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Abstract—Mobile users are envisioned to exploit direct com- other nodes (e.g. content downloaded earlier); q@jvice or
munication opportunities between their portable devicesin order  resource accesfo], [7]: nodes offer access to resources (e.g.
to enrich the set of services they can access through cellalar Internet access) or services (e.g. computing resourcis); (

WiFi networks. Sharing contents of common interest or proviing . . iy
access to resources or services between peers can enhance 'QOb'Ie data offloading[8], [9], [10]: the cellular network

mobile node’s capabilities, offload the cellular network, ad ~Provider, instead of serving separately each node reqgesti
disseminate information to nodes without Internet accesdnterest a given content (e.g. a popular video, or software update),

patterns, i.e. how many nodes are interested in each contentdistributes a few copies of the content in some relay nodes

or service (popularity), as well as how many users can provel (51qerg and they can further forward it to any other node
a content or service (availability) impact the performanceand .
that makes a request for it.

feasibility of envisioned applications. In this paper, we stablish . .
an analytical framework to study the effects of these factes The performance of these mechanisms highly depends on
on the delay and success probability of a content/service eess who is interested, inwhat and whereit can be found (i.e.

request through opportunistic communication. We also app} our  which other nodes have it). While the effect of node mobility
framework to the mobile data offloading problem and provide has been extensively considered (elg. [2]] [1I]] [13]) eont

insights for the optimization of its performance. We validae our larity has b inl idered f lqorithmi
model and results through realistic simulations, using daasets of popularty has been mainly considered irom an algorthmic

real opportunistic networks. perspective (e.g [10]/[12]), and in the context of a specific

. - . application. Despite the inherent interest of these st dieme
Index Terms—Performance analysis; Opportunistic networks; . ; . . )
Content popularity; Mobile data offloading guestions remain: Would a given allocation policy work well

in a different network setting? Are there interest pattehad
would make a scheme generally better than others? Key factor

like content popularity and content availability might iaxgh
O PPORTUNISTIC or Delay Tolerant Networks (DTNSkhe performance or even decide the feasibility of a given

consist of mobile devices (e.g. smartphones, laptops) thajyjication altogether. In this paper, we try to provide som
can exchange data using direct communication (e.g. Bltigtoqptia| insight into these questions, by contributing ajotie
WiFi Direct) when they are within transmission range. Wh"?ollowing key directions:

initially proposed for communication in extreme environt Content popularity model. We propose an analytical
the proliferation of “smart” mobile devices has led restars  framework that is applicable to a range of mobility and cahte
to consider opportunistic networks as a way to Supportiegst oy jarity patterns seen in real networks (Sectidn I). Its
infrastructure and/or novel applications, like file sharii2],  simplicity and generalitycan render it a useful tool for future
[3], crowd sensing[[4],[[5], collaborative computing [6]]{ modeling/analytic studies. To our best knowledge, thishis t
offloading of cellular networks [8]/9],[10], etc. first application-independent effort in this direction.

This trend is also shifting the focus from end-to-end 10 performance analysis.We derive closed form expressions
content-centriccommunications. In a content-centric applicagoy the prediction of important performance metrics (Sec-
tion some nodes> 1 (the holderg have thesamecontent o). We first derive exact predictions and bounds foe th
item (e.g. a data file, a service), and some nodesl ,erformance of content delivery in a base scenario, and then
(the requestery are interested in this content. The goal Ogxtend our analysis to more generic mobility and traffic sase
the communication mechanism is the requesters to get therne practicality of our results lies in the fact that only wfe

content from the holders. Some content-centric applioatiogiafistics about the aggregate mobility and content pojpyila
for which opportunistic networking has been considered aratterns is needed. Hence, they facilitatdine performance

(i) content sharind2], [11], [12]: the source(s) of a content, agiction and protocol tuning, compared to approaches (as
(e.g. mulimedia file, web page) might want to distribute §§ 4 110]) requiring detailed per node statistics that aaedh
(e.g. user generated content) or is willing to share it Wiy acquire in real scenarios. Moreover, they can complement
P. Sermpezis and T. Spyropoulos are with the Department dfil€om- sys_tem de_S|gn or feasibility studies. The prese_nted smnuh'a,
munications, EURECOM, France, e-mail: firstname.lastr@aerecom.fr. ~ which validate the accuracy of the theoretical predictions
o _ _ _ indicate how a sensitivity analysis of system parameteds an
A preliminary version of this paper appeared in Proc. 15tHVADterna-

tional Symposium on Mobile Ad Hoc Networking and ComputiippiHoc), a comparison of diﬁere_nt mec.ha.nisr.ns can l?e performed.
2014 [1]. Mobile data offloading optimization. While a detailed
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application-specific optimization is beyond the scope @ thamong the several options of the aforementioned trade-off,
paper, we demonstrate how our framework can be appliedisomotivated as follows. The above model far= {);;} can

an example application: mobile data offloading (Secfioh. IV¥apture many aspects of the contact rates’ heterogenasty (i
Using our analysis, we show how an offloading mechanism cdifferent pair-wise rates\;; and distributionsfy(\)). At the

be optimized and discuss what the performance related-im@ame time, it is a probabilistic model and, thus, it remains
cations are. This case study provides guidelines to relsearc simple enough to derive insightful, closed-form resultstfe

for investigating and similarly proceeding in the analysisl performance of a content delivery (Sectiogd Ill), which i th
optimization of further content-centric applications,lipies, main goal of this paper. Finally, if more detailed mobility

protocaols, etc. characteristics (e.g., temporal or periodic pattefns)[¥&re
Finally, we discuss related work in Sectioh V, and concludeeeded to predict performance, this would make our results
our paper in Sectiofh VI. less useful for designing a system/application, since ipah r
scenario it is not always possible (or practical) to acqaite
Il. NETWORK MODEL this information (or, at least, in real time).

A. Mobility Model

We consider a network\, where N nodes move in an B Content Traffic Model
area, much larger than their transmission range. Data packéWe assume that each node might interested inone or
exchanges between a pair of nodes can take place only wiegre “contents”. A content of interest might refer to (i) a
they are in proximity i contac). Hence, the time points, single piece of data (e.g. a multimedia file, a google map) [8]
when the contact events take place, and the nodes involvéil,all messages/data belonging to a category of inter@sts

determine the dissemination of a message. local events, financial news)1[3],_[18], (iii) updates aneds
We assume that the sequence of the contact events betw@eg. weather forecast, latest news)|[19], etc.
nodes andj is given by a random point process with ra\ggﬁl. A number of content-sharing applications and mechanisms

Analyses of real-world traces suggest that the times betwegave been proposed in previous literature, from publish-
consecutive contacts for a given pair can often be approsibscribe mechanisms to “channel’-based sharing andelevic
mated (completely or in the tail) as either exponentiall][1 to-device offloading, etc., (e.d.|[3]./[4].][5]. [19]). To gueed
[15] or power-law (e.g. Pareto) distributed [16]. Our arsady with our analysis we need to setup a model of content/service
can be applied to both cases, as well as for other distributiaccess. In the following, we propose a generic model for
types. In the remainder, we focus on the exponential interontent-centric applications.
contact times case, which can be described with a single maintThe main notation we use in our model and analysis is
parameter);; (the contact rat¢, and we further demonstratesummarized in Tablg I.
its applicability to a simple Pareto inter-contact timesea

The network\ can be described with the contact (or meetEontent Popularity

ing) rates matrixA. = {A;;}. Depending on the underlying \ye assume that when a node is interested in a content or
m_ob|l|ty process, there_mlght Pe large d'ﬁe're”f?e_s betvﬂben service, it queries other nodedlirectly encounters for it. We
different);; values in this matrix. Furthermore, it is often quitgjeote the event that a node A is interested ina content
difficult, in a DTN context, to knowA exactly, or estimates M (or, equivalently,i requestsM) as:i — M. We further
might be rather noisy. For these reasons, we consider {i&,ote the set of all the contents that nodes are interested i
following simple model forA: assM = {M : Ji € N,i - M}. [M| = M, where]| - |
Assumption 1. The contact rates\;; are drawn from an denotes the cardinality of a set.

arbitrary distribution with probability density functiorfy ()

_ X Definition 1 (Content Popularity) We define the popularity of
with known meanu, and variances; (CVy = Z—i).

a contentM as the number of nodé‘é,ﬁM) that are interested
By choosing the right functiory, the above model canin itd:
capture heterogeneity in the pairwise contact rates, asenoi (M) _ CM)| whereCM) — (i e N :i — M} (1)
in the estimates. In practice, one would fit the empirical ~? pov P ’
distribution observed in a given measurement trace with sie further denote the percentage of contents with a given

f and use it in the anaIyEs popularity valuen as
Summarizing, the above model is a trade-off between 1
realism analytical tractability and usefulnessOur choice, Py(n) = 57 > Ty 1€ [0, N] 2)
MeM

1We ignore the contact duration and assume infinite bandyégumptions (M) .
that are common (e.d.][2].T10]) and orthogonal to the prublee consider WhereIN;M):n =1 whenN;™"’ =n and0 otherwise.
here.

2In some scenarios node mobility might have some furtherencomplex In other words, P,(n) defines a probability distribution
characteristics, e.g. node pairs contact with differestjfiency\;; during  gver the different contents and associated popularitfesel

day/night or weekdays/weekends. However, in the majoritamplications, -
it can be safely assumed that there itine-scale separatigni.e., the time randomly choose one conteftt € M, then the probab|I|ty

to deliver a content is much smaller than a period of similgj values. that its popularity is equal te is given by P,(n).
Moreover, a real system can use different rates dependintheononsidered

period, e.g/\z(.j ) and )\5;“9 ), or a running estimate mechanism. 3This could be an average, calculated over some time window.



In practice, the content popularity distributid®y(n) might TABLE I: Important Notation
be known exactly, estimated, or predicted, depending on t@GBILITY (Sectionll-A)
given scenario and application. For instance, in a publish2: Contact rate between nodésand;
. . . . . . . a(N) Contact rates distribution
subscribe application, users subscribe in advance inreiffe |52 Mean value/ variance of confact ratesys — 7
channels, and thus the popularity of each channel/contant ¢ CONTENT TRAFFIC (SectiofiLIIB)

be known or estimated through distributed mechanisms. Ina— M | Node: is interested requestsontentM
™ Set of contents in the networkM| = M.

mobile data offloading scenario_, the cellular ne_twork migdt NG Popularity of content\A Dol
informed from users about their requests, or infer poptylari c*> Set of nodes interested in conteht Def.[
from their interest profiles [10]. In content sharing apalion, | (1) Probability distribution of content popularity Ea. @
th larit f a fil b dicted . thods b | j < M Node i holds a copyof contentM
e popularity of a file can be predicted using methods baseeymn Availability of content M Dol 3
e.g., on past statistics, early demand of a content, sodia*0 Set of nodes that hold a copy of contekt Def.
dynamics, etc.[[ZO]. g(m|n) Availability - Popularity relation Def.[3
p(n) Deterministic case foy(m|n)
g(n) The average value qf(-|n)
AR ANALYSIS (Section1II-A)
Content Ava”ablllty P9 (n) Popularity distribution of a random request Lemmal
We assume that a request for a content or service [i£."" (n) Availability distribution of a random request Lemma2
. T Time of nextmeeting betw desand
completed, when (_a_nd if) a node that holds (a copy of) ther,, oot Amcage ma e TOCESANE)
requested content directly encountered. We denote the event x ., Sum of meeting rates of and nodess C{*P Eq. [@)

that a node holds (a copy of) a contenm asi <+ M, and

we define the availability\féM) of a contentM as
where p(n) : [1, N] — [0, N] can be an arbitrary function.

Definition 2 (Content Availability) The availability o/f/la This case corresponds to applications where the number of
content message/ is defined as the number of nod&%™  holders is selected (by a centralized authority, a disteithu
that hold a copy of it. protocol, etc.) according to the popularity of a contenttéNo
NM = 1cM)) whereCM) = (i e N :i e M} (3) also that this deterministic formula(n) can be used as an
approximation of the general case, where the noise arownd th
The availability of a given content might often (althoughnean is ignored (i.e., only the mean value, rather than thetex

not always) be correlated with the popularity of that contenyistribution, of the availability needs to be known/estiet:
A cellular network provider, for example, migtdllocate
(n) =Y _m-g(mn)

Q|

more holders for popular contenfs [10]. In a content-slarin p(n) =

setting, where some nodes might be more willing than others

to maintain and share (“seed”) a content after they have

downloaded and “consumed” it, popular content will end up

being shared by more nodes. We will model such correlations IIl. ANALYSIS OF CONTENT REQUESTS

in a probabilistic way, as follows. We will now analyze how different popularity, availability

and mobility patterns (possibly arising from different &pp

cations, policies, and network settings) affect perforagan

metrics like: (i) the delay to access a content of interest, (
P{N, =m|N, =n} = g(m|n) (4) the probability to retrieve a content before a deadline. % ke

The above conditional probabilities can describe a Wiqoearameter for these me.‘tric.s. s the number of .holders for the

requested content (availability). The higher this numlttes,

range of cases where availability depends on popularity, an . .
9 y dep Pop Y sooner a requesting node will encounter one of them.

some additional randomness might be present due to factor%hiIe content availability might sometimes be time de-

like: natural churn in the nodes sharing the content, cdnten .
dependent differences in the sharing policies applied iieap pendent[[1P], or the content holders might be chosen based

estimation noise, etc. For example, we might assume tha g their mobility properties [10], as a first step we make

: . . L w0 additional, restrictive assumptions that allow us toivae
content of higher popularity ham averagehigher availability, simple, useful expressions. Later, in SectigiDI-C, weaxel

but the actual availability (e.g. over a given time window) i : :
. both these assumptions, and show how our analysis andgesult
subject to some randomness due to node churn, etc. e . .
can be modified to capture more generic scenarios where

Some special cases of this model include: o .
. - T availability can be dependent on the time (or the content
(i) Uncorrelated availability where g(m|n) = g(m). For . L -
. . Do dissemination process) and mobility patterns.
example, in service/resource access applications, whade h

ers are the nodes that can provide access to some resoursstimption 2. The (i) popularityNng) and (ii) availability

(e.g. Internet access, softwarg) [7], the availabilityeregs on N of a contentM do not change over time.

the number of devices with the given resources rather than th _ M) (M)

number of users that are interested in them. Assumption 3. The sets of requestegs’™") and holders’,
(i) Deterministic availability where: of a contentM are independent of node mobility.

Definition 3 (Availability vs. Popularity) The availability of
a content item is related to its popularity through the redat

1, m=p(n) Regarding the validity of Assumptidil 2, it can be safely
No=p(Np) < g(mln)= { 0, otherwise assumed that users’ interests do not change, at least iimtée t



window of a content delivery. This is a common assumption . Preliminary Analysis
the majority of related works. As a resubbntent popularity Assume a content-centric application with many different

which is_given by the number of the nodes interested In @ ants. To predict the performance of such a system, we
contgnt, is not expected to C_ha"_ge as well. o ~would like to know how long theveragerequest takes to be
With respect tacontent availability the assumption is valid safisfied. To do so, let us pick some random user request (over

(or a good approximation) in a number of applications. Fefjj the requests made for different contents), and let usrass
example, in the case that the number of holders is chosgi; this request is for some contem.

by the cellular operatorl [9],[[10] or content provider, and \ye first need to answer the following two questions:

other nodes cannot act as holders or do not have |ncent|vesi hat is th lari "

to do so. It is also valid when the “content” is a servicg' What is the popularity OfM'

(e.g. Internet access, or specific sensor) that is offerdg o -2 How fast does a requesting node mgets holders?

by a certain number of deviceEl [7] Moreover' in content Ql is needed to predict the avaiIabiIity for the content of

sharing applications / protocols where users have a limitée random request. Given this availability, Q.2 will estten

“pudget” of L copies that can distribute to relay nodes (i.¢he (sum of) contact rates between the requesting node and

the holders), if.L = N\ < N and N;SM) < N (which is the holders, according to Assumptidis 1 &id 3. The contact

reasonable for a typical opportunistic networking scemari fates between the requester and the holders will be then used

then the time of the initial content distribution to holderéSection[II-B) in calculating how fast the request will be

is much less than the time needed by a requester to acceafisfied.

the contefft Hence, considering only the time of the content

sharing processfter the initial distribution to holders, the AnsweringQ.1

condition for time-invariant availability holds. It is easy to see that the popularity o1 should be
Nevertheless, in scenarios where a content is disseminatifoportional to P,(n): the higher the number of different

and new nodes (e.g. the requesters after receiving it) &@ntents with a popularity value, the higher the chance that

willing to share it [8], then the availability might changees M Will be of popularityn. However, the higher the popularity

time. We consider and analyze such cases in Setion 111-C,@fsa content, the more the requests made for it. Hence, a first

an extension of our basic results of Sec{ion1I-B. important observation is that the popularity of the conieint
Assumption[B holds when eobility obliviousallocation Such arandom requesis not distributed as?’, (n) but is also

policy (i.e. randomized protocols) is considered, €.g],[b2 Proportional to the popularity value. _

the homogeneous algorithm dF]10]. It is also a reasonablecons'der a stylized example, Where_ only two contents exist

approximation, in settings where there is no knowledge ef ti? the network, content A with popularity valué and content

interests-mobility correlation, if any. B_ with populgrlty valuel. Henc?, “hf;}lf" the contents are of
Nevertheless, there exist scenarios where who holds Wﬁéﬁh popularity (v, = 10), and halfl of low (N, = 1), or

content might depend on the contact rates with other no @Sothe_r wordsF;(10) = Pp(1) = 3. However, there wil

(i.e. the mobility), and such a dependence can possiblyaff e 10 times more requests for content A than for content

the performance. This dependence might occur due to Consequently, it we s_ele<_:t a request randomly, th_ere IS a

employed dissemination protocdl J11], [10]. In fact, man 0x higher chance thqt it will be fo_r_content A, that is, for

protocols proposed in related literature, try to exploithitity he CO’?Fe”t .Of -pop_ularlt.)lo. Normalizing FO have a proper

or social characteristics of nodes, in order to find a set BfObab'“ty distribution gives us the following lemma.

holders that contact regularly the requesters and can, thusmma 1. The probability that a random request is for a
deliver the contents to them in a fast and efficient way. content of popularity equal ta is given by

However, due to the different mechanisms employed, a
different (and very complex in some cases) analytic apgroac Pret(n) =
would be needed for each protocol. To this end, in Sec-
tion [[M-C] we do take into account mobility-aware schemesyhereE,,[n] = > n- P,(n) is the average content popular-
in a generic and application-independent way. Furthermorgy B.
with this proposed extension of our model, one can capture : _ .
scenariospwhpere mobility-availability correlation do rlmnmep Remark: We would I|ke_to r_ne_nt|0_n hgre that N some
(necessarily) from a dissemination protocol, but they tectis related works, the popularity distribution is defined ovee t

. : different popularities values in a set of contents, which in
to some underlying heterogeneous traffic patterns [22]. o '
ying g P [22] our framework corresponds to the distributidtj“? (n). In

contrast, we define (in a more generic way) the popularity dis
tribution P,(n) as the percentage of contents having (exactly)

Ey[n] .

“4In a simple example, of a network witN' = 1000 nodes and\;; = A,

a “source” node originally has a content, in WhiNf,M) = 20 nodes are

interested. The “source” replicates the content to the first 4 nodes it

meets (Cflsource Spray and Wai]rotocm m])’ which act as holders. Then‘ 5We stress here that we do not refer to a certain content, butewete the

it can be easily shown that the expected timedillholders get the content is content related to the random request M for ease of reference. Hence, in
N the remainder we do not use the superscrigtin the related notation. E.g.

BT ~ 5 = m50x o i we denote the popularity a¥,, instead ofN]gM).

access the content B[Ta] ~ N N = TFD BN’ 6We use subscript to denote an expectation over the popularity distribution

E[T,] =50 E[Ts] > E|Ts]. P,(n), andn denotes the random popularity values.

while the expected time a (i.eany) requester to
L or equivalently



n requesters. The correspondence between the two appraniweﬂ.(jr) is theresidualinter-contact time between a node

can be made using Lemrha 1. pair {i, j}. However, for the exponential distribution it holds
For the convenience of the reader, we state the followirlgat
corollary that makes the aforementioned correspondence fo )

an important example case, the Zipf-law (or discrete Pareto i ™ exponential(Aij) = Tj;

distribution, which is frequently observed in real systd@8, Therefore, 7, is distributed as a minimum of exponential

[24], [25] and used by many related studies [2.1[10].1[12kandom variables, and it follows that ]26]:
Corollary[1 follows directly from the expression of Lemida 1,

~ exponential (\;j)

and thus we omit the detailed proof. Tap ~exp(Xm) & P{Ty>t}=e M (5)
Corollary 1. If Pye?(n) is given by a Zipf distribution with where
a shape parameterv > 0, then P,(n) is given by a Zipf Xpm = Z Aij (6)
distribution with a shape parameter + 1 (and vice versa). ieC,

Pret(n) ~ Zipf(a) < Py(n) ~ Zipf(a+1) Clearly, knowingX », is needed to proceed with the desired

metric derivation. Based on the preceding discussiop is
a random variable that depends on: (i) the number of content
AnsweringQ.2 holdersm (i.e. the cardinality of set, in Eq.[8)), and (ii)
The answer to question Q.2 consists of two separate step@ meeting rates with the holders. Applying Assumpiibrt 3, i

(i) we calculate the number of holders for the content ¢fo|ds that, conditioning om:, X, (Eq. (8)) is a sum ofn
the random request, and then (ii) we calculate how fast thed. random variables,;; ~ fr(\), i.e
requesting node can meet these holders. Towards answering
(i), Lemmal2 maps the popularity of the content involved in Xm~ fon(@) = (fa* o o), (7)
a random request (derived in Lemrfih 1) to the number of . .
holders for this content. This number is a random variabY(\éhere* denotes convolution, and mean vallel[26]
dependent both on the popularity distributiéh(n), and on E[XMm|N, =m] = Ep[z] =m - py (8)
the availability functiong(m|n). ) )

Remark In the remainder we use the subscriph to denote

Lemma 2. The probability that a random request is for agn expectation over the distributig,  (z); the corresponding

content of availability equal ton is given by random variables are denoted.as
P;Gq»(m) — Ep[n i g(m|n)] -
Ep[n] B. Performance Metrics

Proof. The popularity of the content of a random request is We consider two main performance metrics: teerage
given by PJ°?(n). Its availability can then be calculated bydelay and delivery probability Based on the analysis of
using the property of conditional expectation][26]: Section[II[-A, we derive results under generic contentficaf

Pre(m) — ZP{Na — I, = n} - P (n) (i.e. P,(n) andg(m|n)) and mobility (i.e.fx()\)) patterns.

where P7¢%(n) is defined in Lemmadll. Substituting, fromcOntent Access Delay

Def.[@ and Lemma&ll, the above terms, we successively geIResuIt 1. The expected content access delay can be computed
with the expression

Pyt (m) = g(min) - == - Py(n)
7 ol R SR LY -
S, glmln)-n By(n) _ Byl gmin) BUTw) = g B | 2 B HEX ’]
B, 1] E,[n]

Proof. The timeT), a node;j needs to access a contet
which completes the proof. L is exponentially distributed with rat& . However, X v is
a random variable itself, distributed witfi,(z) (Eq. [@)).

Having computed the statistics for the content avallgblllt.l_hus’ we can write for the expected content access delay:

we can now calculate how fast the requesting node, jsay
meetsany of the holderg (i.e. nodes € C,). As discussed in

Sectior1I-4, we focus on the case etponentially distributed B[Tu] =Y BlTu|Na = m] - P;*% (m)
inter-contact timesLater, in Sectiof III-C we consider Pareto m
distributed inter-contact times as well. — Z/E[TM\XM — 2, Ng = m)] - foux(x)dz - PT°% ()
Let T;; denote the inter-contact times between ngdad a -~
nodei € C,, and letT;; be exponentially distributed with rate 1 req.
\ij. If we denote withT), the first time untilj meetsany of - Z/E fma(@)de - P (m) ©)

the nodes € C, (and, thus, accesses the content), then:
The last equality follows from the fact that the expectation

T = glfelicn{ﬂ(f)} of an exponential random variable with rateis .



Expressing the integral in EQ.](9) as an expectation over tfiee sum in Eq.[{12) is the expectation ovgr|n), i.e.
fma(z) and substituting?’“? (m) from Lemmad2, gives

1 1
ml * 1E”[n] Applying, as before, Jensen’s inequality, we get
= . Z Eox|—| - Ep[n-g(mn)]  (10) 1 B 1 1
Epn] ™ [QJ g Z m ~g(m[n) = E, {E} > m = % (14)

Rearranging the expectations and summation in Ed. (10)

wi .
get the expression of Restlt 1. W?]ere we used foE,[m] the notationg(n).

Combining Eq. [(TW) and Eq[{]L2), the expression of the

If the functions f\()\), g(m|n) and P,(n) are known, theorem follows directly. O
the expected delay[T\] can be computed directly from
Resulf, as shown in the following example. Content Access Probability

Example ScenarioThe contact ratesf{) follow a gamma
distribution as suggested in [27], with, andC'V,. Content
popularity P,(n) is Pareto distributed, as observed inl[23]
[24], [25], with scale and shapeparametersy and o = 2,
respectively. Finally, we consider a (deterministic) edlton
of holders,p(n) = c¢-n (see Sectiof1I-B). Then a closed for
expression fotE[T,] is given in the first row of TablElll.  Result 2. The probability a content to be accessed before a

time T'T'L can be computed with the expression

One often needs to also know the probability that a node
can access a content by some deadline, €I\ < TTL}.
E.g, a node might lose its interest in a content (e.g. nevis) af
some time, or in an offloading scenario a node might decide
mto access a content directly to the base station.

TABLE II: Performance Metrics wherf, ~ Gamma with AT
wx, CVy and P,(n) ~ Pareto(ng, o = 2). P{T\ <TTL}=1- Ey[n-3,, Emx [F ] [ g(m|n)]
- E,n

) ] Proof. Conditioning on the values ofV, and X,,, as in
-1

p(n) =c-n E[Tm] = ﬁcvg [C—(};ﬁ -In (%vg Eq. (), we can write:
17

c-nq

P{Tm <TTL} =
=c- -—1- T
p(n) =c-In(n) | P{Tm STTL} =1 - =50y . — Z/p{TM < TTLIXpMm =2, Na =m} - frux(2)da - PI% (m)
wherey = (1+ uy - CV2 - TTL)“'X =
. . . . ) —1_ —2TTL - dx - Prev- 15
However, in a real implementation, it might not be always Z/e Fmx (@) dz (m) (15)

possible to know theexactdistributions of the contact rates ) ) )
(f) and/or the availabilities (m|n)), needed to compute v_vhgre the Ia_lst equality follows becausg, is _exponentlally_
the expression of Resulfl 1. In the following theorem, wdistributed with rf_;lteXM = x. After some similar steps as in
derive an expression fdE[Ty;] that requires only thaverage heorenLl, the final result follows. O

statistics(which are much easier to estimate or measure in athe expression of Resuli 2 for the previous example sce-
real scenario), namely (i) the mean value of the contacsrat@ario, with a different allocation functiop(n) = ¢ - In(n), is
px, and (i) the average availability for contents of a givegiven in the second row of Tablg I.

popularity,g(n). .

Theorem 2. An upper bound for the probability to access a
Theorem 1. A lower bound for the expected content accespntent by a tim&'T'L is given by
delay is given by
. E, n.e—ﬁ(n)'m-TTL}

E[T\m] >

L p[”} P{TMSTTL}Sl—ﬁ

i Byl g(n) Proof. The bound follows easily by observing thatz) =
Proof. In Resultt) we can express,, [1] as E.[h(z)], e~>TTL is a convex function, and applyinkensen’s inequal-

x

whereh(z) = % Sinceh(x) is a convex function, applying ity and the methodology of Theordm 1. O
Jensen’s inequalityi.e. h (E[z]) < E[h(z)], gives
1 1 1 Tightness of bounds
Emna {E] = E[z] “m- R (11) To derive simple expressions (bounds) that depend only on

h i th i d Ef] (8 the average statisticg, and g(n), and thus can be easily
where, in t_e equality, we use al ( _)‘ _used in real scenarios (see, e.g., Secfioh IV), we applied
Substituting Eq.[(I11) in the expression of Regult 1, 9V€Stwice Jensen’s inequality. Although Jensen’s inequalibesd

1 not come with any quantitative guarantees for the tightoéas
E[Tm] > B -E, n- Z — -g(m|n)] (12) bound, in the following, we provide some intuition about how
fx s Eplnt m tight our expressions are expected to be in different stenar



Let us consider, for example, TheorEin 1 (similar argumer < & oA o
hold for Theoren{R). We first apply Jensen’s inequality z@ @ @ @ @
Eqg. (I1) for the expectation taken over node mobility, i.e.

1] 1 Fig. 1: Markov Chain for the dissemination of a content with
E

B {E ma[] initial popularity and availability. andm, respectively.

The same expectation, by applying the Delta method [28], can

be expressed as distribution process, which is in contrast to Assumptidn 2.

5 [1} 1 N Epxl(z — Emalz])?] L To this end, in this section, we study such cases of varying
m  Enaz] (Emxx])? content availability. However, due to the numerous diffiere
1 cv2 1 approaches, each of them considering different ways oecdnt
= i ' (1 + ™ +0 (W)) dissemination (e.g. all nodes contribute to the conterttidis

bution [8], or only selected nodes become holders [2], [14])

As it can be seen in the above equation, the expectatiofimmon methodology cannot be applied. Hence, we consider

1 1 H 3
Emx [1] is equal to the lower bound, given by Jensen'gq following example scenario, and provide guidelines for

inequality ﬁ plus a corrective term that decreases &halyzing further cases.

(i) the heterogeneity of the mobility distribution (i.e.eth | ot 5 assume a scenario where, initially, some nodes hold
varianceo and higher order moments) decreases, and (i) ta8mecontent itemge.g. data files), in which some other nodes
number of holdersn increases. Since: takes every possible ;.o interested. This can be, for example, a content sharing
availability value, it follows that the tightness of the @l ¢.onario with contents being, e.g., some google maps. When
depends on theninimum availabilitym,y.;,, (and how probable ; ode interested in a content item, meets a holder and gets

this value is). For instance, ifi.i, = 1 (and there is a high e content, it can hold it in its memory and act as a holder
probability, i.e.g(1|n), that this happens), the above boung,, Specifically, we describe such scenarios as:
probably might not be tight.

The second time we apply Jensen’s inequality is at[Eq. (14efinition 4.

for the expectation over the availability distributigitmm|n). — When a requester accesses a content, acts as a holder for it.
Proceeding similarly, we can show that the bound — Theinitial content popularity and availability patterns are
1 1 given byP,(n) and g(m|n).
Eq [E] = E,[m] In scenarios conforming to Deff] 4, an approximaﬂicﬁor

the expected content access delg{'\] is given by Resulfl3

becomes tighter when the mass of the availability distidput (the detailed proof is given in Appendi® A).

g(mn) is concentrated around its mean valfg[m] (low
heterogeneity). For example, for a determinisfign|n) — Result 3. Under a time-varying availability scenario of DEF. 4,
p(n), the bound is exact, whereas for a uniform distributiotihe expected content access delay is approximately given by

g(m|n) = £,vm € [1,W], the bound will become looser as 1
. n
W increases. E[Tym] = B E [ln (1 + T)}
Summarizing, the tightness of the bounds of TheorEis 1 fx s Bpllt g
and[2 becomes higher as: Sketch of proofiLet us consider a contenM of initial
. the heterogeneity of the mobility distributiofy () de- Popularity N,(0) = n and availability N,(0) = m. When
creases the first requester accesses the content, the number ofrholde
« the minimum value of the availability, i.emim = will increase tom + 1 and the remaining requesters will be
min{m : g(m|n) > 0}, increases n — 1. Building a Markov Chain as in Fid.]1, where each
« the heterogeneity of the availability distributiarim|n) State denotes the number of holders, it can be shown for the
decreases expected delay of moving from state+ & to statem+k+1,

k € [0,n — 1], that it holds E[T} x+1] =~ m
Computing the timesE[T} x+1] and averaging over all the
) ] contents, gives the expected delay.

In this section, we study how the results of Seclion Ill-B can gqjjowing the guidelines of the above methodology, further
be modified, when we remove the Assumptibhs 2[dnd 3. AlSQenarios can be analysed as well. We provide here some

we provide the corresponding performance metric eXprBSSi%xamples (however, a detailed study is out of the scope of
for a Pareto distributed inter-contact times case. We $tate ;g paper):

only the main findings and sketches of the proofs; the detaile popapilistic cooperationa node receiving a content, might
proofs can be found in the Appendices. not be willing to cooperate and act as a holder for it (e.g. due

to battery depletion, privacy concerns, etc.). To capthis, t
Time-varying Availability: Multi-hop Content Dissemination we can use the following model: a node acts as a holder for the

In many protocols for opportunistic content-centric apgli _ , _ o _ .
The multi-hop delivery of a content, in combination with theobility

tion proposed in Iitera.ture* e.il[Z]:ﬂlZ];l [8]:011], thetsof heterogeneity, does not allow the derivation of simplesetbform expressions
holders of a content might change over time or over the contést exact predictions and bounds.

C. Extensions



content it receives with probability. Then, at each contentto a requester by tim@TL (the expected delay is not a
delivery, the number of holders increments with probapilitconvenient performance metric in this case, since contaets
p (and does not change with probability— p). Building a never delivered to requesters that have lost their inferést
similar Markov Chain as before, we can approximate the delaye denote this probability aBciivery, it is €asy to see that
E[Ty k1] = rr——, Where nowk € [0,n — 1] it holds

(mA4p-k)-(n—k)-pux’
Pictivery = P{Tog <TTL} - (1 — Pioos{t < TTL}) (18)

denotes the number of requesters that have been served:,Hen
proceeding as in Appendix]A, we can get
1 pn where P{T\y < TTL} is defined in SectioR II-BPyciivery
E[T\] = BT E, [ln (1 + _—)} (16) can then be calculated straightforward from our results for
P i Epln] g(n) P{T\ < TTL} (e.g., Resull2) and the (known) distribution
Limited spreadingLet assume that the spreading of théjloss{t <T}.

content is limited toL holders (i.e. only a limited number Remark: Further comple?qty can be added in the abov_e
model for users’ loss of interest, like, heterogeneous dis-

of L new holders is allowed), e.g., in order to reduce ren10de / q d
source consumption in the network. In this case, the cont flputions P, (among users and/or contents), dependency

availability will increase fromN,(0) = m to its max value etween .th_e loss of interest and the_ content or mobility
N, = m + L and after this point, it will not change. Then characteristics, etc. The performance in such cases can be
the delayvk > L (againk refers to served requesters) wil@nalysed similarly, based on our framework/methodology.

be given byE[T}; 111] = 1 . Following the same

steps as in AppendixIA, we can gelt“ Mobility Dependent Allocation

1 n_ As discussed earlier (Sectiénllll), who holds a content and
= +In (1 + = )}
LJ )+ L (n)

E[Tam] =~ (17) who is interested in it, might be related to their mobility

(n patterns, e.g. due to heterogeneous traffic pattérns [22] or

KX 'Ep[”]. P

Remark: It is possible in certain scenarios that conterft Toblhty—avv_are pro?:_)coIEEIll],E%O]. This dcan %f_fect th?h
availability changes in various ways, sometimes not rdlat@€OrMance in a positive or negative way, depending on the
Prrelatlon between the mobility of holders and requesters

(only) to the given content dissemination mechanism. F& ¢ it tocol select holders th des that
instance, holders may discard some contents due to limit@g ance. I a protocol Selects as holders the nodes mee

resources, like full buffers, battery depletion, etc. Aralgsis more frequently the requesters (positive mobility cotiefd,

as above could be applied for some of these cases as vUé@;‘ the performance is expected to be improved.

(e.g., content discards could be modelled with a Markov €hai . ue to the numerous .different protocols andor settingss tha
as in Fig.[1, where transitions to states with less holdegs a[P'ght create such mobility correlations, we cannot anagee

allowed). Due to space limitations, we defer the study ohsuﬁgbﬁiﬂglgescjnn daerfczeigiatgyérieggg' vr\fb(;tl;(i)lfsstiec}: t\,(\),am(r?ﬁleth
interesting cases to future research. y aep 9 P Y.

to apply our results in a specific scenario, one needs only to
make the correspondence between the mobility charadtsrist

T|meva_ry|ng Populan'_[y _ o of the scenario and the model of DE&l. 6 (e.g. following the
As discussed earlier, in the majority of the commonlyyigelines of [22]).

considered applications/scenarios, users are not expécte

change their interests in the time window of a content defive D&finition & (Mobility Dependent Allocation) The probability
hence, content popularities do not change either. HowéverT:; that a nodei is a holder for a content in which a node
is possible in certain cases that the popularity of a contehfS interested, is related to their contact rate; such that
might change over the (typical) time window of its delivery™i; = (Ai;), wherer(-) is a function fromR* to [0, 1].

In the following, we provide some initial analysis, as a first gased on the above definition, we can predict the perfor-

step towards analysing such cdbes o mance of a content-centric application using ReSllt 4, whic
Let us assume a scenario where the initial requesters ofa prove in AppendikB

content start losing their interest with time. This is a coomm

case among applications distributing news, trending videgesult 4. Under Qefl]i(,ﬂ;l’heorenﬁ 1 afdl 2 and Rebiilt 3 hold
etc. Since this loss of interest might appear in various walfsve replacey, with 13", where

(grqdually, rapidly, etc.), _Which depend on the cqnsidered = Ex]A-7m(V)]

setting, we use the following generic way to model it. By = N (V)]

Definition 5 (Time-varying Popularity) The probability a where E,[-] denotes an expectation taken over the contact
requester to have lost its interest by tirfieis given by a rates distributionfy(\) (Assumptiofi]l).
distribution Py ss{t < T'}. .
loss 1t < T} _ _ _ Sketch of proofSince the requesters-holders contact rates
Under the above class of time-varying popularity caseare mobility dependent, the contact rates between themodre n
we can calculate the probability a content to be deliverefistributed with the contact rates distributigin()), but with

8 _ . a modified version of it, i.e. with a distribution:
We stress that a complete study of all the possible ways tlegbdpularity
patterns might change in an opportunistic content-cersicienario (and the 1

respective analysis) is out of the scope of this paper. ffr(/\) = m ’ W()\) : fA(/\)



Hence, Eq.[{7) and Eq](8) need to be modified as:

X~ fmﬂ(x) = (fﬂ * ook ffr)m

CEx[A (V)]
Ex[m(M)]

Example Scenariofhe holders of a conten! are selected

taking into account their contact rates with the requestess
following: Each node (candidate to be a holder) is assigned

— (m)

E[Xm|Ny =m| = Epzlz] =m =m-

weight w; = HjeC(M) Aij. Using such weights, the selection

o CV,= 2 0o TTL =0.01
0.1 . V-1 o o TTL =0.05
A 0" 0.8 T ---theory (exact)
0.08ll ¢ ch =0.01 . - . R ~ —upper bound
- --theory (exact) ,,o“ L.--g # sl = By
— —lower bound | ,.-* L. o eI
,:2 0.06 . e " =
] PR =
004 .07 o2 £ o4
e a
002 0.2

1

. . 15 2 8
o (shape parameter) o (shape parameter)

(@) E[Tnm] (b) P{Taa <TTL}

of holders that rzfrely meet the requesters is avoided. Then,

each node is selected to be one of tNg*" holders with
probabilityp; = Zwiw"
this mechanism is (approximately) describedafp\) = ¢ - \.
Substitutingr()\) in Resulf%, gives

m _ B\ -m(N] _ EAN?
o Ex[r(\)] B\

(1+CV3)  (19)

Pareto I nter-Contact Times
We now proceed and demonstrate how our model can

Fig. 2: (@) E[Tr] and (b) P{T'r»« < TTL} in scenarios with

With respect to Defl6, it turns out thatvarying content popularityc; shape parameter).

expressions for the performance metrics in the Pareto case (
expressions corresponding to Reslilts 1[@nd 2, and Thebitems 1
and[2). The expressions are given in Tdblk Il and the detaile
derivations can be found in Appendi® D.

Model Validation

Be

extended to cases where inter-contact times between nogles aAs a first validation step, we compare our theoretical

not exponentially distributed. Specifically, we consideter-
contact times following a Pareto distribution, which hagrbe
shown to fit some real traces [16].

predictions to synthetic simulation scenarios conformatipe
models of Sectioftdl, in order to consider (a) various mapili
and content traffic patterns, and (b) large networks.

Let us assume that inter-contact times between a node Simulation Scenarios. We assign to each paifi,j} a

interested in a (random) conteAt and a node € C, are
Pareto distributed wittshapeand scale parametersy;; + 1
(with «;; > 0 when E[T;;] < 4+00) andtg, respectively:

)Otu-ﬁ—l

Then, it follows that the residual inter-contact times viig
also Pareto distributed, but with a decreased shape para

ter [29], i.e.
)aw

Ti(jr) ~ pareto(aj,to) < P{Ti(jr) >t} = (
and it can be shown fofflyy = miﬂieca{ﬂg)} that (Ap-

pendix[Q):
)"
where A = 3 ice. @ij-
Remark:In this case the contact rates (Déf. 1) will bg =

to
to+t

Tij ~ pareto(ozij + 1, to) =4 P{TZ] > t} = (

to
to+t

to
to+t

T ~ pareto(Aa, to) < P{Tp >t} = (

contact rate\;;, which we draw randomly from a distribution
fr(N), and create a sequence of contact events (Poisson
process with rate\;;). Then, we creatd/ contents and assign

to each of them a popularity valueVg), drawn from the
distribution P,(n). According to the given functiog(m/|n),

we assign the availability valueAfg)). Finally, for each content

M, we randomly choose thHISM nodes that are interested
A%t and its N holders.

Mobility / Popularity patterns. In most of the scenarios
we present, we use the Gamma distribution for the contact
rates (i.e.fA())), since it has been shown to match well
characteristics of real contact patterns][27]. Also, conte
popularity in mobile social networks has been shown to follo
a power-law distribution, e.gl [23]._[24]._[25]. Therefonse
select P,(n) to follow Discrete (Bounded) Pareto or Zipf
distributions, similarly to the majority of related workg][
[10], [12].

In Fig.[2 we present the simulation results, along with our

Qg

ﬁ]] = 72, ay; > 0. However, for simplicity, we can use thetheoretical predictions, in scenarios & = 10000 nodes
parametersy;; instead of the rates;;, and, correspondingly, with varying mobility and content popularity patterns. The
a distributionf,, (), instead offx(X). mean contact rate ig, = 1 and content popularity follows
Hence, similarly to Eq.[{7) and Ed.(8), for Pareto intervala Bounded Pareto distribution with shape parameter (i.e.
(fo(@), pa), we can write: exponent)a and n € [50,1000]. The availability function
is p(n 0.2 - n (i.e. deterministic). An almost perfect
A~ fma(@) = (fox 5 fo)p s Bmalz] =m-p matéh)between simulation results (markers) and the thieatet
Having calculated the above quantities, we can now proceRi@dictions (dashed lines) of Resulis 1 and 2 can be observed
similarly to the exponential case (Sectlonll-B) and derike N Fig.[2(@), the lower bound (continuous line) of Theofem 1
is very tight for low mobility (i.e. smallC'V\) and/or content
®We use the American Pareto (or Pareto Type II) distributiwhich is popularity (i.e. smalla) heterogeneity, confirming thus the

supported fort > 0 [29]. Moreover, for simplicity we assume a comMMONyico ssion of Sectiof TIEB for the bound tightness For the
scale parametet, among all node pairs. Our results can be generalized for ’

different scale parameters, eié)’.”) for a pair {7, j}, however, this would delivery prObab”ityP_{TM < TTL} (Fig. m)* We.pres_ent
increase the complexity of notation and expressions. the results for two different values @fTL in scenarios with

o
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TABLE llI: Performance metrics for Pareto distributed Int@ontact times

Exact expressions Bounds

E[Tm] Eztjn] Ep [n . Z Ema [1’ i 1} g(m|n)] Eztj"] P [5(") ':Lm - 1}

m

P{Tpq <TTL} || 1~ ﬁ B anEm [(7&) J:‘;FTL)T -g(mn)} 1- ﬁ o {n (to f;TL)?(n)-ua}

m

CV, = 2 (i.e. the most heterogeneous scenario). Here, tl 0.0 By
upper bound (continuous line) of Theoréin 2 is very close Ml

the simulation results, despite the very heterogeneoudityob
In Table[TM we present results of the above scenarios, whe =04

the availability - popularity correlation is not deternsfic.

We assume thag(m|n) follows a binomial distribution with 2%

meang(n) = 0.2 - n. The binomial distribution introduces

0.05

P{TM <TTL}

H . . 0.02
a randomness that can be interpreted as noise in a syste R Y 851 o (s parneten 2>
availability estimation algorithm, differences in nodénbeiors (@) E[To] (b) P{Tos < TTL)

(e.g. a node having a resource, shares it with probahi)ity

etc. It can be seen that the bounds are tight in most of thgy 3: (a) £[T\(] in scenarios under Ddf] 4 and (BY T <
scenarios, though (as expected - cf. Section JII-B) lesttigr 71} in scenarios under Deff] 61(n) = 0.2 - n.
than in the deterministig(m|n) case (i.ep(n)).

TABLE IV: Simulation results for scenarios wheggém|n) ~ mobility patterns, we compare our predictions with simolas

Binomial with g(n) = 0.2-n, andTTL = 0.05. in scenarios with varyingCV,. It can be seen that our
E[Tw] (z10%) =05 o=1 a=2 a=3 theorgtical prediction (approximation) ac_hieves goquaamy
fower bound 22.3 316 52.2 66.4 even in these very heterogeneous mobility scenarios.
S!mu:a:?on g“;)\ = (1)55) gg-g gg-g 21-3 ;i-g Results for scenarios with mobility-dependent avail&pili
Simulation A= . . . . H . f
T <TTL] e E oo a5 a=3 (Def. [B) are presented in F}@b}?p(n) is selected as
upper bound 0.8 081 0.66 056 before andf\(\) ~ Gammawith ) = 1,CV\ = 0.5. The
simulation C'Vy = 2) 0.87 0.79 0.62 0.52 allocation of holders is made as in the example scenario of

Section[III=C. The upper bounds of Resllt 4 are tight in all
Finally, TablelW shows the accuracy of our results in smallgienarios, similarly to the case without mobility deperuen
network size scenarios witfy ~ Gamma(uy = 1,CVy\ = 1) (Fig. [2(B)).
and P,(n) ~ BoundedPareto(a = 2) andn € [50,500]. Finally, we simulate scenarios with Pareto distribute@int
We present the relative errors between the simulation salugontact times, as assumed in Secfion lllI-C. We consider two
and the predictions of Result$ 1 dnd 2. It can be seen thatsgenarios witht, = 1 and shape parametees; uniformly
the network size decreases the error increases; howeeer, ditributed in the interval$l.5, 4] and [1.5, 6], respectively.
accuracy is significant for all cases (max erreb%). We present the simulation results, along with the theaaktic
) ) ) bounds of TabléTll in Fig[}4. As it can be seen the bounds
TABLE V: Relative error between simulation results and tight in all cases. The accuracy of the exact prediciigns

Resultd ]l an@l2 for various network size scenarios. Table[l is significant as well (it is not shown in the figure).
N 500 1000 1500 2000
rel. error, E[T) ] 4.98% 1.79% 1.25%  1.089 IV. CASE STUDY: MOBILE DATA OFFLOADING
rel. error, P{Tp <TTL} | 524% 1.27% 1.03% 0.779

The results of Sectioflll can be used to predict the
ly]')ﬁrformance of a given content allocation policy or content
sharing scheme. In this section, we show how these results
I;@uld be also used to design / optimize policies. We focus
on an application that has recently attracted attenticat, ofi
obile data offloadingsing opportunistic networkin@[8].]9],

. Nevertheless, the same methodology applies for aerang
&Esother applications where the number of content/service
providers must be chosen.

10we use a Pareto, instead of a Gamma, distribution, in ordbe table to In a mobile data offloading scenario, the goal of the cel-
achieve highO'Vy, values without having to decrease then{\;; } value.  lular network provider is to reduce the traffic served by the

We, now, proceed in the validation of the extensions of o
basic results presented in Section lI-C. First, in [Fig.)]3(a
compare Resu[fl3 with simulations on scenarios conformi
to Def.[4: P,(n) is aBounded Paretdalistribution withaw = 2,
and f\(\) ~ Paretg which can be a reasonable choice fo
opportunistic network{@ﬁ Since Result]3 is based on a
approximation that is more accurate for less heterogene
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0.04 1 Algorithm 1 Mobile Data Offloading

o a“D[l.S,A] o u‘lD[1,5.4]

@ ¢S, 6] 08 @ @05, 6] 1: Input: contents mobility, constraints

0.03{{ —lower boun —upper boun . .
S T S 2: H + select_holderspntents mobility, constraints;
£ 00 E° \\\ 3: send_copies_to_holdecsitentst);
/ £ o4 4: opportunistic_content_delivery();
0.0 02 5. if QoS then
6: transmit_undelivered_contentsfitents 77 L);
8.5 1 1.5 2 25 3 8.5 1 .5 2 . 3 7: end |f
a (shape parameter) a (shape parameter) .
(@) E[Tr] (b) P{Tmy <TTL}

Fig. 4: Simulation results and theoretical bounds (T4Bl lIncdes request the contents from the cellular netio i) the
(a) E[T\] and (b) P{Ty < TTL} in scenarios with Pareto Mmobility patterns of the nodes (or only some average stztist

Inter-Contact timesP, ~ Pareto(a) with n e [50,100], and Of them, as we show later), which can be estimated, e.g. by
p(n) =0.2-n. past data[[9]; and (iii) the constraint on the total number

of holders, which can be calculated by directly obtaining
information from the nodes or it is a parameter controlled by
the system, in the cases that it corresponds to node resource
or the max number of transmissions, respectively.

infrastructure. To achieve this, the cellular networkjeasl of The next step (line 2 in Algorithrll 1), which is the main

transmitting separately a content to every node intereistedfocuhS of tthliTzectlolr;,lls tm::oie the_ dsett c.)f htoldfgrz tfr? '
it, distributes content copies only to some of the integst§ 2" CONENtINE celiular network provider tres 1o in €

nodes (holders). The remaining (interested) nodes must tﬁeglocatlon that optimizes a performance metric, under the

retrieve the content from the designated holders duringctlir g:\s/ter?bjteién()f'lfzr?:r:er::]sé g:aele(r:]toe %e h?%g:gyrsggviihgoﬁéjgty
encounters. In some cases, an additi@@@Econstraint might ' ' .

exist: if the delay to access a content exceed$7al, a from the cellular network (line 3) aqd forwarq them_to other
requesting node will download it from the infrastructurg, [8 mterestgd nqdes they encounter (line 4). Flr_1aIIy, itjas

], [10] constraint exists, the nodes that have not received theotmt

by time T'T'L, get them from the cellular network (lines 5-7).
A tradeoff is involved between the amount of traffic of- AS said earlier, in this section we try to optimally allocate

floaded and the average delay for non-holders: transmittieg N0lders for a mobile data offloading scenario. We study
content to less holders, increases the traffic that is offidad €25€S With and withouQosS constraints in Sections VA
but also increases the time needed by a node to encou&JRE, respectively. For simplicity, we use the expressi

a holder and get the content. Similar tradeoffs (between tAb 'heoremsLil and]2 as approximations Bf7] and
amount of offloaded traffic and{Tx, < TTL}) appear in P{T\y < TTL}. Since, these expressions imply that (a) the

the QoS case as well. Hence, the cellular provider has §%2Ct mobility patterns are not known (i.e. only is needed)

find a point in this tradeoff -by selecting the set (or numbeF}nd (_b) contents with the same popularity are equivalent, ou

of the holders- that satisfies both its need to alleviate tlgggl IS to select. the number of holders for egch conten? with

infrastructure and the users’ demands (e.g. low delivelgyde a given popular_|ty. In other words, we try to find the optimal

Moreover, when many different contents have to be offloadédlocation functiong(m|n).

the number of holders that can be allocated for each of them

might be constrained. The reason for this can be relateceto th Case 1: no QoS constraints

fact that (a) the total number of cellular transmissionsi@th ~ When noQoS constraints exist, the cellular operator de-

is equal to the total number of holders for all the messages)cides the maximum amount of traffic that it wishes to serve

limited due to the congestion of the wireless interface/@nd directly over the infrastructure. Under this constrainhiet

(b) nodes have limited resources, like energy or buffer,sizean be translated as a constraint on the number of holders for

and thus they cannot store and forward many contents.  different contents, the objective is to minimize the expedct
delay E[T\]. The following result (proved in AppendXIE),

Algorithm [1 summarizes the main functions of a mobilgormalizes this optimization problem and provides with the
data offloading system as described above. optimal solution forg(m|n).

Remark:Here, we would like to remind the reader that wékesult 5. The minimum expected content access delay, under
study mobile data offloading as an example showing how offfe constraint of an average numberc«f; copies per content,

model and anaIyS|s can be applled, descrlblng in detail hOV\&1ln an alternative scenario it could happen that the contmsot known

to design a system implementing AlgoritHth 1 is out of thg priori and the cellular network pre-caches some contents to awnidef
scope of the paper. requests. In this case, although the exact set of the notlrgsted in each
content is not known, estimations (e.g., based on regulterpa, past data,
. . . Qr prediction methods[]20]) about the intensity of reque@is. number

The Input needed by the cellular network consists of: (Bf contents M) and the popularity would suffice (as can be seen, e.g., in

The set of the contentdl, which is already known, since Result5).
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l.e.: 1600 10X 10

~-a =1
: M) M 00 = =gz
min{E[Ty]} st S N =M .cp, NP 20 = DO R e
M 1200 oa- 3 8
. . . . = = 7
can be achieved when the allocation functigrim|n), is & *°° 5
deterministic and equal to 800
600 5
, M
P (n) = : \/ﬁ 400 4
Ep[\/ﬁ] -1 k((f) (0.)5 [Jhk) 2 -1 k(of (O.)S lk) 2
. . . . of p(n)=c of p(n) = cCh
Resul{® is a generic result, since it holds unadey content ,
(a) TVCM (b) Cabspotting

popularity pattern. We also note that an allocation policy
of p(n) o y/n has also been shown to achieve optimatig 5: Content access dela§[T)] of different allocation
results in (conventional) peer-to-peer networks| [30].sTisi policies p(n) = ¢y, - n*, wherecy, =
an interesting finding, given the inherent differences leetw

the two settings (e.g. node mobility).

_ Finally, our result is also co_nS|stent in scenarios vmtbbn_- TVCM mobility model [31]: Scenario with 00 nodes divided
ity dependent holders allocatiofror example, after choosmgin 4 communities of unequal size. Nodes move mainly inside

the number of copies for a content (Redlit 5), the selectigir community and leave it for a few short periods.
of hc_)Iders can be. made, taking into account mobility ut|I|ty5LAW mobility model [32]: Network with200 nodes moving
metrics, e.g. meeting frequency [11] or node centrality [2] in a square area Af000m (the other parameters are set as in
the source code provided in[32]).
B. Case 2: QoS constraints Cabspotting trace [33]: GPS coordinates frofs6 taxi cabs
In cases where a maximum del&T L is required, the collected over 30 days in San Francisco. A rangé(fm is
objective is to minimize the traffic load served by the infragassumed.
tructure. The metric used in related work, e[g.[10], is thead Infocom trace [34]: Bluetooth sightings ®8 mobile and static
offloading ratio, R, s ., which is defined as the percentage ofodes (iMotes) collected in an experiment during Infocom
content requests that are served by nodes. Since requests2806.
served by the infrastructure only after the tifi@ L elapses, 1) Case 1: noQoS constraints: In each scenario, we
it follows that in our frameworkR, ;s = P{T\ < TTL}.  compare different allocation functiongn) = ¢ - n*, where
Hence the optimization problem is equivalent to cr = % is a normalization factor such that the constraint
Ey[p(n)] = e is satisfied.
In Fig.[d we present simulation results in scenarios for the
_ o TVCM (Fig.[5(@)) and Cabspotting (Fig- 5|b)) traces. Content
Proceeding similarly to the proof of Resdll 5 (see Appopularity (B, (n)) follows a Zipf distribution withn < 30
pendix(E), the above optimization problem becomes: and exponentr = {1,2,3}. The availability constraint is set

B =p(n)-pr-TTL B _ 20) 10 cm = 10. It can be seen that the optimal del&ayI'y] is
f%if)l{ pe }} s plp(n)] = em (20) achieved fork = 0.5, as ResulEb predicts.

with p(n) > 0, or, equivalently (by expressing the expectation 2) Case 2:QoS constraints: To evaluate the performance

M
Ep[n*F]"

max P{Tp < TTL} st. Y NP = M-cp, N >0
M

as a sum and denoting, = p(n)): of the allocation functionp(n) that follows after solving
' Eqg. (21) (i.e.optimal allocation), we compare theffloading
ming,, ., {2, n-e T By(n)} ratio R, it achieves with the offloading ratios of the follow-

st Y. pn-Pp(n)=cam, pn=>0 (21) ing policies:
o . Random: We randomly select a content and give a copy of it
The optimization problem of Eq(R1) is convex. Although % a node. We repedt)[/  epq times 9 Py

closed form squt_ion, as ir_1 Res(lt 5, cannot be derived,rit C%quare Root: We selectp(n) o /7 (i.e. the allocation that
be solved numerically, using well known methods. achieves the minimum expected delByT);]).
Log: We selectp(n) o logn.
C. Performance Evaluation Randompolicy has been used in related work as a base-
To investigate whether the policies suggested as optimal lirye [10] andsquare rootpolicy is the optimal policy when the
our theory indeed perform better, we conducted simulationgetric of interest is the content access delay (Sedfion)IV-A
on various synthetic scenarios and on traces of real nesyorkinally, we observed that theptimal policy (Eq. [21)), in the
where node mobility patterns usually involve much morgcenarios considered, allocated copies only toltié — 20%
complex characteristics than our model (Assumpfibn 1). highest popularity contents. Thieg policy allocates in a
The results in the majority of scenarios considered hasémilar manner the copies (e.g. no copies to contents with
been encouragingly consistent with our theoretical ptestis. low popularity).
Hence, we only present here a small, representative sampleSimulation results on th8LAW and Infocomscenarios are
Specifically, we consider the following traces coming frorpresented in Fig. 6(p) afd 6[b), respectively. The parawmete
state-of-the-art mobility models or collected in expennise  in these scenarios ardZ = 50 messagespP, ~ Zipf with
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035 0.35 Specifically, in Algorithni2, we initially set (line 1) the pe

Il Optimal Il Optimal
0.3(| @ Random 0.3{@Random . .
[Isquare-Roof [Isquare-Roo ularlty of all contents equal ta, I.e. NISM) = 17 VM e M.
0.25]JLog 0.25]JLog . .
o o2 Then, an equal number of holders is assigned per content
501'5 501'5 (line 2); Resultlh givescy, holders per content when all
;31 61 contents are equally popular. Every time a requester meets
005 005 a holder and gets the content, the system is informed by
o o the holder or the requester (e.g., with an ACK message) and
Total copies =50 Total copies =100 Total copies =50 Total copies =100

the estimated popularity of the content is incrementedl by
(@) SLAW, TTL = 530 (b) Infocom, TTL = 10000 (line 4). Finally, the cellular provider updates regulafbynce

per a time-window, a certain number of content deliveries,
etc.) the holder assignment (i.e., assigning/releasirideins)
based on Resulfl5 and using the latest estimated popularity
values (line 5).

In Fig. [7(a) we compare ouheuristic approach (Algo-
rithm [2) with the uniform holder assignment policy, in syn-
thetic mobility scenariogy ~ Gamma(py = 1,CVy = 1)
with content popularityP,(n) = Zipf(n € [1,30] , o = 1).

As shown, the proposed algorithm leads to lower delivery
delays than theuniform policy. Moreover, it can be seen
ltﬁlat, even without having any knowledge in advance about
popularity patterns (worst-case scenario) and using alsimp
mechanism, we can achieve a performance close to the optimal
(of a popularity-aware mechanism, i.e., Re§lilt 5).
D. Extensions and Discussion We observed similar behavior in a number of different

. . . simulation scenarios. The performance of Algoritliin 2 is

As a performance evaluation extension, we discuss hére . - .
some implementation issues for challenging mobile data Oa}l_wgys better than thaniform policy; _the d|§tance _from the

. . optimal case depends on the scenario, but is consistentg cl
floading scenarios, where the knowledge of content popyjlarﬁo it

and node mobility is limited. We investigate two practica Temporal mobility patterns. As discussed earlier. consid-
system designs and their performance, and how our theor P ity p ’ Iscu I, !

can be applied in these -much different- scenarios. el){ng only some average m(_)b|I|ty characterlstlgs (Sediid] .
not only facilitates analysis, but also, the implementatio

We believe this section is an initial step towards extendin(% real systems. In some scenarios though, a more detailed

our base framework for more generic settings, and provides ) .
. ) . approach might be necessary. As an example, we consider here
further insights for a system implementation.

. . . . ._cases where a content distribution experiences long delays
Popularity-blind system. We first consider the scenario o that temporal mobility characteristics come into plag, i

where the cellular _network IS not aware of the popularlty_ Tle pairwise contact rate’s; might change before delivery is
the contents. In this case, the options of a system are eltcgr

. . mpleted.
to (a) treat every content as equal, followinguaiform (or, In particular, we assume a scenario composed of two
equivalently, arandon) policy and assigning equal number, : T o
. . alternating time windows of constant contact rates: in each
of holders for each content, or (b) try to estimate online t € e windowtw. andws the contact rate of a node i, )
popularity in order to make a more careful holder assignmen{ (1) (2) ! 2 . P&k, j
To this end, we propose a simple holder assignment al IS A;;” and A7, respectively. This could be the case, e.g., of
. F ) gH)n‘ferent day/night node mobility patterns. We draw thereer
_r|thm fpr popularlt_y-blmd S)_/stemsn() QoSc_ase), and gomparesponding pairwise contact rates from t@ammadistributions
it against theuniform policy. Our solution, Algorithm[12, ~7; 2 : 1 2
: ; - - ( )()\) and f( )()\) with M( ) = 1 and M( ) = 5. Content
combines Result]5 (i.e., the optimal holder assignment whén A ' A A ’

content popularity is known) and a simple online popularitg}o_?uw'ty patterni aré;?(n) :fsz(n €L, 100|] ’ha — 2)'. .
estimation heuristic. o investigate the effects of these temporal charactesisti

we compare three mobile data offloading (WifloS 77L =
Algorithm 2 Popularity-blind Mobile Data Offloading 0.17) mechanisms:
— Optimal (average) The system is aware of the mobility
1 NZEM) =1,YM &M » Set all popularities equal tb. patterns inbothtime windows. The holder assignment is done

) ) ay, ,®
. H + select_holderd ResultB, cpq , NSV based on the solution of EG(21), wifh, = 1.

Optimal (window-based)rhe system is aware of the mobility
patternsonly of the window in which the content distribution

Fig. 6: Offloading RatioR, ;. of different allocation policies
p(n).

n € [1,30] anda = 1, total copiesM - caq = {50,100}. As

it can be seen ouoptimal policy (leftmost bar) achieves the
highest offloading ratia, ;.. The random policy is clearly
inferior than the others. Betweeguare rootandlog policies,

it is the latter that achieves better performance. Thesdtses
indicate that, to maximize&R,s;., it is better to allocate the
available resources only for popular contents, and serge
non-popular exclusively through the infrastructure.

2
3: for each content delivery oM do
4

N;SM) = N;SM) +1 begins. The holder assgg)nment is d?ne based on the solution
TV - (1 (2
5 H+ update_holder:{Result, M, NZSM)) of Eq. (21), withpix = 13”7 or px = .
Log: This mechanism is presented in Section IvV-C.

6: end for We present the simulation results in F[g. 7(b). We can




14

03 05 Some further modeling and analytic techniques for content-

-e-uniform Il Optimal (average) . L ) .
0.25 heurstic o, [ opmal (window-based)}  centric opportunistic networking include [35],[36]. In9B
---optimal

authors use a community mobility model and an analysis based

on mean-field techniques to study an application of content

updates, and derive results for the distribution of contege

under different settings. [86] considers an applicatiaridoal
dissemination of contents and derives criticality corai

° Constraint, . 20 O Smal iMedium " Large under which the content distribution (floating) is viable.

Recently, further novel content-centric application have
been proposed, like location-based applications [4], & a

Fig. 7: Simulation results for scenarios where (a) contefitobile data offloading 18],[19],[[10]. The latter categoryjed
popularity is not known in advance, and (b) mobility pateernto the rapid increase of mobile data demand, has attracted a |

drastically change within the content delivery time-windo Of attention. In the setting of [8], content copies are &l
distributed (through the infrastructure) to a subset of ikeob

nodes, which then start propagating the contents epiddgnica

see that theédptimal (window-basedinechanism, where the Differently, in [9] the authors consider a limited number of
knowledge of mobility patterns is limited to only one timeholders, and study how to select the best holders-target-se
window, does not achieve aR, . as high as in the case offor each message. In_[10], the same problem is considered,
the Optimal (average)mechanism that has a complete vievand (centralized) optimization algorithms are proposeat th
of mobility. Nevertheless, having even a limited infornoati take into account more information about the network: ngmel
about the mobility patterns, is beneficial: as shown in[F{g),7 size and lifetimes of different contents, and interestsjagy
Optimal (window-based)erforms always better than theg policies and buffer sizes of each node.
policy, which has been shown to achieve the best performancén the majority of previous studies, although node interest
among the mobility oblivious policies (see Fid. 6). and content popularity are taken into account, the focus

Finally, as the window size increases (from the left to theas been on the algorithms and the applications themselves.
right set of bars), the difference in the performance betwe®Ve believe that our study complements existing work, by
the two Optimal approaches diminishes. The reason is tharoviding a common analytical framework for a number of
a larger part of the content distribution process takeseplahiese approaches that can be used both for predicting the per
within a single time window, and thus the extra knowledg®@rmance of proposed schemes, as well as proposing improved
of the Optimal (average)mechanism adds less value to th@nes.
prediction accuracy. This observation further supports ou
argument (see Section IItA) that considering only a few VI]. CONCLUSION
average statistics is a good choice when there is a time-scal

separation between content delivery and temporal mobility Th€ increasing number of mobile devices and traffic de-
characteristics. mand, renders content-centric applications through dppcs-

tic communication very promising. Hence, motivated by the
lack of a common analytical framework, we modeled and
analyzed the effects of content popularity / availabiligttprns
Content-centric applications were introduced in oppdsun in the performance of content-centric mechanisms.

tic networking under theublish - subscribeparadigm [[3], = As a part of future work we intend to study, in more
[19], [18], [11], for which several data dissemination techdetail, extensions of our model and to investigate further
niques have been proposed. [ [3], authors propose a meatizaracteristics of content traffic patterns, likaffic locality in
nism that identifies social communities and the nodes-“hubocation based social networks, and their performancetsife
and builds an overlay network between them in order to
e_fficiently dissemipate data. SogiaIC[18] pased orrinés REFERENCES
tion about nodes interests, social relationships and mewem _ _
predictions, selects the set of holders. Similarly to thevaeb [ P- Sermpezis and T. Spyropoulos, “Not all content is E@aequal:
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APPENDIXA or, since (i) (by definition) there ar&/ - P,(n) contents in
PROOF OFRESULT[3 the network, and (ii) we do not differentiate between cotgen

Proof. To calculate the average performance, we need Vtvéth the same popularity/availabilty:

modify the previous analysis as following: Consider a con- Yo S(Tamn) - (M - Py(n)) >, S(Tamln) - Py(n)
tent M of initial popularity N,SM)(O) = n and availability BTyl = S un- (M- By(n)) = E,[n]
NéM)(O) = m, i.e. initially n nodes are looking for the S, S(Tam|n, m) - g(m|n) - Py(n)
content andn nodes hold the content. When the first requester === E,[n]
access the content, the number of holders will increasetd 11 v . P
and the remaining requesters will he- 1. Building a Markov ~ X i B\ n( t ) g(m|n) - Py(n) (28)
Chain as in Fidll, where each state denotes the number of Ep[n]
holders, it can be shown for the expected delay of moviRghare in the last line we substituted from EG.1(26).
from statem + k to statem + k + 1, k € [0,n — 1], that it \ye can further use Jensen's inequality (since the function
holds 1 h(z) =In (1 + g) is convex) or the respective approximation,
BTy k1] = CE R (22) and finally write:

wherem + k are the nodes holding the content— & the E[Tm] =~ . E, [111 (1 + _L)} (29)
remaining requesters and, the mean contact rate. px - Epn] g(n)

From the above analysis, it follows straightforward tha thwhich proves the result. O

expected time till the first requester to access the message i

17 — i th it
E[T'] = E[Ty 1] and till the ¢ requester to access it is APPENDIXB

PROOF OFRESULTIAIAND EXAMPLE

—1
0 _
E[T] = kZ_OE Tiv1] (23) proof. Def. [@ says thatwho holds a content anavho is

interested in it is not independent of their mobility patter
Let us now define the sum of delays/T*] (i.e. delivery The contact rates between the requester of a content and
delays for each requester) for a messadewith initial avail- the holders of it, are not distributed with the contact rates
ability NéM)(o) = m and initial popularityNZSM)(O) = n, distribution fy(\), since the requesters-holders contact rates

as: are mobility dependent. It can be shown that the requesters-
p holders contact rates are distributed [as [22]
S(Tp|m,n) ZET |, n] (24) .
fr(N) = ALY -m(A) - fa(N) (30)
From Eq. [22) and Eq[(23), we can write f6(Tr(|m, n): A
Hence, Eq.[{7) and Eq](8) need to be modified as:
Pl %ZZ CEL BRI Xt~ fn(@) = (fat faoot fa)y BD)
n—1 and
=2 (n=k): 1 Ex[A-7(V)]
pard (m+k)-(n—Fk)-p E[XM|N(§M):m]:Emﬁ[x]:m-i—m ug\ﬂ)
i Ex[m(N)]
1 1 (32)
N_ Z m+k Then, it can be easily seen that following the same analysis,
k=0 we get the same expressions as in TheorEms 1[and 2 and
m+n—1 .
1 (25) Resul’3 where, now, the mean contact rateis replaced by
f k th(e mean mobility dependent requesters-holders contact rate

y |
and using the approximation of the harmonic Blimve get . )
Example Scenariofor each content\, its holders are

S(Toalm, n) ~ 1 T (1 4" ) ~ L In (1 + ) selected taking into account their contact rates with the re
Hx -1 HX questers with the following mechanism: Each nodandidate
(26)  to be a holder is assigned a weight = [1ccm Aij- Then,

Averaging over all the content in the network, we can writeach of them is selected to be one of théM holders

for the expected content access delay: with probabilitypl = Z . Now, for the node paifi, j}
S(T e oM (M)
E[Tp] = ZMiw en (e jeci i holds that
ZM g T (o HkGCéM) )\ik )\ij : HkGCéM)\{j} )\ik
IZZN ~ In(N) +~v+ 0O (%) where « is the Euler-Mascheroni 2w D erc}j‘“ Aik D erc,()M) Aik

constant. ' (33)
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for which, when the node populariiz‘yng) = |C§,M)| is large where for the last line we applietensen’s inequalityor the
enough, we can write expectation®, |:m»u — . O
)\ij - C1
LA 34 & Content Access Probability

where ci, c; take approximately the same vali€,j, i.e. Proof. In the Pareto case, the integral in Eg.J(15) changes as:
m(A) = ¢- A, ¢ = . Substitutingr(}) in Resul4, gives  f (Wt%u) - fma(2)dz, for TTL > to, because for a Pareto
- Ex[A-7w(A E\[)\? random variablex ~ Pareto(a,ty) it holds that P{z <
Mg\ ) _ >\[ ( )] _ )\[ ] = [y - (1 + CV)\Q) (35) N . o ( .0) {
Ex[r(\)] Ey[A] TTL}=1- (ﬁ) . Following the same methodology

APPENDIXC as before and observing that the functiofy) = :

t
MINIMUM OF PARETO DISTRIBUTED RANDOM VARIABLES ; -tUJ-“%TL
) is convex, the expressions of Tablg Il follow similarly.
Proof. For the random variabl@&, = min;ec, {Tl-f }, where

each T, is a random variable distributed with a Pareto APPENDIXE
distribution with scale parametes and shape parametet;, PROOF OFRESULTH
it holds that: Proof. Using as an approximation faf[T\] the expression
; to\ ¥ of Theoren{ll, we can write
P{Ty >t =[] P{T > 61 =[] (_0)
: ! : t E[T]:;J?{_L}
i€Cq i€Cq M px-Epln] P g(n)
([t Dice, s (36) Jensen’s inequality used in E@.{14), becomes equality when
T\t g(m|n) is deterministic. This suggests that among all the

which means thaT'y, follows a Pareto distribution with scalefunctions g(m|n) with the same average valug(n), the

and shape parametefisand Ay = 3, «;, respectively. minimum delay can be achieved in the capéz) = g(n).
° g Thus, theE[T] minimization problem becomes equivalent

to
APPENDIXD
PROOFS FOR THE PERFORMANCE METRICS EXPRESSIONS min{E, [L}} - Z = Py(n) = Z L opn)  (41)
OF THE PARETO CASE p(n) ~ p(n) — pn
A. Content Access Delay where we expressed the expectation as a sum and denoted

Proof. The expectation of an (American) Pareto distributeg, = p(n).
random variable Rareto(a, to)) is -2=. Hence, in the deriva- Moreover, we can express the content copies constraint as

a—1"
tion of Eq. [9), one only needs to change the integral in the N
last equality as: cm = ZMM— =Eplp(n)] =32, pn - Pp(n)  (42)

i Using Eq. and E 2), the optimization problem be-
E[T\m] = Z/ 0 < fma(z)dz - PT (m) (37) Comegs g. [(41) ql42) p p

r—1

. n
Substituting P7¢¢- (m) from Lemmal® and proceeding as in min{) o Pp(n)} st > pn-Pp(n) =ca (43)
the exponential case, we subsequently get: T n
¢ E.In-almln wherep denotes the vector with componenis.
E[Tym] = Z/ . _O 1 - fma(x)dz - % The optimization problem of EqL(#3) isonvexand, thus,
m P it can be solved with the method of Lagrange multipliérs [37]

_ to ‘B, |n- ZEma { 1 } - g(mn) (38) Hence, we need to find the valuesyfor which it holds that
E,[n] — x—1 n
which is the exact expression f@f[Ty] in Table[l. v ; on By | + V0 zn:p" Fp(n) —em ) =0

Applying Jensen’s inequalityfor the convex function

h(z) = ﬁ gives: where )\, is the langrangian multiplier. Here, the constraint

pn > 0 needs also to be taken into account. However, it is

1 1 proved to be an inactive constraint (the solution satisfiges i
Epa > (39) L . S -
r—1 m- flo — 1 and thus we omit it at this step for simplicity. Similarly, we
and, thus: assume a large enough network, i.e. always hplds. N.
. - . The differentiation ovep,, gives
E[Tp) > =0 By [0y —— -g<m|n>] 1
Ey[n m- fiq — 1 pn=——-n (44)
P[ ] L m ,LLl \/)\_O
__b -E, |n-E, [7” Substituting Eq.[(44) in the constraint expressi®h, p., -
Epln] L me o =1 Py(n) = cam (EQ. (43)), we can easily get
to 1 }
> "B, n: ———— 40 n- Py(n E,[vn
Byl " 500 a1 o) Vag = el B )

M



Then, substituting Eq[(45) in EJ._(44), gives
M
p(n) =pn = ——=-Vn (46)
E,[v/n]
Finally, the values of Eq[{46) satisfy th&@rush-Kuhn-Tucker

conditions, which means that the solution of Eg.](46) is a
global minimum [[37]. O
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