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Abstract

Gossip algorithms are widely used in modern distributed systems, with applications ranging from

sensor networks and peer-to-peer networks to mobile vehicle networks and social networks. A tremen-

dous research effort has been devoted to analyzing and improving the asymptotic rate of convergence

for gossip algorithms. In this work we study finite-time convergence of deterministic gossiping. We show

that there exists a symmetric gossip algorithm that converges in finite time if and only if the number

of network nodes is a power of two, while there always exists an asymmetric gossip algorithm with

finite-time convergence, independent of the number of nodes. For n = 2m nodes, we prove that a fastest

convergence can be reached in nm = n log2 n node updates via symmetric gossiping. On the other

hand, under asymmetric gossip among n = 2m + r nodes with 0 ≤ r < 2m, it takes at least mn + 2r

node updates for achieving finite-time convergence. It is also shown that the existence of finite-time

convergent gossiping often imposes strong structural requirements on the underlying interaction graph.

Finally, we apply our results to gossip algorithms in quantum networks, where the goal is to control

the state of a quantum system via pairwise interactions. We show that finite-time convergence is never

possible for such systems.

Keywords. Gossip algorithms, Finite-time convergence, Computational complexity, Quantum algo-

rithms

1 Introduction

1.1 Motivation and Related Work

Gossip protocols have become canonical solutions in modern distributed computer systems for their sim-

plicity and scalability [1–3]. For a network of nodes without central coordinator, gossip protocols provide

an information spread mechanism in which nodes communicate pairwise along with some deterministic or
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randomized pair-selection algorithm [4]. Formally, a gossip protocol consists of two parts [5]: an underlying

algorithm determining pairwise node interactions for point-to-point communication, and an interaction

rule built on top of the algorithm determining the information for exchange and the way nodes update

their internal states. Gossip-based protocols have been adopted to provide distributed solutions in the

areas of optimization, control, signal processing, and machine learning [6–9], and recently have even

been generalized to quantum information processing leading to the development of quantum gossiping

algorithms [10,11].

The convergence speed of the underlying gossip algorithm associated with a given gossip protocol,

serves naturally as the primary index to the performance of the protocol. In literature, characterizations

of gossip algorithm convergence focus on two basic convergence-rate metrics: information dissemination

and aggregation times. The dissemination time concerns the minimum number of steps it takes for a

message starting from one node to spread across the whole network with a probability no smaller than

a given level [12]. The aggregation time concerns the minimum number of steps it takes for nodes in the

network to compute a generic function (e.g., initial values’ average) to a given accuracy with a given

probability [13]. These two metrics are essentially asymptotic rates of the probability decrease for the

hitting/mixing times being smaller than the current time slot, along a Markovian process defined by the

random gossiping. Various efforts have been made on bounding and optimizing these two convergence

metrics [12–22], where it has been shown that they are determined by the pair selection mechanism and

the structure of the underlying network.

Finite-time convergence then naturally serves as an intriguing limit in studying the convergence proper-

ties of gossip algorithms. In a more general domain, the possibilities and impossibilities of reaching finite-

time convergence for discrete-time consensus algorithms, represented by products of stochastic matrices,

have been systematically investigated in [23–26]. These distributed algorithms have a finite computational

cost, and surprisingly, certain distributed algorithms converging in finite time can be faster than any

possible centralized algorithm [25]. In this paper, we restrict our attention to deterministic gossip algo-

rithms and study their finite-time convergence, which will, generally speaking, provide faster information

spreading than any asymptotically convergent gossip protocols.

1.2 Model

Consider a network with node set V = {1, . . . , n}. Time is slotted and the value node i holds at time k

is denoted as xi(k) ∈ R for k ≥ 0. The global network state is then given by x(k) = (x1(k) . . . xn(k))T .

A symmetric deterministic gossip algorithm [13, 16] is defined by a sequence of node pairs (ik, jk) for
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k = 0, 1, . . . and a node state update rule

xik(k + 1) =
xik(k) + xjk(k)

2
;

xjk(k + 1) =
xjk(k) + xik(k)

2
;

xl(k + 1) = xl(k), l ∈ V\{ik, jk}.

Note that the two selected nodes update their state to the average of the values they held prior to the

interaction, while the states of all other nodes remain unchanged.

Introduce

Mn :=
{
In −

(ei − ej)(ei − ej)T

2
: i, j ∈ V

}
, (1)

where In is the n by n identity matrix, and em = (0 . . . 0 1 0 . . . 0)T is the n × 1 unit vector whose m’th

component is 1. We can write the class of all deterministic gossip algorithms as

x(k + 1) = Pkx(k), Pk ∈Mn, k = 0, 1, . . . . (2)

Algorithm (2) is called an asymmetric gossip algorithm if we replace Mn with [28]

M \
n :=

{
In −

(ei − ej)(ei − ej)T

2
: i, j ∈ V

}
⋃{

In −
ei(ei − ej)T

2
: i, j ∈ V

}
.

In this case, it is allowed that only one of the interacting nodes updates its state.

Let 1 denote the all-one column vector with proper dimension. We now consider the following definition

of finite-time convergence.

Definition 1 Algorithm (2) achieves finite-time convergence with respect to initial value x(0) = x0 ∈ Rn

if there exists an integer T (x0) ≥ 0 such that x(T ) = PT−1 · · ·P0x(0) ∈ span{1}. Global finite-time

convergence is achieved if such T (x0) exists for every initial value x0 ∈ Rn.

Note that global finite-time convergence is equivalent to rank(PT−1 · · ·P0) = 1 for some T ≥ 1. Let ‖·‖1
be the matrix norm defined by ‖A‖1 =

∑m
i=1

∑n
j=1

∣∣[A]ij
∣∣ for any A ∈ Rm×n with

∣∣ ·∣∣ denoting the absolute

value. We use the following definition of computational complexity of finite-time gossip algorithms:

Definition 2 Let {Pk}∞0 define a symmetric or asymmetric gossip algorithm. The number of node updates

up to step t ≥ 1 is defined as

NPt−1...P0 :=

t−1∑
k=0

‖In − Pk‖1.
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The computational complexity of n-node symmetric (asymmetric) gossiping is defined as

Cn := min
{

NPt−1...P0 : rank(Pt−1 · · ·P0) = 1,

Pk ∈Mn (or M \
n), k = 0, . . . , t− 1, t ≥ 1

}
whenever the above equation admits a finite number.

1.3 Main Results

In this paper, we obtain the following two results for symmetric and asymmetric gossip algorithms, re-

spectively.

Theorem 1 There exists a deterministic symmetric gossip algorithm that converges globally in finite time

if and only if there exists an integer m ≥ 0 such that n = 2m. Moreover, the following statements hold.

(i) Suppose n = 2m. Then the fastest symmetric gossip algorithms take a total of mn node updates to

converge.

(ii) Suppose there exists no integer m ≥ 0 such that n = 2m. Then for almost all initial values, there

exists no symmetric gossip algorithm with finite-time convergence. In fact, the initial values admitting

finite-time convergent gossiping algorithms form a union of at most countably many linear spaces whose

dimensions are no larger than n− 1.

Theorem 2 There always exists an asymmetric gossip algorithm that converges globally in finite time. If

n = 2m + r with m ≥ 0 and 0 ≤ r < 2m, global convergence requires and can be achieved in mn+ 2r node

updates.

The two theorems are obtained by first establishing a lower bound on the number of node updates

required for reaching finite-time consensus, and then explicitly constructing gossip algorithms that con-

verge in a finite number of steps equal to the lower bound. Although we allow every node to interact with

every other node (i.e., we do not impose any restricted network structure on the allowed interactions), the

fastest convergent algorithms only use a subset of the edges. In fact, we prove that for n = 4, finite-time

convergent symmetric algorithms are essentially unique. If the sequence of node pairs (ik, jk), k = 0, 1, . . .

is defined by an independent random process, the above deterministic finite-time convergent gossiping im-

plies fundamental robustness in the presence of repulsive links in light of the the Borel-Cantelli Lemma [29].

Moreover, the deterministic finite-time convergent results established in the current paper can be used to

derive almost sure finite-time convergence results under random gossiping models [30]. Theorem 1 and 2

were briefly reported in [31].
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1.4 Application: Quantum Gossip Algorithms

We apply the obtained results to recent studies on quantum gossip algorithms. In [10, 11], a gossiping

algorithm was introduced to quantum systems in the aim of symmetrizing the information contained in

each qubit of an n-qubit quantum network. Accurate operations to large-scale quantum systems play a

fundamental role in quantum information processing due to the exponentially growing system dimension

and the fragility of state preservation. We reveal that any n-qubit quantum gossiping algorithm is equiv-

alent to a number of decoupled symmetric gossip algorithms, with numbers of nodes ranging from
(
n
0

)
to(

n
n

)
. Therefore finite-time convergence can never be achieved for any nontrivial quantum gossiping since(

n
0

)
,
(
n
1

)
, . . . ,

(
n
n

)
cannot all be equal to some of power of two as long as n 6= 2. This result is summarized

as follows.

Theorem 3 It is impossible to reach global finite-time convergence to full symmetrization for quantum

gossip algorithms over any nontrivial (i.e., n 6= 2) quantum networks.

In Theorem 3, by saying global finite-time convergence to full symmetrization, we mean that the steady

symmetric state consensus (cf., [10]) is reached in some finite steps for all initial values as proper quantum

states represented by density operators. Theorem 3 indicates some strong impossibility of finite-time

convergence to symmetric states for quantum gossiping algorithms. However, it should be emphasized

that, the reduced states of the qubits essentially follow the same dynamics as the classical symmetric

gossip algorithms, and therefore we can apply Theorem 1 to conclude that these reduced states will

converge to an agreement in finite time if and only if the number of qubits is some power of two. This

point will be detailed in Section 4.

The authors of [10,11] have shown some conceptual consistency between the classical and quantum gos-

sip algorithms from a group-theoretic perspective, and it was shown in [10] that the asymptotic convergence

of quantum gossip algorithms follows the same contraction-mapping analysis as its classical analogue [16].

For quantum gossip algorithms, the distinction between their finite-time convergence in reduced states

and their impossibility of reaching finite-time convergence in symmetric states arises directly from the

quantum specificities of the network.

1.5 Paper Organization

Section 2 focuses on the analysis of symmetric gossiping. An all-or-nothing lemma is given for general

averaging algorithms for the proof of the necessity statement of Theorem 1. We also discuss the number

of algorithms reaching finite-time convergence. Section 3 then turns to asymmetric gossip algorithms.

We establish a combinatorial lemma, by which we show the necessary number of node updates. We then

construct an asymmetric algorithm which converges with the given number of node updates. Section 4

discusses the application of the obtained results to quantum gossip algorithms and proves Theorem 3 after
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a brief introductory to quantum states and quantum gossip algorithms. Finally some concluding remarks

are given in Section 5.

Notation and Terminology

All vectors are column vectors and denoted by lower case letters. Matrices are denoted with upper case let-

ters. The sets of integers, real numbers, and complex numbers are denoted as and Z, R, and C, respectively.

Also, Z≥0 and Z+ denote the sets of positive and nonnegative integers, respectively. A finite square matrix

M ∈ Rn×n is called stochastic if [M ]ij ≥ 0 for all i, j and
∑

j [M ]ij = 1 for all i [27]. A stochastic matrix M

is called doubly stochastic if MT is also stochastic. Denote S
.
=
{
W ∈ Rn×n : W is a stochastic matrix

}
as the set of n × n stochastic matrices. Given a matrix M ∈ Cm×n, the vectorization of M , denoted

by vec(M), is the mn × 1 column vector ([M ]11, . . . , [M ]m1, . . . , [M ]1n, . . . , [M ]mn)T . For all matrices

A,B,C with ABC well defined, it holds that vec(ABC) = (CT ⊗ A)vec(B) , where ⊗ is the Kronecker

product [37].

2 Symmetric Gossip Algorithms

In this section, we prove Theorem 1 and discuss uniqueness of finite-time symmetric gossip algorithms. The

proof is structured in several steps. First, we show that the number of nodes being some power of two is

necessary for the existence of a globally convergent symmetric gossip algorithm. We do so by constructively

giving one particular initial value and showing that finite-time convergence cannot be achieved for this

initial value. In the second step, we note that even if global finite-time convergence is impossible, there

still might exist a gossip algorithm that converges in finite time for some initial values (say, half of Rn).

We exclude such a possibility by showing that the initial values from which there exists a gossip algorithm

converging in finite time form a measure zero set. This is proved through an all-or-nothing property of

distributed averaging algorithms. In the third and final step of the proof, we characterize the complexity

of symmetric gossiping and propose an algorithm that converges in the minimum number of steps given

by the complexity bound.

2.1 Critical Number of Nodes

We first prove the existence of the critical number of nodes by a contradiction argument. Suppose that

n = 2n1n2 with n1 ≥ 0 and n2 ≥ 3 an odd integer, and suppose that there exists a finite integer k∗ and

P0, . . . , Pk∗ ∈Mn so that (2) converges globally in k∗ + 1 steps. This means that there exists a constant

c ∈ R such that xi(k∗ + 1) = c for all i ∈ V . Consider the initial value x1(0) = x2(0) = · · · = x2n1 (0) = 0

and x2n1+1(0) = · · · = . . . , xn(0) = 2k∗+1. Since each element in Mn is symmetric and doubly stochastic,

6
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the initial average is preserved at every iteration. Thus,

c =
2k∗+12n1(n2 − 1)

2n1n2
=

2k∗+1(n2 − 1)

n2
.

On the other hand, it is not hard to see that c is an integer for the given initial value, since pairwise

averaging takes place k∗ + 1 times. Consequently, we have c = r22r1 with 0 ≤ r1 ≤ k∗ + 1 an integer and

r2 ≥ 1 an odd integer. Therefore, we conclude that

2k∗+1(n2 − 1)

n2
= r22r1 ,

which implies that

2k∗+1−r1(n2 − 1) = r2n2. (3)

Since the left-hand side of Eq. (3) is an even number while the right-hand side is odd, we have reached

a contradiction. Therefore, when n is not a power of two, Algorithm (2) with symmetric updates cannot

achieve global finite-time convergence no matter how P0, . . . , Pk∗ are chosen.

2.2 All-or-Nothing Lemma

Recall that S denotes the set of n × n stochastic matrices. Algorithm (2) is a special case of distributed

averaging algorithms defined by products of stochastic matrices [42,43]:

x(k + 1) = Wkx(k), Wk ∈ S. (4)

Let S0 ⊆ S be a subset of S. We define

ZS0
.
=
{
z ∈ Rn : ∃W0, . . . ,Ws ∈ S0, s ≥ 0

s.t. Ws · · ·W0z ∈ span{1}
}
.

Let µ(·) represent the standard Lebesgue measure on Rn. We have the following lemma for the finite-

time convergence of averaging algorithm (4).

Lemma 1 Suppose S0 is a set with at most countable elements. Then either ZS0 = Rn or µ(ZS0) = 0. In

fact, if ZS0 6= Rn, then ZS0 is a union of at most countably many linear spaces whose dimensions are no

larger than n− 1.

Remark 1 Lemma 1 implies, given countably many stochastic matrices contained in a set S0, either for

any initial value x0 ∈ Rn, we can select a sequence of matrices from S0 so that the obtained averaging

algorithm converges in finite time starting from x0, or for almost all initial values, any averaging algorithm

obtained by a sequence selection from S0 fails to converge in finite time.
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Remark 2 Note that in the definition of ZS0, different initial values can correspond to different averaging

algorithms. Even if S0 is finite, there are still uncountably many different averaging algorithms on the

form (4) as long as S0 contains at least two elements. Therefore, the proof of Lemma 1 requires a careful

structural characterization of ZS0.

Noticing that Mn is a finite set and utilizing Lemma 1, Claim (ii) of Theorem 1 follows immediately.

The proof of Lemma 1 is given in Appendix A.

2.3 Complexity

Now let n = 2m for some integer m ≥ 0. For any given symmetric gossip algorithm {Pk}∞0 , we define

Ψh := Ph−1 · · ·P0, h = 1, 2, . . . .

and let [Ψh]ij denote the ij-entry of Ψh. We call node i active in matrix Pk if the ii-entry of Pk equals

1/2. Define

si(h) := the number of Pk’s such that node i is active in Pk

for k = 1, . . . , h− 1.

Then, the following claim holds.

Claim. [Ψh]ii ≥ 1/2si(h).

This claim can be easily proved using a recursive argument.

We introduce

K := inf
k

{
Pk−1 · · ·P0 =

(
11T

)
/2m

}
.

Invoking the claim we clearly see that si(K) ≥ m. That is to say, when global finite-time convergence is

achieved, each node must have been active for at least m times. Since only two nodes are updated in each

iteration k, K is at least mn/2. It is then straightforward to see that Cn = mn.

2.4 A Fastest Algorithm

Let n = 2m. We now present a symmetric gossip algorithm that converges globally in nm = n log2 n node

updates. Such an algorithm can be easily constructed recursively: Let the n nodes be divided into two

subsets with an equal number (n/2) of nodes and suppose agreement has been achieved via symmetric

gossiping, respectively, for each subset of nodes. Then obviously finite-time agreement can be realized

for the n nodes after pairwise matching the nodes in the two subsets and running a symmetric gossiping

update among each of the pairs.

We remark that essentially the same algorithm has been proposed implicitly in Example 2.4 of [35].

Moreover, such a recursive construction is one of the key components of the classical Cooley-Tukey al-

gorithm [32] for fast Fourier transform (FFT), and in fact the symmetric gossiping algorithm that we
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present below is even a special case of Cooley-Tukey arrangement for inverse discrete Fourier transform

(IDFT), where the average value corresponds to zero-frequency coefficient [33]. The Cooley-Tukey algo-

rithm however also made use of the periodic nature of the exponential multipliers in FFT so the matching

between two subsets of n/2 nodes needs to be carefully selected, which is not required for reaching a simple

finite-time agreement in our case. Nonetheless, for the completion of the paper we would like to make a

full exposure to this algorithm.

Introduce the notation Mij := In− (ei − ej)(ei − ej)T /2 and associate each node i ∈ V with the binary

representation

B1 . . . Bm, Bs ∈ {0, 1}, s = 1, . . . ,m

of the value i− 1. We denote the k’th digit of the binary representation of i− 1 as [Dk]
i. We present the

following algorithm as a matrix selection process in Mn:

Algorithm 1 Fastest Finite-time Convergence via Symmetric Gossiping

1: k ← 0

2: for s← 1, . . . ,m do

3: Ps ←
{
Mij : [Ds]

i 6= [Ds]
j , and [Dl]

i = [Dl]
j , l 6= s

}
4: for t← 1, . . . , n/2 do

5: Pk ← Ps[t]

6: k ← k + 1

7: end for

8: end for

9: return P0, . . . , Pmn/2−1

The algorithm proceeds in m stages. In each stage s, a set Ps of all selection matrices Mij involving

the node pairs {i, j}, with [Ds]
i 6= [Ds]

j and [Dl]
i = [Dl]

j , l 6= s, is formed. We apply the matrices for

symmetric gossiping following the order of subsets P1, . . . ,Pm, where matrices in the same Ps, s = 1, . . . ,m

can be put in arbitrary order since they commute with each other (we have used Ps[t] to denote the t’th

element in Ps). It is easy to verify that after all matrices in Ps have been applied there are at most 2m−s

different values left in the network for s = 1, . . . ,m. Thus, convergence is reached after mn = n log2 n

node updates.

2.5 Discussion

Although we don’t intend to discuss how the structure of the graph influences the existence and complexity

of finite-time convergent gossiping, the proposed Algorithm 1 certainly only makes use of a fraction of

edges, which naturally induces a graphical structure. Indeed, the construction of Algorithm 1 is inspired

by “hypercubes”, whose precise definitions are given as follows:

9
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Figure 1: An illustration of Algorithm 1 with n = 2, 4, and 8 nodes. The edges selected in the same step

are marked with the same line style. The algorithm builds hypercubes H1, H2, and H3.

Definition 3 The Cartesian product of a pair of graphs G1 = (V1,E1) and G2 = (V2,E2), denoted by

G1�G2, is defined by

(i) the vertex set of G1�G2 is the Cartesian product of V1 and V2, denoted V1 ×V2;

(ii) there is an edge between (v1, v2), (u1, u2) ∈ V1 × V2 in G1�G2 if and only if either v1 = u1 and

{v2, u2} ∈ E2, or v2 = u2 and {v1, u1} ∈ E1.

The m-dimensional Hypercube Hm is then defined as

Hm = K2�K2 . . .�K2︸ ︷︷ ︸
m times

,

where K2 is the path graph with two nodes.

In Algorithm 1, the selected edges are exactly those who form a log2 n-dimensional Hypercube with n

nodes. They are selected in the order that arises naturally from the definition of the Cartesian product

(see Figure 1).

We have shown that Algorithm 1 gives a fastest possible convergence. It is intriguing to ask if this

algorithm is the only one that achieves finite-time consensus, or if there are (possibly many) other equally

fast symmetric gossip algorithms. This turns out to be a difficult question to answer. We can, however,

establish the following result indicating that for n = 4 nodes, all finite-time convergent symmetric gossip

algorithms can be reduced to an essentially unique form.

Proposition 1 Let n = 4. Suppose PT−1 · · ·P0 = 11T /4 with Pk 6= Pk+1, k = 0, . . . , T−2 and PT−2 · · ·P0 6=

11T /4. Then under certain permutation of indices, we have PT−1 = M12, PT−2 = M34, PT−3 = M13 and

PT−4 = M24.

The proof of Proposition 1 is given in Appendix B.
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3 Asymmetric Gossiping

In this section, we investigate asymmetric gossiping. We first establish a fundamental lower bound in terms

of node updates for finite-time convergence, using a combinatorial lemma. Then we construct a fastest

algorithm using exactly that number of node updates.

3.1 Complexity

In this subsection, we first establish the least number of node updates for finite-time convergence via

asymmetric gossiping. Let n = 2m + r with 0 ≤ r < 2m. The following combinatorial lemma decomposes

1 into n suitable fractions, whose proof can be found in Appendix C.

Lemma 2 Let n = 2m + r with 0 ≤ r < 2m. Introduce F ⊆ Rn by

F =
{
f = (f1, ..., fn) :

n∑
i=1

fi = 1,

where fi =
bi
2ci
, bi, ci ∈ Z≥0, bi is odd, i = 1, ..., n

}
.

For any f ∈ F, we define

χi(f) := inf
d∈Z

{
fi ≥

1

2d
}
, i = 1, . . . , n.

Then it holds that minf∈F
∑n

i=1 χi(f) = mn+ 2r.

Given any algorithm {Pk}∞0 , we continue to use the notations by which we analyze the symmetric case.

Recall that

Ψh := Ph−1 · · ·P0, h = 1, 2, . . . .

Just like the symmetric case, we define si(h) as the number of Pk’s such that node i is active in Pk, k =

1, . . . , h− 1 and assume the algorithm converges within K steps, i.e., all rows of ΨK are the same.

The following lemma follows from a simply recursive argument.

Lemma 3 For Algorithm (2) with each Pk ∈ M \
n, the following always hold: (i)

n∑
j=1

[Ψh]ij = 1 for all i,

h; (ii) [Ψh]ii ≥ 1/2si(h) for all i, h; (iii)
n∑
i=1

[Ψh]ij > 0 for all j, h.

Since all rows of ΨK are the same, it follows that
∑n

i=1[ΨK ]ii =
∑n

i=1[ΨK ]1i = 1. That is to say,

f∗ := ([ΨK ]11 [ΨK ]22 ... [ΨK ]nn) is an element of the set F defined in Lemma 2. Furthermore, by Lemma

3. (ii), [ΨK ]ii ≥ 1/2si(K). According to the definition of χi in Lemma 2, si(K) ≥ χi(f∗). Therefore,∑n
i=1 si(K) ≥

∑n
i=1 χi(f∗) ≥ mn + 2r based on Lemma 2, i.e., the number of node updates is at least

nm+ 2r for reaching convergence.

11
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3.2 Existence

We now construct an algorithm that when node states converge to the same value, only nm + 2r node

updates have been taken. Denote M∗ij := In − ei(ei − ej)T /2.

Again, we relabel the nodes in a binary system. We use the binary number

B1 . . . Bm+1, Bs ∈ {0, 1}, s = 1, . . . ,m+ 1

to mark node i if B1 . . . Bm+1 = i− 1 as a binary number. We denote the k’th digit of i− 1 in this binary

system as [Dk]
i for k = 1, . . . ,m+ 1 and i = 1, . . . , n. We present the following algorithm.

Algorithm 2 Fastest Finite-time Convergence via Symmetric/Asymmetric Gossiping

1: k ← 0

2: P1 ←
{
Mij : [D1]i 6= [D1]j , and [Dl]

i = [Dl]
j , l = 2, 3, ...,m+ 1

}
3: for t← 1, . . . , r do

4: Pk ← P1[t]

5: k ← k + 1

6: end for

7: for s← 2, . . . ,m+ 1 do

8: P]s ←
{
M∗ij : [D1]i = 1, [D1]j = 0, [Ds]

i 6= [Ds]
j , and [Dl]

i = [Dl]
j , l 6= s, l = 2, 3, ...,m+ 1

}
9: for t← 1, . . . , r do

10: Pk ← P]s[t]

11: k ← k + 1

12: end for

13: Ps ←
{
Mij : [D1]i = [D1]j = 0, [Ds]

i 6= [Ds]
j , and [Dl]

i = [Dl]
j , l 6= s, l = 2, 3, ...,m+ 1

}
14: for t← 1, . . . , 2m−1 do

15: Pk ← Ps[t]

16: k ← k + 1

17: end for

18: end for

19: return P0, . . . , P(m+1)r+m2m−1−1

Algorithm 2 selects a sequential subsets of matrices in M \, indexed by P1, P
]
2, P2, P

]
3, P3, . . . , P]m+1, Pm+1.

Matrices in the same subset can be put in arbitrary orders since they commute with each other. Matrices

in Ps, s = 1, . . . ,m+1 are symmetric, while matrices in P]s, s = 2, . . . ,m+1 are asymmetric. It is straight-

forward to verify that after all matrices in Ps have been applied, at most 2m−s+1 different value remain in

the network. The number of node updates in Algorithm 2 can be easily calculated to be exactly mn+ 2r.

An illustration of Algorithm 2 for three nodes is shown in Figure 2. Note that after the first step Node

1 and Node 2 hold the same value (say, a) and Node 3 holds a maybe different one (say, b), while the three

12



Shi et al. Finite-time Convergent Gossiping

3 2 

1 

3 2 

1 

3 2 

1 

Figure 2: An illustration of Algorithm 2 for three nodes. Each directed arc represents selected node pairs

and only the head nodes update their states. Using three steps and five node updates, the three nodes

reach the same state.

Figure 3: An illustration of Algorithm 2 for n = 2m + r nodes. Divide the 2m nodes into two subgroups

with 2m−1 nodes in each of the group. Tie the rest of r nodes pairwise with another r nodes in one of the

group. Then apply the above three-node arrangement to the pair of nodes with another node selected from

the remaining group so that Algorithm 1 can be repeated. Finite-time convergence is therefore achieved

and it turns out this is the fastest algorithm in terms of number of node updates.

nodes eventually agree on (a+ b)/2 after the next two steps. Therefore, after the first step Nodes 1 and 2

can be viewed as have been tied together as one node which carries out a symmetric update with Node 3.

Algorithm 2 is constructed based on the above intuition for three nodes. For n = 2m + r nodes with

distinct values, matrices in P1 carry out r pairs of symmetric averaging and leave only 2m different values.

In this way 2r nodes are grouped into r virtual nodes and then the 2m different values reach finite-time

convergence as in Algorithm 1 with the help of asymmetric updates (cf., Figure 3).

Remark 3 The Cooley-Tukey FFT algorithm, initially designed for a data set with a size n = 2m (known

as the radix-2 factorization) [32], was later developed for general factorization forms of n [33, 34]. Such

generalizations mainly used the periodicity in the exponential FFT coefficients and generate exact results

of the FFT. This is significantly different from the idea and construction of Algorithm 2, where it is not

13
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the exact average, but an approximate value, is achieved. This sacrifice is anyhow inevitable if finite-time

convergence is required, as suggested by the impossibility part of Theorem 1.

Remark 4 The rank-one matrix limit of Algorithm 2 under proper permutation of indices can be written

as 1βT , where β = (β1 β2, ... βn)T is given by

βi =


1

2m , i = 1, 2, ..., n− 2r;

1
2m+1 , i = n− 2r + 1, n− 2r + 2, ..., n.

In contrast to the convergence limit of 11T /n under symmetric update, it can be simply computed that∥∥∥β − 1/n
∥∥∥ =

√
2m − r
2m + r

×
√

2r

2m+1
<

1√
2m+1

<
1√
n
,

which goes to zero as the network size tends to infinity.

Remark 5 Algorithm 2 is realized using r + m(n + r)/2 matrices (and therefore r + m(n + r)/2 time

steps) from the set M \
n. We can however find examples of n and alternative algorithms that reach finite-

time convergence using less than r +m(n+ r)/2 matrices. This indicates that finding asymmetric gossip

algorithms reaching convergence using the least time steps can be a quite different problem compared to

finding algorithms using a least number of node updates.

4 Application: Quantum Gossip Algorithms

In this section, we discuss an application of the obtained results to quantum gossip algorithms [10,11].

4.1 Quantum Mechanics Preliminaries: Notation and Terminology

Information processing over quantum mechanical systems is the foundation of quantum communication

and quantum computation, where fundamental challenges arise from quantum mechanics [36]. In this

subsection, we give a brief introduction to quantum system states and we refer the readers to [36] for a

comprehensive treatment.

4.1.1 Quantum State Space and the Dirac Notion

The state space associated with any isolated quantum system is a complex vector space with inner product,

i.e., a Hilbert space H. The system is completely described by its state vector, which is a unit vector in

the system’s state space and often denoted by |ψ〉 ∈ H (known as the Dirac notion). The state space of a

composite quantum system is the tensor product of the state space of each component system, e.g., two

quantum systems with state spaces HA and HB, respectively, form a composite system with state space

HA ⊗HB, where ⊗ stands for tensor product. If the two quantum systems are isolated respectively with

states |ψA〉 ∈ HA and |ψB〉 ∈ HB, the composite system admits a state |ψA〉 ⊗ |ψB〉.

14
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4.1.2 Density Operators

For an open quantum system, its state can also be described by a positive (i.e., positive semi-definite)

Hermitian density operator ρ satisfying tr(ρ) = 1. A quantum state |ψ〉 ∈ H, induces a linear operator,

denoted |ψ〉〈ψ|, by

|ψ〉〈ψ|
(
|x〉
)

=
(
|ψ〉, |x〉

)
|ψ〉

with
(
·, ·
)

being the inner product1 equipped by the Hilbert space H. Then ρ = |ψ〉〈ψ| defines the

corresponding density operator. Density operators provide a convenient description of ensembles of pure

state: If a quantum system is in state |ψi〉 with probability pi where
∑

i pi = 1, its density operator is

ρ =
∑
i

pi|ψi〉〈ψi|.

Any positive and Hermitian operator with trace one defines a proper density operator describing certain

quantum state, and vice versa.

4.1.3 Qubit Network and Swapping Operators

The 2-dimensional Hilbert space that forms the state-space of the most basic quantum systems is called

a qubit (short for quantum bit). Let H be a qubit system, i.e., a two-dimensional Hilbert space. Consider

a quantum network as the composite quantum system of n qubits in the set V = {1, . . . , n}, whose state

space is within the Hilbert space H⊗n = H ⊗ · · · ⊗ H. The swapping operator between qubits i and j,

denoted as Uij , is defined by

Uij
(
q1 ⊗ · · · ⊗ qi ⊗ · · · ⊗ qj ⊗ · · · ⊗ qn

)
= q1 ⊗ · · · ⊗ qj ⊗ · · · ⊗ qi ⊗ · · · ⊗ qn,

for all qi ∈ H, i = 1, . . . , n. In other words, the swapping operator Uij switches the information held on

qubits i and j without changing the states of other qubits. The set of all swapping operators over the

n-qubit network is denoted by U :=
{
Uij : i, j ∈ V

}
.

4.1.4 Partial Trace

Let HA and HB be the state spaces of two quantum systems A and B, respectively. Their composite

system is described as a density operator ρAB. Let LA, LB, and LAB be the spaces of (linear) operators

over HA, HB, and HA ⊗HB, respectively. Then the partial trace over system B, denoted by TrHB , is an

operator mapping from LAB to LA defined by

TrHB

(
|pA〉〈qA| ⊗ |pB〉〈qB|

)
= |pA〉〈qA|Tr

(
|pB〉〈qB|

)
1Under Dirac notion this inner product is written as

(
|ψ〉, |x〉

)
= 〈ψ|x〉, where 〈ψ| is the dual vector of |ψ〉.

15
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for all |pA〉, |qA〉 ∈ HA, |pB〉, |qB〉 ∈ HB. The reduced density operator (state) for system A, when the

composite system is in the state ρAB, is defined as ρA = TrHB (ρAB). The physical interpretation of ρA is

that ρA holds the full information of system A in ρAB.

4.2 Quantum Gossip Algorithms

Introduce a notion of time indexed by k = 0, 1, . . . , and let ρ(k) denote the density operator of the

considered n-qubit network at time k. The quantum gossip algorithm introduced in [10, 11] can then be

written as

ρ(k + 1) =
1

2
ρ(k) +

1

2
S(k)ρ(k)S(k)†, (5)

where S(k) ∈ U, k = 0, 1, . . . and S† is the conjugate transpose of the operator S.

It has been shown in [10,11] that under quite general (randomized or deterministic) conditions on the

swapping sequence, Algorithm (5) converges asymptotically to the symmetric state

1

n!

∑
π∈P

Uπρ(0)U †π,

where P is the permutation group over V, and Uπ is the unitary operator over H⊗n defined by

Uπ
(
q1 ⊗ · · · ⊗ qn

)
= qπ(1) ⊗ · · · ⊗ qπ(n), qi ∈ H, i = 1, . . . , n.

for any π ∈ P.

In the remainder of this section, we establish the proof of Theorem 3. We first establish a relationship

between the quantum gossip algorithm and its classical analogue. Then the conclusion follows directly

from the critical node number condition and the “all-or-nothing” lemma that we have derived earlier.

4.3 Quantum vs. Classical Gossiping

For ease of presentation we identify the linear operators ρ, Uij , and Uπ as their matrix representations

in C2n×2n under the standard computational basis of H⊗n in the rest of discussions. Under vectorization,

Algorithm (5) can be rewritten into the following vector form:

vec
(
ρ(k + 1)

)
=

1

2

(
I + S(k)⊗ S(k)†

)
vec

(
ρ(k)

)
, (6)

where S(k) ∈ U, k = 0, 1, . . . and I is the 4n by 4n identity matrix.

Associated with any swapping operator Uij ∈ U, we naturally define a quantum graph, G = (V,E),

where E :=
{
{i, j}

}
is the quantum edge set containing only the edge {i, j}. Since S(k) ∈ U for all k, each

S(k) can be associated with a path graph Gk = (V,Ek) where Ek contains only one edge corresponding

to the node pair in S(k). It is straightforward to verify that under the computational basis, each S(k) is

real, symmetric, and stochastic in C2n×2n . We further introduce T (k) :=
(
I + S(k)⊗ S(k)†

)
/2 and make

the following definition.

16



Shi et al. Finite-time Convergent Gossiping

Definition 4 The induced graph of T (k), denoted Gk = (V, Ek), has V = {1, . . . , 4n}, and {m, v} ∈ Ek if

only if [T (k)]mv 6= 0 for all m 6= v ∈ V.

Remark 6 Based on the matrix expression of swapping operators, it is straightforward to verify that all

the nonzero off-diagonal entries of T (k) are exactly 1/2. Since T (k) is a stochastic matrix with positive

diagonal entries (either 1 or 1/2), it means that for every row of T (k) containing one nonzero (i.e., 1/2)

off-diagonal entry, its diagonal entry must be 1/2 and the nonzero off-diagonal entry is unique. In other

words, T (k) carries out disjoint pairwise averaging. Consequently, T (k) can be written as some finite

product of commuting matrices within the set M4n. Equivalently, we can identify T (k) ∈ M4n so that

Algorithm (6) defines an algorithm on the form of (2).

The following lemma establishes a relationship between the two graphs Gk = (V,Ek) and Gk = (V, Ek).

The proof can be found in Appendix D.

Lemma 4 For Gk = (V,Ek), k ∈ Z≥0 associated with Algorithm (5), the graph⋃
k≥0

Gk :=
(
V,
⋃
k≥0

Ek
)

has at least τ0 := dim
{
vec(z) : 1

n!

∑
π∈P UπzUπ = z

}
components. This minimum number of components

in
⋃
k≥0 Gk is obtained whenever

⋃
k≥0 Gk :=

(
V,
⋃
k≥0 Ek

)
is a connected graph.

From now on, without loss of generality, we assume that
⋃
k≥0 Gk :=

(
V,
⋃
k≥0 Ek

)
is connected since

otherwise global convergence (asymptotic or finite time) is obviously impossible for Algorithm (5). In light

of Lemma 4,
⋃
k≥0 Gk then has τ0 connected components. There is a permutation of the elements of V

with associated permutation matrix P ∗ ∈ R4n×4n such that Eq. (6) can be written as

z(k + 1) = P ∗TkP
∗−1z(k), (7)

where z(k) := P ∗vec
(
ρ(k)

)
, and P ∗TkP

∗−1 is block diagonal

P ∗TkP
∗−1 = diag

(
P

(1)
∗ (k), . . . , P

(τ0)
∗ (k)

)
.

Here the dimension of P
(%)
∗ (k) is time-invariant and consistent with the size of the %’th component of⋃

k≥0 Gk for % = 1, . . . , τ0. Furthermore, each P
(%)
∗ (k) is a symmetric gossiping matrix in the form of

(1) with a proper dimension (cf., Remark 6). In other words, (7) defines τ0 classical symmetric gossip

algorithms that are completely decoupled:

z(%)(k + 1) = P
(%)
∗ (k)z(%)(k), % = 1, . . . , τ0. (8)
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4.4 The Connected Components

In this subsection, we further explore the structure of the τ0 components in
⋃
k≥0 Gk.

We denote by |0〉 and |1〉 the standard computational basis of H, where |·〉 represents a unit vector in

H known as the Dirac notion [36]. Let |q1〉 ⊗ · · · ⊗ |qn〉 ∈ H⊗n be denoted as |q1 . . . qn〉 for simplicity. The

following is a basis of H⊗n: {
|q1 . . . qn〉 : qi ∈ {0, 1}, i = 1, . . . , n

}
.

We use the notion [36]

|q1 . . . qn〉〈p1 . . . pn| : H⊗n 7→ H⊗n

to denote a linear operator over H⊗n in that(
|q1 . . . qn〉〈p1 . . . pn|

)
ξ =

〈
|p1 . . . pn〉, ξ

〉
|q1 . . . qn〉,

for all ξ ∈ H⊗n, where
〈
·, ·
〉

is the inner product equipped by the Hilbert space H⊗n. We further obtain a

basis for all linear operators over H⊗n:

B :=
{
|q1 . . . qn〉〈p1 . . . pn| : qi, pi ∈ {0, 1}, i = 1, . . . , n

}
.

Recall that P denotes the permutation group over V, in which each element π defines a rearrangement

of indices in V. In particular, we let πij be the permutation swapping indices i and j with all others

unchanged. Associated with any π ∈ P, we define an operator Fπ over H⊗n ×H⊗n by

Fπ
(
|q1 . . . qn〉〈p1 . . . pn|

)
= |qπ(1) . . . qπ(n)〉〈pπ(1) . . . pπ(n)|

for all |q1 . . . qn〉〈p1 . . . pn| ∈ B. Letting π(k) be the permutation corresponding to S(k) ∈ U, Algorithm

(5) can be written as

ρ(k + 1) =
1

2
ρ(k) +

1

2
Fπ(k)

(
ρ(k)

)
. (9)

Note that B is a basis for the space of all linear operators over H⊗n. Thus, it is clear from (9) that

under the basis B, ρ(k) is a matrix in C2n×2n such that |q1 . . . qn〉〈p1 . . . pn| ∈ B corresponds to an entry

of ρ(k), i.e., a node in V. Furthermore, since by our assumption
⋃
k≥0 Gk is connected, all the swapping

permutations in {S(k)}k≥0 form a generating subset of P. Therefore, identifying each element B to its

corresponding node V, we now see that

ℵ|q1...qn〉〈p1...pn| :=
{
|qπ(1) . . . qπ(n)〉〈pπ(1) . . . pπ(n)|, π ∈ P

}
is the set of nodes that are reachable from |q1 . . . qn〉〈p1 . . . pn| in the graph

⋃
k≥0 Gk. In other words, for

any given |q1 . . . qn〉〈p1 . . . pn| ∈ B ∼= V, ℵ|q1...qn〉〈p1...pn| defines a node subset as a connected component⋃
k≥0 Gk. From Lemma 4, there are a total of τ0 such different ℵ|q1...qn〉〈p1...pn|.
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4.5 Proof of Theorem 3

In this subsection, we complete the proof of Theorem 3. We proceed in three steps.

Step 1. We first consider the following set of node subsets of V, each of which forms one of
⋃
k≥0 Gk’s

connected components:

A] :=
{
ℵ|q1...qn〉〈p1...pn| : q1 = · · · = qn = 0, pi ∈ {0, 1}

}
.

It is straightforward to see that fixing |0 . . . 0〉〈p1 . . . pn|, we have

ℵ|0...0〉〈p1...pn| =
{
|0 . . . 0〉〈z1 . . . zn| : zt ∈ {0, 1},

t = 1, . . . , n, and
n∑
t=1

zt =
n∑
t=1

pt

}
.

Therefore, there are n+ 1 different element in A], and the number of nodes in each element ranges in{(
n

0

)
,

(
n

1

)
, . . . ,

(
n

n

)}
.

We can easily verify that for any n 6= 2, at least one of the above combinatorial numbers is not some

power of two. From its equivalent form (8), we conclude from Theorem 1 that Algorithm (6) fails to reach

finite-time convergence for all vec(ρ(0)) ∈ R4n .

Step 2. Next, we show that Algorithm (6) fails to reach finite-time convergence for all Hermitian matrices

ρ(0) ∈ C2n×2n . This point is immediately clear noticing the following two facts: (i) each state-transition

matrix T (k) =
(
I + S(k)⊗ S(k)

)
/2 is real so that the real and imaginary parts of ρ(k), k ≥ 0 define two

separate algorithms in the form of (6) with different initial values; (ii) for any vec(ρ(0)) ∈ R4n , we can

construct a Hermitian matrix ρ∗ ∈ C2n×2n such that vec(ρ(0)) = Re
(
vec(ρ∗)

)
.

Step 3. In this step, we finally conclude the proof making use of the “all-or-nothing” property established

in Lemma 1. Consider the following set

Io :=
{

vec
(
Re(ρ∗)

)
: ρ∗ ∈ C2n×2n , ρ∗ is Hermitian,

positive semi-definite, and Tr(ρ∗) = 1
}
.

We treat the condition Tr(ρ∗) = 1 under the basis B, i.e., we index each entry of ρ∗ by |q1 . . . qn〉〈p1 . . . pn| ∈

B. Then Tr(ρ∗) = 1 is equivalent to that∑
pi∈{0,1}

[ρ∗]|p1...pn〉〈p1...pn| = 1. (10)

Clearly (10) defines an (n− 1)-dimensional subspace in R4n . However, we see that the 2n elements

|p1 . . . pn〉〈p1 . . . pn|, pi ∈ {0, 1}
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are within n + 1 different connected components in
⋃
k≥0 Gk (again, we have used that B ∼= V). We

know from (8) that different connected components have completely decoupled dynamics, which gives the

freedom that each [ρ∗]|p1...pn〉〈p1...pn| can take value from [0, |ℵ|p1...pn〉〈p1...pn||−1) without violating (10). Here

again |ℵ|p1...pn〉〈p1...pn|| represents the cardinality of ℵ|p1...pn〉〈p1...pn|.

Noticing also that the positive semi-definite Hermitian matrices form a convex cone, we can finally

conclude that the set of values Io, restricted to the nodes of the %’th component of
⋃
k≥0 Gk, % = 1, . . . , τ0,

can never be a countable union of at most (N%−1)-dimensional subspaces, where N% represents the number

of nodes in that component. Making use of Lemma 1, we conclude that Algorithm (6) fails to reach finite-

time convergence for all vec(ρ(0)) ∈ Io. Equivalently, we have proved that Algorithm (5) fails to reach

global finite-time convergence for all initial density operators. This concludes the proof of Theorem 3.

4.6 Further Discussion: Finite-time Convergence in Reduced States

In this subsection, we further investigate the evolution of the reduced states of the qubits along the

algorithm (5). We denote by

ρm(k) := Tr⊗j 6=mHj
(
ρ(k)

)
the reduced state of qubit m at time k for each m = 1, . . . , n, where ⊗j 6=mHj stands for the remaining

n− 1 qubits’ space ⊗j 6=mHj and Tr⊗j 6=mHj is the partial trace. Note that ρm(k) contains the information

that qubit k holds in the composite network state ρ(k). Taking partial trace, Tr⊗j 6=rHj , for r = 1, . . . , n,

for the left and right hands of the algorithm (5), respectively, yields

ρm(k + 1) =
(
ρm(k) + ρs(k)

)
/2, if {m, s} ∈ Ek;

ρs(k + 1) =
(
ρm(k) + ρs(k)

)
/2, if {m, s} ∈ Ek;

ρl(k + 1) = ρl(k), otherwise.

(11)

This shows that, despite that each ρm(k) is formally a density operator (i.e., a trace-one, Hermitian

matrix in C2×2), their evolution is exactly the same as the classical symmetric gossiping algorithms. We

can therefore apply Theorem 1 to each entry of the ρm(k) and conclude that

Proposition 2 Following the quantum gossiping algorithm (5), the reduced states of the qubits converge

globally to an agreement in finite time, i.e., there exists T > 0 such that

ρm(T ) =
n∑
j=1

ρj(0)/n

for all ρ(0), if and only the number of qubits n is some power of two.

The distinction between the statements in Theorem 3 and Proposition 2 is due to the failure of finite-

time aggregation for the information beyond the reduced states in the entire quantum network state,

which defines the quantum specificities of the network.
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5 Conclusions

We proved that there exists a symmetric gossip algorithm that converges in finite time if and only if

the number of network nodes is a power of two, and for n = 2m nodes, a fastest finite-time convergence

can be reached in mn node updates via symmetric gossiping. We also proved that there always exists

a globally finite-time convergent gossip algorithm for any number of nodes with asymmetric updates,

and for n = 2m + r nodes with 0 ≤ r < 2m, it requires mn + 2r node updates for achieving a finite-

time convergence. Applying the results to quantum gossip algorithms in quantum networks, we showed

that finite-time convergence is never possible for any nontrivial quantum networks. The results add to

the fundamental understanding of gossiping algorithms. Future challenges lie in characterizing how the

complexity of finite-time convergent gossiping relates to the structure of the underlying interaction graph,

and how to construct finite-time convergent algorithms in a distributed manner.

Appendix

A. Proof of Lemma 1

Define a function δ(M) of a matrix M = [mij ] ∈ Rn×n by (cf. [38])

δ(M)
.
= max

j
max
α,β
|mαj −mβj |. (12)

Given an averaging algorithm (4) defined by {Wk}∞0 with Wk ∈ S0, k ≥ 0. Suppose there exists an initial

value x0 ∈ Rn for which {Wk}∞0 fails to achieve finite-time convergence. Then obviously δ(Ws · · ·W0) > 0

for all s ≥ 0.

Claim. rank(Ws · · ·W0) ≥ 2, s ≥ 0.

Let Ws · · ·W0 = (ω1 . . . ωn)T with ωi ∈ Rn. Since δ(Ws · · ·W0) > 0, there must be two rows in Ws · · ·W0

that are not equal. Say, ω1 6= ω2. Note that Ws · · ·W0 is a stochastic matrix because any product of

stochastic matrices is still a stochastic matrix. Thus, ωi 6= 0 for all i = 1, . . . , n. On the other hand, if

ω1 = cω2 for some scalar c, we have 1 = ωT1 1 = cωT2 1 = c, which is impossible because ω1 6= ω2. Therefore,

we conclude that rank(Ws · · ·W0) ≥ rank(span{ω1, ω2}) ≥ 2. The claim holds.

Suppose there exists some y ∈ Rn such that y /∈ ZS0 . We see from the claim that the dimension of

ker(Ws · · ·W0) is at most n− 2 for all s ≥ 0 and W0, . . . ,Ws ∈ S0.

Now for s = 0, 1, . . . , introduce

Θs
.
=
{
x ∈ Rn : ∃W0, . . . ,Ws ∈ S0,

s.t. Ws · · ·W0x ∈ span{1}
}
.
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Then Θs indicates the initial values from which convergence is reached in s + 1 steps. For any fixed

W0, . . . ,Ws ∈ S0, we define

ΥWs...W0

.
=
{
z ∈ Rn : Ws · · ·W0z ∈ span{1}

}
.

Clearly ΥWs...W0 is a linear space. It is straightforward to see that Θs =
⋃
Ws...W0∈S0 ΥWs...W0 , and therefore

ZS0 =
∞⋃
s=0

Θs =
∞⋃
s=0

⋃
Ws,...,W0∈S0

ΥWs...W0 .

Noticing that z ∈ ΥWs...W0 implies
(
z −Ws · · ·W0z

)
∈ ker(Ws · · ·W0), we define a linear mapping

f : ΥWs...W0 7−→ ker(Ws · · ·W0)× span{1}

s.t. f(z) =
(
z −Ws · · ·W0z,Ws · · ·W0z

)
(13)

Suppose z1, z2 ∈ ΥWs...W0 with z1 6= z2. It is straightforward to see that either Ws · · ·W0z1 = Ws · · ·W0z2

orWs · · ·W0z1 6= Ws · · ·W0z2 implies f(z1) 6= f(z2). Hence, f is injective. Therefore, noting that ker(Ws · · ·W0)

is a linear space with dimension at most n− 2, we have dim(ΥWs...W0) ≤ n− 1, and thus µ(ΥWs...W0) = 0.

Consequently, we conclude that

µ(Θs) = µ
( ⋃
W0,...,Ws∈S0

ΥWs...W0

)
≤

∑
W0,...,Ws∈S0

µ
(
ΥWs...W0

)
= 0

because any finite power set S0×· · ·×S0 is still a countable set as long as S0 is countable. This immediately

leads to

µ(ZS0) = µ
( ∞⋃
s=0

Θs

)
≤
∞∑
s=0

µ(Θs) = 0.

Additionally, since every Θs is a union of at most countably many linear spaces, each of dimension no

more than n− 1, ZS0 is also a union of countably many linear spaces with dimension no more than n− 1.

The desired conclusion thus follows.

B. Proof of Proposition 1

Without loss of generality, we assume that for any k, Pk 6= Pk+1. Given {Pk}∞0 , recall that Ψh =

Ph−1 · · ·P0. We define [ri]
h as the i’th row vector of Ψh. We continue to define

C (Ψh) :=
∣∣∣{[ri]

h : i = 1, 2, 3, 4
}∣∣∣

as the number of different rows of Ψh. The following lemma holds.
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Lemma 5 There is no h such that the following hold simultaneously: i) C (Ψh) = 2; ii) there are three

different elements a, b and c from {1, 2, 3, 4} satisfying

[ra]
h = [rb]

h = [rc]
h.

Proof. We investigate two cases.

C1: For any k ≥ 0, there exists i ∈ {1, 2, 3, 4} such that both the ii-entries of Pk and Pk+1 equal 1/2.

In other words, in case C1, any two consecutive node pair selections share a common node. Then by

induction it can be easily proved that rank(Ψh) = 3 and C (Ψh) = 3 for all h ≥ 1.

C2: Suppose C1 does not hold. Then we can find k ≥ 0, and a permutation (a, b, c, d) of {1, 2, 3, 4},

such that Pk = Mab and Pk+1 = Mcd. We let k0 be the smallest k when such disjoint pairs are selected at

time k and k + 1. The following claim holds by induction.

Claim. For any h ≥ k0 + 2, Ψh satisfies one of the following three conditions:

1) C (Ψh) = 1;

2) C (Ψh) = 2, and there is a permutation (a′, b′, c′, d′) of {1, 2, 3, 4}, such that [ra′ ]
h = [rb′ ]

h and

[rc′ ]
h = [rd′ ]

h;

3) C (Ψh) = 3, and there is a permutation (a′, b′, c′, d′) of {1, 2, 3, 4}, such that [ra′ ]
h = [rb′ ]

h and

[ra′ ]
h = θ(h)[rc′ ]

h + (1 − θ(h))[rd′ ]
h, θ(h) can be written as θ(h) = θ1(h)

θ2(h) , where θ1(h) ∈ Z is odd,

θ2(h) ∈ Z>0 is even.

Therefore, C1 and C2 indicate that i) and ii) in the lemma cannot hold simultaneously, which completes

the proof. �

We are now in a place to prove the desired proposition by reversing the convergence process.

After step T , the four row vectors of ΨT have the same value 1T /4. Without loss of generality, we

assume PT−1 = M12. Since ΨT = PT−1ΨT−1 = M12ΨT−1, [r3]T = [r3]T−1 and [r4]T = [r4]T−1. Then,

[r3]T−1 = [r4]T−1 = 1T /4.

Moreover, [r1]T−1 and [r2]T−1 are two other different values with 1T /4 = [r1]T = [r2]T = [r1]T−1+[r2]T−1

2 .

So it must be that PT−2 = M34 and [r3]T−2 6= [r4]T−2.

Because PT−2 = M34 and ΨT−1 = PT−2ΨT−2 = M34ΨT−2, the first and second row vectors of ΨT−1

are the same as those of ΨT−2. Thus, [r1]T−2 6= [r2]T−2. Then, PT−3 can not be M34 or M12.

Without loss of generality, we assume PT−3 = M13. Thus,

[r3]T−2 = [r1]T−2. (14)
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Since ΨT = PT−1PT−2ΨT−2 = M12M34ΨT−2,

1T /4 =
[r1]T−2 + [r2]T−2

2
=

[r3]T−2 + [r4]T−2

2
. (15)

According to (14) and (15), we conclude [r4]T−2 = [r2]T−2. Now that PT−3 = M13, it must be [r4]T−3 =

[r2]T−3.

Since PT−3 = M13, PT−4 cannot be equal to M13. On the other hand [r1]T−3 = [r2]T−3 if PT−4 = M12.

This implies that [r1]T−3 = [r2]T−3 = [r4]T−3, which is impossible since it contradicts Lemma 5. Following

the same argument, PT−4 cannot be equal to M14, M23 or M34 as well. Thus, it leaves the only option

that PT−4 = M24, which completes the proof.

C. Proof of Lemma 2

First of all, it is easy to verify that f̃ = (f̃1, f̃2, ..., f̃n) defined by

f̃i =


1

2m+1 , i = 1, 2, ..., 2r

1
2m , i = 2r + 1, 2r + 2, ..., n

satisfies that
∑n

i=1 χi(f̃) = mn+ 2r.

Next, we show
∑n

i=1 χi(f) ≥ mn+ 2r for all f ∈ F. For simplicity, define χ(f) =
∑n

i=1 χi(f). For any

f ∈ F, bi, i = 1, . . . , n and ci, i = 1, . . . , n are uniquely determined, we therefore denote them by bi(f) and

ci(f), respectively, for i = 1, . . . , n. Denote ζ(f) = max{c1(f), c2(f), ..., cn(f)}. Let q = (q1, ..., qn) be

an element in F satisfying

q ∈ arg min
{
ζ(g) : g ∈ arg min

f∈F
χ(f)

}
.

The existence of such q is obvious by its definition.

According to the definition of q, we have

1 =

n∑
i=1

bi(q)

2ci(q)
.

Multiplying both side of the above equation by 2ζ(q), we get

n∑
i=1

2ζ(q)−ci(q)bi(q) = 2ζ(q).

We know immediately that the cardinality of the set Eq =
{
i : ci(q) = ζ(q)

}
must be an even number.

We shall show that q has a similar form as f̃ : bi(q) = 1 and ζ(q) − ci(q) ≤ 1 for all i = 1, . . . , n. This

property is proved by establishing the following two claims.

Claim 1. If ci(q) = ζ(q), then bi(q) = 1.

Suppose the claim is not true. Then there exists an index j ∈ Eq such that bj(q) = 2z + 1 for some

z ∈ Z+. We establish Claim 1 in the following two cases.
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• There is k ∈ Eq such that ck(q) = ζ(q) and bk(q) = 1. Define an element p = (p1, ..., pn) ∈

F by

pj =
z

2ζ(q)−1
; pk =

1

2ζ(q)−1
; pi = qi, i /∈ {j, k}.

Now we have χ(p) = χ(q) − 1 since χk(p) = χk(q) − 1, χj(p) = χj(q) and χi(p) = χi(q)

for all i /∈ {j, k}. This contradicts the fact that χ(q) = minf∈F χ(f).

• For all i ∈ Eq satisfying ci(q) = ζ(q), it holds that bi(q) > 1. As mentioned above the

cardinality of the set Eq is an even number. We denote the number of elements in Eq

as 2s with s ≥ 0. We label these elements as k1, . . . , k2s. Since bki(q) is odd, they can

be expressed as bki(q) = 2li + 1, where li is a positive integer, for i = 1, ..., 2s. Define

pki = li
2ζ(q)−1 , pki+s = li+s+1

2ζ(q)−1 , i = 1, ..., s, and pj = qj for all j /∈ {k1, . . . , k2s}. Then

p = (p1 ... pn) defines an element in the set F with χ(p) ≤ χ(q) and ζ(p) < ζ(q). This

leads to a contradiction to the choice of q as well.

Claim 2. For all i = 1, . . . , n, 2ζ(q)−ci(q)bi(q) ≤ 2.

Suppose it is not true. Then, there exits a v such that 2ζ(q)−cv(q)bv(q) > 2. As Claim 1 says, if cv(q) = ζ(q)

then bv(q) = 1. Therefore, 2ζ(q)−cv(q)bv(q) ≥ 4. Moreover, there are at least two index k and w such that

ck(q) = ζ(q), cw(q) = ζ(q), bk(q) = 1 and bw(q) = 1. We define p = (p1, ..., pn) in that pk = 1
2ζ(q)−1 ,

pw = 1
2ζ(q)−1 , pv = 2ζ(q)−cv(q)bv(q)−2

2ζ(q)
, and pi = qi for any i /∈ {k, v, w}. Since χk(p) = χk(q) − 1, χw(p) =

χw(q)− 1, χv(p) ≤ χv(q) + 1 and χi(p) = χi(q) for i /∈ {k, v, w}, we have χ(p) < χ(q), which contradicts

the definition of q. This proves Claim 2.

From Claim 2, we conclude that bi(q) = 1 and ζ(q)− ci(q) ≤ 1 for all i = 1, . . . , n. Thus, according to

the definition of q, one has

1 =
n∑
i=1

bi(q)

2ci(q)
=

n∑
i=1

1

2ci(q)
= |Eq|

1

2ζ(q)
+ (n− |Eq|)

1

2ζ(q)−1
. (16)

where |Eq| is the number of elements in Eq. Since n = 2m + r, we can solve (16) and obtain that |Eq| = 2r

and ζ(q) = m+ 1. As a result, χ(q) can be computed as mn+ 2r, and this concludes the proof.

D. Proof of Lemma 4

Denote Φh := Th−1 · · ·T0 for h = 1, 2, . . . . The induced graph of Φh, denoted as GΦh = (V,Eh), is defined

in that {m, v} ∈ Eh if only if [Φh]mv 6= 0 for all m 6= v ∈ V. We first state a few useful properties:

P1. Each Φh is doubly stochastic for all h = 1, 2, . . . since Tk, k ≥ 0 are doubly stochastic

matrices and so are their products.

P2. For any h = 1, 2, . . . , we have GΦh =
⋃h−1
k=0 Gk. This point can be easily verified noticing

that all the diagonal elements of each Tk are positive for all k ≥ 0. As a result, for any
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h ≥ 1, there are α0, . . . , αh−1 ∈ R+ such that

Φh :=
h−1∑
k=0

αkTk +
(

1−
h−1∑
k=0

αk

)
I. (17)

P3. The number of connected components of the graph
⋃h−1
k=0 Gk is equal to 4n − rank(Φh).

Based on (i), (ii), this point becomes clear seeing that I−Φh defines a weighted Laplacian

of the graph
⋃h−1
k=0 Gk (cf., Lemma 13.1.1 in [39]).

We also need the following lemma to complete the proof.

Lemma 6 If
⋃h−1
k=0 Gk is connected for some h ≥ 1, then

⋃h−1
k=0 Gk has τ0 = dim

{
vec(z) : 1

n!

∑
π∈P UπzUπ =

z
}

components.

Proof. Take ρ ∈ C2n×2n and let
⋃h−1
k=0 Gk be connected. Denote ᾱk := αk/

∑h−1
t=0 αt with αk specified in

(17). The following equalities hold:{
vec(z) : Φhvec(z) = vec(z), z ∈ C2n×2n

}
a)
=
{

vec(z) :

h−1∑
k=0

ᾱkTkvec(z) = vec(z), z ∈ C2n×2n
}

b)
=
{

vec(z) :
∑

{j,m}∈
⋃h−1
k=0 Gk

ᾱkUjmzU
†
jm = z, z ∈ C2n×2n

}
c)
=
{

vec(z) : UjmzU
†
jm = z, {j,m} ∈

h−1⋃
k=0

Gk, z ∈ C2n×2n
}

d)
=
{

vec(z) : UπzU
†
π = z, π ∈ P, z ∈ C2n×2n

}
e)
=
{

vec(z) :
1

n!

∑
π∈P

UπzU
†
π = z, z ∈ C2n×2n

}
. (18)

Here a) holds from (17); b) is obtained by plugging in the definition of Tk; c) is based on Lemma 5.2

in [40]; d) is from the fact that the swapping permutations along each edge of a connected graph consist

of a generating set of the group P. The equivalence of d) and e) is obtained by that

UπzU
†
π = Uπ

( 1

n!

∑
π′∈P

Uπ′zU
†
π′

)
U †π =

1

n!

∑
π∈P

UπzU
†
π = z

if 1
n!

∑
π∈P UπzU

†
π = z since πP = P for any π ∈ P.

Note that (18) immediately implies that

ker
(
I − Φh

)
:=
{
vec(z) :

1

n!

∑
π∈P

UπzUπ = z, z ∈ C2n×2n
}
,

which in turn yields that
⋃h−1
k=0 Gk has τ0 = dim

{
vec(z) : 1

n!

∑
π∈P UπzUπ = z

}
components in light of P3

stated above. This proves the desired lemma. �

Now that both
⋃h−1
k=0 Gk and

⋃h−1
k=0 Gk are non-decreasing in h, Lemma 4 can be directly concluded from

Lemma 6.
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