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Abstract

Max-min fairness (MMF) is a widely known approach to a fair allocation of bandwidth
to each of the users in a network. This allocation can be computed by uniformly raising the
bandwidths of all users without violating capacity constraints. We consider an extension of these
allocations by raising the bandwidth with arbitrary and not necessarily uniform time-depending
velocities (allocation rates). These allocations are used in a game-theoretic context for routing
choices, which we formalize in progressive filling games (PFGs).

We present a variety of results for equilibria in PFGs. We show that these games possess pure
Nash and strong equilibria. While computation in general is NP-hard, there are polynomial-time
algorithms for prominent classes of Max-Min-Fair Games (MMFG), including the case when all
users have the same source-destination pair. We characterize prices of anarchy and stability
for pure Nash and strong equilibria in PFGs and MMFGs when players have different or the
same source-destination pairs. In addition, we show that when a designer can adjust allocation
rates, it is possible to design games with optimal strong equilibria. Some initial results on
polynomial-time algorithms in this direction are also derived.

1 Introduction

Max-min fairness is a widely used paradigm for bandwidth allocation problems in telecommunica-
tion networks, most prominently, it is used as a reference point for designing flow control/congestion
control protocols such as TCP (Transport Control Protocol), see [33] for a more detailed discussion.
In a max-min fair allocation, the bandwidth of a user cannot be increased without decreasing the
bandwidth of another user, who already receives a smaller bandwidth. Max-min fairness also plays
an important role in the model of Kelly et al. [20], where congestion control protocols have been
interpreted as distributed algorithms at sources and links in order to solve a global optimization
problem (cf. [24, 23, 29] for further works in this area). Each user is associated with an increasing,
strictly concave bandwidth utility function and the congestion control algorithms aim at maximiz-
ing aggregate utility subject to capacity constraints on the links. Mo and Walrand [29] showed
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that within the model of Kelly et al., there is a family of utility functions whose global optimum
corresponds to a max-min fair bandwidth allocation and they devised a distributed max-min fair
congestion control protocol, see also [32] (Section 2.2) and [27]. For further distributed max-min
fair congestion control protocols, we refer to [36, 38]. There are several important generalizations
of max-min fairness such as weighted max-min fairness [36] and utility max-min fairness [12]. In
a weighted max-min fair allocation, the weighted bandwidth of a user cannot be increased with-
out decreasing the weighted bandwidth of another user, who already receives a smaller weighted
bandwidth. In a utility max-min fair allocation, each user is associated with an increasing (not nec-
essarily concave) bandwidth utility function and an allocation is utility max-min fair if the utility
of a user cannot be increased without decreasing the utility of another user, who already receives a
smaller utility. Utility max-min fairness (and also weighted max-min fairness) has been proposed for
giving some applications (e.g., real-time applications, or multi-media) a possibly larger bandwidth
share than others.

It is well known that (weighted) max-min fair allocations can be easily implemented by simple
polynomial time water-filling algorithms that raise the bandwidth of every user at a (weighted)
uniform speed and, whenever a link capacity is exhausted, fixes the bandwidth of those users
traversing this link [7]. As we will show in this paper, also utility max-min fair allocations can be
implemented by simple polynomial time water-filling algorithms that raise the bandwidth of every
user at a user-specific speed.

While most works in the area of flow control/congestion control assume that the routes of
users are fixed a priori, we study in this paper the flexibility of strategic route choices by users
(or players from now on) as a means to obtain high bandwidth. We introduce a general class of
strategic games that we term routing games with progressive filling. In such a game, there is a finite
set of resources and a strategy of a player corresponds to a subset of resources. Resources have
capacities and the utility of every player equals the obtained bandwidth which in turn is defined
by a predefined water-filling algorithm. If the allowable subsets of a player correspond to the set of
routes connecting the player’s source with its terminal, we obtain single-path routing modeling IP
(Internet Protocol) routing. Since IP routing is typically updated at a much slower timescale than
the flow control, we assume that flow control (modeled in this paper as a water-filling algorithm)
converges instantly to a "fair" allocation (max-min fair or generalizations thereof) after each route
update. The assumption that flow control converges instantly before route updates are triggered has
been made and justified before, see, e.g., Wang et al. [34]. Thus, once a player chooses a new route
his bandwidth share is determined by executing the water-filling algorithm. We will impose mild
conditions on the class of allowable water-filling algorithms: (i) for every player and every point in
time the integral of the rate function is non-negative and the integral of the rate function grows
monotonically; (ii) for every player the integral of the rate function tends to infinity as time goes to
infinity. While condition (i) is natural, condition (ii) simply ensures that the water filling algorithm
terminates and the induced strategic game is well-defined. Note that even though water-filling
algorithms are centralized algorithms we demonstrate that they represent a wide range of fairness
concepts including max-min fairness, weighted max-min fairness and utility max-min fairness for
which distributed and fast converging congestion control protocols are known [28, 29, 36, 38].

We consider existence, computation and quality of equilibria in routing games with progressive
filling. In a pure Nash equilibrium (PNE for short), no player obtains strictly higher bandwidth
by unilaterally changing his route. If coordinated deviations by players are allowed (for instance
by a single player coordinating several sessions or by a set of players connected via peer-to-peer
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overlay networks), the Nash equilibrium concept is not sufficient to analyze stable states of a game.
For this situation, we adopt the stricter notion of a strong equilibrium (SE for short) proposed by
Aumann [4]. In a SE, no coalition (of any size) can change their routes and strictly increase the
bandwidth of each of its members (while possibly lowering the bandwidth of players outside the
coalition). Every SE is a PNE, but not conversely. Thus, SE constitute a very robust and appealing
stability concept for which only a few existence results are known in the literature.

1.1 Our Results

Existence. For progressive filling games we prove that if water-filling algorithms satisfy conditions
(i) and (ii), every sequence of profitable deviations of coalitions of players must be finite and,
hence, SE always exist. Previously, it was only known that PNE exist if the water-filling algorithm
corresponds to the max-min fair allocation [37]. Thus, our results establish for the first time that
routing and congestion control admits a PNE (and even SE) for routing games where weighted- and
utility max-min fair congestion control protocols are used. We show that our assumptions (i) and
(ii) are "minimal" in the sense that if one of them is dropped, there is a corresponding two-player
game without PNE.

Complexity. In light of its practical importance, we study routing games with water-filling algo-
rithms inducing the max-min fair allocation. We first focus on the computational complexity of SE
and PNE. We give an algorithm that computes a SE for any progressive filling game under max-min
fair allocations. Our algorithm iteratively reduces the number of players allowed on a resource.
After each such reduction, a packing oracle is invoked that checks whether or not there is a feasible
strategy profile that respects the allowed numbers of players on every resource. If the oracle finds
a feasible allocation, the algorithm proceeds and, otherwise, we fix strategies for a suitable subset
of players. Obviously, the running time of the algorithm crucially relies on the running time of
the packing oracle. It is known, however, that if the strategy spaces correspond to, e.g., the set of
paths of a single-commodity network, or to bases of a matroid defined on a player-specific subset
of resources, the oracle can be implemented in polynomial time, thereby ensuring polynomial-time
computation of SE. We complement this result by showing various hardness results of computing
SE. In addition, we show a bound on the number of values of the potential function that also
represents an upper bound on the number of improvement steps to reach a PNE.

Quality. To measure the quality of an equilibrium, we use the achieved throughput defined as the
sum of the player’s bandwidths. This performance measure corresponds to utilitarian social welfare
and is the standard performance measure in traffic engineering. We use notions of price of stability
(PoS) and price of anarchy (PoA), which relate the cost of an equilibrium to the cost of a social
optimum. The standard definition of an optimum would refer to a set of route choices such that
throughput is maximized for a waterfilling algorithm with given allocation rates. In addition, our
bounds continue to hold even with respect to an optimum that is allowed to set arbitrary routes
and bandwidths respecting the resource capacities. Computing this general optimum is known in
combinatorial optimization as the maximum k-splittable flow problem.

We provide tight bounds for SE and PNE. In general, the PoS and PoA are n, which is tight
for both PNE and SE, even in single-commodity PFGs or multi-commodity MMFGs. In single-
commodity MMFGs, PoS for PNE and SE is

(

2− 1
n

)

, PoA for PNE is n and PoA for SE is 4.
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All bounds except the latter are tight. In addition, our algorithm that computes SE for single-
commodity MMFGs in polynomial time yields SE that match the PoS bound. In addition, we show
some improved bounds on the PoA for PNE in singleton PFGs.

Protocol Design. Using fixed allocation rates, improving upon the
(

2− 1
n

)

-bound is impossible
in the worst case. We show, however, that it is possible to show better results when we have slight
flexibility in allocation rates. We assume the freedom to “design a protocol” and adjust weights in
a weighted MMF waterfilling algorithm towards the topology of the instance. This allows to design
a game with an optimal SE that coincides with the maximum k-splittable flow. While computing
such an optimum is NP-hard, the result also shows that starting from any α-approximation to the
maximum k-splittable flow, we can design weights and a starting state, such that every sequence
of unilateral (coalitional) improvement moves leads to a PNE (SE) with the same approximation
ratio. We apply this approach in games with 3 players, where we can find in polynomial time a
solution that is a 1.5-approximation and represents a PNE for the chosen weights.

1.2 Related Work

Combined routing and congestion control has been studied by several works (cf. [11, 35, 21, 19]).
In all these works, the existence of an equilibrium is proved by showing that it corresponds to an
optimal solution of an associated convex utility maximization problem. This, however, implies that
every user possibly splits the flow among an exponential number of routes which might be critical
for some applications. For instance, the standard TCP/IP protocol suite uses single path routing,
because splitting the demand comes with several practical complications, e.g., packets arriving out
of order, packet jitter due to different path delays etc. This issue has been explicitly addressed by
Orda et al. [30].

Another related class of games are congestion games, where there is a set of resources, and the
pure strategies of players are subsets of this set. Each resource has a delay function depending
on the load, i.e., the number of players that select strategies containing the respective resource.
These games allow to model network structures, but they fail to incorporate a realistic allocation of
network capacities. The reason is that, even though we can define bandwidths allocated on an edge
as a function of the number of players using it, the bandwidth of a player would be given by the
sum of bandwidth allocated on edges he uses. This problem is addressed by bottleneck congestion
games [10] where the bandwidth of one player is rather given by the maximum bandwidth among
the edges he uses. It is known that strong equilibria exist for bottleneck congestion games [15].
The complexity of computing PNE and SE in these games was further investigated in [13], where a
central result is an algorithm called Dual Greedy that computes SE. On single-commodity network
or matroid bottleneck congestion games, it can be implemented to run in polynomial time. Still, for
an arbitrary state, the computation of a coalitional improvement step turned out to be NP-hard,
even for these classes. The PoA for PNE in bottleneck games can be polynomial in the network size,
for social cost being the sum of player delays [10] or maximum player delay [9, 6]. For the latter
cost function, the PoA for SE becomes 2 for symmetric games with linear delays [18]. Improved
results were obtained for variants, in which players individual costs are exponential or polynomial
functions of their delays [17, 8].

A fundamental drawback of bottleneck congestion games is that the bandwidth allocated to a
player on a specific edge is solely a function of the number of players on it. If one of the players does
not exhaust his allocated bandwidth share (e.g., because he has a smaller bottleneck on another
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edge) the remaining bandwidth remains unused. In max-min fair allocations [16], this leftover is
fairly distributed among players who can make use of it.

Yang et al. [37] introduced so-called MAXBAR-games which correspond to progressive filling
games using max-min fair allocations. They show that these games possess PNE and that the price
of anarchy for PNE is n in these games, where n is the number of players. It is also shown that
iterative computation of unilateral improvement steps converge in polynomial time to a PNE if the
number of players is constant.

Amaldi et al. [2] considered a centralized approach to computing routes maximizing the ag-
gregated bandwidth subject to max-min fair allocations. They show hardness results (for multi-
commodity networks) and devise an exact algorithm using column generation. Kleinberg et al. [25]
devise approximation algorithms (and hardness results) for the same problem using an approximate
version of max-min fairness.

In terms of combinatorial optimization, the problem of computing a strategy with maximum
aggregated bandwidth (without fairness constraints) is related to the maximum k-splittable flow
problem [5]. In contrast to the ordinary maximum flow problem, the number of paths flow is sent
along is bounded by k, for each commodity. Positive results were especially found for the single-
commodity case. For k = 2 and k = 3, a 3

2 -approximation was given and this result was generalized
to a 2-approximation for arbitrary fixed k. It turned out that, asymptotically, any approximation
with a factor of smaller than 6

5 is NP-hard to obtain. Furthermore, for k = 2, 3
2 is exactly the

inapproximability bound [26].

2 Progressive Filling Game

A progressive filling game is a tuple
(

N,R, (ci)r∈R , (Si)i∈N , (vi)i∈N , (ui)i∈N
)

, where N = {1, . . . , n}
is the set of players, R = {1, . . . ,m} is the set of resources, cr ∈ R+ is the capacity of re-
source r for each r ∈ R. The allocation rate is defined as vi : R+ → R+ and is assumed to
be (Riemann) integrable. The aggregated rate (or bandwidth) of player i at time t′ is defined as

Vi(t
′) =

∫ t′

0 vi (t) dt. We assume that for all i ∈ N , Vi ≥ 0, Vi(t) is monotonically non-decreasing in
t, and limt→∞ Vi(t) =∞. We denote by Si ⊆ P (R) the set of strategies of player i, for each i ∈ N ,
and S = S1 × · · · × Sn are the set of states. Note that this definition is kept very general and can
be restricted to model more specific objects, e.g. networks. An allocation in state S ∈ S is a vector
a = (a1, . . . , an) ∈ Rn of feasible bandwidths, i.e.,

∑

i∈N :r∈Si
ai ≤ cr, for each r ∈ R. The i-th com-

ponent of a is called the bandwidth or capacity of player i (in a). Given S, we create an allocation
the following way. Each of the players starts off with a bandwidth bi = 0. We raise their band-
widths with the velocity vi (t) at time step t ∈ R until a further increase would lead to non-feasible
capacities (i.e., one of the resources is saturated). At this point, we fix the bandwidths of all the
corresponding (saturated) players and continue with the other ones. See Algorithm 1 for a formal
description. For given S, we denote by ti(S) the finishing time, i.e., the time when player i’s band-
width is fixed. Thus, the payoff for player i is given by ui(S) = Vi(ti(S)) = ai. We can easily extend
our model to allow for player-specific payoff functions of the form ui(S) = Ui(Vi(ti(S))) = Ui(ai),
where Ui is a differentiable and strictly increasing bandwidth utility function. As long as Ui is
strictly increasing (yielding a monotone payoff transformation), an allocation is a PNE (SE) in the
new game iff it is one in the original game. We now state a useful observation linking the outcome
of Algorithm 1 with different fairness concepts.

Proposition 1. Let Ui, i ∈ N be a set of nonnegative, differentiable and strictly increasing bandwidth
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Algorithm 1 Progressive Filling(PF)

Parameters: A progressive filling game G =
(

N,R, (ci)r∈R , (S)i∈N , (vi)i∈N
)

Input: A state S = (S1, . . . , Sn) ∈ S.
Output: The bandwidth bi for each player i ∈ N .

1: bi ← 0, for all i ∈ N ;N ′ ← N
2: Nr ← {i ∈ N | r ∈ Si} ; c

′
r ← cr, for all r ∈ R

3: while N ′ 6= ∅ do

4: t⋆ ← min{t′ | ∃r ∈ R

with
∑

i∈Nr∩N ′

∫ t′

0 vi (t) dt = c′r
and Nr ∩N ′ 6= ∅}

5: choose r⋆ with
∑

i∈Nr⋆∩N
′

∫ t⋆

0 vi (t) dt = c′r⋆
and Nr⋆ ∩N ′ 6= ∅

6: for each i ∈ Nr⋆ ∩N ′ do

7: bi ←
∫ t⋆

0 vi (t) dt
8: N ′ ← N ′ \ {i}
9: for each r ∈ Si do

10: c′r ← c′r − bi
11: end for

12: end for

13: end while

14: return (b1, . . . , bn)

utility functions and let wi, i ∈ N be a set of nonnegative weights. For given progressive filling game
and state S, the following holds:

1. If for all i ∈ N : vi(t) = 1 and ui(S) = Vi(ti(S)), Algorithm 1 computes a max-min fair
bandwidth allocation under S.

2. If for all i ∈ N : vi(t) = wi and ui(S) = Vi(ti(S)), Algorithm 1 computes a weighted max-min
fair bandwidth allocation under S.

3. If for all i ∈ N : vi(t) =
d
dt

(

U−1
i (t)

)

and ui(S) = Ui(Vi(ti(S))), Algorithm 1 computes a utility
max-min fair bandwidth allocation under S.

Proof. As (1) and (2) are known in the literature (cf. [7]) we only prove (3). In order to obtain a
utility max-min fair allocation, we need to ensure that while raising rates, the bandwidth utilities
must be equally distributed. Thus, starting with t = 0 we set Ui(Vi(t) = t for all i ∈ N . This is
equivalent to U−1

i (t) = Vi(t) using that Ui is strictly increasing and thus invertible. Differentiating

both sides leads to vi(t) = d
dt

(

U−1
i (t)

)

as claimed. Since Ui is strictly increasing, its inverse is

also strictly increasing (and also nonnegative), hence, vi(t) satisfies all assumptions needed. Now it
follows by standard arguments (cf. [12]) that the resulting allocation is utility max-min fair.
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3 Existence of Equilibria

We first study game-theoretic properties of a progressive filling game. We show that SE exist and
moreover every sequence of improving deviations of coalitions converges to a SE.

Theorem 2. Every progressive filling game has a SE and every sequence of improving deviations
of coalitions converges to a SE.

Proof. Let G be a PFG and S a state in this game. For a player i, recall that we denote by ti (S) the
finishing time, i.e., the point in time when his bandwidth is fixed by Algorithm 1 on S. Likewise,
we denote by t̃r (S) the point in time when resource r gets saturated. In the remainder of the proof
we crucially exploit the monotone relationship between the obtained bandwidth and the finishing
time of every player. By the monotonicity of the Vi’s, if a player strictly improves his obtained
bandwidth by using an alternative strategy, then the new finishing time must strictly increase.

For a state S, we define a lexicographical potential function φ : S → Rn
+ as the vector of finishing

times sorted in non-decreasing order, i.e., φ (S) = (ti1 (S) , . . . , tin (S)) with {i1, . . . , in} = N and
tij (S) ≤ tij+1

(S).
The next lemma shows that in a state S an improving move of a coalition C to a state T implies

that φ(S) ≺ φ(T ) where ≺ denotes the lexicographic ordering of vectors. Thus, a ≺-maximal state
must be a SE. This implies the existence of the potential function and thereby the theorem.

Lemma 3. Let C ⊆ N be a coalition which has an improving move from S = (S1, . . . , Sn) to
T = (T1, . . . , Tn) where S, T ∈ S. Then we have

(a) ti (T ) ≥ ti (S), for all i ∈ N with ti (S) ≤ minj∈C tj (S), and
(b) ti (T ) > minj∈C tj (S), for all i ∈ N with ti (S) > minj∈C tj (S).

Proof. For some player i, note that we have t̃r (S) > t⋆ for all r ∈ Ti if and only if ti (S) > t⋆ for
some t⋆ ∈ R. Hence, it suffices to show that

(a′) t̃r (T ) ≥ t̃r (S), for all r ∈ R with t̃r (S) ≤ minj∈C tj (S), and
(b′) t̃r (T ) > minj∈C tj (S), for all r ∈ R with t̃r (S) > minj∈C tj (S).

For all r ∈ Ti for some i ∈ C, the claim directly follows because we have ti (T ) > ti (S) ≥
mini∈C ti (S) and thus t̃r (T ) > mini∈C ti (S). So let r ∈ R such that r is not used in T by any
player from C.

In S, no resource which is used by a player from C has been saturated before mini∈C ti (S).
Consequently, the bandwidth allocated to a player i is identical at time mini∈C ti (S) in S and T
for all i ∈ N \C. Since in T resource r is used by exactly the same players from N \C as in S and
by no player from C, the residual capacity of r at a time t ≤ mini∈C ti (S) is in T at least as high
as in S.

This last result immediately implies (a′). For (b′), let t̃r (S) > minj∈C tj (S). This means that
the residual capacity at time mini∈C ti (S) is above zero in S and hence also in T . By the continuity
of the indefinite integrals of the allocation rate functions, we obtain t̃r (T ) > minj∈C tj (S).

Note that the above result applies to PFGs in full generality, that is, only requiring that the
functions V are non-negative, non-decreasing, and tend to infinity for t going to infinity. We
now show that the assumptions underlying this result cannot be relaxed. Clearly, relaxing non-
negativity or relaxing the unboundedness of V makes not much sense. Negative aggregated rates
have no physical meaning, and for a bounded V there exists a game with large enough capacities
for which Algorithm 1 does not terminate. More interestingly, suppose we have an allocation rate
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function for which the aggregated bandwidth V (t) is non-monotonic. Note that this extension still
allows to use Algorithm 1 to calculate the allocation via progressive filling. We show that for any
such function, Theorem 2 does not hold anymore. This is even true if we restrict to two-player
games with symmetric strategy spaces.

Theorem 4. Let v be such that V : R+ → R+, t
′ 7→

∫ t′

0 v (t) dt satisfies V ≥ 0 and limt→∞ V (t) =
∞. If V (t) is not monotone, there is a two-player PFG Gv with symmetric strategy spaces that does
not have a PNE and only uses v and one constant function as allocation rate functions.

Proof. Let v be an allocation rate function such that the aggregated rate function V is not monotone.
By the continuity and non-negativity of V , there is t1 > 0 such that for every ǫ > 0, there is
t2 = t2(ǫ) ∈ (t1, t1 + ǫ) with V (t1) > V (t2) (see [14, Lemma 3.1]). Thus, we can choose t2 satisfying
t2 < t1+ ǫ for any ǫ > 0 to be specified later. Since v is Riemann integrable and thus on the interval
[0, t2] bounded, its indefinite integral V has a Lipschitz constant ρ > 0 on [0, t2].

We now describe the game Gv with two players {1, 2}. We set R = {r1, r2, r3} with cr1 = cr2 =
(ρ + 1)t1 + V (t1) and c3 = (ρ + 1)t2 + V (t2). Furthermore, the sets of strategies are S1 = S2 =
{{r1, r3} , {r2, r3}} . As allocation rate functions, we use v1 ≡ v and v2 ≡ ρ + 1. We claim that,
whenever both players share one of the resources r1 or r2, the shared resource is saturated at time t1
and player 2 gets bandwidth (ρ+1)t1 while player 1 gets bandwidth V (t1). To see this, we use the
Lipschitz inequality V (t)−V (t1)

t1−t
< (ρ+1) for all t ∈ [0, t1) implying (ρ+1)t+V (t) < (ρ+1)t1+V (t1) for

all t ∈ [0, t1). On the other hand, whenever player 2 is alone on either r1 or r2, resource r3 is saturated
at time t2 using again V (t)−V (t2)

t2−t
< (ρ+1) for all t ∈ [0, t2). By choosing t2 < t1+V (t1)/(ρ+1) (hence

t2 = t2(ǫ) with ǫ = V (t1)/(ρ+1)) we get (ρ+1)t2 < (ρ+1)t1+V (t1) and, thus, none of the resources
r1 or r2 gets saturated before t2. Consequently, player 2 gets bandwidth (ρ+1)t2 > (ρ+1)t1 while
player 1 gets bandwidth V (t2) < V (t1). Hence, there is no PNE.

4 Max-Min-Fair Progressive Filling Games

A special case of progressive filling games arises if all players raise their bandwidth uniformly,
i.e., vi(t) = 1 for all i ∈ N . This leads to allocations that are max-min fair. We call such
a game max-min-fair progressive filling game or MMFG. More formally, let S ∈ S be a state and
A = {a | a is an allocation in S}, then the unique �-maximal a⋆ in A is the max-min fair allocation.
In the following, we will study the computational complexity and efficiency of SE and PE in MMFGs.

4.1 Computing Equilibria

Similar to [13], we use a dual greedy algorithm [31] to compute strong equilibria. Our dual greedy
algorithm is allowed to query a strategy packing oracle that solves the strategy packing problem
which is the following: The input is given by a set R of m ∈ N resources, n sets of strategies
Si ∈ P (R), for all i ∈ {1, . . . , n}, along with upper bounds ur ∈ {0, . . . , n}, for each r ∈ R. The
output is a state (S1, . . . , Sn) ∈ S1×· · ·×Sn satisfying the upper bounds, i.e., |{i ∈ N | r ∈ Si}| ≤ ur,
for all r ∈ R, if it exists. Otherwise the output is the information that no such state exists.

The dual greedy algorithm initially allows an upper bound of ur = n players on each resource
r and every resource and every player is initially considered free. The algorithm starts with an
arbitrary state S of strategies for players. It iteratively decrements one of the bounds ur on a
free resource providing minimum bandwidth if each resource was used by ur players. After each
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Algorithm 2 Dual Greedy Algorithm
Let O denote the strategy packing oracle.
Input: A MMFG G =

(

N,R, (ci)r∈R , (S)i∈N
)

Output: A SE in G.

1: bi ← 0, for all i ∈ N ;N ′ ← N
2: ur ← n, c′r ← cr, for all r ∈ R
3: while N ′ 6= ∅ do

4: (S′
i)i∈N ′ ← O

(

R, (Si)i∈N ′ , (ur)r∈R
)

5: choose r⋆ ∈ argminr∈E:ur>0
c′r
ur

6: ur⋆ ← ur⋆ − 1
7: if O

(

R, (Si)i∈N ′ , (ur)r∈R
)

= ∅ then

8: ur⋆ ← ur⋆ + 1

9: b←
c′
r⋆

ur⋆

10: for each i ∈ N ′ with r⋆ ∈ S′
i do

11: Si ← S′
i

12: N ′ ← N ′ \ {i}
13: for each r ∈ Si do

14: ur ← ur − 1
15: c′r ← c′r − b
16: end for

17: end for

18: end if

19: end while

20: return S

decrement, it checks the existence of a strategy profile respecting the new upper bounds on the
number of players using it by invoking the strategy packing oracle. When a decrease produces
infeasible bounds, i.e., when there is no state of the game respecting the new bounds, it reverts
the last decrease. Now we know that in the profile that was returned by the oracle, exactly ur
players are using r and it is infeasible to further reduce ur. Thus, the algorithm turns r into a
fixed resource, and also fixes the ur players as well as their strategies. In addition, it decreases
every resource capacity by the amount given to the ur fixed players in their strategies. Then it
continues with the remaining players, resources, and residual capacities. For a formal statement of
the algorithm see Algorithm 2.

Theorem 5. The dual greedy algorithm computes a SE.

Proof. The main idea of the proof is similar to [13], i.e., the iterative assignment of Dual Greedy
yields a lexicographically maximal vector of bandwidths. Consider on each resource the residual
capacity not yet assigned to fixed players. We can assume that this residual capacity is offered in
equal shares to the remaining free players. Thus, the share of each free player only depends on
the number of free players using it. Hence, as long as no players are fixed, the game can be seen
equivalently as a bottleneck congestion game. In addition, once a resource and players are fixed,
then the bandwidth of a fixed player is smaller than the equal share of residual capacity on every
free resource he uses. This allows to inductively show correctness of the algorithm.

9



More formally, fix a run of the dual greedy algorithm on the input instance given in the formal
description and denote the output by S = (S1, . . . , Sn). Furthermore, by bi, for a player i ∈ N , we
denote his bandwidth calculated just before his strategy was fixed. We start off with proving the
following useful lemma.

Lemma 6. Consider the t-th run of the main loop in Algorithm 2 where t > 1. If ur > 0, the value

of c′r
ur

is not smaller than the value in the (t− 1)-th run of the main loop.

Proof (Lemma). Observe that, in one run of the main loop, the fraction c′r
ur

for some r ∈ R can only
be changed for the following two reasons.

Case 1: The resource r is chosen in line 5 and the oracle does not evaluate to ∅ in line 7. Then
ur is decremented, i.e., the above fraction is increased.

Case 2: A resource r⋆ (not necessarily r 6= r⋆) is chosen in line 5, the oracle evaluates to ∅ in line 7
and r occurs in k different strategies S′

i obtained from the oracle in line 4 where 1 ≤ k ≤ ur⋆ ≤ n.
According to the calculations from line 13 to line 16, the new value of the above fraction is

c′r − k ·
c′
r⋆

ur⋆

ur − k
=

ur⋆ · c
′
r − k · c′r⋆

ur⋆ · ur − k · ur⋆

where we let k < ur since, otherwise, the new ur is 0. Further, we have

ur⋆ · c
′
r − k · c′r⋆

ur⋆ · ur − k · ur⋆
≥

c′r
ur

which is equivalent to

ur⋆ · c
′
r − k · c′r⋆ ≥ ur⋆ · c

′
r − k · ur⋆ ·

c′r
ur

and because of the choice of r⋆ gives us c′r⋆/ur⋆ ≤ c′r/ur, which implies the claim.

Now let Nk be the set of players whose strategies are fixed as a consequence of the oracle’s k-th
evaluation to ∅. We show by induction on k that none of the players from N1⊎ · · · ⊎Nk will be part
of a coalition performing an improving move, for all k. Note that this proves the theorem because
we have N = N1 ⊎ · · · ⊎Nl for some l ∈ N.

The base case of k = 0 follows trivially. Now assume that the statement holds for some k < l.
To see that this implies the statement for k + 1, observe that the strategies Si and bandwidths bi
of the players i ∈ N1 ⊎ · · · ⊎ Nk are already fixed. Now suppose there is a coalition C ⊆ N with
C ∩Nk+1 6= ∅ profitably deviating from S to T = (S′

C , S−C). We consider the state of the variables
at line 9 after the oracle’s k + 1-th evaluation to ∅.

Since N1, . . . , Nk are not participating in the improvement step, Lemma 6 implies that Nk+1 ∈
argminj∈C bj (S). Thus, for i⋆ ∈ Nk+1, Lemma 3 can be used to obtain that

• bi (T ) ≥ bi⋆ (S), for all i ∈ N with bi (S) = bi⋆ (S), and

• bi (T ) > bi⋆ (S), for all i ∈ N with bi (S) > bi⋆ (S).

Again by Lemma 6, this means that we have lr (T ) ≤ ur, for all r ∈ R. In particular, we even
have lr⋆ (T ) < ur⋆ as C ∩Nk+1 6= ∅ and the players from C strictly improve. Such a state T may,
however, not exist by the evaluation of the oracle to ∅.
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Dual Greedy can be implemented in polynomial time given an efficient strategy packing oracle.
Hence, the problem of computing SE in MMFGs is polynomial-time reducible to the strategy packing
problem. There are several non-trivial cases in which the strategy packing problem is polynomial-
time solvable, e.g., for single-commodity networks [13]. Thus, we obtain the following result.

Corollary 7. SE can be computed in polynomial time for single-commodity network MMFGs.

In contrast, the strategy packing problem turns out to be NP-hard even if we generalize to
symmetric (non-network) strategy spaces.

Theorem 8. The strategy packing problem for symmetric strategies is NP-hard.

Proof. We reduce from the strongly NP-hard set packing problem. Given an instance of the set
packing problem I = (U ,S, k). From I , we construct the following strategy packing instance J .
As resource set, we choose U and, for each upper bound, we choose ur = 1. Furthermore, we set
S1 = · · · = Sk = S for the strategy sets. It is easy to see that there exists a set packing in I if
and only if there exists a strategy packing in J . This is because each family of subsets S ′ ⊆ S
gives a state in J and vice versa. Obviously, S ′ has mutually disjoint elements if and only if the
corresponding state is satisfies the upper bounds.

This result permits computation of SE polynomial time by other algorithms than Dual Greedy,
but, in fact, computation of SE and strategy packing are mutually polynomial-time reducible, even
for symmetric games.

Theorem 9. The computation of a SE in symmetric MMFGs is NP-hard.

Proof. We reduce the strategy packing problem to the computation of SE in symmetric MMFGs.

Let I =
(

R, (Si)i∈{1,...,n} , (ur)r∈R

)

be an instance of the symmetric strategy packing problem, i.e.,

we have S1 = · · · = Sk. We create a symmetric MMFG GI the following way. As resources, we
define

R′ = R ∪
{

r1, . . . , rn, r
′
1, . . . , r

′
n, r

⋆
}

.

The set of strategies for each of the n+ 1 players is defined by

S ′i =
{

S1 ∪
{

rj, r
′
j

}

| 1 ≤ j ≤ n ∧ S1 ∈ S1
}

∪ {{r1, . . . , rn, r
⋆} , R ∪ {r⋆}} .

Finally, we set

cr =











ur + 1, if r ∈ R

2− ε, if r = ri for some i

1, if r = r′i for some i or r = r⋆

as the capacity for each resource r ∈ R where we choose ε < 1
(n+1)n+1 . This defines a unique MMFG

GI with bandwidth functions (bi)i∈{1,...,n+1}. The model is illustrated in Figure 1. Furthermore,
this is obviously a polynomial time reduction (assuming ε is chosen accordingly).

We will now show that, from a SE S in GI such that each player gets at least a bandwidth of 1
in S, we can construct a strategy packing in I . Conversely, we will show that the existence of any
other SE already certifies that no such strategy packing exists.

The easier direction is the following. If in a state S = (S1, . . . , Sn) in GI , we have bi (S) ≥ 1, for
all i ∈ {1, . . . , n + 1}, at most for one player i⋆ we can have r⋆ ∈ Si⋆ because cr⋆ = 1. Furthermore,
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(a)

r⋆

1

r ∈ R

ur+1

r ∈ R

ur+1

r ∈ R

ur+1

rn

2–ε
r′
n

1

r ∈ R

ur+1

r ∈ R

ur+1

r ∈ R

ur+1

r2

2–ε
r′
2

1

r ∈ R

ur+1

r ∈ R

ur+1

r ∈ R

ur+1

r1

2–ε
r′
1

1

...
...

...∈ S1

(b)

r⋆

1

r ∈ R

ur+1

r ∈ R

ur+1

r ∈ R

ur+1

rn

2–ε
r′
n

1

r ∈ R

ur+1

r ∈ R

ur+1

r ∈ R

ur+1

r2
2–ε

r′
2

1

r ∈ R

ur+1

r ∈ R

ur+1

r ∈ R

ur+1

r1
2–ε

r′
1

1

...
...

...

Figure 1: Illustration of the strategies in the proof of Theorem 9. The strategies built from the
strategies in the strategy packing instance where a line between two sets indicates that the union
is in S ′ (a) as well as the two strategies independent of the strategies in strategy packing instance
(b) are shown. Note that the resources in (a) and (b) are identical.

as either r⋆ or some r′i ∈ R′ occur in every strategy and the latter resources only allow a total
bandwidth of n, there must exist at least one such player. Thus, there exists a unique player i⋆.

Moreover, we must have Si⋆ = R∪{r⋆} since, otherwise, r1, . . . , rn ∈ Si⋆ would hold, i.e., all the
other players could get at most bandwidth 2−ε

2 . Consequently, at most ur players from N \{i⋆} may
use a certain resource r ∈ R. As, for each i ∈ N \{i⋆}, it must hold that Si\{r1, . . . , rn, r

′
1, . . . , r

′
n} ∈

S1 ⊆ R, (Si \ {r1, . . . , rn, r
′
1, . . . , r

′
n})i∈N\{i⋆} is therefore a strategy packing in I .

For the other direction, we first introduce a lemma that, informally speaking, says that ε is small
enough.

Lemma 10. Let G be a MMFG such that the capacities ur are integral, for each r ∈ R. Then, for
each S ∈ S, there is a δ ∈ N with δ ≤ nn such that, for each player i ∈ N , the bandwidth bi (S) is
1
δ
-integral.

Proof (Lemma). Let S ∈ S and fix a run of Algorithm 1 on S. Define N1, . . . , Nk to be the partition
of N where Ni is the set of players which are fixed in the i-th run of the main loop. By induction
on i, we will now show that, for each i ∈ {1, . . . , k}, there is a δi ∈ Q with δi ≤ ni such that all
bandwidths of players in

⊎

j≤iNj as well as all the values of c′ are 1
δi

-integral at the end of the i-th
run of the main loop. This already implies the claim since k ≤ n.

For i = 0, there is nothing to be shown. Now let δi as above. Since the values of c′ are 1
δi

-integral,
the bandwidth calculated in line 4 and assigned in line 7 in the i + 1-th run of the main loop is

1
|Ni+1|·δi

-integral. The same holds for the values of c′ changed in line 10. So we set δi+1 := |Ni+1| ·δi.

By |Ni+1| ≤ n, we have δi ≤ ni+1.

Now let S = (S1, . . . , Sn) be a SE in GI such that there exists a player i with bi (S) < 1 and
consider three different cases.
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Case 1: There exists no player j such that r⋆ ∈ Sj. By Lemma 10, we know that bi (S) < 1−ε. So
it is profitable for this player to unilaterally deviate to the strategy {r1, . . . , rn, r⋆} yielding a
bandwidth of at least 1− ε for him. Hence, S is no SE, in contradiction to our assumption.

Case 2: There exists a player j such that Sj = {r1, . . . , r
′
n, r

⋆} but no player k exists with Sk =
R ∪ {r⋆}. This means that all players get a bandwidth of less than 1 in S (because either
r⋆ or a resource r′i occurs in each strategy). Therefore, they would all profitably deviate to a
state T with bi (T ) = 1, for all players i. We now show that, however, such a state would exist
in GI if there was a strategy packing in I . This immediately implies that there is no strategy
packing in I .

Let (S′
1, . . . , S

′
n) be the strategy packing in I . In T , player i uses the strategy S′ ∪ {ri, r

′
i},

for i ∈ {1, . . . , n}. Further, player n + 1 uses the strategy R ∪ {r⋆}. It can easily be verified
that each player gets bandwidth 1 in this state.

Case 3: There exists a player j such that Sj = R ∪ {r⋆}. We again distinguish two cases.

Case a: First, consider the case where another player k exists with k 6= j and r⋆ ∈ Sk.
This means that both players j and k get a bandwidth of less than 1. Furthermore,
each other player must also get a bandwidth of less than 1 since, otherwise (i.e., if there
exists a player l getting at least bandwidth 1), player j could unilaterally and profitably
deviate the following way. Player j imitates player l on R and moreover chooses resources
{ri⋆ , r

′
i⋆} such that r′i⋆ is not used in S, giving him a bandwidth at least as large as bj (S).

With the same argumentation as is Case 4.1, we can hence infer that there is no strategy
packing in I .

Case b: Now let player j be the unique player with r⋆ ∈ Sj and further let Sj = R ∪ {r⋆}.
We show again that bj (S) < 1 and apply the same argumentation as in Case 4.1 (the
preconditions of Lemma 10 are fulfilled since only resources with integral capacities are
saturated). If i = j, we are finished. So let i 6= j and suppose that, in S, each resource
r ∈ R is used by at most ur + 1 players. Since S is a SE, we know that, in this case,
each r′i is used by at most one player. Hence, Algorithm 1 calculates a bandwidth of 1
for each player; contradiction. Thus, there is a resource r ∈ R used by more than ur + 1
players.

If all r′i are used by one player each, there is a resource in R that is the first one saturated
in Algorithm 1 (by the existence of r), which implies the claim. So let i⋆ ∈ {1, . . . , n}
such that r′i⋆ is a resource not used in S and suppose bi (S) < bj (S). Then, player i
could, however, replace the resources from {r1, . . . , rn, r′1, . . . , r

′
n} he currently uses by

{ri⋆ , r
′
i⋆}, resulting in a bandwidth at least as large as bj (S).

4.2 Efficiency of Equilibria

In this section we investigate the quality of SE in terms of social welfare, i.e., the sum of al-
located bandwidth. In a game G, let S⋆ with allocation a be the state in S that maximizes
∑

i∈N ai. Further, let SSE ⊆ SNE ⊆ S denote the set of SE and NE, respectively. We denote
SWG(S) =

∑

i∈N bi(S). Then, the price of stability and price of anarchy, PoS and PoA, are defined
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s1 t1 = s2 t2 = s3 t3 = s4 tn

2

= sn

2
+1 = · · · = sn = tn

2
+1 = · · · = tn

. . .
1 1 1 1 1

0

Figure 2: Illustration of the network of the game Gn in the proof of Theorem 11.

as infS∈SNE
SWG(S

⋆)
SWG(S)

= infS∈SNE

∑
i∈N ai∑

i∈N bi(S)
and supS∈SNE

SWG(S
⋆)

SWG(S)
, respectively. For the strong

price of stability and anarchy, SPoS and SPoA, SSE is considered instead of SNE . Furthermore,
the same measures can be applied to classes of games where they are simply the supremum of all
individual measures.

The maximum capacity allocation problem (MCAP) is given by the problem of computing an
allocation a′ which maximizes

∑

i∈N a′i. Note that we have
∑

i∈N a′i ≥
∑

i∈N ai and that this
inequality may even be strict since a′ is not necessarily computed by progressive filling.

In general, one cannot hope to find SE with good social welfare. There are network MMFGs
in which even the best PNE is a factor of Ω (n) worse than the optimum. This matches the upper
bound of O(n) on the PoA for network MMFGs shown in [37].

Theorem 11. The PoS and SPoS in multi-commodity network MMFGs are Ω (n).

Proof. For a given n ∈ N, we construct a network MMFG Gn with n players and PoS of more than
n
4 . We assume w.l.o.g. that 2 | n.

The network underlying Gn consists of n
2 consecutive edges each of which has capacity 1 and

connects the source and sink nodes si, ti of one respective player i. The source and sink nodes of
the other n

2 players are the first and last vertex of this path. Additionally, there is one edge with
the capacity 0 between these two vertices. This network is illustrated in Figure 2.

At first, note that there are two strategies for each of the players. A player can either choose
the path through the 1-edges or the path which has the 0-edge in it. The latter path will, however,
not be taken in a PNE since avoiding the 0-edge always results in a bandwidth strictly larger than
0. Thus, in the unique PNE S, each 1-edge is congested with n

2 + 1 players, resulting in a social
welfare of SWGn (S) = n · 1

n
2
+1 = 2n

n+2 .

If, however, the players i ∈
{

n
2 + 1, . . . , n

}

altruistically take the direct 0-capacity path (si, ti)
instead, all the other players get a bandwidth of 1 by sticking to their paths from S. Consequently,

a lower bound on the PoS is
n
2

SWGn (S)
=

n
2
2n
n+2

= n+2
4 > n

4 .

In contrast, when all players have the same strategy set, the best SE achieves a good approx-
imation, and such a good SE is found by Dual Greedy (for single-commodity networks even in
polynomial time).

Theorem 12. The PoS and SPoS in symmetric MMFGs are 2 − 1
n
, and this bound is tight. The

Dual Greedy computes an SE achieving this guarantee.
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Proof. For the upper bound, we use an idea from [5] and define the uniform MCAP as the restriction
of the MCAP to uniform bandwidth values, i.e., we additionally require that the found allocation
is a vector (a, . . . , a) for some a ∈ R. It is easy to see that the smallest bandwidth in the state SDG

computed by Dual Greedy solves the uniform MCAP. That is mini∈N bi (SDG) = v where n · v is
the optimal value of the uniform MCAP.

Lemma 13. Let S = (S1, . . . , Sn) be a solution of Dual Greedy on G and n · v be the optimal value
of the uniform MCAP, for n ∈ N and v ∈ R. Then, we have v = mini∈N bi (S) .

Proof (Lemma). We show the lemma in two steps:
v ≤ mini∈N bi (S): By Lemma 6, mini∈N bi (S) is exactly the bandwidth allocated to a player

after the oracle has evaluated to ∅ for the first time. Again by Lemma 6, such an evaluation to ∅
means that there is no state S′ ∈ S with bj (S

′) > mini∈N bi (S), for all i ∈ N . This implies the
claim since, otherwise, such a state S′ is given by the optimal solution of the uniform MCAP.

v ≥ mini∈N bi (S): Suppose v < mini∈N bi (S). Then we construct a feasible solution of the
uniform MCAP with a larger value. We choose S as state and mini∈N bi (S) as bandwidth for
each player (which is feasible since we only possibly lower the feasible bandwidth bi (S), for all
i). This may, however, not happen as the solution to the uniform MCAP has the value n · v by
assumption.

Thus, the upper bound follows from the next lemma.

Lemma 14. An optimum to the uniform MCAP is a
(

2− 1
n

)

-approximation for the MCAP.

Proof (Lemma). Let n ·v be the optimal value of the uniform MCAP. Consider an arbitrary feasible
solution attained by the state S = (S1, . . . , Sn) and the respective allocation (a1, . . . , an). Define
αi ∈ R+ such that ai = αi · v, for all i ∈ N .

Now suppose that
∑

i∈N αi > 2n − 1. Then we can construct a new state S′ = (S′
1, . . . , S

′
n)

with a corresponding bandwidth v′ > v for each player. In S′, we use at most ⌈αi⌉ − 1 copies of
the strategy Si, for all i, and no other strategy. Furthermore, we set v′ := mini∈N

αi

⌈αi⌉−1 · v. Three
properties of this solution remain to be shown:

1. There are at least n (not necessarily different) strategies constructed for S′ above. Using that
⌈αi⌉−1 ≥ αi−1 holds for all i, we get:

∑

i∈N (⌈αi⌉ − 1) ≥
∑

i∈N (αi − 1) =
(
∑

i∈N αi

)

−n >
n− 1. As

∑

i∈N (⌈αi⌉ − 1) must be integer, it follows that
∑

i∈N (⌈αi⌉ − 1) ≥ n.
2. The constructed bandwidths are feasible. We only use the strategies from S for which

(a1, . . . , an) is an allocation. So it suffices to see that for all i, in the constructed solution, the
total capacity on Si is at most as high as ai: (⌈αi⌉ − 1) · v′ = (⌈αi⌉ − 1) ·minj∈N

αj

⌈αj⌉−1 · v ≤

(⌈αi⌉ − 1) · αi

⌈αi⌉−1 · v = ai.

3. It indeed holds that v′ > v: by ⌈αi⌉ − 1 < αi, we have αi

⌈αi⌉−1 > 1 for all i, i.e., we also have

mini∈N
αi

⌈αi⌉−1 > 1 and hence v′ > v.
Thus, we have constructed a new solution of the uniform MCAP with a higher value than n · v. So
the initial solution cannot be maximal, i.e., we obtain a contradiction. So we must have

∑

i∈N αi ≤
2n− 1, which implies

∑

i∈N ai

n · v
=

∑

i∈N αi · v

n · v
=

∑

i∈N αi

n
≤

2n − 1

n
.
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For the lower bound consider for given n ∈ N and ε ∈ R with ε > 0 a single-commodity network
MMFG Gn,ε. From the source to the sink node, there are n − 1 parallel edges each of which has
capacity 1 − ε. Moreover, there is one single edge with capacity n. In the optimal state, every
edge is used by one player each, i.e., we obtain a social welfare of 2n − 1 − (n− 1) · ε. In a NE,
however, every player uses the edge with capacity n because the bandwidth for each player is at
least 1 > 1− ε on this edge. Thus, the social welfare is exactly n in this state. Therefore, it holds
that

PoS (Gn,ε) =
2n− 1− (n− 1) · ε

n
= 2−

1

n
−

n− 1

n
· ε .

In symmetric games even the worst SE is still a 4-approximation. For n = 2, we can tighten the
bound on the SPoA to the lower bound of the SPoS of 3

2 .

Theorem 15. The SPoA for symmetric MMFGs is at most 4− 6
n+1 .

Proof. Let G be a symmetric MMFG and let S be a SE in this game. Then in S each player must get
at least a bandwidth of 1

2 maxi∈N bi (S), as otherwise this player could profitably imitate a player
in argmaxi∈N bi (S) by choosing the same strategy. Thus, we can lower bound the social welfare by

SWG (S) =
∑

i∈N

bi (S) ≥

(

n− 1

2
+ 1

)

·max
i∈N

bi (S) . (1)

State SDG computed by Dual Greedy in G is such that mini∈N bi (SDG) = v where n·v is the opti-
mal value of the uniform MCAP. Consequently, for any other SE S, we must have maxi∈N bi (S) ≥ v,
because otherwise all the players could profitably switch to their strategies in SDG. Using Equa-
tion 1, this means SWG (S) ≥

n+1
2 · v, and hence we obtain

maxS′∈S SWG (S
′)

SWG (S)
≤

2n

n+ 1
·
maxS′∈S SWG (S

′)

n · v

≤
2n

n+ 1
·
2n− 1

n
=

4n− 2

n+ 1
.

Theorem 16. The SPoA for symmetric MMFGs with 2 players is 3
2 and this bound is tight.

Proof. Let G be a symmetric MMFG with n = 2 and let S be a SE in this game. Further, let S′ be
an arbitrary (optimal) state. W.l.o.g., we may assume that b1 (S) ≤ b2 (S) and b1 (S

′) ≤ b2 (S
′).

Note that b1 (S) ≥ b1 (S
′) or b2 (S) ≥ b2 (S

′) must hold. Otherwise switching from S to their
strategies in S′ would be profitable for both players. Thus, the following case distinction is complete.

Case 1: We have b1 (S) ≥ b1 (S
′). We can also derive an upper bound on b2 (S

′). If b2 (S′) >
2 · b1 (S), player 1 could profitably deviate to S′

2 in S. So we must have b2 (S
′) ≤ 2 · b1 (S). Thus,

SWG (S
′)

SWG (S)
=

b1 (S
′) + b2 (S

′)

b1 (S) + b2 (S)
≤

3 · b1 (S
′)

2 · b1 (S)
≤

3

2
.
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Case 2: We have b2 (S) ≥ b2 (S
′). We find an upper bound on b2 (S). Since b1 (S) <

1
2 ·b2 (S) would

mean that player 1 could profitably imitate player 2 in S, it holds that b1 (S) ≥
1
2 · b2 (S). This

implies
SWG (S

′)

SWG (S)
=

b1 (S
′) + b2 (S

′)

b1 (S) + b2 (S)
≤

2 · b2 (S
′)

3
2 · b2 (S)

≤
4

3
<

3

2
.

The lower bound immediately follows from Theorem 12.

In addition, we show a lower bound of Ω(n/k) on the k-SPoA for k-SE, where only deviations
of coalitions of size at most k are considered.

Theorem 17. The k-SPoA for single-commodity network MMFGs is in Ω
(

n
k

)

.

Proof. We construct a family of single-commodity networks MMFG Gn,k with SPoA n
k
. As we are

showing an asymptotical lower bound, we may assume w.l.o.g. that k | n.
The game Gn,k consists of k gadgets Gn,i for i ∈ {1, . . . , k} where gadget Gn,i = (Vn,i, En,i, cn,i)

is the following network. For the vertices and edges, we set

Vn,i = {ui, vi,1, . . . , vi,n, wi,1, . . . , wi,n, ui+1} ,

En,i = {ui} × {vi,1, . . . , vi,n} ∪ {(vi,j, wi,j) | 1 ≤ j ≤ n}

∪ {(wi,j, vi,j+1) | 1 ≤ j ≤ n− 1} ∪ {wi,1, . . . , wi,n} × {ui+1}

and, further, we let cn,i (e) = 1, for all e ∈ E.
By arranging the Gi,n in a row, we obtain the network underlying Gn,k. More specifically, this

network is

(

Vn,1 ∪ · · · ∪ Vn,k, En,1 ∪ · · · ∪ En,k ∪ E⋆
n,k, cn,1 ∪ · · · ∪ cn,k ∪ c⋆n,k

)

with the source and sink nodes u1 and uk+1, respectively, and where

E⋆
n,k = {(u1, vi,1) | 2 ≤ i ≤ n} ∪ {(wn,1, un+1) | 1 ≤ i ≤ n− 1} .

Moreover, c⋆n,k is again constantly 1 on E⋆
n,k. This network is illustrated in Figure 3.

Since all the edges have capacity 1, the optimal social welfare is n. In particular, in an optimal
state player i chooses the path (u1, v1,i, w1,i, u2, v2,i, . . . , wn,i, un+1), which can easily be verified.
Thus, the optimal social welfare is n.

We now describe a state S⋆ (also shown in Figure 3) that will be shown to be a k-SE and attain
a social welfare of k, implying the claim. We partition the player set N into N1, . . . , Nk with each
player j ∈ Ni choosing the path (u1, vi,1, wi,1, vi,2, wi,2, . . . , vi,n, wi,n, ui+1), for all i ∈ {1, . . . , k}.
Then, obviously, the paths of the players from different sets Ni are pairwise arc-disjoint. Hence, the
social welfare in S⋆ is indeed k.

It remains to be shown that S⋆ is indeed a k-SE. Towards a contradiction, suppose that there
is a coalition C ⊆ N with |C| ≤ k and a state S′ such that each player in C strictly improves when
moving from S⋆ to T =

(

S′
C , S

⋆
−C

)

. We distinguish two cases and will use implicitly that in S⋆

there is no edge with more than n
k

players on it.

Case 1: There is an i ∈ {1, . . . , k} such that Ni ∩ C = ∅. W.l.o.g., i is the minimum i with this
property. Furthermore, we let p be the number of such sets, i.e. p = |{j | Nj ∩ C = ∅}|.
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Figure 3: Illustration of the network of the game Gn,k with the SE S⋆ in the proof of Theorem 17.

First note that, if a player from C passes through a gadget Gn,j with Nj∩C = ∅, the global
bottleneck edge will be used by at least k+1 players and thus by at least one player from
C. So each player from C must use at least one edge from EC = {(wj,n, uk+1) | 1 ≤ j < i}
∪ {(u1, vj,1) | i ≤ j ∧Nj ∩ C 6= ∅}.

Now note that there are n−p · k
n
−|C| players from N \C on EC and we have |EC | = k−p.

Thus, in T , there is a global bottleneck edge that has at least

n− p · n
k

k − p
=

n

k

players and, among them, one player from C on it. This player does not strictly improve.

Case 2: For each i ∈ {1, . . . , k}, it holds that |Ni ∩ C| = 1. Then, on each path from u1 to uk+1

there is an edge used by exactly n
k
− 1 players from N \C. Thus, adding the players from

C to them produces a global bottleneck edge with at least n
k

players on it. Consequently,
the players from C on the global bottleneck edge cannot strictly improve.

5 General Progressive Filling Games

5.1 Complexity and Convergence

The lexicographical potential function for PFGs implies that the length of each coalitional improve-
ment sequence is finite. By Φord, we denote the set of ordered values of φ, i.e., Φord := img (ord ◦ φ)
where ord is the function which orders a vector, say ascendingly. The cardinality of the above set
provides an upper bound on the length of improvement sequences.
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Figure 4: Illustration of the network in the proof of Theorem 18.

For a MMFG with n players and m resources, Yang et al. [37] provide an upper bound of (mn)n

on the number of improvement steps to reach a PNE. In the following, we show that it is not possible
to get this result by just bounding |Φord|.

Theorem 18. There is a family of network MMFGs Gn with m ∈ Θ(n) and respective potential

function Φord such that |Φord| is in 2Ω(n
2) = ω

(

(n2)n
)

.

Proof. Since we are proving an asymptotical lower bound, we may assume w.l.o.g. that 2 | n. We
now describe the multigraph underlying Gn.

For each player i ∈
{

n
2 + 1, . . . , n

}

, we have a gadget in this multigraph. This gadget consists
of two parallel edges, both connecting the source and the sink nodes (si and ti, respectively) of the
particular player. One of these edges (referred to as the left edge) has a capacity of 2

n
2
+1 whereas

the other one also has at least this capacity. The gadgets are arranged in a row such that si = ti+1

for i ∈
{

n
2 + 1, . . . , n− 1

}

. All the other players i ∈
{

1, . . . , n2
}

have one disjoint source node si
each and tn as sink node. Moreover, there is one edge connecting si and sn

2
with capacity 2i−1.

This results in a network as shown in Figure 4. Obviously, the number of edges is in Θ(n).
Note that, independently of the path a player i ∈

{

1, . . . , n2
}

chooses, he is always assigned the
respective bandwidth 2i−1 in the max-min fair allocation. This is because the residual capacity of
an edge from the gadgets is larger than each of the bandwidth of players from

{

1, . . . , n2
}

, even if
all these players use this edge.

Consequently, the players
{

1, . . . , n2
}

are capable of choosing any natural number between 2
n
2 +1
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and 2
n
2
+1 for the residual capacity of each of the n

2 left edges in the different gadgets. More
specifically, let xn

2
xn

2
−1 . . . x1 be the binary representation of a natural number x such that 2

n
2
+1−x

is from that interval. To obtain the desired residual capacity on a left edge in a given gadget, player
i simply chooses this edge in his path if and only if we have xi = 1. This has indeed the desired effect
since 2

n
2
+1 −

∑

i∈N :xi=1 2
i−1 = 2

n
2
+1 − x. We now give a lower bound on the number of different

ordered allocation vectors. Since we want to derive a lower bound, it suffices to show the claim for
allocations where the residual capacity of the left edge in the i-th gadget (i.e. the one of player
n
2 + i) is between 2

n
2 +1+ (i− 1) ·

⌊

(2
n
2 − 1)/n

⌋

and 2
n
2 +1+ i ·

⌊

(2
n
2 − 1)/n

⌋

and player i chooses

this edge. In these allocations, the bandwidth of player i occurs in the ordered allocation vector
before the one of player i+ 1, for all i ∈

{

n
2 + 1, . . . , n− 1

}

. Consequently, the claim is implied by
the following bound on the number of ordered allocations

⌊

2
n
2 − 1

n

⌋
n
2

=

(

2Ω(n)

2O(logn)

)Ω(n)

= 2Ω(n)·Ω(n) = 2Ω(n
2).

We now provide an upper bound on the number of ordered values of the potential, even for
general progressive filling games. For m = Θ(n), this yields an upper bound of 2O(n2).

Theorem 19. For arbitrary PFGs with the potential function φ, it holds that |Φord| ≤ 2n
2

·mn.

Proof. Let G be a PFG with potential function φ. We claim that the number of different vectors
up to the k-th position (for k ≤ n) in |Φord| is at most 2k·n ·mk. It is shown via induction on k.

For k = 0, the claim is clear as there is only the vector of dimension 0. So let n ≥ k > 0 and
assume there are at most 2(k−1)·n ·m(k−1) different vectors up to the position k−1 in Φord. We now
fix the first k−1 positions of a vector in Φord and bound the number of entries at the k-th position.
Note that one can calculate the next finishing time given the resource which is saturated and the
subset of players on that resource. Since there are 2n ·m such combinations, the claim follows.

Theorem 9 shows that computing SE is NP-hard in MMFGs. For general PFGs with constant
allocation rates (i.e., weighted MMF allocations), the same result holds even for single-commodity
network games with two players. Hence, extending Dual Greedy to compute SE in polynomial time
for this case is impossible.

Theorem 20. Let v1 6= v2 be two constant allocation rate functions and consider the class of single-
commodity network PFGs with two players and v1, v2 as allocation rate functions. In this class, the
computation of SE is NP-hard.

Proof. We reduce from the 2-directed-arc-disjoint-paths problem (2DADP). Let I be an instance
of this problem. W.l.o.g., we can assume that there are paths in D from s1 to t1 and from s2 to t2
and, further, that v1 ≡ 1 and v2 ≡ λ where λ < 1. Furthermore, we choose an ε ∈ (0, 1− λ).

We construct the network underlying the single-commodity network PFG GI by keeping D,
adding the source and sink nodes s and t, respectively, and the four edges (s, s1), (s, s2), (t1, t) and
(t2, t). The capacities are

c (s, s1) = c (t1, t) = 1 + λ and c (s, s2) = c (t2, t) = λ+ ε.
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Figure 5: Illustration of the network of the game GI in the proof of Theorem 20.

The capacities of all edges occurring in D are set to 1 + λ. This construction is illustrated in
Figure 5.

We first show that each SE S with two arc-disjoint paths from s to t certifies that I is solvable.
To see this, note that player 1 will always choose a path of the form (s, s1, . . . , t1, t) because, even
if he has to share an edge with player 2, he gets bandwidth 1 > λ+ ε. Hence, the path of player 2
must indeed connect s2 and t2.

We also show that each SE S without this property certifies that no arc-disjoint paths from s1 to
t1 and from s2 to t2 exist. In S, both players share a common edge, i.e., player 1 gets a bandwidth
of 1 and player 2 a bandwidth of λ. Thus, if there were two arc-disjoint paths (s, s1, . . . , t1, t) and
(s, s2, . . . , t2, t), both players could profitably change to these paths and get bandwidths of 1 + λ
and λ+ ε.

Let us instead consider PNE, which may be easier to compute than SE. Similar to a result
from [37] for MMFGs, we first show that one can efficiently compute a unilateral improvement step
for a given player in a PFG with constant allocation rate functions (if it exists). Using Theorem 19,
computation of PNE can be done efficiently for a constant number of players.

Lemma 21. In PFGs with constant allocation rate functions, an improving move of any player i
in any state S can be computed in polynomial time if it exists.

Proof. The bandwidth of player i in the state ({r} , S−i) can by computed in polynomial time by
Algorithm 1. Further, for a given strategy S′

i, the bandwidth of player 1 only depends on the resource
which gets saturated first, i.e., bi (S′

i, S−i) = minr∈S′
i
bi ({r} , S−i), which can easily be verified on

Algorithm 1. Thus, it suffices to calculate minr∈S′
i
bi ({r} , S−i) for all possible alternative strategies

S′
i to decide whether there is an improvement step from S for player i.

If the strategies are given explicitly as input, this value can be explicitly computed for each of
the strategies. If strategies are given implicitly in the form of a network, we can use, e.g., Dijkstra’s
algorithm to find a path P ⋆ with the maximum minr∈P ⋆ bi ({r} , S−i).

Corollary 22. A PNE can be computed in polynomial time in PFGs with constant allocation rate
functions and a constant number of players.

5.2 Quality of Equilibria

In this section we prove results on PoA and PoS for NE in PFGs. In general, Theorem 11 in the
previous section yields a lower bound on the PoA in MMFGs of Ω (n). In fact, n is also the correct
upper bound on the PoA, for every PFG.

Theorem 23. The PoA in PFGs is at most n.
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Proof. Consider a PFG G with state set S = S1 × · · · × Sn. Then choose

Sj ∈ argmax
S∈S1∪···∪Sn

min
r∈S

cr

as a strategy with the maximum bottleneck resource, where j is a player with Sj ∈ Sj . Now consider
an arbitrary NE S′ and distinguish two cases.

Case 1: There is a saturated resource among the resources of Sj in S′. By the choice of Sj,

SWG

(

S′
)

≥ min
r∈Sj

cr ≥
1

n
SWG (S⋆) ,

for any other (optimal) state S⋆.

Case 2: There is no saturated resource among the resources of Sj in S′ but adding a bandwidth
of δ > 0 on Sj would saturate a resource. If player j already uses a resource from Sj in S′

j,
then S′ is no NE because using Sj as strategy instead would increase the bandwidth of player
j by δ.

So let S′
j ∩ Sj = ∅. Then player j must get a bandwidth of at least δ in S′ since it would be

profitable to use Sj as strategy instead. Consequently, we get

SWG

(

S′
)

≥

(

min
r∈Sj

cr − δ

)

+ δ = min
r∈Sj

cr ≥
1

n
SWG (S

⋆)

for any other (optimal) state S⋆.

An improved result can be obtained for singleton games. We have already seen a lower bound
of 2− 1

n
on the PoA in Theorem 12, as the tightness construction is a symmetric singleton MMFG.

We now prove that this lower bound is tight, even in general singleton PFGs.

Theorem 24. The PoA in singleton PFGs is 2− 1
n

and this bound is tight.

Proof. For a state S ∈ S, we denote the resources used in S by RS = {r ∈ R | lr (S) 6= 0}. As the
limits of the indefinite integrals of the allocation rate functions for x→∞ are also ∞, we get that

SWG (S) =
∑

r∈RS

cr.

Further, let S be a NE in G and S⋆ an arbitrary other (optimal) state. Since no player unilaterally
deviates from his strategy in S to a resource r /∈ RS , we must have

cr ≤ min
i∈N

bi (S) ≤
SWG (S)

n
, (2)

for all r /∈ RS . In particular, this holds for each resource r ∈ RS⋆ \RS . Distinguish two cases:

Case 1: We have RS ∩RS⋆ = ∅. Then, by the previous observation, it follows that

SWG (S
⋆)

SWG (S)
=

∑

r∈RS′\RS
cr

∑

r∈RS
cr

≤
(2)

SWG (S)

SWG (S)
= 1 .
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Case 2: We have RS ∩RS⋆ 6= ∅. Then, again by the previous observation, it follows that

SWG (S
⋆)

SWG (S)
≤

∑

r∈RS
cr +

∑

r∈RS⋆\RS
cr

∑

r∈RS
cr

≤
(2)

(

1 + n−1
n

)

· SWG (S)

SWG (S)

= 2−
1

n
.

Finally, we show a lower bound of n on the PoS if we leave the singleton case. For multi-
commodity network MMFGs we proved a bound of Ω(n) in Theorem 11 in the previous section. We
show that this lower bound can even be established in single-commodity network PFGs. The reason
for this is that a player with a fast-growing bandwidth may make his decision (nearly) unaffected
of the decisions of all the other player decisions and hence possibly blocks all strategies for other
players. This argument even applies if we only allow constant allocation rate functions.

Theorem 25. The PoS in single-commodity network PFGs with constant allocation rate functions
is at least n.

Proof. For each ε ∈ (0, 1], we construct a family of single-commodity PFGs Gn,ε with n players and
PoS at least n

1+2ε . For such a game, we employ a gadget Gn,i from the proof of Theorem 17 as
underlying network. We omit the i in the indices and call ui and ui+1 simply s and t, respectively.
Further, we adapt the capacities of the edges in the following way. We set

ce =

{

1 + ε, if e = (s, v1) or e = (wn, t) or e is not incident to s or t

1, else
,

for all e ∈ E. To obtain a PFG from this network, we equip player 1 with an allocation rate function
which is constantly 1 and all the other players from {1, . . . , n} with functions which are constantly
ε
n
.

Consider a state S with social welfare n. Such a state evolves if player i chooses the path
(s, vi, wi, t), for all i. Player 1, however, has an incentive to use the path (s, v1, w1, v2 . . . , vn, wn, t)
instead of any other path with capacity 1 – even if player 1 had to share a (1 + ε)-edge with all
the other players he would get a bandwidth larger than 1. More specifically, if this edge is the first
one saturated by Algorithm 1 (which is the case when player 1 chooses the considered path), the
finishing time of this edge is larger than 1.

Now let S′ be the NE with the highest social welfare. By the previous considerations, player
1 uses the path (s, v1, w1, v2 . . . , vn, wn, t) and obviously gets at most a bandwidth of 1 + ε in S′.
Since we chose ε ≤ 1, all the other players get at most a bandwidth of 2ε

n
. This bound is tight if

ε = 1 and all these players only share an edge with player 1.
We can now compare the social welfare of the states S and S′ (both illustrated in Figure 6) and

obtain that PoS (Gn) ≥
n

1+2ε . Hence, we get sup {PoS (Gn,ε) | n ∈ N ∧ ε ∈ R ∧ ε > 0} ≥ n, which
implies the claim.
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Figure 6: Illustration of the network of the game Gn,ε from the proof of Theorem 25 with (a) the
best NE S′ and (b) the optimal state S in terms of social welfare.

5.3 Changing the Allocation Rate Functions

Dual Greedy computes a SE that is a 2 − 1
n
-approximation and this bound is tight. To stabilize

better solutions, in this section we take a “protocol design” approach. We assume the waterfilling
algorithm can determine a set of constant allocation rate functions for each instance. Interestingly,
for any given collection of players, resources, capacities and strategy sets, one can give constant
allocation rate functions such that the resulting PFG has an SE with social welfare as high as the
optimal value of the MCAP.

Theorem 26. Let G be a PFG with player set N and v⋆ be the optimal value of the MCAP. There are
constant allocation rate functions (v′i)i∈N such that the maximal social welfare in G with allocation
rate functions replaced by (v′i)i∈N is v⋆ and the SPoS in this game is 1.

Proof. Let the state S = (S1, . . . , Sn) along with the allocation a = (a1, . . . , an) be an optimal
solution of the MCAP. We use allocation rate function v′i ≡ ai for each player i ∈ N . We call the
corresponding PFG G′. If we run the progressive filling algorithm in S with v′, all finishing times
are exactly 1 and the allocation is exactly a.
We show that S is a SE in G. Towards this, suppose that there is a coalition profitably deviating from
S to T . Then, by Lemma 3, the finishing times and thus bandwidths of all players in N \C remain
identical in T whereas the players from C strictly improve. Consequently, we have constructed a
solution of the MCAP on M with a higher social welfare – a contradiction.

Not surprisingly, this approach is intractable, as the MCAP is NP-hard to approximate to within
a factor 3

2 − ε, even for arbitrary fixed rates.

Theorem 27. For 2 players, it is NP-hard to approximate the MCAP with a factor of smaller than
3
2 . This also holds for the MCAP with arbitrary fixed rates.

Proof. We use the reduction from the proof of Theorem 20 for λ = 1 and ε = 0. Since for two players,
the allocation rate functions do not affect the social welfare in a given state, our argumentation
works completely without allocation rate functions, even for the MCAP with fixed rates.
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Each state with optimal social welfare 2 certifies that there are no arc-disjoint paths (v1, . . . , vk)
and (w1, . . . , wl) from s1 to t1 and from s2 to t2, respectively, since, otherwise, the state
((s1, v1, . . . , vk, t1) , (s2, w1, . . . , wl, t2)) would attain a social welfare of 3.

Conversely, each state with a social welfare higher than 2 must use two arc-disjoint paths in
D. Further, these paths must obviously connect s1 to t1 and s2 to t2. Consequently, such a state
certifies that the instance of 2DADP is solvable.

This implies that the approximation guarantee of Dual Greedy is optimal for n = 2, even without
requiring the output to be a SE. The idea behind the previous theorem extends also to approximate
solutions of the MCAP. For the MCAP on single-commodity networks, a better 3

2 -approximation
exists for n = 3 [5] and can be obtained as follows: Run the maximum capacity augmenting path
algorithm [1] on the given network for two iterations and decompose [1] the obtained flow into three
paths (plus a circulation). We use this approach to calculate an equilibrium state that is a better
approximation than the one calculated by Dual Greedy. By Theorem 12, this is not possible if
the allocation rate functions are fixed, even for uniform ones. Adjusting allocation rate functions
subject to the instance, however, allows to beat Dual Greedy, at least for n = 3 and PNE.

Theorem 28. In single-commodity networks with 3 players, there exist constant allocation rate
functions and a PNE that is a 3

2 -approximation to the MCAP. The allocation rate functions and the
PNE can be computed in polynomial time.

Proof. Let S = (S1, S2, S3) and the allocation a = (a1, a2, a3) represent the a 3
2 -approximation of

the MCAP. As allocation rate function for player i, for all i ∈ N , we use the function vi ≡ ai.
Note that, if we run Algorithm 1 on S, the finishing time is 1, for each of the players, and a
is exactly the computed allocation. We now invoke best-response dynamics starting from S and
iteratively compute and apply unilateral player deviations. By Corollary 19, this procedure can be
implemented in polynomial time. We call the resulting state S⋆. Using Lemma 3, we know that
the finishing times of the players never sink below 1 during that procedure. Consequently, S⋆ is at
most a 3

2 -approximation to the MCAP.

Indeed, we can start with an arbitrary approximate solution of the MCAP, set the allocation rates
such that finishing times are all 1, and then every unilateral (coalitional) improvement dynamics
will lead to a PNE (SE) that only improves social welfare. Exploring this idea is a very interesting
avenue for future work.
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