
1

On Sample-Path Staleness in Lazy Data Replication
Xiaoyong Li, Daren B.H. Cline, and Dmitri Loguinov

Abstract—We analyze synchronization issues arising between
two stochastic point processes, one of which models data churn
at an information source and the other periodic downloads from
its replica (e.g., search engine, web cache, distributed database).
Due to lazy (pull-based) synchronization, the replica experiences
recurrent staleness, which translates into some form of penalty
stemming from its reduced ability to perform consistent compu-
tation and/or provide up-to-date responses to customer requests.
We model this system under non-Poisson update/refresh processes
and obtain sample-path averages of various metrics of staleness
cost, generalizing previous results and exposing novel problems
in this field.

I. INTRODUCTION

With the massive growth of the Internet and deployment
of large-scale distributed applications, mankind faces new
challenges in acquiring, processing, and maintaining vast
amounts of data. In response to this flood of information,
companies deploy cloud-based solutions designed to provide
replicated and distributed support to the skyrocketing storage
and processing demand of their users.

One interestingroblem in these applications is the highly-
dynamic nature of content, especially when perfect synchro-
nization of sources, replicas, intermediate caches, and var-
ious computation is impossible. In fact, many large-scale
distributed systems (e.g., airline reservations, online banking,
web search engines, social networks) operate under constant
data churn and may never see consistent snapshots of the
entire network. As a result, these applications may hold and/or
manipulate a mixture of objects that existed at the source at
different times t in the past. This leads to questions about
staleness, synchronization costs, and techniques for deciding
optimal refresh policies.

In traditional databases, the source opens outbound com-
munication with the replicas whenever it detects important
information changes. This enables push-based operation that
actively expires stale content and broadcasts notifications into
the system. Even under multi-hop replication, staleness lags
in these systems are described by simple models that can
be reduced to convolutions of single-hop notification delays.n
other cases, however, scalability and administrative autonomy
require that sources operate independently and provide infor-
mation only based on explicit request, especially when they
are unable to track all of their replicas or adopt modifications
to existing protocols

This pull-based replication (also called optimistic or lazy)
improves both scalability of the service and availability of

An earlier version of the paper appeared in IEEE INFOCOM 2015.
X. Li and D. Loguinov are with the Department of Computer Science

and Engineering, Texas A&M University, College Station, TX 77843 USA
(e-mail: xiaoyong@cse.com; dmitri@cse.tamu.edu). D.B.H. Cline is with the
Statistics Department at Texas A&M University, College Station, TX 77843
USA (e-mail: dcline@stat.tamu.edu).

the data, but at the expense of increased age of manipulated
content [21], [43]. This model of operation has enjoyed
ubiquitous deployment in the current Internet (e.g., HTTP,
DNS, network monitoring, web caching, RSS feeds, stock-
ticker aggregators, certain types of CDNs, sensor networks);
however, it still poses many fundamental modeling challenges.
Our goal is to study them in this paper.

A. Motivation and Objectives

Suppose a replica is a system whose goal is to synchro-
nize against information sources, apply certain processing to
downloaded content, and serve results to data consumers. One
challenge of this architecture is that sources not just require
pull-based operation, but also lack the ability to predict future
updates, which makes real-time estimates of remaining object
lifetime (i.e., TTL) unavailable to the replica.

As information evolves at the source, which we call data
churn, the replica may become stale and provide responses to
that do not reflect the true state of the system. In such cases,
we assume that user satisfaction and system performance are
directly rated to the amount of time by which the replica is
lagging the source. To convert time units into cost, suppose
the application applies some weight function w(x) to the age
of stale content to determine the penalty associated with a
particular refresh policy and data-churn process. Then, the
goal of the system is to optimize the expectation of penalty
observed by a stream of arriving customers.

This problem has been considered in the context of web-
based systems [4], [5], [8], [9], [10], [11], [15], [16], [17],
[19], [22], [25], [26], [28], [29], [33], [35], [42]; however,
all analytical results have predominantly assumed that the
update process at each source was Poisson, with function
w(x) limited to either 1 or x. However, real systems driven
by human behavior usually require more complex families of
processes, often with heavy-tailed inter-update distributions,
non-stationary dynamics, and slowly decaying correlation.
Similarly, user sensitivity to outdated material may experience
rapid increases for small x and eventual saturation for larger
x, in which case other weight functions might be more ap-
propriate. Since application performance under general update
processes and wider classes of w(x) is currently open, we aim
to fill this void below.

B. Contributions

Consider a single source driven by an update process NU

and a single replica with the corresponding download process
ND, which is independent of NU . Our first contribution is
to propose a general framework for modeling staleness under
arbitrary stochastic processes (NU , ND). Since staleness age
and various penalties derived from it are usually defined

2

source1 sourceM

replica

consumer

(a) aggregation

source

replicam replica1

consumer

(b) backup/load-balancing

Fig. 1. System model (arrows signify the direction of requests for informa-
tion).

in terms of sample-path averages [8], [9], [10], [11], [15],
[16], [17], [25], [28], [29], [33], [35], [42], questions arise
about their existence and possible variation across multiple
realizations of the system. We address this issue by identifying
the weakest set of conditions for which the distribution of
staleness age exists and converges to the same deterministic
value in every sample path.

Armed with these results, our second contribution is to
model interaction between the age processes of NU and ND.
We show that for the results to be tractable, ages of the two
processes examined at random times within a given sample
path must be independent of each other. Interestingly, this
condition does not automatically follow from independence of
NU and ND. Instead, we show that it translates into a form of
ASTA (Arrivals See Time Averages) [27], where the download
process ND must observe the sample-path distribution of
update age.

Under the condition of age-independence, our third contri-
bution is to derive the distribution of time by which the replica
trails the source, the fraction of consumers that encounter a
stale copy, the average number of missing updates from the
replica at query time, and the general staleness cost under all
suitable penalty functions w(x). Our results involve simple
closed-form expressions that are functions of limiting age
distributions of both processes.

Our fourth contribution is to analyze conditions under which
ND produces provably optimal penalty for a given download
rate. We show that penalty reduces if and only if inter-refresh
delays become stochastically larger in second order. This leads
to constant synchronization delays being optimal under all
NU and w(x). This, however, presents problems in satisfying
ASTA and creates a possibility of worst-case (i.e., 100%)
staleness due to phase-lock between the source and the replica.
To this end, we discuss general requirements for ensuring that
ND avoids these drawbacks while remaining optimal, or at
least close to it.

We finish the paper with our last contribution that considers
the practical aspects of staleness, including experimentation
with Wikipedia page updates, error analysis of previous Pois-
son models, estimation of search-engine bandwidth require-
ments to maintain certain freshness, and generalization to
multiple sources/replicas.

II. STALENESS FORMULATION

We start by explaining the underlying assumptions on the
system, defining the various processes that determine informa-

download

update
u
i
 u

i+1

d
k
 d

k+1

D
k
 U

i

t

M(t)=2

Fig. 2. Process notation.

tion flow, and specifying the metrics of interest.

A. System Operation

We assume a general model of distributed data generation,
replication, and consumption shown in Fig. 1. During normal
system operation, sources sustain random updates in response
to external action (e.g., new posts in Facebook, traffic conges-
tion in Google maps, Twitter feeds) or possibly some internal
computation (e.g., MapReduce [13] indexing with periodic
writes to disk). In either case, each update represents certain
non-negligible information that manipulates the current state
of the source.

Replicas operate independently of the sources and perform
one of the two general functions shown in the figure – many-
to-one aggregation in part (a) and one-to-many replication in
(b). The former case arises when the replica executes certain
processing on multiple objects to provide the consumer with
results that cannot be obtained otherwise. These applications
include search engines, data-centric computing, and various
web front-ends that cache queries against back-end databases.
The purpose of the latter case is to handle failover during
source crashes and/or ensure scalable load distribution under
heavy customer demand. Applications in this category include
CDNs, large websites, data centers (e.g., Amazon EC2), and
general distributed file systems.

The final element of Fig. 1 is the consumer, which sends a
stream of requests that represent either queries for information
or attempts to recover the most-recent state of the source after
it has crashed.

B. Updates and Synchronization

We next model interaction between a single source and a
single replica, which is a prerequisite to understanding system
performance. Suppose the source undergoes updates at random
times 0 = u1 < u2 < . . . and define NU (t) = max{i : ui ≤
t} to be a stochastic process that counts the number of updates
in [0, t]. When referring to the entire process, rather than its
value at some point, we omit t and write simply NU .

For the replica, denote its random download instances by
0 = d1 < d2 < . . . and the corresponding point process
by ND(t) = max{k : dk ≤ t}. This formulation neglects
processing delays and treats all events as instantaneous. We
additionally assume that both processes are simple (i.e., at
most one point at any t) and independent of each other. Now,
suppose the inter-update delays of NU are given by a random
process {Ui}∞i=1 and those of ND by {Dk}∞k=1, which are

3

illustrated in Fig. 2. Each of these sequences may be of fairly
general nature, e.g., correlated and/or non-stationary.

C. Cost of Staleness

To understand the penalty of outdated content, suppose
M(t) counts the number of updates missing from the replica
at time t (e.g., in Fig. 2, M(t) = 2). This is a discrete-state
process that increments for each update and resets to zero for
each synchronization.

Definition 1: A replica is called stale at time t if M(t) > 0.
Otherwise, it is called fresh.

From the consumer’s perspective, stale material reduces user
satisfaction and lowers system performance, which needs to be
translated into a cost metric that can be expressed via some
known parameters of the system. The most basic penalty is
the probability that the replica is stale at the time of request,
i.e., P (M(t) > 0), which determines how often users see
outdated information and/or fail to fully restore a crashed
source The second obvious metric is the expected number
of missing updates E[M(t)], which measures the amount of
lost information during a crash and estimates the difficulty in
recreating it from the most recent checkpoint. This penalty
is also important for Internet archiving applications that aim
to capture every snapshot of the source [20] and situations
when larger M(t) may imply higher information divergence
between the replica and the source.

More sophisticated cases are also possible. Suppose the
source runs some computation, with updates representing
certain intermediate states that are written to disk. A crash
at time t requires computation to be restarted, which means
that the penalty is determined not by M(t), but rather by the
duration of the computation that was lost due to staleness.
Services that charge per CPU time-unit (e.g., Amazon EC2)
may want to optimize against this metric rather than E[M(t)].
Furthermore, if the difficulty of recovering each update from
other storage is proportional to the delay since the update was
made, then staleness cost may be based on the combined lag
of all missing updates at time t.

Definition 2: For a stale replica at time t, define lags
L1(t) > L2(t) > . . . > LM(t)(t) to be backward delays to
each unseen update.

This concept is illustrated in Fig. 3(a) for the first two
lags. To keep the model general and cover the various options
already seen in the literature [4], [5], [8], [9], we assume that
the consumer is sensitive to either just lag L1(t), i.e., how
long the source has been stale at time t, or the entire collection
of lags {L1(t), . . . , LM(t)(t)}, i.e., how long each uncaptured
update has been stale. Since it is usually difficult to predict the
value of information freshness to each customer, one requires
a mapping from staleness lags to actual cost, which we assume
is given by some non-negative weight function w(x).

Definition 3: At time t, the source penalty is given by the
weight of the delay since the replica was fresh last time:

η(t) =

{
w(L1(t)) M(t) > 0

0 otherwise
, (1)

L1(t)

L2(t)

t
stale

…

u
i
 u

i+1 u
i—1

d
k

(a) staleness lags

AD(t)

AU(t)

t

M(t)=2

(b) age

Fig. 3. Penalty lags and process age.

while the update penalty is given by the aggregate weight of
all staleness lags:

ρ(t) =

{∑M(t)
i=1 w(Li(t)) M(t) > 0

0 otherwise
. (2)

For example, w(x) = 1 produces the first two metrics
discussed above, i.e., P (M(t) > 0) via E[η(t)] and E[M(t)]
via E[ρ(t)]. Both (1) and (2) are random variables, which
suggests that system performance should be assessed by their
average values. But as neither NU nor ND is assumed to be
stationary, the expected penalty requires additional elaboration.
Instead of considering E[η(t)] and E[ρ(t)], which may depend
on time t, it is more natural to replace them with sample-path
averages [9]:

η̄ = lim
T→∞

1

T

∫ T

0

η(t)dt and ρ̄ = lim
T→∞

1

T

∫ T

0

ρ(t)dt, (3)

where consumers are modeled as being equally likely to query
the replica at any time in [0,∞).

D. Relationship to Prior Work

The majority of the literature on source penalty η̄ is limited
to Poisson NU , either constant or exponential D, and w(x) =
1 or x [7], [8], [9], [11], [28], [36], [39], [42]. There has
been only one attempt to model η̄ under a general renewal
process NU , in which [39] assumed w(x) = 1 and the entire
sequence of refresh instances {d1, d2, . . .} was known. While
appropriate in some cases, this model is difficult to evaluate
in practice when ND is given by its statistical properties.

Update penalty ρ̄ has received less exposure, with almost
all papers considering Poisson updates and just constant D.
This includes w(x) = 1, where ρ̄ is usually called divergence
[19] or blur [14], with analysis available in [15], [16], [33],
and w(x) = x, where ρ̄ is known as additive age [24],
aggregated age [25], delay [33], or simply cost [15]. Finally, ρ̄
with a general w(x) was called obsolescence cost in [16] and
analyzed under a non-stationary Poisson NU , but no closed-
form results were obtained.

The Poisson assumption on NU allows easy computation
of the various metrics of interest. Outside these special cases,
superposition of non-memoryless processes produces much
more complex behavior.

4

III. AGE MODEL

While (3) is a convenient approach, there is a previously
unnoticed obstacle with using it. Observe that (3) defines
limits of sequences of random variables; however, it is unclear
whether these limits exist, if they are finite, and under what
conditions they are deterministic across all sample paths. We
investigate these issues next.

A. Main Framework

We start by performing a convenient transformation of
(3) to remove the integrals. Define QT to be a uniform
random variable in [0, T], which models the random query
time of consumers. Suppose QT is independent of NU and
ND, in which case (3) is the limit of E[η(QT)|NU , ND]
and E[ρ(QT)|NU , ND] as T → ∞. We explicitly condition
on processes NU , ND to emphasize that all expectations
and probabilities involving QT are random variables (i.e.,
dependent on the pair of sample paths).

At each time t, suppose age processes AU (t) and AD(t),
shown in Fig. 3(b), specify delays to the previous update and
synchronization event, respectively. Using this notation and
observing that M(t) > 0 is equivalent to AU (t) < AD(t),
define an ON/OFF staleness process:

S(t) =

{
1 AU (t) < AD(t)

0 otherwise
, (4)

whose properties at random time QT determine whether the
consumer sees outdated information or not.

To analyze (4), our next topic is the behavior of AU (QT)
and AD(QT) as T → ∞, including existence of these limits
and their relationship to {Ui}∞i=1 and {Dk}∞k=1.

B. Assumptions

We next aim to establish a minimal set of conditions under
which analysis of staleness admits closed-form results. Con-
sider a general point process N with cycle lengths {Xi}∞i=1,
where each Xi ∼ Fi(x) is a random variable. In order for
the age A(QT) of this process to have a usable limiting
distribution as T → ∞, one must impose three constraints on
N , which we discuss informally and motivate next, followed
by a more rigorous, but functionally equivalent, definition.

The first restriction is that collection {Xi}∞i=1 within each
sample-path have some limiting distribution F (x). The second
prerequisite is that F (x) be deterministic (i.e., equal in all
sample-paths). Finally, the third condition is that an o(1)
fraction of cycles in {Xi}ni=1 not consume Ω(1) fraction of
length as n → ∞. This would be a problem because F (x),
being a limiting distribution, does not capture these intervals,
but QT still lands there with a non-diminishing probability.

Let 1A be an indicator variable of A and F̄ (x) = 1−F (x)
the complementary CDF (cumulative distribution function) of
F (x). We are now ready to summarize our discussion.

Definition 4: A process N is called age-measurable if:
1) For all x ≥ 0, except possibly points of discontinuity of

the limit, sample-path distribution Hn(x) of variables

{X1, . . . , Xn} converges in probability as n → ∞:

Hn(x) :=
1

n

n∑
i=1

1Xi≤x
P−→ F (x); (5)

2) Function F (x) is deterministic with mean 0 < δ < ∞;
3) The average cycle length converges to δ in probability

as n → ∞:

Zn :=
1

n

n∑
i=1

Xi
P−→ δ =

∫ ∞

0

F̄ (x)dx. (6)

Note that any renewal process {Xi}∞i=1 satisfies this defini-
tion since all Fi(x) are the same, which from the weak law of
large numbers trivially leads to F (x) = Fi(x) and Zn → δ.
Furthermore, condition (6) resembles mean-ergodicity, which
is normally stated with a stronger type of convergence (e.g.,
mean-square or almost-sure) and only for stationary processes.
For more general cases, the fact that indicator variables
are uniformly bounded allows application of the Dominated
Convergence Theorem (DCT) [31] to show that F (x) is the
limiting average of individual distributions:

E[Hn(x)] =
1

n

n∑
i=1

Fi(x) → F (x). (7)

If {Xi}∞i=1 are uniformly bounded, then (6) follows from
(5); however, this does not hold in general cases. In fact,
many random variables used in practice (e.g., exponential
and Pareto) are not bounded and thus require an explicit
assumption that convergence in (6) take place. Additionally,
even if this limit exists, it does not generally equal δ, which
is why we require that as well. Similarly, (5) does not follow
from (6).

C. Distribution

To appreciate the different convergence results that follow,
recall that Zn → c in probability means that for all ϵ > 0 :
P (|Zn − c| > ϵ) → 0, i.e., the fraction of samples Zn that
“stray away” from c shrinks to zero, but the expected value of
these outliers is potentially unlimited. Convergence in mean is
defined as E[|Zn−c|] → 0, which shows that even outliers are
well-bounded in expectation to some neighborhood of c. The
latter convergence type is stronger, i.e., implies the former.

Theorem 1: For an age-measurable process N , the sample-
path distribution of its age A(QT) in points QT uniformly
distributed in [0, T] converges in mean as T → ∞ to the
residual distribution of F (x):

G(x) := lim
T→∞

P (A(QT) < x|N) =
1

δ

∫ x

0

F̄ (y)dy. (8)

Proof: Consider finite T and some constant b ≥ 0. Then,
event A(QT) ≤ b is equivalent to the existence of some k ≥ 1
such that QT belongs to the k-th interval [Sk, Sk+1), under
the condition that starting point Sk ≤ T and age QT − Sk ≤
b. Defining Wk = min((T − Sk)

+, Xk, b), where (x)+ =
max(x, 0), we get:

P (A(QT) < b|N) =
∞∑
k=1

P (Sk ≤ QT < Sk +Wk|N). (9)

5

Since QT is uniform in [0, T], the probability that it falls
into an interval of length Wk is simply Wk/T :

BT := P (A(QT) < b|N) =

N(T)∑
k=1

min(T − Sk, Xk, b)

T
, (10)

where the upper limit is reduced from ∞ to N(T) since
(T −Sk)

+ = 0 for k > N(T). Recalling that all probabilities
and expectations are dependent on the sample path, it follows
that BT is a random variable. Our goal below is to show it
converges to a constant as T → ∞. To this end, first observe
that it can be bounded as:∑N(T)−1

k=1 min(Xk, b)∑N(T)
k=1 Xk

≤ BT ≤
∑N(T)

k=1 min(Xk, b)∑N(T)−1
k=1 Xk

, (11)

where we use the fact that T −Sk ≥ Xk for all k ≤ N(T)−1

and T ∈ [
∑N(T)−1

k=1 Xk,
∑N(T)

k=1 Xk].
Next, notice that (5) implies that for all bounded, continuous

functions f(x) [31]:

1

n

n∑
i=1

f(Xi)
P−→

∫ ∞

0

f(x)dF (x), (12)

which leads to:

lim
T→∞

1

N(T)

N(T)−1∑
k=1

min(Xk, b) =

∫ ∞

0

min(y, b)dF (y).

(13)

Using (6), we also have:

lim
T→∞

1

N(T)

N(T)−1∑
k=1

Xk = lim
n→∞

1

n

n−1∑
k=1

Xk = δ. (14)

Since both bounds in (11) have the same limit, BT con-
verges in probability to the ratio of (13) to (14):

1

δ

∫ ∞

0

min(y, b)dF (y) =
1

δ

∫ b

0

F̄ (y)dy, (15)

where the second integral follows from expanding the min
function and integrating by parts. Observing that BT ≤ 1 is
bounded, we can invoke the Dominated Convergence Theorem
[31] to conclude that E[BT] converges to (15). Finally, as
BT converges in probability to the same result as E[BT],
convergence in mean immediately follows [31].

Interestingly, (5)-(6) are not only sufficient as demonstrated
by this theorem, but also necessary for G(x) to exist and
equal the right side of (8). Necessity is proven by well-known
counter-examples in probability theory [38].

D. Expectation

While Theorem 1 establishes when A(QT) has a lim-
iting distribution, convergence of expectation E[A(QT)|N]
or suitability of G(x) for computing it are not guaranteed.
Furthermore, given that consumers may apply generic weights
w(x) to the various age-related metrics, it makes sense to ask
when E[w(A(QT))|N] exists as T → ∞.

To build intuition for the next result, assume X ∼ F (x) is
a non-negative variable and define its age A to be a random

variable with CDF G(x) in (8). Then, we are interested in the
relationship between E[w(A)] and X . To this end, suppose for
any locally integrable function w(x), we set w1(x) = w(x)
and then recursively integrate the result n− 1 times to define:

wn(x) :=

∫ x

0

wn−1(y)dy. (16)

Using integration by parts in Lebesgue-Stieltjes integrals
and keeping in mind that wn+1(0) = 0 for n ≥ 1:

E[wn+1(X)] =

∫ ∞

0

wn(x)F̄ (x)dx = E[wn(A)]E[X]. (17)

Therefore, in order for E[w(A)] to exist, one must ensure
that both E[w2(X)] and E[X] do. Note that the latter does so
by (6), but the former requires an additional constraint.

Definition 5: A point process N is called age-measurable
by weight function w(x) if it is age-measurable and

1

n

n∑
i=1

w2(Xi)
P−→

∫ ∞

0

w2(x)dF (x) < ∞. (18)

Note that age-measurable by a constant is equivalent to
simply age-measurable since in that case (18) becomes (6). We
omit the proof of the next result as it follows that of Theorem
1 pretty closely. The only difference is that since w(x) may
be unbounded, convergence is stated in probability rather than
in mean.

Theorem 2: For a process N that is age-measurable by
w(x), the sample-path expectation of w(A(QT)) converges
in probability as T → ∞:

lim
T→∞

E[w(A(QT))|N] =

∫ ∞

0

w(x)dG(x). (19)

From this point on, we omit explicit conditioning on the
sample-path since results do not depend on N for age-
measurable processes. However, we keep in mind that all
probabilities and expectations involving QT are still taken in
the sample-path sense.

IV. STALENESS COST

This section models the probability of staleness and ex-
pected cost under both penalty metrics defined earlier.

A. Age Independence

We now return to examining (4). In order to determine when
the replica is stale, one requires comparison of AU (QT) with
AD(QT), which may not be independent random variables,
even if NU and ND are. For example, suppose {Ui}∞i=1 and
{Dk}∞i=1 are iid variables that equal 1 or 2 with probability
1/2 each. As T → ∞, the distribution of AD(QT) becomes a
mixtures of two uniform variables in [0, 1] and [0, 2]. However,
conditioning on AU (QT) = y shifts the mass of refresh age
AD(QT) to just three discrete points y − 1, y, y + 1, clearly
showing that the two ages are dependent.

To prevent such cases, which is called phase-lock [3], the
safest solution is to require that ND implement a download
policy that ensures independence of the two ages. In that case,
conditions such as ASTA (Arrivals See Time Averages) [27]

6

must apply to the age of one process when sampled by the
arrival points of the other. This issue is delayed until a later
section, but for the time being we define more clearly what
independence of AU (QT) and AD(QT) means.

Specifically, suppose NU and ND are age-measurable.
Then, let FU (x) and FD(x) be respectively the limiting
CDF functions of interval lengths defined in (5), with the
corresponding average rates µ and λ, i.e.,

1

µ
=

∫ ∞

0

F̄U (x)dx and
1

λ
=

∫ ∞

0

F̄D(x)dx. (20)

Further, let U ∼ FU (x) and D ∼ FD(x) be random update
and download cycle lengths. Similarly, suppose GU (x) and
GD(x) are the limiting CDFs of age from (8), with lower-case
functions gU (x) and gD(x) representing the corresponding
PDFs. When the necessary limits exist, let AU ∼ GU (x) and
AD ∼ GD(x) represent the two random ages as T → ∞.

Definition 6: Two point processes NU and ND are called
age-independent if they are age-measurable and ∀x, y ≥ 0:

lim
T→∞

P (AD(QT) < x|AU (QT) = y) = GD(x). (21)

If either NU or ND is Poisson, (21) is guaranteed from
PASTA (Poisson Arrivals See Time Averages) [40], which
explains why prior work did not encounter these nuances. In
more general cases, (21) can be expressed in a more convenient
form as shown next.

Theorem 3: Formulation (21) implies that AD(t) sampled
in update points of NU produces a sequence of random
variables that converges in distribution to GD(x):

lim
T→∞

1

NU (T)

NU (T)∑
i=1

1AD(ui)<x = GD(x). (22)

Proof: First define d(y, T) to be the number of points in
[0, T] where AU (t) = y occurs. Recalling that u1 = 0, this
can be expressed as:

d(y, T) =

NU (T)∑
i=1

1Ui≥y,ui+y≤T =

NU (T)∑
i=1

1Ui≥y · 1ui+y≤T .

Next, let c(y, T) be the number of these points in which the
download age AD is smaller than x:

c(y, T) =

NU (T)∑
i=1

1Ui≥y,ui+y≤T,AD(ui+y)<x

=

NU (T)∑
i=1

1Ui≥y · 1ui+y≤T · 1AD(ui+y)<x. (23)

Noticing that

P (AD(QT) < x|AU (QT) = y) =
c(y, T)

d(y, T)
, (24)

we get using (21):

GD(x) = lim
T→∞

lim
y→0

c(y, T)

d(y, T)
= lim

T→∞

1

NU (T)

NU (T)∑
i=1

1AD(ui)<x,

which is the same as (22).

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

download rate λ (per day)

av
er

ag
e

st
al

en
es

s

simulation
model

(a) Pareto U , constant D

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

download rate λ (per day)

av
er

ag
e

st
al

en
es

s

simulation
model

(b) constant U , Pareto D

Fig. 4. Examination of (25) under µ = 2.

L1(t)

t

R
D
(t)

(a) staleness process S(t)

Dk

y x

AD(t)>y, RD(t) >x

dk dk+1

(b) reward of each cycle

Fig. 5. Visualizing the proof of Theorem 5.

B. Preliminaries

Our first objective is to derive the probability of staleness.
Theorem 4: Assuming that NU and ND are age-indepen-

dent, the probability of staleness at time QT converges in mean
as T → ∞ to:

P (S(QT) = 1) → p := µ

∫ ∞

0

F̄U (y)ḠD(y)dy. (25)

Proof: Due to the existence and independence of AU (QT)
and AD(QT) in the limit, we immediately obtain:

p = P (AD > AU) =

∫ ∞

0

ḠD(y)dGU (y). (26)

Expanding dGU (y) = µF̄U (y)dy leads to the result.
To perform a self-check against prior results with Poisson

NU , observe that (25) simplifies to p = 1 − λ(1− e−µ/λ)/µ
under constant D and µ/(µ+ λ) under exponential D, which
are consistent with [9], [11]. Simulations in Fig. 4 examine
model accuracy in more interesting cases of general renewal
processes. We use Pareto CDF 1− (1 + x/β)−α with α = 3
and mean β/(α − 1) = β/2. Observe in the figure that the
model matches simulations very well, with constant download
intervals performing significantly better against Pareto update
cycles in (a) than the other way around in (b). For example,
synchronizing pages at their update rate (i.e., λ = µ = 2)
serves stale copies with probability 33% in the former case and
66% in the latter. Furthermore, for the same p, the scenario in
(a) requires roughly 4 times less bandwidth than in (b).

The next intermediate result is the distribution of the first
lag L1(QT), which relies on p in (25).

Theorem 5: If NU and ND are age-independent, the CDF
of L1(QT) converges in mean as T → ∞ to:

FL(x) = 1− µ

p

∫ ∞

0

F̄U (y)ḠD(x+ y)dy. (27)

7

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

staleness age τ (days)

cu
rr

en
cy

 c
(τ

)

simulation
model

(a) Pareto U , constant D

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

staleness age τ (days)

cu
rr

en
cy

 c
(τ

)

simulation
model

(b) constant U , Pareto D

Fig. 6. Examination of (30) under λ = µ = 2.

Proof: Consider the ON/OFF staleness process in Fig.
5(a) and suppose the query time t falls in the ON period. Then,
since t is uniformly random within this cycle, the backward
delay L1(t) is symmetrical to the forward (residual) delay
RD(t), meaning they have the same distribution. Note that
it is important to condition on AD(t) > AU (t) since residual
RD(t) depends on age AD(t), i.e.,

P (L1(t) > x) = P (RD(t) > x|AD(t) > AU (t)). (28)

Since the ages of NU and ND are independent, we can
condition on AU (t) = y for any t without impacting the dis-
tribution of AD(t) or RD(t). Following the proof of Theorem
1, define Lk = dk + y and Mk = min(T, dk+1 − x) to be
the lower/upper boundaries within synchronization interval k
such that if t ∈ [Lk,Mk] then RD(t) > x and AD(t) > y.
See Fig. 5(b) for an illustration.

Define CT = P (L1(QT) > x|AU (QT) = y) and observe
that it converges as T → ∞:

CT =
1

pT

∞∑
k=1

P (Lk ≤ QT ≤ Mk) =
1

pT

N(T)∑
k=1

(Dk − (x+ y))+

→ λ

p

∫ ∞

0

max(z − (x+ y), 0)dFD(z)

= −λ

p

∫ ∞

x+y

(z − (x+ y))dF̄D(z) =
λ

p

∫ ∞

x+y

F̄D(z)dz

=
1

p

∫ ∞

x+y

gD(z)dz =
ḠD(x+ y)

p
. (29)

Unconditioning AU (QT) and keeping in mind that its
distribution is well-defined as T → ∞, we get (27).

Theorem 5 allows a simple expression for the fraction of
requests c(τ) that observe content outdated by less than τ time
units, which was called β-currency in [4] and ∆-consistency
in [36]. This can be expressed as:

c(τ) = 1− F̄L(τ)p =

∫ ∞

0

gU (y)GD(τ + y))dy, (30)

which conveniently simplifies to P (AD − AU < τ), where
AD − AU is the generalized lag between the replica and
the source, i.e., non-positive values mean fresh states. Fig.
6 compares (30) to simulations using λ = µ. As seen in the
figure, this page retrieved at a random time is stale by less
than τ = 0.4 days (9.6 hours) with probability c(τ) = 98% in
the first case and 62% in the second.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

download rate λ (per day)

so
ur

ce
 p

en
al

ty
 η

simulation
model

(a) Pareto U , constant D

0 1 2 3 4 5
0

1

2

3

4

download rate λ (per day)

so
ur

ce
 p

en
al

ty
 η

simulation
model

(b) constant U , Pareto D

Fig. 7. Examination of (31) under w(x) = x, µ = 2.

C. Source Penalty

We are now ready to derive a general formula for η̄.
Theorem 6: If NU and ND are age-independent, while ND

is age-measurable by w(x), the source penalty converges in
probability to:

η̄ = λµ

∫ ∞

0

F̄U (y)

∫ ∞

0

w(x)F̄D(x+ y)dxdy. (31)

Proof: First, observe that

η̄ = E[w(L1)]P (AD > AU), (32)

where L1 ∼ FL(x). Working back from (27), the tail CDF of
L1 can be written more compactly as:

P (L1 > x) = P (AD −AU > x|AD > AU). (33)

Since L1 = AD − AU > 0, conditioned on AD > AU , it
suffices that only process ND be measurable by w(x). In that
case:

η̄ = E[w(L1)]P (AD > AU) = p

∫ ∞

0

w(x)dFL(x), (34)

or equivalently:

η̄ =

∫ ∞

0

gU (y)

∫ ∞

0

w(x)gD(x+ y)dxdy. (35)

which immediately leads to (31) after expansion of gU (x) =
µF̄U (x) and gD(x+ y) = λF̄D(x+ y).

With w(x) = 1, (31) reduces to staleness probability
p already discussed above. For the other case w(x) = x
seen in the literature, we obtain the expected staleness age
η̄ = E[L1(t)]p by which the replica trails the source. Under
Poisson NU and constant D, we get from (31):

η̄ =
1

2λ
− 1

µ
+

λ(1− e−µ/λ)

µ2
, (36)

and when both distributions are exponential:

η̄ =
µ

λ(λ+ µ)
. (37)

These special cases are consistent with [8]. Simulations
in Fig. 7 additionally confirm that (31) is accurate under
general renewal processes. Also observe in the figure that the
combination in (b) continues to offer inferior performance to
that in (a); however, the difference between the two scenarios
is now more pronounced. For example, using the same λ = µ
considered earlier, search-engine clients encounter indexing

8

results outdated on average by 0.06 days (1.5 hours) in the
left subfigure and by 0.8 days (19 hours) in the right. This
example shows how drastically the cost changes based on the
shape of FU (x) and FD(x), which emphasizes the importance
of utilizing models that can accurately handle any underlying
processes (NU , ND).

We now offer a more intuitive look at source penalty.
Modifying w(x) to be zero for negative x, we can rewrite
(31) in a more compact form:

η̄ = E[w(AD −AU)] = λE[w2(D −AU)]. (38)

This result shows that η̄ is determined by the positive
deviation of the generalized lag AD − AU from zero, or
equivalently by that of D −AU , where the weight applied to
each deviation is given respectively by w(x) and w2(x). The
only caveat is that simplification (38) requires weight functions
that can explicitly handle negative arguments, e.g., a constant
penalty would be w(x) = 1x≥0 rather than just w(x) = 1.
Throughout the rest of the paper, we avoid the extra notation
dealing with x < 0, but keep this in mind.

D. Update Penalty

Unlike the previous section, we next show that ρ̄ admits a
much simpler result that depends only on the mean update
rate µ rather than the entire distribution FU (x). This was
first observed through simulations in [15] for constant interval
lengths D, but no explanation or extension to other FD(x)
was offered.

Theorem 7: Assuming NU and ND are age-independent,
while ND is age-measurable by w2(x), the update penalty
converges in probability to:

ρ̄ = µE[w2(AD)] = λµE[w3(D)]. (39)

Proof: Using Lebesgue-Stieltjes integrals and treating
point processes as measures, we can re-write (2) as:

ρ(t) =

∫ t

t−AD(t)

w(t− s)dNU (s) (40)

Taking the expectation along each sample path:

ρ̄ = lim
T→∞

E
[∫ QT

QT−AD(QT)

w(QT − s)dNU (s)
]

= lim
T→∞

1

T

∫ T

0

∫ t

t−AD(t)

w(t− s)dNU (s)dt

= lim
T→∞

1

T

∫ T

0

w2(AD(t))dNU (t)

= lim
T→∞

1

T

NU (T)∑
i=1

w2(AD(ui)). (41)

Applying (22), the sequence {AD(u1), AD(u2), . . .} sam-
pled in update points {ui} converges in distribution to that of
AD(QT) as T → ∞. Then, (41) becomes:

ρ̄ = lim
T→∞

µE[w2(AD(QT))]. (42)

Since ND is w2(x)-measurable, (19) shows that this expec-
tation converges and its limit equals µE[w2(AD)]. By (17),
this is also λµE[w3(D)].

0 1 2 3 4 5
0

0.5

1

1.5

download rate λ (per day)

up
da

te
 p

en
al

ty
 ρ

simulation
model

(a) Pareto U , constant D

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

download rate λ (per day)

up
da

te
 p

en
al

ty
 ρ

simulation
model

(b) constant U , Pareto D

Fig. 8. Examination of (45) and (46) under µ = 2.

To perform a sanity check, consider Poisson NU and
constant D. Then, (39) produces ρ̄ = µ/(2λ) for w(x) = 1
and µ/(6λ2) for w(x) = x, both of which match previously
known results [24], [33], [42]. Generalizing these two cases
to exponential D, we obtain from (39) respectively µ/λ
and µ/λ2. Interestingly, this shows that switching downloads
from constant intervals to exponential doubles the number of
missing updates and sextuples their combined age.

For w(x) = 1, a simple closed-form expression is possible
for all D:

E[M(t)] =
λµE[D2]

2
=

µ

2λ

(
1 + λ2V ar[D]

)
. (43)

For example, Pareto D produces in (43):

E[M(t)] =
µ(α− 1)

λ(α− 2)
, (44)

which for α = 3 is quadruple that of constant D and double
that of exponential D. Another peculiar case is α → 2, where
E[M(t)] tends to infinity regardless of NU . In fact, the update
process itself may exhibit V ar[U] = ∞, but the expected
number of updates by which the replica falls behind will still
become unbounded as α approaches 2.

Since source penalty ρ̄ sums up the ages of all missing
updates, it allows usage of decaying functions w(x) such that
their integral is increasing. We demonstrate this effect using
w(x) = 1/(1 + x), for which w2(x) = log(1 + x). This cost
function increases rapidly for small x, but then becomes less
sensitive to staleness as the age of replicated content grows.
Since w3(x) = (1 + x) log(1 + x)− x, constant D yields:

ρ̄ = µ[(λ+ 1) log(1 + 1/λ)− 1]. (45)

For D ∼ Pareto(α, β) with α = 3 and β = 2/λ, we get:

ρ̄ = 2µ

{
2 log(2/λ)−2+λ

(λ−2)2 λ ̸= 2

0.25 λ = 2
. (46)

Fig. 8 confirms that both models are accurate, with constant
D enjoying a 60% lower penalty compared to Pareto.

V. OPTIMALITY

Motivated by (43) and consistently worse performance of
Pareto D, the goal of this section is to understand the impact,
if any, of V ar[D] on penalty and determine whether there
exists an optimal distribution FD(x) that, for a fixed download
budget λ, provably results in the lowest cost for all NU and
all suitable functions w(x).

9

A. Stochastic Dominance

We start with general concepts from economics and game
theory that are useful for understanding optimality. For two
non-negative random variables X ∼ FX(x) and Y ∼ FY (x),
let their CDF difference be:

H(x) = FY (x)− FX(x), (47)

whose generalization Hn(x) is given by (16). Then, we have
the following definition.

Definition 7: Variable X is said to stochastically dominate
Y in n-th order, which we write as X ≥n

st Y , if Hn(x) ≥ 0
for all x ∈ R.

This concept is important because desirable characteristics
of D can be inferred from those of AD, as shown next.

Lemma 1: Assume E[X] = E[Y] and n ≥ 2. Then, X
stochastically dominates Y in n-th order, i.e., X ≥n

st Y , iff
the age of Y stochastically dominates the age of X in (n−1)-
st order, i.e., AY ≥n−1

st AX .
Proof: Let GX(x) and GY (x) be the CDF of AX and

AY , respectively. Define:

J(x) = GY (x)−GX(x), (48)

which can be expressed using H2(x) as:

J(x) =

∫ x

0
(1− FY (x))dy

E[Y]
−

∫ x

0
(1− FX(y))dy

E[X]

=

∫ x

0
(FX(y)− FY (y))dy

E[X]
= − 1

E[X]
H2(x). (49)

Integrating both sides n− 2 additional times leads to:

Jn−1(x) = − 1

E[X]
Hn(x). (50)

From this and Definition 7, it follows that X ≥n
st Y implies

AY ≥n−1
st AX and vice versa.

As given by the next lemma, first-order stochastic domi-
nance allows one to determine the relationship between ex-
pected utilities E[w(X)] and E[w(Y)]. While it is possible
to establish a more general version of this result using n-th
order dominance, it would restrict w(x) to a narrower class of
functions and thus would be less useful in practice.

Lemma 2: Condition X ≥1
st Y holds iff for all non-decre-

asing functions w(x) it follows that E[w(X)] ≥ E[w(Y)].

B. Penalty Analysis

Returning to the topic of information staleness, our goal is
to determine the condition under which both types of penalty
can be reduced without changing the refresh rate λ. Define
η̄(D1) and η̄(D2) to be the source penalties corresponding to
random synchronization intervals D1 and D2. For the opposite
problem, i.e., finding the worst update distribution for a given
µ, define η̄(U1) and η̄(U2) to be the penalties that correspond
to update intervals U1 and U2.

The next result shows that stochastic (rather than variance)
ordering is needed to improve staleness penalty. Define w(x)
to be a measure if it is non-negative, non-decreasing, and right-
continuous with w(x) = 0 for x < 0.

Theorem 8: For a given NU and fixed download rate λ,
D1 ≥2

st D2 iff η̄(D1) ≤ η̄(D2) for all measures w(x).
Similarly, with a given ND and fixed µ, U1 ≥2

st U2 iff
η̄(U1) ≥ η̄(U2) for all measures w(x).

Proof: Using (38), observe that η̄ = E[w(AD − AU)] is
fully determined by the properties of variable X = AD−AU .
For a fixed AU , it is not difficult to show that X becomes
stochastically smaller in first order iff AD does. Applying
Lemmas 1-2, this means that penalty η̄ gets smaller iff D
increases stochastically in second order.

Similarly, for a fixed AD, X gets stochastically larger in first
order iff AU becomes stochastically smaller. Again applying
Lemmas 1-2, penalty η̄ increases iff U becomes stochastically
larger in second order.

A similar result holds under update penalty ρ̄. Note that
FU (x) has no impact here and the result holds for all w(x).

Theorem 9: For a given NU and fixed λ, D1 ≥2
st D2 iff

ρ̄(D1) ≤ ρ̄(D2) for all w(x).
Proof: Since ρ̄ = µE[w2(AD)], where w2(x) is a

measure for all non-negative w(x), Lemmas 1-2 yield that
ρ̄ decreases iff D gets stochastically larger in second order.

The preceding results set up motivation to ask the question
of whether there exists a distribution that dominates all others
in second order. We answer this next.

Theorem 10: For a given mean, a constant stochastically
dominates all other random variables in second order.

Proof: Suppose l is the fixed mean of all distributions
under consideration. Let FX(x) = 1x>l be the CDF of a
constant and FY (x) be the CDF of another random variable
Y such that E[Y] = l. Our goal is to show that H2(x) ≥ 0.

When x ≤ l, we have trivially:

H2(x) =

∫ x

0

(FY (y)− FX(y))dy =

∫ x

0

FY (y)dy ≥ 0.

(51)

For x > l, we get:

H2(x) =

∫ l

0

FY (y)dy +

∫ x

l

(FY (y)− 1)dy

= l +

∫ x

0

FY (y)dy − x = l −
∫ x

0

(1− FY (y))dy

≥ l −
∫ ∞

0

(1− FY (y))dy = 0,

where we use the fact that l =
∫∞
0

(1− FY (y))dy.
This leads to the main result of this section.
Corollary 1: Constant inter-synchronization delays are op-

timal under both η̄ and ρ̄, all suitable weights w(x), and all
update processes NU .

This allow us to resolve the relationship between the vari-
ance of D and penalty. If E[D1] = E[D2], then D1 ≥2

st D2

implies V ar[D1] ≤ V ar[D2], but the opposite is not true.
This shows that for a given download rate, just reducing the
variance of refresh intervals, without enforcing D1 ≥2

st D2, is
insufficient to improve the penalty across all functions w(x).
As an example, recall the special case of ρ̄ with w(x) = 1
in (43), where the penalty was reduced iff the variance of
D was; however, no such causality exists for w(x) = x or
log(1+x). On the other hand, if reduction in penalty holds for

10

all measures w(x), then stochastic ordering between D1 and
D2 follows and thus variance has to decrease (i.e., ordering
of variances is necessary, but not sufficient).

C. Phase-Lock

Even though constant D is optimal from the staleness per-
spective, it unfortunately fails to guarantee age-independence
(21) against all underlying NU . We now deal with principles
related to ASTA (Arrivals See Time Averages) [27], placing
them in our context. In general, ASTA can be viewed as
a condition that allows discrete and continuous sample-path
averages of a stochastic process X(t) to be equal almost
surely:

lim
n→∞

1

n

n∑
k=1

X(tk) = lim
T→∞

1

T

∫ T

0

X(t)dt. (52)

Let X(t) = 1AD(t)<x and tk = uk. Then, if (52) holds
for all x, it follows that the distribution of refresh age AD(t)
sampled in update points uk equals that sampled in uniformly
random instances QT , which in turn is equivalent to our earlier
formulation (21). While we have proven that the right side of
(52) exists and equals a constant almost surely, existence of
the left side or its equality to the integral is not guaranteed in
general cases.

ASTA analysis focuses on the properties of points {tk} and
their relationship to X(t) that allow (52) to hold; however,
this normally requires conditions that are difficult to verify in
practice (e.g., LAA, WLAA, LBA [27]). We therefore discuss
general guidelines for ensuring that (52) is satisfied, without
becoming engrossed in unnecessary rigor.

Knowing that constant D is optimal from the staleness per-
spective, we are now interested in the ability (or lack thereof)
of ND to sample NU (and vice versa) in ways that achieve
age-independence in (52), but without sacrificing optimality
of D. One of the main concerns is that if all Ui are constant,
then it is possible that ND may sample update age that is
different from that observable by a uniform QT . For example,
suppose process NU has Ui = 5 for all i ≥ 1 and process
ND has D1 = uniform[0, 5] and Dk = 5 for k ≥ 2. Since
the refresh process is stationary, the two ages AD(QT) and
AU (QT) are independent random variables when considered
across all sample paths, but the same conclusion and thus (52)
fail to hold in any single execution of the system.

While sampling constant update cycles {Ui} with constant
synchronization intervals {Dk} may seem like a bad idea,
asymptotic age-independence is sometimes possible even in
such cases. To build intuition, suppose Dk = π for all k ≥ 1.
Then, from the equidistribution theorem, AU (dk) = (kπ)
mod 5 is a uniformly random variable in [0, 5], meaning
that AU (dk) has the same distribution as AU (QT). The key
observation is to ensure that ND puts its download points
uniformly across the cycles of NU .

In general, sequence ak = (kξ) mod 1, where k = 1, 2, . . .
and ξ is an irrational constant, is uniformly distributed in [0, 1],
in which case for any Riemann-integrable function, an ASTA-

like condition automatically holds:

lim
n→∞

1

n

n∑
k=1

f(ak) =

∫ 1

0

f(x)dx. (53)

The integration limit can be extended if f(x) is periodic.
Assuming its period τ is not an integer multiple of ξ, sequence
bk = (kξ) mod τ is uniform in [0, τ] and thus:

lim
n→∞

1

n

n∑
k=1

f(kξ) =
1

τ

∫ τ

0

f(x)dx. (54)

While using Dk = π to sample Ui = 5 works well, there
is a possibility that Ui itself happens to be a multiple of π.
To preclude these cases, ND must exhibit enough randomness
to prevent Dk/Ui from becoming deterministically an integer.
This leads us to the next definition.

Definition 8: A distribution F (x) of random variable Y is
called lattice if there exists a constant c such that Y/c is always
an integer.

Non-lattice distributions may be entirely continuous, which
includes the classical PASTA (Poisson Arrivals See Time Av-
erages) [40] with exponential Dk and the uniform distribution
often suggested for network measurement [3]. However, they
can also be entirely discrete. In such cases, cycle lengths
of FD(x) must spread the probability mass across at least
two values (a, b), where a/b is irrational, e.g., pairs (π, 1) or
(e,

√
2). By bringing spread |b−a| closer to zero, it is possible

to obtain a variety of approximations to the optimal (constant)
synchronization delay with mean l = (a+ b)/2.

Theorem 11: In scenarios with iid {Dk} and non-lattice
FD(x), age-independence holds for all NU (x).

Proof: The result follows from the equidistribution theo-
rem and the iid nature of {Dk}.

Conversely, in certain cases, it may be known a-priori that
NU is non-lattice renewal. Then, it is not difficult to see that
constant D guarantees age-independence, which means that
optimality is achievable in practice under these conditions.

VI. APPLICATIONS

We now examine the presence of Poisson updates in real
data sources and show how to apply the developed models to
solve several classes of multi-source/replica problems.

A. Real-Life Update Processes

We first discuss possible reasons for the frequent use of
memoryless source-update processes in the literature. If indeed
this is universal, extensions to non-Poisson dynamics may
be unnecessary. While modeling convenience is one possible
explanation [11], there is certain belief in the field that updates
to individual web pages can be accurately described by a
Poisson process, which has fueled this line of modeling for
over a decade [4], [5], [8], [9], [10], [15], [16], [17], [19],
[22], [25], [26], [28], [29], [33], [35], [42].

Intuitively, there is no fundamental reason why a single
source should exhibit Poisson dynamics, especially when
modified by humans. A more likely scenario would be heavy-
tailed behavior observed in many areas of computer networks

11

10
0

10
1

10
2

10
3

10
410

−5

10
−4

10
−3

10
−2

10
−1

10
0

update interval x+β (hours)

1−
C

D
F

data
Pareto fit

(a) distribution tail F̄U (x)

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1

lag h

au
to

−
co

rr
el

at
io

n

data
power−law fit

(b) correlation ρ(h)

0 3 6 9 12 15 18 21 24
0.2

0.3

0.4

0.5

0.6

0.7

0.8

time of day (GMT)

hi
st

og
ra

m
 o

f r
at

e
(u

pd
at

es
/h

ou
r)

data
sin(x) fit

(c) update rate

0 4 8 12 16 20 24
0

0.2

0.4

0.6

0.8

1

download rate λ (per day)

av
er

ag
e

st
al

en
es

s

exp approximation
our model
simulation

(d) model accuracy

Fig. 9. George W. Bush page dynamics.

[12], [23], [30] and user-driven distributed systems [6], [32],
[34]. Another intuitively reasonable inter-update distribution is
constant, where certain information is injected into the system
periodically by design or is obtained from an ON/OFF source
(e.g., sensors trying to conserve energy).

Closer examination of the origin [9] of the Poisson conclu-
sion reveals several limitations. First, the distribution of page
inter-update intervals was sampled using incomplete observa-
tion, meaning that some of the updates went unnoticed. As a
result, bias could have been introduced in the measurements.
Second, the exponential distribution was fitted to updates of
multiple pages rather than a single page. Poisson dynamics
have been known to emerge when aggregating arrival pro-
cesses [1] and summing up variables [2], which does not tell
us much about the individual distributions being combined.
Finally, to conclude that NU is Poisson, it is insufficient to
observe an exponential distribution in {Ui}∞i=1; instead, one
must also show stationary independent increments [41].

B. Wikipedia

Many of these pitfalls can be avoided if model verification
is performed over sources that expose information about each
update. One particularly interesting source with public traces
of all modification timestamps is Wikipedia [37]. From a
search-engine perspective, this website represents a realistic
example of data churn stemming from user interaction with
each other (e.g., edits from other people), flash crowds in
response to external events, and diurnal activity patterns of the
human lifecycle. Wikipedia is also well-suited for purposes of
model validation and discussion.

To shed light on the complexity of real FU (x), we plot
in Fig. 9(a) the tail CDF of inter-update delay for the most
frequently modified article – “George W. Bush” with 44, 296
updates in 10 years (mean delay E[U] = 1.86 hours). The
figure is a close match to Pareto tail (1+x/β)−α with α = 1.4
and β = 0.93. In Fig. 9(b), we show the corresponding auto-

correlation function ρ(h) with a power-law fit h−0.37, which
suggests long-range dependence (LRD) with Hurst parameter
0.81. Of course, LRD effects might be caused and/or com-
pounded by non-stationarity. To address this question, Fig. 9(c)
shows the update rate throughout the day, clearly indicating
non-stationary dynamics.

This example underscores the need to keep the model gen-
eral and not limit results to renewal or even stationary cases,
which was our goal with assumptions (5)-(6). Approximating
FU (x) as non-lattice and using constant D, we next compute
the probability of staleness for this page by supplying (31) with
George W. Bush’ empirically computed distribution FU (x).
We contrast the result against the closest Poisson formula
1 − λ(1 − e−µ/λ)/µ from [9]. Fig. 9(d) shows that (31) is
accurate, but the Poisson approximation suffers over 100%
relative error for much of the examined range.

What is more important is the performance of the model in
providing an accurate assessment of the download bandwidth
needed to achieve a given p. We invert the formulas to solve
for λ as a function of p and plot the result in Fig. 10(a).
These results show a much more dramatic difference. For
example, 20% staleness requires 95 downloads/day according
to previous Poisson models, while in reality this can be
achieved with just 8. To illustrate this better, we show the
ratio of these two curves in Fig. 10(b), where the amount of
Poisson overestimation varies from one to almost two orders
of magnitude depending on the desired p.

C. Aggregation (Many-to-One)

When a single replica tracks M sources, as in Fig. 1(a), per-
formance is assessed by its ability to provide usable aggregate
information to the consumer. If sources are independent, many
results are relatively easy to obtain. For example, consider
a system that selects a particular replica and loads it with
a MapReduce job that has to execute over the data of all
sources. A computation may be considered successful if at
least one source is fresh at the time of job request. Then, the
fraction of successful attempts is 1 −

∏M
i=1 pi, where pi in

(25) is the probability of staleness for source i. Alternatively,
application consistency may require that all sources be simul-
taneously fresh, which leads to the probability of success via∏M

i=1(1− pi).
A more interesting problem is optimal allocation of down-

load rates to different sources. Suppose qi is the probability
that an incoming query requests data from source i and µi is
its update rate. Then, the goal is to allocate refresh rates λi

so as to optimize the expected staleness cost C(λi, µi) for a
given bandwidth budget Λ:

min
M∑
i=1

qiC(λi, µi) subject to
M∑
i=1

λi ≤ Λ, (55)

where C(λi, µi) refers to either η̄ or ρ̄.
For Λ ≪

∑M
i=1 µi and certain choices of w(x), solutions to

(55) using cost η̄ are known to completely starve frequently
modified sources in favor of those that are updating slowly
[9]. Since (55) does not have a closed-form solution under η̄
even in the simplest cases, specific conditions for starvation

12

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

average staleness

do
w

nl
oa

d
ra

te
 λ

 (
pe

r
da

y)

exp approximation
actual

(a) crawl rate

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

average staleness

ba
nd

w
id

th
 r

at
io

 (
ex

p/
ac

tu
al

)

(b) ratio

Fig. 10. Application of staleness models to the update process of George
W. Bush.

are not clear. Complete loss of synchronization for sources
whose µi is above some (typically unknown) threshold may be
an unwelcome surprise for many applications. This naturally
leads to the question of whether ρ̄ suffers from the same
drawback. We address this next.

Theorem 12: Assume qiµi > qjµj > 0 and let refresh
delays be optimal (i.e., constant). Then, the solution to (55)
using ρ̄ guarantees that λi > λj > 0.

Proof: Using Lagrange multipliers, we get that all partial
derivatives of qiC(µi, λi) must equal some constant κ:

κ = −∂[qiC(µi, λi)]

∂λi
= −qiµi

∂[λiw3(1/λi)]

∂λi
, (56)

which follows from (39) and Di = 1/λi. Expanding, we get
κ = qiµif(λi), where

f(x) =
w2(1/x)

x
− w3(1/x) (57)

is a monotonically non-increasing function:

f ′(x) = −w2(1/x)

x2
−w(1/x)

x3
+
w2(1/x)

x2
= −w(1/x)

x3
. (58)

Notice that f(λi) ≥ 0 for all λi since w3 is an integral of
w2(x) from 0 to 1/λi. Therefore, κ ≥ 0 and the relationship
between µi and λi is determined by:

λi = f−1
(κ

qiµi

)
. (59)

If since f is non-increasing, larger qiµi implies larger λi.
Finally, since f(x) > 0 for all x > 0, it follows that its inverse
f−1 has the same properly and thus no positive qiµi > 0 can
achieve λi = 0. This means the optimal allocated rate must
be strictly positive (i.e., no starvation).

To explain how optimization with ρ̄ can be used, we assume
constant D and w(x) = 1, with the goal to maximize∑M

i=1 qiE[Mi(t)]. Solving (55), the optimal download rate of
each page is proportional to the square root of qiµi:

λi = Λ

√
qiµi∑M

j=1

√
qjµj

. (60)

The optimal penalty is then:

M∑
i=1

qiE[Mi(t)] =

M∑
i=1

qiµi

2λi
=

(
∑M

j=1

√
qjµj)

2

2Λ
. (61)

Define random variable µ to have the same distribution as
{µ1, . . . , µM}. Then, for the most basic scenario where all
pages are equally popular, i.e., qi = 1/M , we get:

M∑
i=1

qiE[Mi(t)] = M
E[

√
µ]2

2Λ
. (62)

For the other extreme, where pages are searched for in
proportion to their modification rate, i.e., qi ∼ µi, we have:

M∑
i=1

qiE[Mi(t)] = M
E[µ]

2Λ
. (63)

To put these models in perspective, we use Wikipedia’s
distribution of µ, which happens to be quite heavy-tailed (i.e.,
Zipf shape α = 0.6). The average update rate across all pages
is E[µ] = 8 updates/day; however, 98% of them exhibit µi

less than 1/day, 90% less than 1/week, and 50% below 8/year.
Using this distribution in (62) and (63) shows that optimizing
staleness of the entire Wikipedia under uniform page access
qi = 1/M requires 46 times less bandwidth Λ than under
Zipf. This can be explained by the fact that keeping frequently
modified pages fresh costs more bandwidth. This effect is
related to the variance of

√
µ:

E[µ]

E[
√
µ]2

=
V ar[

√
µ] + E[

√
µ]2

E[
√
µ]2

=
V ar[

√
µ]

E[
√
µ]2

+ 1. (64)

Consider extrapolating these results to M = 100B sources
and keeping the expected consumer lag

∑M
i=1 qiE[Mi(t)]

below ω updates. We use the two models above as lower/upper
bounds on the actual search-engine crawl rate. The first case
requires download capability Λ1 = M · E[

√
µ]2/2ω = 99/ω

thousand pages per second (pps), while the second one Λ2 =
M ·E[µ]/2ω = 4.6/ω million pps. For ω = 10 and 25 KB per
page, these translate into 2 and 92 Gbps, respectively. Results
can be easily adjusted to non-Wikipedia situations as long as
E[

√
µ] and E[µ] are known.

D. Load-Balancing (One-to-Many)

The issue of redundant replication from a single source, as
in Fig. 1(b), to m nodes is quite different from the opposite
case considered in the previous subsection. When the source
fails, suppose the goal is to deduce the expected penalty
afforded by the freshest member of the entire collection of m
replicas. The issue at stake is how this 1×m scenario compares
to a single replica with some refresh rate λ and optimal D.
To keep comparison fair, assume that each of the m replicas
is allowed budget λ/m in synchronization with the source.
Decentralized operation leads to much better robustness under
failure, but is it possible that this causes reduced freshness? If
so, what is the amount of extra download bandwidth needed
to keep both scenarios equally stale?

The main caveat in solving this problem is that staleness
at different replicas is no longer independent. This happens
because updates at the source simultaneously make all copies
outdated, which means that reliability does not benefit ex-
ponentially with increased m. To overcome this issue, let
N1

D, . . . , Nm
D be the download processes used by the indi-

vidual replicas. Then, observe that the entire collection can be

13

replaced by a single replica that implements a refresh pattern
N∗

D, which is a superposition of all point processes {N i
D}mi=1.

Therefore, the source can be recovered during the crash with
a probability determined solely by N∗

D.
If we assume centralized scheduling between the replicas,

then it is possible to run the system optimally (i.e., using a
perfectly spaced out round-robin) and thus keep the overall
penalty exactly the same as with a single replica. Under
fully decentralized (i.e., independent) replica operation and
m → ∞, each rate λ/m → 0 and thus N∗

D likely converges in
distribution to a Poisson process with rate λ (Palm-Khintchine
theorem [18]). This creates a problem, however, because ex-
ponential D requires noticeably more overhead than constant
D to achieve the same staleness penalty. For example, using
our model for ρ̄ and discussion after (43), this difference is by
a factor of 2 for w(x) = 1 and by a factor of 6 for w(x) = x,
which shows that a distributed cluster of replicas may need
to consume 100 − 500% more bandwidth than a centralized
solution for a given level of QoS (quality-of-service).

E. Many-to-Many

We conclude the paper by noting that Internet applications
often combine the last two scenarios, i.e., M × 1 and 1×m
replication, into a single framework. However, these problems
are usually separable into subproblems that can be reduced to
the analysis above. For example, suppose we are interested in
the probability that a query to a random subset of j replicas
finds at least one of the k sources fresh. First, we compute the
staleness probability for each source based on the aggregate
synchronization process N∗

D from j replicas. Second, since
each source is independent, we multiply these probabilities to
deduce the likelihood that all k sources are stale. Taking the
complement of the result, we get the desired probability.

VII. CONCLUSION

The paper introduced a novel model of sampled age un-
der general non-Poisson update/synchronization processes and
applied it to obtain many useful metrics of staleness. We
additionally established that constant inter-refresh intervals
were optimal for all considered cases and provided guidelines
for achieving ASTA even in those cases. We finally considered
a family of related problems stemming from 1×m and M×1
replication, showing that they can be easily solved from the
preceding analysis of the 1× 1 case.

Future work involves reducing staleness when ND is al-
lowed to depend on observations of NU and/or prior knowl-
edge of its distribution of update cycles FU (x).

REFERENCES

[1] S. L. Albin, “On Poisson Approximations for Superposition Arrival
Processes in Queues,” Management Sci., vol. 28, no. 2, pp. 126–137,
1982.

[2] R. Arratia, L. Goldstein, and L. Gordon, “Two Moments Suffice for
Poisson Approximations: The Chen-Stein Method,” The Annals of
Probability, vol. 17, no. 1, pp. 9–25, Jan. 1989.

[3] F. Baccelli, S. Machiraju, D. Veitch, and J. Bolot, “The Role of PASTA
in Network Measurement,” in Proc. ACM SIGCOMM, Sep. 2006.

[4] B. E. Brewington and G. Cybenko, “How Dynamic is the Web,”
Computer Networks, no. 1-6, pp. 257–276, Jun. 2000.

[5] L. Bright, A. Gal, and L. Raschid, “Adaptive Pull-based Policies for
Wide Area Data Delivery,” ACM Trans. Database Syst., no. 2, pp. 631–
671, June 2006.

[6] F. E. Bustamante and Y. Qiao, “Friendships that Last: Peer Lifespan
and its Role in P2P Protocols,” in Proc. Web Content Caching and
Distribution, Sep. 2003.

[7] D. Carney, S. Lee, and S. Zdonik, “Scalable Application-Aware Data
Freshening,” in Proc. IEEE ICDE, March 2003, pp. 481–492.

[8] J. Cho and H. Garcia-Molina, “The Evolution of the Web and Impli-
cations for an Incremental Crawler,” in Proc. VLDB, Sep. 2000, pp.
200–209.

[9] J. Cho and H. Garcia-molina, “Synchronizing a Database to Improve
Freshness,” in Proc. ACM SIGMOD, May 2000, pp. 117–128.

[10] J. Cho and H. Garcia-Molina, “Estimating frequency of change,” ACM
Trans. Internet Technol., vol. 3, pp. 256–290, August 2003.

[11] E. G. Coffman, Z. Liu, and R. R. Weber, “Optimal Robot Scheduling
for Web Search Engines,” Journal of Scheduling, no. 1, pp. 15–29, Jun.
1998.

[12] M. E. Crovella and A. Bestavros, “Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes,” IEEE/ACM Trans. Netw., vol. 5,
no. 6, pp. 835–846, 1997.

[13] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” in Proc. USENIX OSDI, Dec. 2004, pp. 137–150.

[14] D. Denev, A. Mazeika, M. Spaniol, and G. Weikum, “SHARC: Frame-
work for Quality-Conscious Web Archiving,” in Proc. VLDB, Aug. 2009.

[15] D. Dey, Z. Zhang, and P. De, “Optimal Synchronization Policies for
Data Warehouses,” INFORMS J. on Computing, no. 2, pp. 229–242,
Jan. 2006.

[16] J. Eckstein, A. Gal, and S. Reiner, “Monitoring an Information Source
Under a Politeness Constraint,” INFORMS J. on Computing, no. 1, pp.
3–20, Jan. 2008.

[17] A. Gal and J. Eckstein, “Managing Periodically Updated Data in
Relational Databases: a Stochastic Modeling Approach,” J. ACM, no. 6,
pp. 1141–1183, Nov. 2001.

[18] D. Heyman and M. Sobel, Stochastic Models in Operations Research,
Volume 1. McGraw-Hill, 1982.

[19] Y. Huang, R. H. Sloan, and O. Wolfson, “Divergence Caching in Client-
Server Architectures,” in Proc. IEEE PDIS, Sep. 1994, pp. 131–139.

[20] Internet Archive. [Online]. Available: http://archive.org/.
[21] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, “Providing High

Availability Using Lazy Replication,” ACM Trans. Comput. Syst., no. 4,
pp. 360–391, Nov. 1992.

[22] J.-J. Lee, K.-Y. Whang, B. S. Lee, and J.-W. Chang, “An Update-Risk
Based Approach to TTL Estimation in Web Caching,” in Proc. WISE,
Dec. 2002, pp. 21–29.

[23] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the
Self-Similar Nature of Ethernet Traffic,” in Proc. ACM SIGCOMM, Sep.
1993, pp. 183–193.

[24] Y. Ling and W. Chen, “Measuring Cache Freshness by Additive Age,”
SIGOPS Oper. Syst. Rev., vol. 38, pp. 12–17, Jul. 2004.

[25] Y. Ling and J. Mi, “An Optimal Trade-off between Content Freshness
and Refresh Cost,” Applied Probability, vol. 41, no. 3, pp. 721–734,
Sep. 2004.

[26] N. Matloff, “Estimation of Internet File-access/Modification Rates from
Indirect Data,” ACM Trans. Model. Comput. Simul., vol. 15, pp. 233–
253, Jul. 2005.

[27] B. Melamed and W. Whitt, “On Arrivals That See Time Averages,”
Operations Research, vol. 38, no. 1, pp. 156–172, 1990.

[28] C. Olston and J. Widom, “Best-Effort Cache Synchronization With
Source Cooperation,” in Proc. ACM SIGMOD, May 2002, pp. 73–84.

[29] C. Olston and S. Pandey, “Recrawl Scheduling Based on Information
Longevity,” in Proc. WWW, Apr. 2008, pp. 437–446.

[30] K. Park, G. Kim, and M. Crovella, “On the Relationship Between File
Sizes, Transport Protocols, and Self-Similar Network Traffic,” in Proc.
IEEE ICNP, Oct. 1996, pp. 171–180.

[31] S. Resnick, A Probability Path. Boston, MA: Birkhäuser, 1999.
[32] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “A Measurement Study

of Peer-to-Peer File Sharing Systems,” in Proc. SPIE/ACM Multimedia
Computing and Networking, vol. 4673, Jan. 2002, pp. 156–170.

[33] K. C. Sia and J. Cho, “Efficient Monitoring Algorithm for Fast News
Alerts,” IEEE Trans. Knowledge and Data Engineering, no. 7, pp. 950–
961, Jul. 2007.

[34] D. Stutzbach and R. Rejaie, “Understanding Churn in Peer-to-Peer
Networks,” in Proc. ACM IMC, Oct. 2006, pp. 189–202.

[35] Q. Tan and P. Mitra, “Clustering-based Incremental Web Crawling,”
ACM Transactions on Information Systems, no. 4, pp. 1–27, Nov. 2010.

14

[36] B. Urgaonkar, A. G. Ninan, M. Salimullah, R. Shenoy, and K. Ramam-
ritham, “Maintaining Mutual Consistency for Cached Web Objects,” in
Proc. IEEE ICDCS, Apr. 2001, pp. 371–380.

[37] Wikipedia Dumps. [Online]. Available: http://dumps.wikimedia.org/
enwiki/20110317/.

[38] G. Wise and E. Hall, Counterexamples in Probability and Real Analysis.
Oxford Univ. Press, 1993.

[39] J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen,
“Optimal Crawling Strategies for Web Search Engines,” in Proc. WWW,
May 2002, pp. 136–147.

[40] R. W. Wolff, “Poisson Arrivals See Time Averages,” Operations Re-

search, vol. 30, no. 2, pp. 223–231, 1982.
[41] R. W. Wolff, Stochastic Modeling and the Theory of Queues. Prentice

Hall, 1989.
[42] M. Yang, H. Wang, L. Lim, and M. Wang, “Optimizing Content

Freshness of Relations Extracted From the Web Using Keyword Search,”
in Proc. ACM SIGMOD, June 2010, pp. 819–830.

[43] H. Yu and A. Vahdat, “Design and Evaluation of a Continuous Con-
sistency Model for Replicated Services,” in Proc. USENIX OSDI, June
2000, pp. 305–318.

