directions are envisionable. First, a
more efficient memory management in iNFAnt, mimicking
the technique proposed in [19], which enables the processing
of larger NFA. This could broaden the applicability of our
algorithms because we are able to build very efficient multi-
stride automata but we may be unable to use them with the
current hardware as they do not fit in the (limited) memory
size of current GPU cards. Second, the translation process can
represent another area of research, although with the current
hardware it is not yet a problem.
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