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Optimal Resource Allocation Over Time and
Degree Classes for Maximizing Information

Dissemination in Social Networks
Kundan Kandhway and Joy Kuri

Abstract—We study the optimal control problem of allocating
campaigning resources over the campaign duration and degree
classes in a social network. Information diffusion is modeled
as a Susceptible-Infected epidemic and direct recruitmentof
susceptible nodes to the infected (informed) class is used as a
strategy to accelerate the spread of information. We formulate an
optimal control problem for optimizing a net reward functio n, a
linear combination of the reward due to information spread and
cost due to application of controls. The time varying resource
allocation and seeds for the epidemic are jointly optimized. A
problem variation includes a fixed budget constraint. We prove
the existence of a solution for the optimal control problem,
provide conditions for uniqueness of the solution, and prove some
structural results for the controls (e.g. controls are non-increasing
functions of time). The solution technique uses Pontryagin’s Max-
imum Principle and the forward-backward sweep algorithm (and
its modifications) for numerical computations. Our formulations
lead to large optimality systems with up to about 200 differential
equations and allow us to study the effect of network topology
(Erd ős-Ŕenyi/scale-free) on the controls. Results reveal that the
allocation of campaigning resources to various degree classes
depends not only on the network topology but also on system
parameters such as cost/abundance of resources. The optimal
strategies lead to significant gains over heuristic strategies for
various model parameters. Our modeling approach assumes
uncorrelated network, however, we find the approach useful for
real networks as well. This work is useful in product advertising,
political and crowdfunding campaigns in social networks.

Index Terms—Erdős-Ŕenyi networks, Information epidemics,
Optimal control, Pontryagins Maximum Principle, Scale free
networks, Social networks, Susceptible-Infected.

I. I NTRODUCTION

M AXIMIZING the reach of a piece of information is
of interest to many entities, such as, political par-

ties (during elections), companies marketing new products,
governments and NGOs (to spread awareness about some
socially relevant issue), etc. Before the advent of online social
networks, information used to disseminate in a population
(only) due to social contacts between individuals in day-to-
day life and through the mass media. With the explosion
in the number of people using online social networks these
days—which has added to the available channels over which
information travels—the extent and speed of information
propagation is higher than ever. Campaigners are leveraging
these social networks in an attempt to maximize the reach
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of their messages, as illustrated by the successful use of
social networks such as Twitter and Facebook in the 2012
US Presidential elections [1] and 2014 Indian Parliamentary
elections [2].

This paper studies campaigning strategies aimed at max-
imizing the spread of information in a population for a
fixed-duration political, advertisement or social-awareness
campaigns. Specifically, the campaigning resource—such as
money, manpower or logistics—is allocated optimally over
time (the campaign duration), and classes of individuals carved
up based on their degrees. The degree of an individual is the
number of connections she has with others in the network.
We use only node degree information, which makes this work
useful for both partially observed networks—where the exact
connection pattern is not completely known, but only node
degree has been estimated—an example of which is the face-
to-face human interaction network; and fully observed online
social networks; or a combination of both.

Biological epidemic models are used to model information
spread in a population due to similarities in the ways a
communicable disease and information spread over a net-
work (e.g. [3, 4]). We have modeled information diffusion as
a Susceptible-Infected (SI) epidemic process. Earlier works
(such as [5]) have favored the SI process as a model for
information diffusion. The SI model divides the population
into two compartments. A susceptible node is yet to receive
the message and an infected (informed) node has received
and is spreading the message. Most nodes are susceptible at
the beginning of the campaign—except a small fraction of
the population which acts as the seed for the epidemic—and
changes to the infected state due to interaction with infected
neighbor(s). Once the node becomes infected, it stays in that
state. The SI process is suitable for modeling situations when
individuals receiving the message do not forget it. This hap-
pens for campaigns of short duration (e.g.those for charities)
or, situations such as political campaigns which generate alot
of interest among people. It is also suitable for marketing of
long lasting products such as video games and smart phones.

Other models which may be used, depending on the situa-
tion, are: (a) Susceptible-Infected-Susceptible, in which nodes
alternate between susceptible and infected state, suitable for
marketing consumable goods with substitutable brands, (b)
Susceptible-Infected-Recovered, in which nodes lose interest
in spreading after fixed amount of time since being infected,
(c) Maki-Thompson model, in which nodes lose interest in
spreading after meeting a fixed number of informed individu-
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als, etc.
We adapt the standard SI model to includetime varying

direct recruitment of nodes from susceptible to infected class
to accelerate information diffusion. Similar problems were
addressed in [6, 5]. Such a control may be implemented by
emailing or texting individuals, posting messages on their
social network timelines, or by placing advertisements in
the mass media. Resource and manpower constraints will
prevent the advertiser/campaigner from communicating to all
individuals in the network. Hence, to maximize the extent of
information dissemination, it is important to identify types of
individuals who should be targeted and times when campaign-
ing should run with stronger intensity. For example, should
we target high degree nodes because they act as hubs and
may be better spreaders in the network? Or should we target
low degree nodes who are at a disadvantage in receiving the
messages from others by epidemic spreading due to fewer
connections, and let more connected higher degree nodes
receive the message from epidemic spreading. As shown by
our results, the network topology and the amount of resource
available and/or the cost of application of the control affect
the answer to this question.

A. Related Work and Our Contribution

Many authors have addressed disease mitigation problems
on heterogeneous networks [7, 8]; however, optimal controlof
heterogeneous networks has received less attention. Optimal
control has found use in devising strategies for preventingthe
spread of disease epidemics and computer viruses in works
such as [9, 10]. Our work differentiates itself from these
by considering apopulation of networked individuals instead
of homogeneous mixing.Considering networked individuals
and many controls, as is the case here, leads to a huge
optimality system with about 200 differential equations inour
case, compared to only a few equations in the above works.
Also we discuss the case offixed budget constraint, which
necessitates modifications to the standard forward-backward
sweep algorithm needed to solve the optimal control problem.
Networks play an important role in epidemic spreading (of
both information or disease) because people interact with and
trust only a small subset of the total population to which they
are ‘connected’. Homogeneous mixing assumes that any node
is equally likely to meet any other node in the population and
is quite farfetched.

Our method captures information dissemination dynamics
more accurately than the homogeneous mixing models in
the prior works which study optimal control of information
epidemics [3, 4, 11] (and security patches in the case of [12])
and provide more accurate controls (campaigning strategies).
Also, we are able to discuss theinfluence of node degrees on
resource allocation, which is not possible when homogeneous
mixing is considered.

Information dissemination with impulsive controls in a
homogeneously mixed population was considered in [13].
However, most systems can be controlled throughout the
campaign horizon—e.g.advertisements appear regularly in an
individual’s social network timeline or in the mass media—and

not just once or twice. This motivates a model which allows
for resource allocationthroughoutthe campaign horizon, as is
the case in our work, and not just at a few time instants as in
[13].

The work in [6] has considered heterogeneous mixing of the
population in devising optimal strategies for product market-
ing, but the results were presented by dividing the population
into two degree classes only; this is inadequate to study the
effect of node inter-connection topologies (scale-free/Erdős-
Rényi degree distribution) on controls. To achieve this, we
consider a population with up to 100 degree classes. Note that
real social networks follow a scale-free degree distribution [14]
and two classes are not adequate to characterize them. The
authors in [15] formulated a problem to mitigate a biological
epidemic on a network. Our approach uses one differential
equation for each degree class as against one for each node,
as was the case in [15], and thus scales with number of degree
classes in the network and not the actual population size as
in [15]. Also, that work presented optimal results for only a
simple case of a five-node network and proposed heuristics
for larger networks.

Notice that epidemic models used in both [6, 15] work
well on uncorrelated networks, which is also the case in
this work. Thus, our modeling approach is no worse than in
these works and in addition, we are able to study the effect
of node inter-connection topology on time-varying controls
due to the large system size considered in this work. In
uncorrelated networks, connections are constrained by degree
distribution of the network, but are otherwise completely
random. In contrast, real social networks show some level
of connection correlations,e.g., friends of an individual are
also likely to be friends. Unlike the previous works, we
have tested this modeling approach on a real network via
simulations for both uncontrolled and controlled cases. The
results show that the control strategies derived from our model
lead to improvements with respect to heuristic strategies on
real networks as well.

Optimal seed selection for maximizing the influence in a
network with known connections was studied in [16]. How-
ever, once the seed is decided, the process evolves in an
uncontrolled manner. In contrast, we allow for the information
diffusion process to be controlled throughout the campaign
horizon and present results for a problem which allows for
joint seed selection and resource allocation over timeto
maximize information diffusion.

The works in [5, 17] compute bounds on the spreading
times and epidemic thresholds for SI/SIS epidemic influenced
by external agents using tools from the probability and graph
theories. Although these works show order optimality of the
uniform spreading strategy with respect to strategies which
can be tailored to network state for specific networks (such
as line/ring, grid and spatially constrained random geometric
graphs), computation of optimal strategies under a cost crite-
rion was not undertaken in these works. These networks do not
have heavy tails and long distance links as observed in (small
world) real social networks to which such conclusions may
not be generalized. In contrast, we compute optimal strategies
for scale-free and real networkswhich provide more accurate
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insights to campaigners. If a cost criterion is included in
problems formulated with exact network state, the complexity
of computing the solution will increase exponentially with
network size. A mean field approach for modeling the SI
epidemic provides computational tractability for handling large
networks—because computational complexity grows only as
the number of degrees in the network and not the network
size.

The authors in [18] formulate a mixed integer program
to maximize the spread of cascades in a network. However,
the intervention involves adding new nodes and edges in the
network: an approach different from ours.

We list the main contributions of this paper. We begin
by adapting the standard SI model to include a time-varying
control which recruits individuals from susceptible to infected
class to accelerate information dissemination. We define a
net reward function which is a weighted combination of
reward due to the extent of information dissemination in
the population and cost due to application of control, and
formulate a problem to maximize the net reward. The problem
jointly optimizes the seeds of the epidemic and time varying
controls to maximize the reward. We also study the fixed
budget variation of this problem (where seeds are given and
not optimization variables). To the best of our knowledge, the
joint optimization problem formulation does not exist in the
literature.

We show the existence of a solution to our problem
using Cesari’s theorem and provide some structural results
for the shapes of the controls. These results seem novel in
the context of a networked population and a controlled SI
model. Further, we provide a sufficient condition under which
the solution to the optimal control problem is unique. To
solve the optimal control and joint seed optimization and
control problems, we propose numerical algorithms which
make use of Pontryagin’s Maximum Principle. The standard
forward-backward sweep algorithm needs to be adapted to
take care of the specific formulations in this paper (e.g.fixed
budget constraint). We study the convergence of the forward-
backward sweep algorithm for our system. Our formulation
requires solving a large number of control functions (≈ 100)
and leads to large dynamical systems with a similar number
of differential equations. For the joint (seed-control) problem,
the same number of optimization variables also need to be
optimized in addition to finding the optimal control functions.

We quantify the improvement achieved by the optimal
strategies over simple heuristics for scale-free and Erdős-
Rényi configuration model networks. In many cases, large im-
provements are observed. Results also reveal that the resource
allocated to the degree classes under the optimal strategy
changes with system parameters and network topology. For
example, in the case of scale-free networks, when less resource
is available, the optimal strategy allocates more resourceto
high degree classes but for the abundant resource case, low
degrees get more resources than medium degrees. In the case
of Erdős-Rényi networks, even for the scarce resource case,
medium degrees get the most allocation.

Our information diffusion model assumes that network
connections are uncorrelated; thus, may not be accurate for

real social network. We test the accuracy of our modeling
approach on a real social network via simulations and find the
model to work well even for real social networks.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Individuals in the population are organized in a social
network (graph). The network is undirected and remains static
over the duration of the campaign. The number of other
nodes/individuals a given node is connected to is termed as
the degree of that node in the graph. A node with degree
k is said to be in degree classk. The set of all degree
classes in the graph under consideration is represented by
K = {k : Kmin ≤ k ≤ Kmax}, for two positive integers
Kmin andKmax. The network is characterized by its ‘degree
distribution’, pk, which is the probability that a randomly
chosen node in the social network belongs to degree class
k ∈ K. One can empirically calculatepk = Nk/N , whereNk

is the number of nodes in degree classk andN =
∑

k∈K
Nk.

We first explain the uncontrolled model and then adapt it to
include the controls to formulate the optimal control problem.

A. Uncontrolled SI Epidemic on a Network

We model the SI process using the ‘degree based compart-
mental model’ [19]. It works best on networks which lack any
correlations in the degrees of two neighbors. More precisely,
a half edge (when an edge is cut, it leads to one half edge
each at the two neighboring nodes the edge connected) from
any node is equally likely to connect to any other half edge
in the network. Such networks are called ‘configuration model
networks’.

The degree based compartmental model assumes that all
nodes in degree classk have the same statistical behavior in the
network. That is, any node with degreek in the network has
the sameprobability of being in infected (or informed) state
at any timet. In reality, a node in a dense core is more likely
to be infected than a node at the periphery of the network;
however, if the variance of the probability distribution ofbeing
in the infected state is low, this approximation works well.This
happens for configuration model networks in the limit of large
network size,N → ∞. Thus the degree based compartmental
model may be termed as a ‘mean field model’.

Nodes in the network lie in either of the two states—
susceptible or infected (informed). An infected individual is
aware of the message and is spreading it to her susceptible
neighbors who are yet to receive the message. The campaign
runs duringt ∈ [0, T ], whereT is termed as the campaign
deadline. At any time instantt, the fractions of susceptible
and infected nodes in the degree classk are denoted bysk(t)
and ik(t). Note thatsk(t) = 1 − ik(t) is not an independent
state variable of the system. The total fractions of susceptible
and infected individuals in the network at timet is given
by s(t) =

∑

k∈K
pksk(t) and i(t) =

∑

k∈K
pkik(t). Again,

s(t) = 1− i(t).
The information epidemic is characterized by its spreading

rate profile β(t) ≥ 0, t ∈ [0, T ]. We have allowed the
spreading rate to vary over time because theinterest of the
target population in the subject of the campaign may vary
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with time. For example, one can observe monotonically in-
creasing interest as the election day approaches, monotonically
decreasing interest in a product as it becomes old after its
release or fluctuating interest in movie tickets where demand
is more during weekends and less during weekdays. A single
susceptible-infected contact passes the information fromthe
infected to the susceptible node with a probabilityβ(t)dt at
time t, in a small intervaldt. The epidemic starts with a small
fraction of infected nodes att = 0 (also called the seed nodes)
and spreads stochastically in the social network. We assume
that ik(0) = i0k, ∀k ∈ K act as seeds in degree classk,
0 ≤ i0k ≤ 1.

We now discuss briefly the notions of ‘neighbor degree
distribution’ and ‘excess degree distribution’ which willbe
used later in this section. The neighbor degree distribution,
rk, is the probability that we will reach a neighboring node
of degreek by following an edge of any node in the net-
work. For configuration model networks,rk = kpk/k̄, where
k̄ ,

∑

k∈K
kpk is the mean degree of the graph [14, Sec.

17.10.2]. It is biased towards higher degrees. Such behavior
is expected because high degree nodes are more connected
and will be reached more often (e.g. there is no way to reach
nodes with degree 0 by following an edge, sor0 = 0, even if
p0 6= 0).

Denote byMh (even), the total number of half edges in a
network. The number of nodes with degreek in the network=
Npk, and number of half edges originating at them= kNpk.
Consider a half edge at any given node in the network. The
probability that it will be connected to a neighbor with degree
k is rk = kNpk/(Mh−1) ≈ kNpk/Mh (for large networks).
But Mh/N = mean degree in the network; sork = kpk/k̄.

For epidemic spreading, the quantity of interest is excess
degree distribution,qk , rk+1 = (k + 1)pk+1/k̄ [14, Sec.
17.10.2]. Consider a susceptible nodeA in the network. The
neighbors of susceptible nodeA, if infected, could not have
got the information fromA. So we discount the edges from
this susceptible nodeA to its neighbors and the neighbors
behave like nodes with degree1 less than their actual degrees.

The message can be passed to a given susceptible node of
degreek from its infected neighbors, whose (mean) number
is given by k

∑

l∈K
(qlil(t)), where qk is the excess degree

distribution discussed above. Assuming neighbors interact
independently, the probability that the message is transferred to
this susceptible node in an intervaldt at timet = 1−probability
that none of the infected neighbors infects her =1 − (1 −
β(t)dt)k

∑
l∈K

(qlil(t)) ≈ β(t)k
∑

l∈K
(qlil(t))dt. The fraction

of susceptible nodes in degree classk is sk(t). Hence, the total
increase in the fraction of infected nodes in degree classk in an
interval dt at time t is given bysk(t)β(t)k

∑

l∈K
(qlil(t))dt.

This leads to the rate of change of the fraction of infected
individuals in degree classk in an uncontrolled SI epidemic
[14, Sec. 17.10.2]:

d

dt
ik(t) = β(t)ksk(t)

∑

l∈K

(qlil(t)), k ∈ K. (1)

B. Controlled SI Epidemic on a Network

To aid information dissemination, we introduce a control
signal uk(t) in each degree classk ∈ K. The control
recruits susceptible individuals in the respective degreeclass
and converts them into infected nodes in degree classk. In
political/product marketing campaigns,uk(t) represents the
rate at which attempts are made to recruit individuals in
degree classk. This can be done by posting messages in their
Facebook/Twitter time-line for example, and requesting them
to re-post/re-tweet the message to their contacts. If the targeted
node was not aware of the message, we achieve a recruitment.
In the case of a company launching a new medicine,uk(t)
may represent the rate at which medical representatives visit
doctors at timet. We define the set of all admissible control
functions in the following:

Definition 1 (Set of all admissible controls). Define,U ,

{u : u is Lebesgue measurable ont ∈ [0, T ] andu(t) ∈ R}.
Then, the set of all admissible control functions is given by:
U |K| =

{

u = {uk, k ∈ K} : uk ∈ U
}

.

In the following, we formulate the joint optimization–
optimal control problem and then discuss the formulation.

maximize
u,

{
i0: 0≤i0k≤1,

∑

k∈K

pki0k=Bi0

}

J =
∑

k∈K

pkik(T )−

∫ T

0

∑

k∈K

gk(uk(t))dt,

(2a)

s.t.:
d

dt
ik(t) = β(t)ksk(t)

∑

l∈K

(qlil(t)) + γ(t)uk(t)sk(t);

k ∈ K. (2b)

ik(0) = i0k; k ∈ K. (2c)

In the above formulation,sk(t) = 1 − ik(t), are not in-
dependent variables. Hence Problem (2) has only|K| state
variables, which are represented by theik ’s (and not 2|K|).
In many scenarios it may be possible to decide the initial
set of infected nodes (e.g. brand ambassadors recruited by
companies) in addition to deciding resource allocation over
time. The seed which kick starts the epidemic is given by the
vectori0 = {i0k, k ∈ K}, where0 ≤ i0k ≤ 1 is the fraction
of individuals selected as seed in the degree classk. HereBi0

is the ‘seed budget’, the initial fraction of infected nodesin
the whole network.

The evolution of the state variablesik(t) in the controlled
system is governed by Eq. (2b), with initial condition (2c).No-
tice the additional termγ(t)uk(t)sk(t) in Eq. (2b) compared
to Eq. (1). The term incorporates effect of control in thekth
degree class. Heresk(t) is multiplied byγ(t)uk(t) because the
control is only effective on the susceptible individuals. Here
γ(t) ≥ 0 captures the effectiveness of the controluk(t) at
time t. Since the interest of the population in the subject of
the campaign varies with time, recruitment should be easier
when the interest is more and vice versa.

The reward function is given in Eq. (2a). We have used a
weighted combination of reward due to information dissemi-
nation (given by

∑

k∈K
pkik(T )) and cost due to application
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of controls (given by
∫ T

0

∑

k∈K
gk(uk(t))dt) as the net reward

function (note that constant weights are subsumed bygk(.)).
We consider the instantaneous cost of application of control
as a function ofu(t), and have not multiplied it withsk(t) or
ik(t). This is so because in most practical situations, the state
of the node (susceptible/infected) is either unknown or there is
a cost involved in determining it (e.g., we do not know if an
individual already knows about a newly launched product).
Hence, campaigning either does not consider the states of
the specific nodes (information is passed to both classes),
or the cost incurred is similar irrespective of node state (in
infecting or determining state of the node, for example, by
using text analytics on the time-line posts of the node). Similar
assumptions were made in prior works such as [3, 4] (but for
a homogeneously mixed population).

Also, we have used a reward function which only considers
the final fraction of infected individuals att = T , and not
the system evolution over0 ≤ t < T . This is suitable for
situations such as political campaigns, marketing of durable
products/services (e.g. video-games, cell-phone plans) etc.,
where the final number (fraction) of the infected populationis
the quantity of interest.

In the special case of Problem (2) wherei0 is not an
optimization variable but rather a given vector, we get an
optimal control problem where only the control vector function
u is to be optimized.

Assumption 1. We assume all the cost functions,
gk(uk(t)), k ∈ K, to be non-negative, monotonically
increasing and strictly convex in their arguments in the region
uk(t) ≥ 0. Further, gk(0) = 0, k ∈ K.1

For the situation we consider—maximizing the reach of
useful information—the controls are non-negative. For some
arbitrary cost function this may not be true. However, the
following assumption on the cost functiongk(uk(t)), k ∈ K,
ensures that negative values of controls are not optimal.

Assumption 2. We assume all the cost functions
gk(uk(t)), k ∈ K, to be even functions.2

The above assumption simplifies further analysis and nu-
merical computation of controls. It is not restrictive in practical
scenarios, because controls are never negative, and we can take
even extensions of cost functions defined foruk(t) ≥ 0 as
gk(.). Also notice that in Problem (2), we have not explicitly
enforced the conditions that the fractionsik(t), sk(t) lie in
[0,1]. This is due to the following:

Lemma II.1. Letψk(t) andηk(t) = 1−ψk(t) be the solutions
to the system of differential equations (2b) (corresponding to

1This is natural because cost will increase with the control strength in any
practical situation. Also, the convexity assumption holdsin many economic
applications.

2This ensures that negative values of controls are not optimal. A negative
control at timet will incur the same cost as its modulus. However, a negative
value reduces the value of rewardJ in (2a), as it would take away individuals
from the infected class (Eq. (2b)). Instead, if|uk(t)| is applied, the cost
incurred is the same and the value of the reward is more than that in the
case when control is negative. Hence for any time instant, negative values of
controls will never be optimal and hence we do not need to add the additional
constraintuk(t) ≥ 0 in Problem (2).

variablesik(t) and sk(t) = 1 − ik(t)) with initial conditions
ψk(0) = i0k. If i0k ∈ (0, 1] thenψk(t), ηk(t) lie in [0, 1] at
all times t ∈ [0,∞), k ∈ K.3

III. E XISTENCE OF ASOLUTION

It is important to prove the existence of a solution in optimal
control problems before attempting to solve them. Even simple
looking problems sometimes do not have a solution (examples
can be found in [20, Ch. 3]). Existence of a solution to Problem
(2) is proved in the following:

Theorem III.1. There exists a solutionu∗ ∈ U |K|, i∗
0

and
the corresponding solutioni∗(t) to the initial value problem
(2b), (2c) so that(u∗, i∗0) ∈ argmax

(u,i0)

J(u, i0) in the optimal

control problem (2).

Proof: In Appendix A of the supplementary material.

IV. A NALYSIS AND SOLUTION

In Sec. IV-A, we first discuss the solution technique for
Problem (2) where seedi0 is a given quantity and not an
optimization variable. This will be used in Sec. IV-B to solve
the joint problem.

A. Solution by Pontryagin’s Maximum Principle (Given Seed
i0)

The optimal solution to Problem (2) (where seedi0 is given)
satisfies the conditions stated by Pontryagin’s Maximum Prin-
ciple. Let the adjoint variables be denoted byλk(t), with the
vectorλ(t) = {λk(t), k ∈ K}, collecting all adjoint variables.
The Pontryagin’s Principle applied to our problem leads to the
following equations:
Hamiltonian:

H(i(t),λ(t),u(t)) = −
∑

j∈K

gj(uj(t))

+
∑

j∈K

λj(t)

(

β(t)jsj(t)
∑

l∈K

(qlil(t)) + γ(t)uj(t)sj(t)

)

.

(3)

If i∗(t) = {i∗k(t), k ∈ K}, λ∗(t) = {λ∗k(t), k ∈ K} and
u∗(t) = {u∗k(t), k ∈ K} denote the values of the variables at
the optimum, then they satisfy the following conditions:
State equations:Eq. (2b) with ik(t), sk(t), uk(t) replaced by
i∗k(t), s

∗
k(t), u

∗
k(t) respectively.

Adjoint Equations:For all k ∈ K,

d

dt
λ∗k(t) =−

∂

∂ik(t)
H(i∗(t),λ∗(t),u∗(t))

=β(t)kλ∗k(t)
∑

l∈K

(qli
∗
l (t))

− β(t)qk
∑

j∈K

(λ∗j (t)js
∗
j (t)) + γ(t)u∗k(t)λ

∗
k(t).

(4)

3Proof: At any interior point{(ψk(t), k ∈ K) : 0 < ψk(t) < 1, ∀k},
d
dt
ψk(t) is positive∀k (from Eq. (2b)), henceψk(t) is increasing. However,

at any boundary segment{(ψk(t), k ∈ K) : 0 < ψk(t) ≤ 1, k ∈ K −
{j} andψj(t) = 1}, for an arbitraryj ∈ K, d

dt
ψj(t) = 0 (from Eq. (2b),

asηj(t) = 0). Once the value of any state variable reaches 1, it stays there.
Hence, the solutionsψk(t), k ∈ K always lie in[0, 1].
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Hamiltonian Maximizing Conditions:For all k ∈ K, the
controls satisfy,

u∗k(t) = argmaxuk(t)
H(i∗(t),λ∗(t),u(t))

⇒
∂

∂uk(t)
H(i∗(t),λ∗(t),u∗(t))

= −g′k(u
∗
k(t)) + γ(t)λ∗k(t)s

∗
k(t) = 0,

⇒g′k(u
∗
k(t)) = γ(t)λ∗k(t)s

∗
k(t), (5)

⇒u∗k(t) = g′−1
k (γ(t)λ∗k(t)s

∗
k(t)). (6)

Transversality Conditions:

λ∗k(T ) = pk, k ∈ K. (7)

1) Numerical Solution Using Forward-Backward Sweep Al-
gorithm: Although some structural results may be obtained for
the solution to Problem (2) (Sec. IV-C), it is unlikely that an
analytical solution to the equations in Sec. IV-A, and hence,
an analytical solution to the control signals, can be obtained.
Thus, the equations in Sec. IV-A have to be solved numerically
to obtain the solution.

Notice that we have a huge optimality system with upto
|K| ≈ 100 state equations (with initial conditions),|K| ≈ 100
adjoint equations (with terminal conditions) and|K| ≈ 100
control signals, leading to a boundary value problem with2|K|
differential equations. However, the above optimality system
can be efficiently solved using the forward-backward sweep
technique (see for example [9]), using only (numerical) initial
value problem solvers. We sketch the technique in Algorithm
1. We choseNsweep = 30, which was sufficient to result in
convergence for various sets of parameters used in this work.

An alternate method to solve optimal control Problem (2)
is to directly discretize the differential equations intoD time
points and find the values of the controls at those time instants
using an optimization routine [21]. Such a method will not
use Pontryagin’s Principle. In our experience, such a method
becomes extremely slow when large number of controls need
to be computed. An additional issue is the large memory
requirement for the computation, which may not be available
in normal desktop computers.

It is not possible to provide analytical expressions for the
gradient of the objective function with respect to the control
variables atD discretization points (which are the variables to
be optimized); hence any optimization routine approximates
the gradient at each optimization-iteration numerically.D
cannot be made too low because the accuracy and stability
of the solution to the differential equations in System (2) will
be compromised. Even forD = 50 point discretization, the
number of variables to be computed is|K|D ≈ 5000. Thus,
an optimization routine will need to evaluate the objective
function at least|K|D times just for estimating the gradient
(e.g.perturbing one variable at a time). Each objective function
evaluation amounts to solving|K| differential equations. Also,
there are many optimization-iterations before convergence to
the solution occurs (typically greater thanNsweep).

On the other hand, in Algorithm 1, one needs to evaluate
2|K| differential equations onlyNsweep = 30 times to obtain
the solution. In practice this leads to substantial reduction in
computational complexity if a large number of controls have

to be computed. Thus, the use of Pontryagin’s Principle and
forward-backward sweep leads to more efficient computation
than a direct discretization method for the problems of the
scale discussed in this paper.

Algorithm 1 Forward-backward sweep algorithm for Problem
(2).

Input: Nsweep, T ; β(t), γ(t) ∀t ∈ [0, T ]; i0k, pk, qk, k ∈ K.
Output: The optimal control signalsu∗

k(t), k ∈ K.
1: Initialize: u∗

k(t)← 0, ∀t ∈ [0, T ], ∀k ∈ K.
2: for j = 1 to Nsweep do
3: Calculatei∗k, ∀k ∈ K using state equations (2b) with initial

conditionsi∗k(0) = i0k, ∀k ∈ K. % Forward sweep.
4: Calculateλ∗

k, k ∈ K using adjoint equations (4) with terminal
conditionsλ∗

k(T ) = pk, k ∈ K (transversaility conditions).
% Backward sweep.

5: Calculateu∗
k, k ∈ K using (6).

6: end for

The following provides a sufficient condition for the con-
vergence of Algorithm 1.

Theorem IV.1. For gk(uk(t)) = cku
2
k(t), the forward-

backward sweep algorithm converges when

γ2MΛ

2cm
× exp{(βMKmax + γMuM )T }×

[exp{βM (Σk)qMT } − exp{βMKmaxT }

βM (Σk)qM − βMKmax

]

< 1,

where, βM = maxt{β(t)}, γM = maxt{γ(t)}, cm =
mink{ck}, uM = maxk,t{uk(t)}, Λ = maxk,t{λk(t)}.

Proof: Note that the convergence is aided by small values
of β(t), γ(t), andT ; and large costs of application of controls.
We use the techniques in [22]. Detailed analysis is in Appendix
B of the supplementary material accompanying this paper.

B. Solution to the Joint Problem (2)

We use the solution to the fixed seed problem in Sec. IV-A
and Algorithm 1 to solve the joint problem. In Problem (2),
the solution to the control signalsu are functions ofi0 =
{i0k, k ∈ K} and are not independent. The joint optimization
Problem (2) is equivalent to:

maximize{
i0: 0≤i0k≤1,

∑

k∈K

pki0k=Bi0

}

J =
∑

k∈K

pkik(T )−

∫ T

0

∑

k∈K

gk(uk(t))dt,

(8a)

subject to: (2b) and (2c); (4) and (7); (6).

The constraints in Problem (8) ensure that Pontryagin’s Prin-
ciple is satisfied for the control functions computed by (6) for
any value ofi0 (thus the computed controls are optimal).

Problem (8) (which in turn solves Problem (2)) can be
solved numerically by combination of an optimization solver
and Algorithm 1. The optimization routine adjusts the values
of optimization variablesi0 in the outer loop, and the reward
function is computed by Algorithm 1 (for the given value of
i0). It is not possible to compute the gradient of the reward
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function (8a) with respect toi0 analytically, so the optimiza-
tion routine should be capable of numerically estimating the
gradient values.

In principle, it may be possible to avoid the use of Al-
gorithm 1 and Pontryagin’s Principle in solving Problem (2)
by using the method in [21] and augmentingi0 as additional
optimization variables. But as discussed in Sec. IV-A1, such
a method will be too slow and will require a large amount of
memory for computation.

C. Structural and Uniqueness Results for Controls

In this section, we prove some basic structural results for the
solution to Problem (2) when seeds are given (Theorem IV.2)
and provide a sufficient condition for uniqueness of controls
(Theorem IV.3). We first provide Lemma IV.1 which is needed
in subsequent results:

Lemma IV.1. The adjoint variables at the optimum,λ∗(t) =
{λ∗k(t), k ∈ K} satisfyλ∗k(t) ≥ 0, ∀k ∈ K, ∀t ∈ [0, T ].

Proof: In Appendix C of the supplementary material.

Theorem IV.2. (i) The solutions{u∗k, k ∈ K} to the optimal
control problem (2) are non-increasing functions of time∀k ∈
K and t ∈ [0, T ] for d

dt
γ(t) ≤ 0.

(ii) For gk(uk(t)) = cku
2
k(t), ck > 0, the solutions

{u∗k, k ∈ K} to the optimal control problem (2) are convex
functions of time∀k ∈ K andt ∈ [0, T ], for constant and non-
increasing spreading rate profiles and effectiveness of controls,
i.e., d

dt
β(t), d

dt
γ(t) ≤ 0, and convexγ(t), i.e., d2

dt2
γ(t) ≥ 0

(this includes d
dt
β(t), d

dt
γ(t) = 0, ∀t).

Proof: In Appendix C of the supplementary material.
Remark: Lemma IV.1 and Theorem IV.2(i) are valid for a

spreading rate profile of arbitrary shape,i.e., for any β(t) ≥
0, t ∈ [0, T ]. Further, Lemma IV.1 and Theorem IV.2 are
valid for any degree distributionpk, in other words, for any
configuration model network.

When seeds are given, we state a sufficient condition for a
solution of Problem (2) to be unique.

Theorem IV.3. When seeds are given, forgk(uk(t)) =
cku

2
k(t), the solution to the state equations (2b) and adjoint

equations (4), and hence the optimal controls for Problem (2)
are unique when

d1||β(t)||L1 + d2||γ
2(t)||L1 < 1. (9)

Here, d1 = max{(
∑

k∈K
k)ΛqM + KmaxΛ, 2Kmax}, d2 =

(Λ/cm)max{1,Λ/2}, Λ = maxk,t{λk(t)}, qM =
maxk{qk}, cm = mink{ck} and ||.||L1 is L1 norm of a
function.4

Proof: There are multiple approaches to show uniqueness
of solutions. We have used the techniques in [23] instead of
those in, for example [4], because the former leads to more
insightful conclusions. The proof is in Appendix D of the
supplementary material accompanying this paper.

4The result can be generalized for anygk() by assuming Lipschitz
continuity of g′−1

k
(.) and assuming a Lipschitz constant.

Remark: Systems with smallL1 norms for β(t), γ(t)
(which depend both on function values andT ), small values
of Σk, qM ,Kmax; and large values of cost of application of
controlsck, have unique solutions.

V. A CONTROL PROBLEM WITH A FIXED BUDGET

CONSTRAINT

A. Problem Formulation and Solution by Pontryagin’s Princi-
ple

In many practical scenarios, campaign resources are fixed,
e.g.political campaigns. For such cases, we modify Problem
(2) (where seed vector is a given quantity) to include an
explicit budget constraint (Eq. 10b) in the following:

maximize
u∈U |K|

J =
∑

k∈K

pkik(T ) (10a)

subject to: (2b) and (2c),
∫ T

0

∑

k∈K

gk(uk(t))dt−B ≤ 0. (10b)

We cannot use Pontryagin’s principle in Problem (10) due to
the integral constraint (10b). However, the budget constraint
(10b) can be handled by the standard optimization technique
of relaxing the inequality constraint into the objective function.
Problem (10) can then be re-written as:

max
u∈U |K|

J =
∑

k∈K

pkik(T )− µ

(
∫ T

0

∑

k∈K

gk(uk(t))dt −B

)

(11a)

subject to: (2b) and (2c).

Problem (11) solves Problem (10) for the value of the
multiplier µ∗ for which constraint (10b) is satisfied. Also,
for a given value ofµ, µB is just a constant and can be
eliminated from the objective function (11a). Pontryagin’s
Principle applied to Problem (11) produces the same equations
as Sec. IV-A with two differences: the Hamiltonian in Eq. (3)
is replaced by:

H(i(t),λ(t),u(t)) = −
∑

j∈K

µgj(uj(t))

+
∑

j∈K

λj(t)

(

β(t)jsj(t)
∑

l∈K

(qlil(t)) + γ(t)uj(t)sj(t)

)

.

Further, the equations in Hamiltonian maximization condition,
(5) and (6), are replaced by:

g′k(u
∗
k(t)) = γ(t)λ∗k(t)s

∗
k(t)/µ

∗, k ∈ K,

⇒u∗k(t) = g′−1
k (γ(t)λ∗k(t)s

∗
k(t)/µ

∗), k ∈ K. (12)

The state and adjoint equations, and the Transversaility con-
ditions are the same as in Sec. IV-A.
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B. Structural Results

Lemma V.1. At the optimum, the multiplier of the relaxed
problem (11) which solves Problem (10),µ∗ ≥ 0 and con-
straint (10b) is satisfied with equality.5

Due to Lemma V.1, Lemma IV.1 and Theorem IV.2 are
valid even for the solution to the optimal control problem (10)
(replacegk(u∗k(t)), g

′
k(u

∗
k(t)) andg′′k (u

∗
k(t)) by µ∗gk(u

∗
k(t)),

µ∗g′k(u
∗
k(t)) andµ∗g′′k (u

∗
k(t)) respectively in the proofs).

C. Numerical Solution

To solve Problem (11) (for whichµ∗ satisfies constraint
(10b)), which in turn solves Problem (10), we modify the
standard forward-backward sweep algorithm. The standard
algorithm cannot handle the budget constraint. Our approach
is to adjust the value of the multiplierµ∗, using the bisection
algorithm, till constraint (10b) is satisfied with equality(due
to Lemma V.1). We sketch the procedure in Algorithm 2. The
valuesµlow = 10−3, µhigh = 100 andNsweep = 30 were
used for all computations in the results section.

Algorithm 2 Modified forward-backward sweep algorithm for
Problem (11) (for whichµ∗ satisfies constraint (10b) with
equality).

Input: µlow, µhigh, B, Nsweep; i0k, pk, qk, ∀k ∈ K; T and
β(t), γ(t) ∀t ∈ [0, T ].

Output: The optimal control signalsu∗
k(t) and value of the multi-

plier µ∗ for which (10b) is satisfied with equality.
1: Bth ← min{10−3 ×B, 10−6}
2: repeat
3: µ∗ ← (µlow + µhigh)/2.
4: Calculatei∗k, λ

∗
k andu∗

k using Algorithm 1, however, replacing
Eq. (6) by Eq. (12).

5: rµ∗ ←
∫ T

0

∑

k∈K
gk(u

∗
k(t))dt % Resource used.

6: if rµ∗ > B then
7: µlow ← µ∗

8: end if
9: if rµ∗ < B then

10: µhigh ← µ∗

11: end if
12: until

∣
∣rµ∗ −B

∣
∣ < Bth.

VI. SYNTHETIC NETWORKS AND MODEL PARAMETERS

Networks:We present results by using degree distributions
from two synthetic networks (in Sec. VII) and a real network
(in Sec. VIII) in this study. The first synthetic network is
an Erdős-Rényi network which has degree distributionpk =
e−λλk/k!, k ∈ K. We choose the minimum and maximum
degrees inKER asKER

min = 13 andKER
max = 54, so that the

truncated degrees have very less cumulative probability. The
factorλ = 33.45 is the same as the mean degreek̄ER for this
network.

5Proof: From the standard optimization theory we know that relaxingthe
inequality constraint (10b) leads to the value of multiplier µ∗ at the optimum
being non-negative,µ∗ ≥ 0. At optimum, the whole budgetB is used; if this
is not the case, we can increase one or more of theuk ’s in (10b), so that the
constraint is still satisfied. Doing so will increaseik(T )’s (we can conclude
this from state equations (2b)) and hence the value of the objective function
(10a). Hence, the budgetB is not underutilized at the optimum.

The second synthetic network is scale-free which has a
power law degree distribution,pk = ωk−α, k ∈ K. Here
ω normalizes the distribution to1 and α is the power law
exponent. Most real networks—including the internet, the
world wide web, and more importantly the social networks—
have power law exponent lying between2 and3 [14]. We have
chosenα = 2 for our scale-free network. The minimum and
maximum degrees in the power law distribution are chosen
as KPL2

min = 14, KPL2
max = 120. Degrees are adjusted so

that both PL2 and ER network above have almost the same
mean degrees. The mean degree for PL2,k̄PL2 = 33.29. For
networks of the same size, having equal mean degree means
none of them has any statistical advantage in information
dissemination due to more number of links. As suggested by
all the problem formulations in this paper, we only need degree
distributions of nodes in the networks for presenting numerical
results. Maximum degree in the scale free network was chosen
following the Dunbar’s number which states that most humans
only maintain100 to 230 stable relationships at a time.

Default Model Parameters:In the SI process, the deadlineT
and the spreading rateβ(t) determine the extent of information
spread in the uncontrolled system. Fixing one and increasing
the other has the same qualitative effect. We choose to fix
the deadline atT = 1 time units and vary the spreading rate
whenever necessary. When seed is not an optimization variable
the initial fraction of infected nodes in each degree class,
i0k = 0.01, ∀k ∈ K. In other cases seed budget,Bi0 = 0.01.
For the plots studying the effect of system parameters, we
have usedβ(t) = β = 0.07. Such a choice (withT = 1)
leads to small to moderate information spread (quantified by
i(T ) =

∑

k∈K
pkik(T )) in the uncontrolled system in both

the networks (i(T )ER = 0.095 and i(T )PL2 = 0.149). In
a practical scenario, such a case will call for campaigning.
Throughout this paperγ(t) = 10× β(t).

To demonstrate the results, the instantaneous cost of appli-
cation of control is chosen to begk(uk(t)) = bu2k(t)pk in
(2a). The control strengthuk(t) incurs a costu2k(t). Since a
degree class with more nodes will consume more resource, so
weighting factorpk is also present. The parameterb captures
the relative importance of reward due to information spread
(given by

∑

k∈K
pkik(T )) and cost of application of control in

degree classk (given byu2k(t)pk). For demonstrating results
we setb = 25.

For the problem involving the budget constraint (Problem
(10)), we assume the same cost structure withgk(uk(t)) =
bu2k(t)pk andb = 25, and the value of budgetB = 0.1 in the
budget constraint (10b).

A. Accuracy of Degree Based Compartmental Model for Syn-
thetic Networks

The degree based compartmental model for SI epidemic is
very accurate for configuration model networks. This is con-
firmed by the close agreement between the system evolution,
measured by the fraction of infected population, generatedby
the model and simulation for two values of the spreading
ratesβ(t) = β, for the three networks ER, PL3 and PL2,
in Fig. 1. PL3 network has power law exponentα = 3,
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Fig. 1: The fraction of infected population (measured by
∑

k∈K
ik(t)pk) vs. time, produced by the model and simulations.

Parameter values:i0k = 0.01 ∀k ∈ K, β = 0.07 and 0.14. PL3
network has power law exponentα = 3, KPL3

min = 20, KPL3
max = 120

which leads to the mean degree of33.58.

KPL3
min = 20,KPL3

max = 120 which leads to the mean degree
of 33.58. We have used the uncontrolled SI model. The
simulation results are averaged over20 runs for all six curves
(corresponding to ‘simulation’) in the figure.

For each run, a different configuration model network was
drawn from the degree distribution of the network under
consideration, and a different set of initial nodes were selected
as seeds. Sizes of the networks were104 nodes in all the
cases. To construct configuration model networks of sizeN ,
we follow the procedure in [14, Sec. 13.2]6. Since the degree
distribution for a particular network is fixed and uniform
seeding is assumed, the model predicts the same trajectory
for all 20 runs; the plot corresponding to ‘simulation’ is the
mean of the 20 runs.

The simulation results for degree based compartmental
model of SI epidemic on a real network is shown later in
Sec. VIII.

VII. R ESULTS

We will see in this section that the importance of degree
classes in the optimal campaigning strategy depends not only
on the network topology but also on the system parameters
such as the scarcity/abundance of resources and spreading
rate. For scarce resource case, the optimal strategy targets
highest degrees in the PL2 network but medium degrees in
the ER network. When resource is abundant or spreading rate
high, lower degrees (which are disadvantaged in receiving
the messages) are also directly targeted. In the joint problem,
optimal seeding strategy shows a similar behavior.

A. Heuristic Controls

For Problem (2), we compare the performance of the
optimal control strategy with two other strategies.The first one
is the best ‘constant or static control’. It is the control which
is constant over time and is applied to all degree classes. The

6The procedure is as follows: The degree distribution,pk, is sampledN
times to get degrees ofN nodes. Each node is assumed to have half edges
equal to their degree. Two half edges are randomly paired to create an edge
until all half edges are exhausted. If last half edge is left unpaired, it is ignored.
This procedure may lead to multiple edges between two nodes and self loops.
However, the fractions of these edges are low (and approaches 0 asN → ∞),
and hence not an issue [14, Sec. 13.2].

strength of the static control is chosen so that it maximizes
the reward function (2a) (when seeds are uniformly selected).

The second oneis the best ‘two-stage control’. It is constant
in [0, T/2] and0 in (T/2, T ]. Again, the strength of non-zero
part is chosen such that (2a) is maximized (under uniform
seeding) and the same control is applied to all degree classes.
From Theorem IV.2(i) the best time to apply the controls is
the initial period of the campaign, which motivates such a
control. Both the heuristic controls are computed numerically
by an optimization routine.

For positive arguments, the cost function is strictly convex-
increasing in nature, more control strength means superlinear
resource expenditure. So, there is a tradeoff between the two
heuristic strategies: the static applies milder control strength
but for the entire duration[0, T ], while the two-stage control
applies stronger control but only for half the duration (although
during important times) for the same amount of resource
expenditure. Note that the best two-stage control is a simple
dynamic(time varying) control.

A minor difference exists in Problem (10). Due to the fixed
budget constraint, the static and two-stage strategies canbe
uniquely calculated. The same are used in Sec. VII-E.

B. Shapes of Controls and Importance of Degree classes
(Uniform Seeding)

Figs. 2a and 2d (left panels) show the shapes of control sig-
nals,uk(t) for ER and PL2 networks for three representative
degree classes forβ(t) = β = 0.07, γ(t) = 10 × β(t). They
are solutions to Problem (2) when seeds are uniformly selected
from the population and are not optimization parameters,i.e.
i0k = i0, ∀k ∈ K. The figures show that the controls are
non-increasing functions of time (Theorem IV.2(i)). Such a
behavior is expected because early infection enhances further
information spread by susceptible-infected epidemic contact
during rest of the campaign period. Also, for the cost structure,
gk(uk(t)) = bu2k(t)pk, in (2a) and constantβ(t), γ(t) the
controls are convex functions of time (Theorem IV.2(ii)),
which is also confirmed by the figures.

The right panels of Figs. 2a and 2d shows the normalized
resource allocated to degree classk for the whole campaign
period for the ER and PL2 networks considered in this study.
Normalized resource is calculated as:

rnormk =
1

pk

∫ T

0

gk(uk(t))dt = b

∫ T

0

u2k(t)dt. (13)

Note thatrnormk represents per capita resource allocated to
each node in the degree classk during campaigning and thus
is a proxy for the importance of nodes in thekth degree class
in information dissemination.

As seen from the normalized resource allocation plots in
Figs. 2a and 2d, forb = 25, theheterogeneousscale-free PL2
network has different allocation from thehomogeneousER
network. For the scale-free network, higher degree classesget
more per capita resource than lower degree classes; and in ER,
medium degree nodes receive most per capita allocation of the
campaigning resource. We discuss this in the following.

Direct recruitment balances two things—it targets the degree
classes which will lead to further information spread and
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Fig. 2: Controls and normalized resource allocation (defined in Eq.(13)) for i0k = i0 = 0.01, ∀k ∈ K, γ(t) = 10× β(t).
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(a) PL2, increasingβ(t), b = 25
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Fig. 3: Controls and normalized resource allocation for increasing β(t) (as shown above in Fig. 3a),i0k = i0 = 0.01, ∀k, γ(t) = 10×β(t).

it targets susceptible nodes which are at a disadvantage in
receiving the message from epidemic spreading and directly
transfers them to the infected class (to increase the net fraction
of infected nodes at the deadline, thus increasing the reward).
Scale-free networks have a heavy tail, meaning that, there
are sizable numbers/fractions of nodes with high degrees.
These nodes have disproportionate advantage in spreading the
message due to their large degrees and are often termed as
hubs. The optimal strategy allocates them more per capita
resource. Targeting them early in the campaign leads to larger
diffusion of the message due to more susceptible-infected
epidemic contacts during the campaign period due to their
large degree.

On the other hand, in the ER network, node degree is
concentrated tightly around the mean. Thus, higher degree
nodes do not have a significant advantage over other nodes in
spreading the message. Due to their larger degree they will any
way receive the message so direct recruitment targets medium
degree nodes. In the ER network, medium degree nodes are
decent spreaders and will indirectly transfer the message to
high degree nodes. In addition, their direct recruitment leads
to increased fraction of infected population at the deadline
(due to direct transfer of susceptible nodes to the infected
class). Low degrees are not targeted because disadvantage due
to less spreading is not offset by the advantage due to their
direct recruitment, as is the case with medium degrees.

The tradeoff between targeting better spreaders and nodes
which are at a disadvantage in receiving the message becomes
clearer when the resource becomes cheap (and hence is abun-
dant) which allows us to reach greater fraction of population.

Shapes of controls and per capita resource allocated to various
degree classes for the case whenb = 0.2 are shown in
Figs. 2b and 2e. For the heterogeneous PL2 network, low
degrees are given more importance than medium degrees. In
the homogeneous ER network, low degrees are given most
importance.

This behavior is also seen in the ER network (and to a
very small extent in the PL2 network) when spreading rate
is increased (Figs. 2c and 2f). Similar to the above, high
spreading rate allows us to reach large fraction of population,
so the optimal strategy targets the disadvantaged nodes.

Time varyingβ(t), γ(t): It is expected that when effective-
ness of controlsγ(t) is a time varying quantity, more resource
will be allocated when it is stronger. For a spreading rate
profile β(t) which varies as an S shaped sigmoid function
(shown in the left panel of Fig. 3a) andγ(t) = 10 × β(t),
the controls and normalized resource allocations forb = 25
and 0.2 are shown in Fig. 3 for PL2 network. The controls
still try to infect nodes early; however, they wait tillγ(t)
becomes strong enough. This leads to more efficient utilization
of resources. Note that qualitatively, the importance of degree
classes are same as in the case of constantβ(t), γ(t). For
brevity we have omitted the plots for the ER network.

C. Joint Optimization of Seed and Resource Allocation

We now discuss the solution to Problem (2) where optimal
seed and time varying resource allocation are jointly com-
puted. One expects behavior similar to that in Sec. VII-B.
When the seed budget is low,Bi0 = 0.01, optimal seed
allocation and normalized resource allocated to the degree
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(b) PL2,Bi0 = 0.01, β = 0.07
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(c) ER,Bi0 = 0.5, β = 0.07
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(d) PL2,Bi0 = 0.5, β = 0.07
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(e) ER,Bi0 = 0.01, β = 0.18
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(f) PL2, Bi0 = 0.01, β = 0.18

Fig. 4:Seed and normalized resource allocation (defined in Eq. (13))
for b = 25, β(t) = β = γ(t)/10.

classes are shown in Figs. 4a and 4b for ER and PL2 networks
for the case:β(t) = β = 0.07, γ(t) = 10 × β(t). For the
scale-free networks, the optimal solution is to target high
degree classes as seeds att = 0 because they are the best
spreaders. The optimal control need not target those degree
classes (because they are already infected); thus, degree classes
with largest degrees from the remaining ones are preferred.
In the ER, network medium degree classes are the preferred
seeds.

When the seed budget is increased toBi0 = 0.5, we see
an allocation similar to that in the abundant resource case
in Sec. VII-B (Figs. 4c and 4d). The focus of the optimal
solution is not to target best quality spreaders but to target the
nodes which are at a disadvantage in receiving the message
and directly put them in the infected class. Thus we see a lot
of low degrees being targeted in both the networks as seeds
and from optimal controls.

When the spreading rate increases toβ = 0.18 (Figs.
4e and 4f) we again see the disadvantaged lower degree
classes attracting more per capita resource than the case when
spreading rate was lower (β = 0.07).

Fig. 5 shows the same result for the case of time varying
(increasing)β(t) shown in Fig. 3a andγ(t) = 10 × β(t).
Again, the degree classes are targeted as seeds and from
controls in a similar manner as in the constantβ(t), γ(t) case.
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(b) PL2,Bi0 = 0.01, β(t)
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(c) ER,Bi0 = 0.5, β(t)
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(d) PL2,Bi0 = 0.5, β(t)
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(e) ER,Bi0 = 0.01, 3β(t)
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(f) PL2, Bi0 = 0.01, 3β(t)

Fig. 5:Seed and normalized resource allocation (defined in Eq. (13))
for b = 25, increasingβ(t) as shown in Fig. 3a.

D. Effect of System Parameters in Problem (2)

In Figs. 6, 7 and 8, we study the effect of model parameters
on optimal reward functions in (2a). The results are compared
with the cases where no controls are used, and when the two
heuristic control strategies explained in Sec. VII-A are used.
The curves corresponding to the case when seeds are uni-
formly selected from the population and are not optimization
variable are referred to as ‘optUniSeed’ in the figures.
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Fig. 6: RewardJ (defined in (2a)) vs. weighting parameterb, for
Bi0 = 0.01 (for Problem (2)),β(t) = β = 0.07 = γ(t)/10, i0k =
i0 = 0.01, ∀k ∈ K (when seed is not optimized).
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1) Effect of the Cost of Application of Controls:Fig. 6 plots
the reward functionJ with respect to the weighting parameter
b, which captures the cost of applying control. The larger
the value ofb, the costlier the control becomes. The figure
also plots the percentage improvement in the optimal reward
function, which the solutions to Problem (2) achieve, over the
reward function achieved by the heuristic strategies (in the
right panels).

As expected, largerb leads to lower reward. In the case of
scale-free networks, the joint optimization leads to much better
improvement over just the optimal control problem (compared
to the case of ER network). Also, if the resource is too cheap,
optimal strategies do not provide any significant improvement
over heuristic strategies as both of them reach large fractions of
the population. If the resource is too costly, joint optimization
leads to much better performance compared to others. In case
of the ER network, the percentage improvement achieved by
optimal strategies is low; also joint optimization does notoffer
significant improvement over only optimal resource allocation.
This is because network nodes are behaviorally similar in ER
network and optimal strategy can exploit their differencesto
a very limited extent.

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

spreading rate, β

ne
t r

ew
ar

d,
 J

PL2

 

 

joint
optUniSeed
const
2stage
no control

0 0.05 0.1 0.15 0.2 0.25
10

0

10
1

10
2

spreading rate, β

%
 im

pr
ov

em
en

t

PL2

 

 

joint wrt const
joint wrt 2stage
optUniSeed wrt const
optUniSeed wrt 2stage

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

spreading rate, β

ne
t r

ew
ar

d,
 J

ER

 

 

joint
optUniSeed
const
2stage
no control

0 0.05 0.1 0.15 0.2 0.25
0

5

10

15

spreading rate, β

%
 im

pr
ov

em
en

t

ER

 

 

joint wrt const
joint wrt 2stage
optUniSeed wrt const
optUniSeed wrt 2stage

Fig. 7: RewardJ (defined in (2a)) vs. spreading rateβ(t) = β =
γ(t)/10, for Bi0 = 0.01 (for Problem (2)),b = 25, i0k = i0 =
0.01, ∀k ∈ K (when seed is not optimized).

2) Effect of the Spreading Rate:Fig. 7 shows the plots
of the reward functions with respect to the spreading rate,
β(t) = β. Hereγ(t) = 10 × β. As expected, high values of
β reduce the importance of campaigning, using both optimal
and heuristic strategies, as large fractions of populations can
be reached without any effort. As was the case above, in the
case of the ER network, joint optimization performs almost
the same as only optimal resource allocation.

3) Effect of Initial Fraction of Infected Nodes and Seed
Budget: Fig. 8 shows the effect of the initial fraction of
infected nodes and seed budget on the reward function.
For both the networks, optimal resource allocation (without
seed optimization) achieves some improvement over heuristic
strategies only when there are too few seeds. Joint seed-
resource allocation achieves significant improvements forPL2
network for too few or too many seeds. The percentage
improvements achieved by the PL2 network are much higher
compared to the ER network. Due to the heterogeneous nature
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Fig. 8: RewardJ (defined in (2a)) vs. initial fraction of infected
nodes or seed budgeti(0), for b = 25, β(t) = β = 0.07 = γ(t)/10.
For curves other than joint optimization seeds are uniformly selected.
On the X-axis,i(0) =

∑

k
pkik(0) =

∑

k
pki0k.

of scale-free networks, seed selection is more crucial when
few seeds are available. High degree seeds are selected when
seed budget is low, as seen in Sec. VII-C (and Figs. 4b, 5b).
In the case of high number of seeds, joint problem allocates
seeds to low degree classes (Figs. 4d, 5d) thereby directly
increasing the reward function. These nodes have fewer links
and hence do not receive the message from epidemic spreading
efficiently.

E. Effect of System Parameters in the Problem With Budget
Constraint (Problem (10))
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Fig. 9:RewardJ vs. parameters (b, β(t) = β = γ(t)/10). Wherever
requiredB = 0.1, b = 25, i0k = i0 = 0.01, ∀k ∈ K (for Problem
(10)).

For brevity we show plots for only PL2 network. Fig. 9
shows the variations in the reward function (10a) with respect
to system parameters in Problem (10). Recall that this is a
resource allocation problem with fixed campaigning resources.
The reward is simply the fraction of the infected population
at the campaign deadline. For these results, we assume that
seeds are fixed and are selected uniformly among all degree
classes,i.e., i0k = i0, ∀k ∈ K. The results are compared with
the static control strategy and the dynamic two-stage control
strategy which uses same budget as the optimal strategy.

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TNET.2015.2512541


This is the author’s version of an article that has been published in IEEE/ACM Transcactions on Networking. Changes weremade to this version by the publisher prior to
publication. The final version of record is available athttp://dx.doi.org/10.1109/TNET.2015.2512541. 13

Significant percentage improvement is achieved by the
optimal resource allocation strategy compared to the heuristic
strategies only for intermediate values of the budget. When
a lot of resource is available, large fraction of the population
is reached even by heuristic strategies and hence not much
improvement is achieved by the optimum allocation. Also,
very limited resource is not enough to gain any improvement.

The normalized resource allocation in the fixed budget case
shows the same qualitative behavior as in Sec. VII-B (which
does not have a budget constraint). For very small budget, in
scale-free networks high degree nodes are allocated more per
capita resource, followed by medium and low degree nodes. In
ER, medium degrees are favored, this behavior being similar
to the costly resource case in Sec. VII-B. If the budget is too
high, the trend is the same as in the cheap resource case in Sec.
VII-B. The economic interpretation of multiplierµ associated
with the relaxed constraint is cost per unit resource. Hence,
low budget leads to high value ofµ∗, the multiplier’s value
at the optimum, and high budget leads to small value ofµ∗,
which explains this behavior. We are omitting the figures for
brevity.

VIII. R ESULTS FORSLASHDOT SOCIAL NETWORK
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Fig. 10: Time evolution of i(t) predicted by the model and in
simulation on Slashdot social network.b = 25, β(t) as shown above,
γ(t) = 10× β(t), i0k = 0.01 ∀k.
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Fig. 11: RewardJ vs. parameters (b, β(t) = β = γ(t)/10)—from
model and simulation—for the Slashdot network. Whenever required
b = 10, β(t) = β = 0.04, γ(t) = 10 × β(t), i0k = 0.01∀k when
seed is not optimized.

The degree based compartmental model for SI epidemics
presented in Sec. II assumes that the process is running on an
uncorrelated network—an assumption satisfied by configura-
tion model networks but not real networks. In this section, we
test the accuracy of the model on a real network via simula-
tions. For this purpose, we use a4000 node Slashdot social
network obtained from [24]. The network has a minimum
degree of1, maximum degree661 and mean30.42.

Fig. 10 compares the system evolution predicted by the
model and by simulation. The simulation results are aver-
aged over400 runs. Optimal controls are computed using
the empirical degree distribution of the network (with the
implicit assumption that the network is uncorrelated). Seeds
are uniformly selected, but seeding is different in each run.

We note in Fig. 10 that the model overestimates the frac-
tion of infected nodes in the network. This is because real
social networks have high levels of clustering—the number of
triangles in the network—because two ‘friends’ of a person
are also likely to be friends. On the other hand, uncorrelated
networks have very low levels of clustering—they are ‘locally
tree like’ [14, Sec. 17.10.1], devoid of short loops, and have
many more long edges compared to real social networks. Thus,
information diffuses far and wide more quickly in uncorrelated
networks than in real networks—which explains the behavior
in Fig. 10.

Inspite of this inaccuracy in modeling, the controls com-
puted from the model are still useful for the real network.
This is demonstrated in Fig. 11 for a wide range of model
parameters. The percentage improvement which the optimal
control—with and without seeds as optimization variables—
enjoys over the constant (or static) control is similar: whether
predicted by model or observed in simulations. The percentage
improvements for the net reward functions in the controlled
system in the case of simulations are computed with respect
to net reward functions obtained when constant controls are
used in the simulations.

All simulation results are averaged over400 runs. In all
the runs, the network is the same but seeds are different—
either selected uniformly from the population (in the case of
no control, constant control and only time varying resource
optimization) or, in the case of joint problem, a node in degree
classk is selected as seed with probabilityi0k, wherei0k is
the output of the optimization problem.

IX. CONCLUSION

In this work, we have applied techniques from optimal con-
trol on a large optimality system for allocating campaigning
resources over (i) time and (ii) degree classes for maximizing
the spread of a piece of information over social networks. In-
formation dissemination is modeled as a Susceptible-Infected
epidemic and direct recruitment of susceptible nodes to the
infected class is used as the strategy to enhance information
spreading. The seed for the epidemic is also jointly optimized
along with time varying resource allocation. The whole net-
work is divided into degree classes based on node degrees
and each degree class is influenced by a separate control. The
aim is to maximize a (net) reward function, which is a linear
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combination of reward due to the extent of information spread
and cost due to application of controls. We have also studied
a variation of the above problem—maximizing information
spread under a fixed budget constraint (fraction of seeds is
given).

We prove the existence of a solution to the optimal control
problem, provide analytical structural results for the shape of
the controls, and provide a sufficient condition for uniqueness
of solution. We solve the above optimal control problem using
Pontryagin’s Maximum Principle. Our formulation and system
parameters lead to large optimality systems with over200
differential equations. Numerical schemes use the forward-
backward sweep technique and its variations to solve different
problems studied in this paper. These schemes are more effi-
cient than direct conversion of the optimal control problems to
non-linear optimization problems. We analyse the convergence
of the forward-backward sweep technique for our system.

We compare the optimal results with two heuristic strate-
gies. The first one is constant throughout the campaign hori-
zon, and second is dynamic in nature and is active only during
initial periods of the campaign (which was found to be more
important for information spreading). Results show significant
gains over these non-optimal strategies.

We also found that per capita resource allocation over the
degree classes varies depending on the network topology and
system parameters such as cost of the resource and spreading
rate. For example, if resource is costly (scarce), medium
degree nodes are allocated more resources in Erdős-Rényi
networks, but higher degree nodes are favored in the case of
scale-free networks. If the resource is cheap (abundant), the
allocation to low degree nodes is more than that to medium
degree nodes in both networks.

We tested the accuracy of the degree based compartmental
model for SI epidemics on a real social network by simulating
various control strategies. Although the fraction of infected
nodes is slightly overestimated by the model, the performance
improvements achieved by the optimal control over the con-
stant control strategy is almost the same in the simulationsas
predicted by the model.
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APPENDIX A
PROOF OFTHEOREM III.1: EXISTENCE OF ASOLUTION

Let the system of ODEs represented by (2b) be denoted by
d
dt
i(t) = f (u(t), i(t)), where the RHS is a vector function

with |K| elements whose components are given by (2b) and
i(t) = {ik(t), k ∈ K}. We make use of Cesari’s theorem [20,
Ch. 3] in this proof. We will use the vector 1-norm throughout
this proof. However, note that allp-norms (p ≥ 1) for vectors
are equivalent7; hence the result holds irrespective of the norm
used. Cesari’s theorem states that an optimal control problem
has a solution if the following conditions are satisfied:

1) |f(u(t), i(t))| ≤ C1(1 + |i(t)| + |u(t)|), for C1 >
0. Using 1-norm for vectors, |f(u(t), i(t))| ≤
maxt∈[0,T ]{β(t), γ(t)}K

2
max(|i(t)|+ |u(t)|).

2) |f(u(t), i(t)) − f(u(t), î(t))| ≤ C2|i(t) − î(t)|(1 +
|u(t)|), for C2 > 0. Evaluating the left hand side (we
make use of̂sk(t) = 1− îk(t)),

|f (u(t), i(t))− f(u(t), î(t))|

=
∑

k∈K

∣
∣
∣
∣
β(t)ksk(t)

∑

l∈K

(qlil(t))− β(t)kŝk(t)
∑

l∈K

(ql îl(t))

+ γ(t)uk(t)sk(t)− γ(t)uk(t)ŝk(t)

∣
∣
∣
∣

≤
∑

k∈K

∣
∣
∣
∣
β(t)ksk(t)

∑

l∈K

(qlil(t))− β(t)kŝk(t)
∑

l∈K

(qlil(t))

+ β(t)kŝk(t)
∑

l∈K

(qlil(t))− β(t)kŝk(t)
∑

l∈K

(ql îl(t))

∣
∣
∣
∣

+
∑

k∈K

∣
∣
∣
∣
γ(t)uk(t)sk(t)− γ(t)uk(t)ŝk(t)

∣
∣
∣
∣

≤
∑

k∈K

max
t∈[0,T ]

{β(t)}Kmax

∣
∣
∣
∣

∑

l∈K

(qlil(t))

∣
∣
∣
∣
.

∣
∣
∣
∣
sk(t)− ŝk(t)

∣
∣
∣
∣

+
∑

k∈K

max
t∈[0,T ]

{β(t)}Kmax|ŝk(t)|.
∑

l∈K

(

ql
∣
∣il(t)− îl(t)

∣
∣
)

+
∑

k∈K

max
t∈[0,T ]

{γ(t)}|u(t)||sk(t)− ŝk(t)|

≤2 max
t∈[0,T ]

{β(t)}K2
max|i(t)− î(t)|

+ max
t∈[0,T ]

{γ(t)}|u(t)|.|i(t)− î(t)|

≤ max
t∈[0,T ]

{γ(t), 2β(t)K2
max} × |i(t)− î(t)| × (1 + |u(t)|),

which is as required. We have made use of estimations
such ask ≤ Kmax,

∣
∣
∑

l∈K
(qlil(t))

∣
∣ ≤ Kmax (note

that ql’s and il’s are probabilities and hence≤ 1),
∑

k∈K
|ŝk(t)| ≤ Kmax, |uk(t)| ≤ |u(t)| and |a + b| ≤

|a|+ |b| for a, b ∈ R.

7R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge university
press, 1990 (Sec. 5.4.7).

3) The admissible set of controlsU |K| is non-empty by
construction (Definition 1).

4) The control at timet, u(t) takes values in a closed space
R

|K|. The whole space contains all its limit points and
hence it is closed8.

5) The reward due to the terminal state in the reward
function J in (2a),

∑

k∈K
pkik(T ), takes values in a

compact space [0,1] and
∑

k∈K
pkik(T ) is continuous

in ik(T ).
6) R

|K| is a convex space,f(u(t), i(t)) is linear inu(t)
and

∑

k∈K
gk(uk(t)) is convex inu(t) (Assumption 1).

7) The final requirement of the theorem is that,∃ a contin-
uous functionσ(u(t)), such that,

∑

k∈K
gk(uk(t)) ≥

σ(u(t)) and σ(u(t))
|u(t)| → ∞ as |u(t)| → ∞. Choose

σ(u(t)) =
∑

k∈K
gk(uk(t)). Now, |u(t)| → ∞ means

either the largest componentup(t) → ∞ or, the
smallest componentuq(t) → −∞. In the former

case, lim
|u(t)|→∞

∑
k∈K

gk(uk(t))

|u(t)| > lim
up(t)→∞

gp(up(t))
|K|.up(t)

=

lim
up(t)→∞

g′
p(up(t))

|K| → ∞. We use L’Hospital’s rule.

Since gp(.) is strictly convex andgp(0) = 0, so
g′′p (.) > 0 ⇒ g′p(.) is strictly increasing for positive

arguments. In the latter case, lim
|u(t)|→∞

∑
k∈K

gk(uk(t))

|u(t)| >

lim
uq(t)→−∞

gq(uq(t))
−|K|.uq(t)

= lim
uq(t)→−∞

g′
q(uq(t))

−|K| → ∞. Note

that by Assumption 2,gq(.) is an even function, so
strictly decreasing for negative arguments.

APPENDIX B
PROOF OFTHEOREM IV.1:CONVERGENCE OF

FORWARD-BACKWARD SWEEPALGORITHM

We use the techniques in [22] for the analysis in this section.
In this section we will denote the iteration number by(n).
Then forward-backward sweep uses the following iteration:

Initialize: u
(0)
k .

Iterate:
d

dt
i
(n+1)
k (t) = β(t)ks

(n+1)
k (t)

∑

l∈K

(

qli
(n+1)
l (t)

)

+γ(t)u
(n)
k (t)s

(n+1)
k (t);

i
(n+1)
k (0) = i0k.

8W. Rudin,Principles of Mathematical Analysis.McGraw-Hill New York,
1964
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d

dt
λ
(n+1)
k (t) = β(t)kλ

(n+1)
k (t)

∑

l∈K

(qli
(n+1)
l (t))

−β(t)qk
∑

j∈K

(λ
(n+1)
j (t)js

(n+1)
j (t))

+γ(t)u
(n)
k (t)λ

(n+1)
k (t);

λ(n+1)(T ) = pk.

u
(n+1)
k =

γ(t)

2ck
s
(n+1)
k (t))λ

(n+1)
k (t). (14)

The state/adjoint variables in thenth iteration satisfy the above
equations. The solutions,i(t) = {ik(t), k ∈ K} andλ(t) =
{λk(t), k ∈ K} satisfy Eqs. (2b) and (4) respectively.

Let the errors innth iteration be denoted bye(n)ik
(t) =

ik(t) − i
(n)
k (t), e(n)λk

(t) = λk(t) − λ
(n)
k (t) and e(n)uk

(t) =

uk(t)− u
(n)
k (t) with vectors of errors represented bye(n)i (t),

e
(n)
λ (t) ande(n)u (t) respectively. The errore(n+1)

ik
(t) evolves

as:

d
dt
e
(n+1)
ik

(t)= β(t)k
[
sk(t)Σl(qlil(t))

−s
(n+1)
k (t)Σl(qli

(n+1)
l (t))

]
+ γ(t)

[
uk(t)sk(t)

−u
(n)
k (t)s

(n+1)
k (t)

]
;

e
(n+1)
ik

(0) = 0.

This leads to:

e
(n+1)
ik

(t) =

∫ t

0

{

β(τ)k
[
sk(τ)Σl(qlil(τ))

− s
(n+1)
k (τ)Σl(qli

(n+1)
l (τ))

]
+ γ(τ)

[
uk(τ)sk(τ)

− u
(n)
k (τ)s

(n+1)
k (τ)

]}

dτ.

⇒|e
(n+1)
ik

(t)| ≤

∫ t

0

{∣
∣β(τ)k

[
sk(τ)Σl(qlil(τ))

− s
(n+1)
k (τ)Σl(qli

(n+1)
l (τ))

]∣
∣+
∣
∣γ(τ)

[
uk(τ)sk(τ)

− u
(n)
k (τ)s

(n+1)
k (τ)

]∣
∣

}

dτ. (15)

The first of the two modulus terms in the RHS of (15) can be
estimated further as:

∫ t

0

∣
∣β(τ)k

[
sk(τ)Σ

l
(qlil(τ)) − s

(n+1)
k (τ)Σ

l
(qli

(n+1)
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]∣
∣dτ

=
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0
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∣β(τ)k

[
sk(τ)Σ

l
(qlil(τ)) − sk(τ)Σ

l
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(n+1)
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+ sk(τ)Σ
l
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(n+1)
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k (τ)Σ

l
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(n+1)
l (τ))

]∣
∣dτ

≤βMk |sk(τ)|
︸ ︷︷ ︸

≤1

∫ t

0

qM
∣
∣Σ
l
(il(τ) − i

(n+1)
l (τ))

∣
∣

︸ ︷︷ ︸

≤|i(τ)−i(n+1)(τ)|

dτ

+ βMk |Σl(qli
(n+1)
l (τ))|

︸ ︷︷ ︸

≤1

∫ t

0

|sk(τ)− s
(n+1)
k (τ)|dτ. (16)

Similarly, we estimate the second term of the RHS of (15).

Using it and (16) in (15) we obtain:

|e
(n+1)
ik

(t)| ≤ βMk

∫ t

0

qM |i(τ) − i(n+1)(τ)|dτ

+ βMk

∫ t

0

|ik(τ) − i
(n+1)
k (τ)|dτ

+ γMuM

∫ t

0

|ik(τ) − i
(n+1)
k (τ)|dτ

+ γM

∫ t

0

|uk(τ)− u
(n+1)
k (τ)|dτ.

Aggregating over allk we obtain:

|e
(n+1)
i (t)| ≤

(
βM (Σk)qM + βMKmax + γMuM

)

×

∫ t

0

|e
(n+1)
i (τ)|dτ + γM

∫ t

0

|e(n)u (τ)|dτ. (17)

A similar procedure for|e(n+1)
λ (t)| leads to (note that this

error needs to be integrated backwards fromT to t):

|e
(n+1)
λ (t)| ≤

(
βM (Σk)ΛqM + βMΛKmax

)
∫ T

t

|e
(n+1)
i (τ )|dτ

+
(
2βMKmax + γMuM

)
∫ T

t

|e
(n+1)
λ (τ )|dτ

+ γMΛ

∫ T

t

|e(n)
u (τ )|dτ. (18)

Also, (14) leads to:

|e(n+1)
u (t)| ≤

γMΛ

2cm
|e

(n+1)
i (t)|+

γM
2cm

|e
(n+1)
λ (t)|. (19)

The analysis uses following Gronwall’s inequalities [22]:
if ζ, κ are two continuous functions on[0, T ] and κ is non-
decreasing, then

ζ(t) ≤ κ(t) + ν

∫ t

0

ζ(τ)dτ ⇒ ζ(t) ≤ eνtκ(t), and,

ζ(t) ≤ κ(t) + ν

∫ T

t

ζ(τ)dτ ⇒ ζ(t) ≤ eν(T−t)κ(t). (20)

Letting c0 = βM (Σk)qM + βMKmax + γMuM and using
first inequality of (20) in (17) we obtain:

|e
(n+1)
i (t)| ≤ exp(c0t)γM

∫ t

0

|e(n)u (τ)|dτ

⇒|e
(n+1)
i (t)| ≤ exp(c0t)γM

∫ T

0

|e(n)u (τ)|dτ. (21)

The estimation is true because integrand is positive. Again
using second inequality of (20) in (18) we get,

|e
(n+1)
λ (t)| ≤ exp{(2βMKmax + uMγM )(T − t)}

×
{

Λc0

∫ T

t

|e
(n+1)
i (τ)|dτ + γMΛ

∫ T

0

|e(n)u (τ)|dτ
}

. (22)

Using integration by parts in (21) to obtain
∫ T

t
|e

(n+1)
i (τ)|dτ ,

and after ignoring some of the negative terms, (22) can be
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estimated as:

|e
(n+1)
λ (t)| ≤ exp{(2βMKmax + uMγM )(T − t)}γMΛ

×
{

exp(c0T )

∫ T

0

|e(n)u (τ)|dτ − exp(c0t)

∫ t

0

|e(n)u (τ)|dτ

+

✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘
✘✘∫ T

t

(1 − exp( c0τ
︸︷︷︸

≥0

))|e(n)u (τ)|dτ
}

. (23)

The last term is negative, hence can be ignored given the di-
rection of inequality. Note that, inspite of making estimations,
the RHS of (23) is maximum att = 0, and 0 at t = T , as
it should be (because transversaility condition fixes valueof
adjoint variables att = T leading to zero error at that point).

Using (21) and (23) in (19) we obtain

|e(n+1)
u (t)| ≤

γ2MΛ

2cm
exp(c0t)

∫ t

0

{

1− exp((2βMKmax

+ uMγM )(T − t))
}

|e(n)u (τ)|dτ

+
γ2MΛ

2cm
exp((2βMKmax + uMγM )(T − t)) exp(c0t)

∫ T

0

|e(n)u (τ)|dτ. (24)

Putting t = T in the first term of the RHS of (24)—which
gives an upper bound—and integrating from0 to T gives

|e(n+1)
u (t)| ≤

γ2MΛ

2cm
× exp{(βMKmax + γMuM )T }×

[exp{βM (Σk)qMT } − exp{βMKmaxT }

βM (Σk)qM − βMKmax

] ∫ T

0

|e(n)u (τ)|dτ.

Thus, the algorithm converges when the leading constant is
< 1 which proves Theorem IV.1. Note that this is only a
sufficient condition due to estimations made to obtain it.

Smaller values ofγM and larger values ofcm aids conver-
gence. We note that the function(exp(ax)− exp(bx))/(ax−
bx) is a monotonically increasing function ofx for a, b > 0
and a 6= b. Thus, smaller values ofβM aids convergence.
Similarly, smallerT leads to faster convergence.

APPENDIX C

Proof of Lemma IV.1: The Hamiltonian maximizing condi-
tion of the Pontryagin’s Principle states that for allt ∈ [0, T ],
u∗k(t) = argmaxuk(t)

H(i∗(t),λ∗(t),u(t)). Thus∀k ∈ K,

H(i∗(t),λ∗(t), uKmin
(t), ..., u∗k(t), ..., uKmax

(t))

≥H(i∗(t),λ∗(t), uKmin
(t), ..., 0, ..., uKmax

(t)).

We use (3) in the above. After simple algebraic manipulation
and usinggk(0) = 0, we get:

λ∗k(t)γ(t)u
∗
k(t)s

∗
k(t) ≥ gk(u

∗
k(t)).

By Assumption 1,gk(u∗k(t)) ≥ 0. Notice also,u∗k(t) ≥ 0 (a
consequence of Assumption 2) ands∗k(t) ≥ 0 (from Lemma
II.1) andγ(t) ≥ 0. Henceλ∗k(t) ≥ 0.

Proof of Theorem IV.2(i): Differentiating Eq. (5) with
respect to time variablet, for anyk ∈ K, we get,

g′′k (u
∗
k(t))

d

dt
u∗k(t) = γ(t)

d

dt
λ∗k(t) s

∗
k(t) + γ(t)λ∗k(t)

d

dt
s∗k(t)

+
d

dt
γ(t) λ∗k(t)s

∗
k(t).

Substituting the values ofd
dt
λ∗k(t) from Eq. (4) and d

dt
s∗k(t)

from Eq. (2b) (sk(t) = 1 − ik(t) ⇒ d
dt
s∗k(t) = − d

dt
i∗k(t)),

and simplifying, we get,

g′′k (u
∗
k(t))

d

dt
u∗k(t) = −γ(t)β(t)qks

∗
k(t)

∑

j∈K

(jλ∗j (t)s
∗
j (t))

+
d

dt
γ(t) λ∗k(t)s

∗
k(t).

(25)

Now, g′′k (u
∗
k(t)) ≥ 0 becausegk(.) is assumed to be a convex

function. The spreading rateβ(t) ≥ 0 and effectiveness of
control γ(t) ≥ 0 at all times,qk being a probability density
function is ≥ 0 [14, Sec. 17.10.2],s∗k(t) ≥ 0, ∀k ∈ K

(Lemma II.1) andλ∗k(t) ≥ 0, ∀k ∈ K (Lemma IV.1). For the
second termd

dt
γ(t) ≤ 0. Hence we getd

dt
u∗k(t) ≤ 0, ∀k ∈ K,

which proves the theorem.

Proof of Theorem IV.2(ii): For gk(uk(t)) = cku
2
k(t),

Eq. (25) can be re-written as 2ck d
dt
u∗k(t) =

−β(t)qks
∗
k(t)

∑

j∈K
(jg′j(u

∗
j (t))) + d

dt
γ(t)λ∗k(t)s

∗
k(t) (using

Eq. (5)). This, on differentiating with respect tot, leads to,

2ck
d2

dt2
u∗
k(t) =− β(t)qk

︸ ︷︷ ︸

≥0

d

dt
s∗k(t)

︸ ︷︷ ︸

≤0 from (2b)

∑

j∈K

(jg′j(u
∗
j (t)))

︸ ︷︷ ︸

≥0 from Assumption 1

− β(t)qks
∗
k(t)

︸ ︷︷ ︸

≥0

∑

j∈K

(

j g′′j (u
∗
j (t))

︸ ︷︷ ︸

=2cj>0

.
d

dt
u∗
j (t)

︸ ︷︷ ︸

≤0 Theorem IV.2(i)

)

−
d

dt
β(t)

︸ ︷︷ ︸

≤0

qk s∗k(t)
︸ ︷︷ ︸

≥0 Lemma II.1

∑

j∈K

(jg′j(u
∗
j (t)))

︸ ︷︷ ︸

≥0 from Assumption 1

+
d

dt
γ(t)

︸ ︷︷ ︸

≤0

(

− β(t)qks
∗
k(t)

∑

j∈K

(jλ∗
k(t)s

∗
k(t))

)

︸ ︷︷ ︸

≤0

+
d2

dt2
γ(t)

︸ ︷︷ ︸

≥0

λ∗
k(t)s

∗
k(t)

︸ ︷︷ ︸

≥0

.

This leads to the conclusion that
..
u
∗
k(t) ≥ 0, ∀k ∈ K and

t ∈ [0, T ], for d
dt
β(t), d

dt
γ(t) ≤ 0 and d2

dt2
γ(t) ≥ 0.

APPENDIX D
PROOF OFTHEOREM IV.3:UNIQUENESS OFSOLUTIONS

Condition (9) of Theorem IV.3 is obtained by applying the
theorem for uniqueness of the solution of first order two point
boundary value problem in [23]:

Lemma D.1 (Theorem 1.2 in [23]). Let det(M2n×2n +
R2n×2n) 6= 0, α ∈ R

2n and ψ : [0, T ] × R
2n → R2n be

a Carath́eodary function. If∃w(t) ∈ L1([0, T ]) such that

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TNET.2015.2512541


This is the author’s version of an article that has been published in IEEE/ACM Transcactions on Networking. Changes weremade to this version by the publisher prior to
publication. The final version of record is available athttp://dx.doi.org/10.1109/TNET.2015.2512541. 18

||ψ(t,η)−ψ(t, η̂)|| ≤ w(t)||η − η̂|| ∀t ∈ [0, T ],η, η̂ ∈ R
2n.

Then the two point first order boundary value problemd
dt
η =

ψ(t,η); Mη(0)+Rη(T ) = α has a unique solution provided
Γ||w||L1 < 1. Here, Γ = max{||(M + R)−1M ||, ||(M +
R)−1R||} and for a matrix,||X || = maxi,j |Xi,j |.

Note that in our case,n = |K|, η = (i,λ), ψ = (f ,h),
where fk(t,η) is RHS of (2b) andhk(t,η) is RHS of (4)
for k ∈ K. M andR are both2n × 2n matrices such that
Mjj = 1 = Rj+n,j+n, 1 ≤ j ≤ n and all other elements are
0. Thus,Γ = 1.

We note thatψ is a Carathéodary function because it
satisfies the following requirements:

1) ψ(.,η) is Lebesgue measurable on[0, T ] ∀η ∈ R
2n.

2) ψ(t, .) is continuous onR2n ∀t ∈ [0, T ].
3) For all r ∈ (0,∞), t ∈ [0, T ], ||η|| ≤ r, ∃ δr : [0, T ]×

R
2n → R

2n such that|ψk(t,η)| ≤ (δr)k(t), 1 ≤ k ≤

2n. This is satisfied for(δr)k(t) = β(t)kqM r + γ2(t)
2ck

r

for 1 ≤ k ≤ n, and(δr)k(t) = β(t)KmaxqMr
2+ γ2(t)

2ck
r2

for n+ 1 ≤ k ≤ 2n.

Noting, gk(uk(t)) = cku
2
k(t) ⇒ uk(t) = γ(t)λk(t)sk(t)

2ck

(from (5)) and letting η̂ = (̂i, λ̂); after some algebraic
manipulations, for1 ≤ k ≤ n, we obtain:

|fk(t,η)− fk(t, η̂)| ≤ β(t)kqM ||i− î||+ β(t)k|sk − ŝk|

+
γ2(t)

2ck
Λ|sk − ŝk| × 2 +

γ2(t)

2ck
|λk − λ̂k|,

|hk(t,η)− hk(t, η̂)| ≤ β(t)kΛqM ||i− î||+ β(t)k|λk − λ̂k|

+β(t)qkKmax(Λ||i− î||+ ||λ− λ̂||)

+
γ2(t)

2ck
(Λ2|sk − ŝk|+ 2Λ|λk − λ̂k|).

Aggregating over allk and noting thatψ = (f ,h),

||ψ(t,η)−ψ(t, η̂)|| = ||f(t,η)− f(t, η̂)||

+ ||h(t,η)− h(t, η̂)||

≤||i− î||
(

β(t)(Σk)qM + β(t)(Σk) +
γ2(t)

cm
Λ
)

+

||λ− λ̂||
γ2(t)

2cm
+ ||i− î||

(

β(t)(Σk)qMΛ + β(t)KmaxΛ

+
γ2(t)

2cm
Λ2
)

+ ||λ − λ̂||
(

2β(t)Kmax +
γ2(t)

cm
Λ
)

=[d1β(t) + d2γ
2(t)] ||η − η̂||,

where,d1 = max{(
∑

k∈K
k)ΛqM +KmaxΛ, 2Kmax}, d2 =

(Λ/cm)max{1,Λ/2}.
As stated above, for present caseΓ = 1; thus, the solutions

to the state and adjoint equations (and hence the controls) are
unique whend1||β(t)||L1 + d2||γ

2(t)||L1 < 1 (using Lemma
D.1).
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