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Abstract—Conventional epidemic models assume omni-
directional contact-based infection. This strongly associates the
epidemic spreading process with node degrees. The role of
the infection transmission medium is often neglected. In real-
world networks, however, the infectious agent as the physical
contagion medium usually flows from one node to another via
specific directed routes (i.e., path-based infection). Here, we use
continuous-time Markov chain analysis to model the influence of
the infectious agent and routing paths on the spreading behavior
by taking into account the state transitions of each node individ-
ually, rather than the mean aggregated behavior of all nodes. By
applying a mean field approximation, the analysis complexity of
the path-based infection mechanics is reduced from exponential
to polynomial. We show that the structure of the topology plays
a secondary role in determining the size of the epidemic. Instead,
it is the routing algorithm and traffic intensity that determine the
survivability and the steady-state of the epidemic. We define an
infection characterization matrix that encodes both the routing
and traffic information. Based on this, we derive the critical path-
based epidemic threshold below which the epidemic will die off,
as well as conditional bounds of this threshold which network
operators may use to promote/suppress path-based spreading in
their networks. Finally, besides artificially generated random and
scale-free graphs, we also use real-world networks and traffic,
as case studies, in order to compare the behaviors of contact-
and path-based epidemics. Our results further corroborate the
recent empirical observations that epidemics in communication
networks are highly persistent.

Index Terms—Epidemic spreading, routing paths, Markov
theory, mean field theory, complex networks.

I. INTRODUCTION

ORIGINATED as part of epidemiology in biology studies
for modelling disease spreading [1], epidemic theory

has found applications in various scientific fields, ranging
from natural networks (e.g., hub protein and human brain
structure [2], (online) social networks [3], etc.) to manmade
infrastructures (e.g., transportation systems [4], [5], power
grid [6], telecommunication and computer networks [7], [8],
[9], etc.). Epidemic theory, given its vast cross-disciplinary
applicability, is now considered as part of network science.

In many real-world networks, the propagation of informa-
tion follows specific paths. In computer networks, informa-
tion messages are routed following routing protocol informa-
tion from one host to another via a path. In the emerging
information-centric networking (ICN) paradigm [10], content
is cached along the path the content traverses (e.g., [11], [12]).
In cyber physical systems such as the smart grid, assessing
the vulnerability of the power network requires understanding
the path cascading failures will take when some nodes are
attacked or fail (e.g., [13], [14]). The information spreading
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process also forms paths in vehicular networks (e.g., [15],
[16]). Viral marketing/content spreading is another new area in
which information is propagated from one “friend” to another
in social media, following a self-perpetuating or time/distance
diminishing spreading rate [17]. Finally, many networks (e.g.,
delay-tolerant networks) are time-varying as not all nodes
are active/connected at the same time, causing infection to
spread in a path-like manner. In these cases, the current
epidemic models, which assume contact-based diffusion, do
not capture and thus, provide no explicit insights into the
epidemic pathways driven by traffic flows.

Currently, theoretical epidemic models largely assume that
infection propagation is based on contact in the sense that as
long as there exists a link/contact between two nodes, there
will be a fixed infection probability at all time. As such, each
infected node constantly infects all its immediate neighbors
even though not all nodes may be active at all time (e.g., sensor
nodes which often stay in “sleep” mode to save battery usage).
Such a directionless reactive contact-based contagion process
fails to capture two aspects of the spreading dynamics. First,
as we mentioned, in many cases spreading follows certain
paths and hence, each neighbor may be infected with different
probabilities. Second, the reactionary infection process based
on contacts does not take into account the need of an infectious
agent to physically transfer the infection to another node. It
implies that infection can still pass between nodes even when
there are no actual interactions taking place.

Motivated by these observations, we model path-based
information spreading by advancing the state of the art of
epidemic theory to account for the directional effect caused
by the paths constructed by different routing protocols as well
as by the role played by the infectious agent1 as the “infection
carrier” that spreads the epidemic. Specifically, we first model
the infectious agent by taking as input the network topology,
routing protocol and traffic distribution. We then employ
continuous time Markov chain analysis to model the path-
based infection mechanics for one of the most representative
epidemic models (i.e., SIS model). We further apply a mean
field approximation to reduce the overall analysis complexity
from exponential to polynomial.

Our work advances the current contact-based epidemic
modelling approach to additionally account for the above
mentioned important factors. We focus on communication net-
works that transport data traffic via paths/routes. We consider
that the infection must be carried by an infectious agent and
explicitly model its role on the spreading dynamics. With
this taken into account, the susceptible nodes in the network
will possess different chances of getting infected, since now,
the potential to be infected is governed by the amount of

1In biology, the term “pathogen” is often used in place of “infectious agent”.
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Fig. 1. (Color online) Contact-based vs. path-based: Node 0 is the source of
infection. Grey nodes are susceptible nodes; (left) Contact-based epidemics
only infect immediate neighbors on all directions; (right) Path-based epidemics
infect all nodes along the paths where infectious agents traverse and neighbors
having no interaction with the infected node are not proned to infection.

interactions in the system. A node having higher volume of
infectious agents destined to or traversing it will proportionally
have higher probability of getting infected. Fig. 1 provides a
simple illustration comparing the contact-based and our path-
based epidemic spreading process. In the contact-based model,
with node 0 as the initial infected node, only nodes 1, 2, 3 and
4 are immediately susceptible to infection. Other nodes may be
susceptible in the future, once they have at least one infected
direct neighbor. In contrast, assuming interactions between
nodes 0 and 6, the path-based model has a different set of
susceptible nodes (i.e., nodes 3, 5 and 6), determined by the
information exchanges in the system. In this case, nodes 1,
2 and 4 are not in danger of infection albeit being the direct
neighbors of the infected node.

The main contributions of this paper are four-fold.

• We model the spreading dynamics of information based
on paths by taking into account the role of the infectious
agent in the system. We contribute to the theoretical
development of the general epidemic theory whereby we
break from the conventional assumption of the contact-
based infection process and account for the added di-
mension of direction of information flows. In our case, a
host will still have non-zero probability of being infected
even when it has no direct link to an infected node.
Spreading is now based on whether a host lies in the
routing path (usually the shortest path computed based on
specific routing protocol) where infected nodes exist. Our
modelling builds upon the analytical framework studied
in [18], [19], [20].

• We characterize the path-based epidemic spreading via
an infection characterization matrix that encodes both the
information on traffic distribution and routing paths and
find the critical epidemic threshold that determines the
prevalence of the epidemic to be the inverse of the spec-
tral radius of this matrix. We further derive conditional
bounds of this threshold and provide the “control space”
available in promoting or containing the spread.

• Our modelling approach provides a methodological basis
for the study of various different epidemic models (e.g.,
SIR, SEIS, SAIS, etc.) since the modelling approach is

sufficiently general.
• Along with the insights gained from our work, our path-

based epidemic analytical framework forms a set of tools
for network stakeholders such as network operators to
properly dimension or control their infrastructures to
promote or suppress spreading of certain information or
data objects depending on their needs and specific cases.

The rest of the paper is organized as follows. In Section
II, we first review the basics of epidemic theory including the
latest developments and some key relevant results. Then in
Section III, we formalize the actual path-based spreading me-
chanics (Section III-A) and develop our analytical framework.
We model the infectious agent in Section III-B in two ways;
(1) by taking into account the routing protocol but without
the knowledge of traffic distribution and (2) by assuming
prior knowledge of the traffic via a traffic matrix. Our path-
based spreading analytical framework is described next in
Section III-C. Based on this framework, we investigate the
epidemic threshold corresponding to the path-based spreading
dynamics in Section IV. In Section V, a comparison between
the contact- and path-based spreading dynamics is made. We
then study the effects of network topology, routing protocol
and traffic distribution on the epidemic spreading in Section VI
and derive the bounds of the epidemic threshold with which
one can use to determine the extent to which the epidemic
can be controlled. We consider three use cases based on real
networks and traffic in Section VII, showing the behavior of
contact- and path-based epidemic spreading in these networks.
A hypothetical epidemic that infects nodes via traceroute
packets is studied using data collected in [21]. Finally, we
conclude our work in Section VIII. Table I lists the notations
used in this paper.

TABLE I
NOTATIONS

Symbol Descriptions
A Adjacency matrix representing the network topology
N Number of nodes in the network
L Number of links in the network
β Infection probability
δ Curing rate

dmax, d̄, 〈d2〉 Maximum node degree, mean degree, second moment
of network degree distribution

τ Effective spreading rate
τc Critical epidemic threshold
λn Traffic generation rate of node n
µxmax Spectral radius or largest eigenvalue of matrix x
balg Algorithmic betweenness
R Routing matrix
B Matrix describing node involvement in forwarding packets
C Infection characterization matrix
Γ Traffic matrix

in(t) Probability of node n in the infected state
sn(t) Probability of node n in the healthy state
ρ Fraction of infected nodes in the network
Q Infinitesimal generator of the continuous Markov chain

II. BACKGROUND, BASICS AND RELATED WORK

Recently, epidemic theory has been applied to computer
networks in areas such as computer virus/malware propagation
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and immunization (e.g., [7]), information dissemination (e.g.,
[8], [9]), protocol design (e.g., [22]) and cascading network
failures/faults and relevant protection strategies (e.g., [23]).

The classical epidemic analytical framework involves the
following two main aspects:

1) States – by compartmentalization, epidemic models
break down a “disease” into distinct states (or stages)
and each individual in the network is considered to be
in one of the states at any given time. Two of the most
common models are the SIS and SIR models [1], [24],
[25] where the possible states are the following:
• Susceptible (S) – Clean and healthy individuals who

are not infected but prone to infection.
• Infected (I) – Infected individuals who are at the

same time infectious.
• Removed (R) – Immune individuals who are neither

susceptible to infection nor infectious.
There exist a number of variants in the literature, such as
SEIS/SEIR with an additional state where an individual
is infected but not yet infectious [26], SAIS where an
individual may be alerted and thus having less chance
of getting infected [27], etc.

2) Infection mechanism – this describes how a disease is
passed from one individual to another. Essentially, this
refers to the transition of states. This transition is often
related to an effective spreading rate, conventionally
defined as τ = β/δ where β is the infection probability
(sometimes known as the transmission rate) and δ is
the curing rate. However, for our case, this rate is
additionally affected by the traffic in the system. Early
work (e.g., [1], [24]) mostly considers homogeneous
mixing based on the law of mass action, where individ-
uals have equal probability of being in contact with an
infected individual, while more recent work has started
to consider heterogeneous cases.

There exist already several key works on contact-based
epidemic modelling for computer networks. In [28], the au-
thors developed an homogeneous infection model for computer
viruses in the Internet. In their work, they advanced the
literature by considering the additional effect of directed links
in a fixed network and discovered a critical threshold such
that the epidemic will die off when the effective spreading
rate is below the reciprocal of the mean degree, 1/d̄. In [29],
[30], the authors observed from data that Internet viruses are
more persistent than that predicted by the theoretical results for
an homogeneous network and refined this critical threshold,
still as a function of node degrees, as d̄/〈d2〉 where 〈d2〉
is the second moment of the network degree distribution.
More recently, instead of relating the threshold directly to the
network node degree, the authors in [18], [31], [32] found
that the threshold is governed by the spectral radius of the
adjacency matrix, A, representing the network topology. It is
stated in these works that the critical epidemic threshold, τc,
equals 1/µAmax where µAmax is the largest eigenvalue of A.
This threshold is further derived for generalized networks with
heterogeneous infection rates in [33].

Since it is well-known that d̄ ≤ µAmax ≤ dmax, we can also

state that the bounds for the contact-based epidemic threshold
are:

1

dmax
≤ τc ≤

1

d̄
(1)

where dmax is the maximum degree. For instance, τc =
1/dmax when the graph is dmax-regular. In our work, however,
we will show that the threshold for path-based epidemic
spreading is no longer directly bounded by the node degree
or degree distribution of the network nodes. Furthermore, we
are interested in finding the bounds of τc. Unlike contact-
based epidemics which usually have a fixed system (i.e., fixed
network topology with constant infection/curing probabilities),
with a path-based epidemic model, we have the possibility to
“tune” the system based on τc. For instance, we can either
encourage or control the epidemic spreading through design
of different routing protocols or through traffic engineering
techniques that change the traffic pattern in the network.

In one way or another, the known epidemic models in
the literature employ some approximations or assumptions
(e.g., network size is assumed to be sufficiently large such
that asymptotic regime behavior is reached) to ensure com-
putational feasibility since the complexity to obtain an exact
solution of an epidemic spread grows exponentially with
the network size. In [34], the authors propose a pair-wise
approximation SIS model that provides higher model accuracy
but results in the need to consider

(
N
2

)
number of pairs.

The nature of the exact solution has been studied in [18]
by using a 2N -state continuous-time Markov chain for the
SIS model. By observing each node separately, the authors
further introduced an N -intertwined model that reduces the
complexity of exact solution from exponential O(StateN ) to
polynomial O(N) where State is the number of possible
states and N is the number of network nodes. This work
forms the starting point of our work as we retain its reduced
polynomial complexity feature. The approach has also been
applied to the contact-based SIR epidemic model in [35].

In the literature, the incorporation of traffic dynamics into
epidemic modelling was investigated in the form of a meta-
population system in [36], [37] where the role of the infec-
tious agent was considered. The authors departed from the
previous epidemic studies that assumed infection will take
place whenever a link (or contact) between two nodes exists.
In [38], the authors compared pathogen spreading between
the shortest paths of a fully and partially observable network.
However, in that work, the authors still considered a contact-
based infection mechanism with no specific destination nodes
(stochastic process). In [39], the role of the data packet as
infectious agent was modelled considering random source-
destination pairs. The authors derived the critical threshold
of such traffic-driven epidemic, given in Eq. 2, analogous to
the previous work on contact-based studies that relates the
threshold to the network degree

τc =
〈balg〉
〈b2alg〉

1

N
(2)

where 〈balg〉 and 〈b2alg〉 are the mean and second moment of
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the algorithmic betweenness respectively [40]2. The algorith-
mic betweenness of a node is defined as the number of packets
passing through that node when each node in the network
sends one packet to every other node in the network. Using re-
sults from [39], the works in [42] and [43] investigated how to
deter traffic-driven epidemic spreading by removing network
links and altering routing protocol respectively. By exploiting
the concept of algorithmic betweenness, these works took an
implicit assumption that each network node has homogeneous
interactions with all other nodes which unfortunately is often
not the case in communication networks. Our work here does
not rely on this assumption.

The critical epidemic threshold has now been considered as
an important and fundamental quantity in describing epidemic
dynamics. In our work, we derive the critical threshold that
determines the survivability of a path-based epidemic. We find
that this threshold relates to the spectral radius of an infection
characterization matrix (detailed in Section III) which takes
into account the effects of routing and traffic.

III. PATH-BASED SPREADING MODEL DEVELOPMENT

A. General Path-based Spreading Process

Consider a 3-node line graph as an example. We use the
Markov chain diagrams of SI, SIS and SIR models in Fig. 2
to illustrate the key departure of path-based spreading process
from the conventional contact-based one. While the number
of states remains the same, the transitions are not. Based on
the 3-node line graph, since there is always only one valid
route between any two nodes, Fig. 2 is representative for
any routing protocol. A transition involving state changes to
multiple nodes is possible (e.g., state SSI to state III) while
the conventional contact-based infection forbids this. Note that
a direct transition from state SIS to state III is not possible
for a line graph because the flow of packets and thus infection
is directional. An infected node in the middle can only infect
nodes either to its left or right at any time. However, if we
consider a ring topology of the same size, then this transition
from SIS to III is possible (illustrated with the dash arrows
in Fig. 2) if the routing protocol chooses the longer path to
deliver the packet. Therefore, it is already obvious that while
the topology still plays a role in influencing the spread of the
infection, it is the routing protocol that finally governs the
actual infection dynamics.

Without loss of generality, for the rest of this paper we
focus on the SIS model where an individual in the network
can only be healthy (i.e., susceptible) or infected. We model
the spreading process that is based on the paths of information
flows. For simplicity, we use data packets as the universal
infectious agent although the “infection” can be transmitted by
different agents depending on the specific application context
(e.g., content chunk in the case of in-network caching, software
patch in the case of computer virus immunization, tweet in the
context of gossip spreading in online social networks, etc.).
The exact mechanics of the infection process are as follows:

2If the shortest paths are used, then it coincides with topological between-
ness [41].

Fig. 2. The Markov chain state diagram of path-based epidemic spreading
for a line graph with N = 3 for SI model with 23 = 8 states (top-left), SIS
model with 23 = 8 states (top-right) and SIR model with 33 = 27 states
(bottom). The grey states indicate absorbing ones.

• A packet is infectious if it originates from an infected
node. Otherwise, it is a clean packet.

• Packets traverse from one node to another via a path with
certain traffic arrival rate, λ. We assume a Poisson packet
arrival process with no routing delay.

• A clean packet is infected and thus becomes infectious
when it traverses an infected node (i.e., an infected node
is infectious).

• A susceptible node can only be infected by an infec-
tious packet. An infectious packet infects a node with
probability β. A path-based spreading process may infect
multiple nodes in one transmission. An infectious packet
traversing a path of l hops length has the probability of
βl of infecting l nodes in one transition. Alternatively,
an infected packet traversing a path has 1 − (1 − β)l

probability of infecting a node along that path.
• An infected node becomes susceptible again with a

curing rate, δ. This is assumed to be a Poisson process
independent of the traffic and infection rates. For the rest
of the paper, we also assume δ = 1.

B. Modelling the Infectious Agent
The state of a node (i.e., either healthy or infected) is

dependent on the number of infected packets that traverse
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it or terminate there. This, in turn, is proportionate to the
volume of traffic it carries (i.e., the infection requires packets,
as infectious agents, to spread).

Consider an undirected network, G(V,E) with V =
v1, ..., vN nodes and E = e1, ..., eL links where N = |V | and
L = |E|. G can be represented by A, the N ×N symmetric
adjacency matrix, with an,m = 1 if there exists a link between
node n and m and 0 otherwise. Furthermore, we describe the
effect of the routing protocol via an N × N(N − 1) routing
matrix3, R. For our purpose, we depart from the conventional
routing matrix that maps traffic to links (e.g., [44]) and instead,
encode the traffic to nodes it traverses or is destined to.
Accordingly, we define the routing matrix as follows:

rn,k =

 1 if traffic on path k traverses across
or is destined to n,

0 otherwise
(3)

where k indexes routes (or paths) between all source-
destination pairs in the network (i.e., node pair 1 → 2, 1 →
3, . . . , N → (N − 1)). Note that matrix R is formed by
concatenating N blocks of N × (N − 1) matrices as follows:

R =
[
R1|R2| . . . |RN

]
(4)

where Rn describe the node involvement in delivering the
traffic originating from node n. Assuming traffic is not routed
to itself, then all elements in the nth row of Rn equal zero:

∀k ∈ V : rnn,k = 0. (5)

Given A and R, we construct an N×N matrix, B describing
the probability of a node involved in delivering a packet
originating from any other nodes in the network. In the context
of this work, the destination node of the infected packets is
also subjected to infection, thus it must be considered. Matrix
B can then be constructed as in Eq. 6 below

bn,m =

∑m(N−1)
k=1+(m−1)(N−1) rn,k

N − 1
(6)

where bn,m denotes the probability of a packet originating
from node m traverses across or destines to node n. Concep-
tually, bn,m resembles the notion of conditional betweenness
centrality in [45] where the total node involvement in for-
warding packet originating from source node, n, is computed,
instead of all possible node pairs in the network4.

The elements in B can further be weighted with the node
specific traffic generation rate. If Λ is an N × 1 vector whose
entries, λn, denote the traffic generation rate of the nodes in
G, then the total traffic node n is involved in can be computed
as follows:

C = diag(Λ)×B (7)

where diag(Λ) is the diagonal matrix with elements
λ1, λ2, . . . , λN as its entries at the principal diagonal. This

3We assume traffic is not destined to the source.
4In [45], the authors conditioned the betweenness metric using the desti-

nation node as oppose to the source node.

formulation however makes the implicit assumption that traffic
distribution is uniform in the network (i.e., all nodes send equal
volume of traffic to all other nodes).

Often in practice, the traffic in a network is known or can
be estimated/predicted (e.g., [46]). This is usually represented
via a traffic matrix. With this additional information, we can
reformulate Eq. 7 above and model the traffic dynamics more
precisely. Consider a stationary non-negative N × N traffic
matrix5, Γ where its entries, Γn,m, denote the traffic volume
from node m to n. Since we do not consider self-traffic, the
trace of the traffic matrix, tr(Γ) =

∑N
n=1 Γn,n = 0. The

equivalent of Λ matrix can be computed by taking the column
sum of Γ.

Further, we define a reduced Γ∗ where these zero elements
along the main diagonal are removed, resulting in a (N−1)×
N matrix. Similar to the R matrix, Γ∗ can be decomposed to
the following form:

Γ∗ = [Γ(∗,1)|Γ(∗,2)| . . . |Γ(∗,N)] (8)

where Γ(∗,n) is the nth column of Γ∗ indicating the traffic
volume originating from node n. Using the additional source-
destination traffic information, we can therefore, alternatively,
construct C as follows:

C = [R1 × Γ(∗,1)|R2 × Γ(∗,2)| . . . |RN × Γ(∗,N)]. (9)

We call the N ×N matrix C as infection characterization
matrix (discussed later in Section IV) whereby it conceptually
signifies the overall level of involvement of the nodes in the
graph in receiving and delivering infectious agents.

C. SIS Path-based Spreading Model

Let Xn(t) be the state of node n at time t. For the SIS
model, Xn(t) can only be either “susceptible” or “infected”.
We further denote the probability of a node n be in the
infected state at time t to be in(t) = Pr[Xn(t) = 1] with
“1” indicating the infected state and “0” the susceptible one.
Hence, the probability of a node being in the healthy state is
sn(t) = Pr[Xn(t) = 0] = 1 − in(t). By applying Markov
theory, the infinitesimal generator Qn(t) of this two-state
continuous Markov chain can be written as below:

Qn(t) =

[
−q1;n q1;n
q2;n −q2;n

]
(10)

where the transitions involving the curing process are inde-
pendent of the states of other nodes and thus, q2;n = δ (See
Section V for discussion.).

On the other hand, q1;n is a random variable dependent on
the activities taking place in other nodes within the network.
To proceed with the Markov analysis, the randomness of q1;n
must be removed. One way to achieve this is to condition
q1;n to all possible combinations of states for all nodes,
Xn, 1 ≤ n ≤ N , resulting in the exact Markov chain solution
of exponential complexity.

5Conventionally, the traffic matrix is often defined as the transpose of Γ
(e.g., [44]).
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Here, we follow the approach of polynomial complexity
discussed in [18][19] by applying a mean field approximation
to account for the random infection rate, q1;n, with an effective
rate instead. Assuming that both the infection rate, β, and
curing rate, δ, are constant, then we can average6 over the
states to obtain an expected rate as follows:

E[q1;n] = β

N∑
m=1

Pr[Xm(t) = 1]cn,m

= β

N∑
m=1

im(t)cn,m or = β

N∑
m=1

im(t)λmbn,m (11)

where cn,m is the element of the infection characterization ma-
trix, C. We can then write the effective infinitesimal generator
as follows:

Qn(t) =

[
−E[q1;n] E[q1;n]

δ −δ

]
. (12)

After the above steps, we can proceed with Markov theory
using Qn(t) by applying the Markov differential equation (See
[47], Chapter 10, p. 182) for Xn(t) = 1 and obtain the
following system of non-linear differential equations,

din(t)

dt
= β

N∑
m=1

cn,mim(t)− in(t)

(
β

N∑
m=1

cn,mim(t) + δ

)
,

(13)
or

din(t)

dt
= β

N∑
m=1

λmbn,mim(t)

− in(t)

(
β

N∑
m=1

λmbn,mim(t) + δ

)
(14)

depending on the knowledge of the traffic distribution in the
network. This system of equations can then be solved in its
matrix form as below.

dI(t)

dt
= βCI(t)− diag(in(t))(βCI(t) + δu) (15)

where u is a vector of all ones and diag(in(t)) is the diagonal
matrix with elements i1(t), i2(t), ..., iN (t) at the principal
diagonal.

Substituting I(t) = diag(in(t)u) and rearranging the equa-
tion above, we get

dI(t)

dt
= (βdiag(1− in(t))C − δ1)I(t) (16)

= (βdiag(1− in(t))diag(Λ)B − δ1)I(t) (17)

where 1 is the N ×N identity matrix.
The instantaneous fraction of infected nodes in the network

can then be written as

6The implications of this approximation are discussed in [20].

ρ(t) =
1

N

N∑
n=1

in(t). (18)

At steady-state, din(t)
dt |t→∞ = 0. Denote in∞ =

limt→∞ in(t), then from Eq. 13,

in∞ =
β
∑N
m=1 cn,mim∞

β
∑N
m=1 cn,mim∞ + δ

= 1− 1

1 + τ
∑N
m=1 cn,mim∞

(19)

where τ = β/δ. From Eq. 19, in∞ = 0 is a trivial solution.
This is also apparent by observing the Markov chain which is
finite and possesses an absorbing state (i.e., all nodes in healthy
state) reachable by all other states. However, as studied in
[48], for any networks with realistic size N , this true steady-
state may be reached only after an extremely long time. In
the meantime, the system converges exponentially fast to and
remain for most time at a metastable state (as another positive
solution of Eq. 19 besides the trivial one). In addition, [19]
pointed out that this metastable state reflects more closely real
world epidemics. As such, it is this metastable state that is of
interest and for the rest of the paper, we focus on this state
and refer to it as the steady state.

The ability to be able to compute in(t) and in∞ also lets
us gain insights into the susceptibility of individual nodes in
the network, rather than only observing the entire network as
a whole.

Using Eq. 19, the steady state fraction of infected nodes in
the network (i.e., Eq. 18) can be rewritten as

ρ∞ =
1

N

N∑
n=1

in∞. (20)

The literature has shown evidence that pure random graphs
such as Erdős-Rényi (ER) graph model [49], which has
binomial degree distribution, and scale-free graphs [50], which
have power-law degree distribution, exhibit very different
epidemic behaviors. We use them here to show the predictive
capacity of our analytical framework against Monte-Carlo
simulations. We generate a sample set of graphs for each
graph model above and for each graph, we pre-compute the
routing paths for each and every node pair using Djikstra’s
algorithm, assuming non-weighted links. A set of ten randomly
chosen seed nodes are set to be infected at time, t = 0.
All other nodes are assumed healthy. At each time step, we
generate λN packets. For each newly generated packet, a
random source and destination pair is chosen and the packet
is delivered following the pre-computed path of this node pair.
The infection and curing process of each node then follows
the description given in Section III-A.

Fig. 3 and Fig. 4 show two representative results of the
instantaneous evolution of the infected fraction of population
for N = 100 where we see close behavior for both cases.
The infected fraction of the population stabilizes to a certain
level which is dependent on τ . Furthermore, Fig. 5 shows the
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Fig. 3. (Color online) Instantaneous evolution of infected fraction of popu-
lation for a random graph of size N = 100 with uniform traffic distribution
for τ = {0.5, 0.7, 1.0}. Solid black lines are computed based on Eq. 16 and
colored lines with markers are results of Monte-carlo simulations.
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Fig. 4. (Color online) Instantaneous evolution of infected fraction of popula-
tion for a scale-free graph of size N = 100 with uniform traffic distribution
for τ = {0.5, 0.7, 1.0}. Solid black lines are computed based on Eq. 16 and
colored lines with markers are results of Monte-carlo simulations.

steady state for sample networks of different sizes obtained
both from our model and simulation runs.

IV. PATH-BASED EPIDEMIC THRESHOLD

As briefly mentioned in Section II, in previous studies (e.g.,
[18]), a theoretical critical threshold, τc, has been found below
which the epidemic will almost certainly die off and vice versa.
However, it has to be mentioned here that the existence of such
a threshold in real-world scenarios is argued against in several
recent works [29], [30].

To investigate whether an epidemic will die off, we follow
a similar approach as in [18]. We focus on the time when
all nodes’ infection probability, in(t), is close to zero since
the system is clear of infection only when in = 0 : ∀n ∈ V
(i.e., all nodes remain healthy at all time; the absorbing state).
At such condition and ignoring the non-linear term, we can
rewrite Eq. 16 as follows:
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Fig. 5. (Color online) Steady state infected fraction of population for a set
of sample topologies, N = {100, 200, 300, 400, 500}.

dI(t)

dt
= (βC − δ1)I(t). (21)

Solving Eq. 21, we obtain the time evolution function of
I(t) below.

I(t) = eHtI(0) (22)

where H = βC − δ1 = βdiag(Λ)B− δ1. By eigen decompo-
sition,

H = UMCUT (23)

where MC = diag(µCn ) is the diagonal matrix with n-th
eigenvalue of C as element at MC

n,n and U is the orthonormal
matrix whose n-th column is the eigenvector corresponding to
eigenvalue, µCn . We then obtain

H = βC − δ1
= U(βMC − δ1)UT

= Udiag(βµCn − δ)UT . (24)

Substituting the Eq. 24 to Eq. 22, we get

I(t) = Udiag(e(βµ
C
n−δ)t)UT I(0). (25)

All eigenvalues must satisfy βµCn − δ ≤ 0 since I(t)
is a probability vector. The epidemic threshold can then be
computed as follows:

τc =
β

δ
≤ 1

µCmax
. (26)

In other words, the epidemic will decay exponentially
fast to zero when τ is equal or smaller than the reciprocal
of the spectral radius of matrix C, µCmax (see Section V).
Hence, C characterizes the spreading strength of the path-
based epidemic.

In Fig. 6, we show the infected fraction of population for
five random graphs of different sizes with τ = 0.5 where
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monotonically increases with the effective spreading rate, τ but only when
τ > τc. Inset plot provides the spectral radius of C for the graphs.
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Fig. 7. (Color online) Instantaneous evolution of infected frac-
tion of population for a network with N = 100 for ρ(0) =∑

in(0) = {10, 30, 50, 70, 90}. The number of initial infected nodes does
not impact the metastable steady state of the infected fractions of population.

all nodes send the same amount of traffic to all other nodes.
From the figure, we can see that the epidemic will not survive
whenever τ < τc. We highlight that this critical threshold
only defines the transition point between a surviving or dying
epidemic but not the metastable steady state size of the
epidemic above this threshold (i.e., τc(C) > τc(C

′) does not
imply ρ∞(C) > ρ∞(C ′) and vice versa).

From Eq. 26, we note that the critical threshold is inde-
pendent of the initial state of the system. Furthermore, we
show in Fig. 7 that regardless of the number of initial infected
nodes, the system always converges to the same metastable
steady state (i.e., the stable infected population, ρ∞, is also
independent of the initial state).

At this point, it is interesting to look at the corresponding
principal eigenvector, zCmax of µCmax which is defined as

follows:

µCmax(zCmax)n =

N∑
m=1

cn,m(zCmax)n (27)

where (zCmax)n is n-th component of the principal eigenvector,
zCmax. From Eq. 27, we can observe that (zCmax)n is directly
proportional to the level of involvement of node n in trans-
porting traffic since cn,m is computed from R and Γ.

V. PATH-BASED vs. CONTACT-BASED SPREADING
DYNAMICS

We begin our comparison of the two types of epidemic
spreading based on their corresponding exact 2N -state Markov
chain of the network states. When we construct the exact
2N -state Markov chain of network states via a binary rep-
resentation of state space similar to that in Eq. 4 of [18], we
can compare the infinitesimal generators, Qpath and Qcontact.
Briefly, each state of the network is represented by an N -bit
binary string with the nth bit representing the nth node in the
network and “1” denoting the node being in the infected state
while “0” indicating otherwise.

The network state as a whole in an SIS epidemic is de-
termined by two processes: infection and curing. As the two
processes are independent of each other, we can observe them
separately. To facilitate this, it is convenient to decompose Q
into the sum of three N ×N matrices as follows:

Q = QL4 +QU4 +Qdiag

where QL4 and QU4 are the lower and upper triangular part
of Q respectively while Qdiag takes the elements from the
main diagonal of Q. Owing to the binary representation of the
state space, QL4 and QU4 separately encode the curing (re-
lated to δ) and infection (related to β) transitions respectively.
Since the curing process is identical for both contact- and
path-based spreading and independent of the infection process,
QpathL4 = QcontactL4 . They are also not influenced by A, R and
Γ matrices. As such, theorem 1 in [18] stating that for β = 0,
the eigenvalues of Q are µQ = −kδ with multiplicity

(
N
2

)
also applies for our path-based epidemic.

However, the same cannot be said for the upper triangular
part of the Q matrices (i.e., QpathU4 6= QcontactU4 ). While
QcontactU4 is determined by the A matrix, QpathU4 is computed
based on R and Γ. As briefly illustrated in Section II, there
will be more possible state transitions in path-based spreading.
Therefore, QpathU4 will have more non-zero elements than
QcontactU4 and thus, Qpath is denser than Qcontact. Neverthe-
less, the largest eigenvalue for both Q matrices remains to be
zero as det(Q) is still zero.

Further, comparing Eq. 16 and Eq. 17 of the path-based
epidemic with the contact-based counterpart model (in [18],
[20]), the systems of equations have similar form. The key
difference of the models here is the absense of the adjacency
matrix, A, as the direct influencer of the path-based epidemic
spreading. In its place, we now have the characterization
matrix, C, which takes into account the traffic intensity, Γ
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and the routing protocol, R, which in fact is constrained by
the connectivity of the topology, A.

Matrices A and C are both, by definition, non-negative
matrices. The maximum eigenvalue of A of a connected graph
is bounded between the average degree and the maximum
degree of the vertices. So it follows that its maximum value is
N − 1, attained for the complete graph on N vertices. Hence,
the bounds of Eq. 1 apply but this is not true for path-based
epidemic spreading.

Since C is no longer surely symmetric, its spectral radius
may be a complex number. For such matrices, the largest
eigenvalue in magnitude is a real number and for this eigen-
value, the real part is the largest amongst all the eigenvalues
[51]. Hence, C’s spectral radius, µCmax = Re(µCmax). Also, for
matrices such as C, it has already been established that the
following spectral radius bounds apply:

min
1≤n≤N

(
N∑
m=1

|cn,m|

)
≤ µCmax ≤ max

1≤n≤N

(
N∑
m=1

|cn,m|

)
.

(28)

Theorem 1 (General bounds of τc). Given a path-based
epidemic characterized by C, its critical threshold can be
bounded as follows:

1

max
1≤n≤N

(∑N
m=1 |cn,m|

) ≤ τc ≤ 1

min
1≤n≤N

(∑N
m=1 |cn,m|

) .
(29)

Proof. This is direct result from Eq. 26 and Eq. 28.

The physical interpretation of Theorem 1 is that τc is
upper (lower) bounded by the node involved in carrying the
lowest (highest) volume of traffic in the network. An example
application of this theorem is that now, it is possible to
formulate different traffic engineering optimization problems
with a spreading-related constraint such that an epidemic will
or will not occur based on the infinity-norm of C, ||C||∞.

VI. EFFECT OF ROUTING PROTOCOL, TRAFFIC AND
NETWORK TOPOLOGY

In this section, we investigate the role of the network
topology (i.e., A), the routing protocol (i.e., R) and the traffic
load in the system (i.e., Γ) in determining the path-based
spreading of an epidemic (i.e., τc). We first establish the
monotonicity of τc.

Theorem 2 (Monotonicity of τc). Given any two infection
characterization matrices, C and C ′ where 0 ≤ C ≤ C ′ for
which we define C ≤ C ′ if cn,m ≤ c′n,m : ∀n,m, then

τc(C) ≥ τc(C ′).

Proof. As C and C ′ are non-negative square matrices, it
follows from the Perron-Frobenius theorem that

µCmax ≤ µC
′

max if 0 ≤ C ≤ C ′.
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Fig. 8. The steady state of infected fraction of population monotonously
increases when traffic is increased. Inset plot provides the spectral radius of
C due to the change in λn : ∀n.

Since the epidemic threshold is inversely proportional to the
spectral radius, then

τc(C) =
1

µCmax
≥ τc(C ′) =

1

µC′
max

.

Moreover, if C is primitive, then the monotonicity is strict.

Theorem 2 shows that positive perturbation on C will
inversely affect τc (i.e., increment of any cm,n will
monotonously lower τc and vice versa). Following this, in a
network with a static topology and common routing protocol,
higher traffic intensity will always lower the critical epidemic
threshold and thus, promote and maintain the existence of the
epidemic and conversely, the epidemic is more likely to die
off when traffic intensity is lower. We show in Fig. 8 this
monotonicity by increasing the aggregate load in the system
by using an increasing λ for all nodes. Note that, however,
this increase of ρ∞ due to the change in λ is not linear.

However, the traffic load in a network is usually uncon-
trollable (or at best, partially controlled via traffic shap-
ing/policing) as it depends, among many other aspects, on
user behaviors. Conversely, the routing protocol is configured
by the network operator and hence, controllable. We now
investigate the effect of the routing protocol R. For this
purpose, we leverage ER graphs with edge disorder (weighted
network scenario) where non-uniform link weights are applied
to the links independent of the degrees of the vertices involved.
By using the same set of graphs, we fix the degree distribution
for each one (i.e., A unchanged) while by varying the disorder
regime (through altering the link weight distribution), we
obtain different R matrices and thus, the node involvement
in handling traffic (i.e., C) for the same graph.

Specifically, we consider non-negative independent and
identically distributed (i.i.d) link weights in an additive setup
to create different traffic distributions in the same graph by
controlling the disorder of the graph. For this purpose, we
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Fig. 9. (Color online) By changing the paths used for information delivery
between node pairs, different level of steady state infected fraction is achieved
in the same network.

follow [47] (Chapter 16) to use the polynomial link weight
distribution.

Fw(x) = xα1x∈[0,1] + 1x∈(1,∞), α > 0 (30)

where 1x equals one if x is true and zero otherwise. When
α→ 0, the information delivery paths are mainly determined
by the highest link weight of the constituent links. This
corresponds to a strong disorder limit. In this disorder regime,
each path between two nodes is characterized by the maximum
link weight along that path and the shortest path is simply the
path with the minimal maximum link weight between the two
nodes. To create a weak disorder limit, we simply revert to
constant unitary link weights (i.e., non-weighted networks).
In a weakly disordered system, most, if not all, of the links
in a path contribute to the determination of the shortest path
between two nodes. Essentially, changing the link weight
distribution results in a different set of shortest paths for the
same graphs and thus a different disorder limit is achieved. We
can then study the impact of paths independent of the degree
distribution.

We show in Fig. 9 the evolution of infected fraction over
time for both strong and weak disorder regimes, whereby
a higher infected fraction is expected for strong disorder
limit. Because of the fact that the different fractions are
obtained in the same ER graph, we also conclude that the
degree distribution no longer directly determine the effective
spreading of epidemic. This further confirms that the spreading
is directly influenced by the delivery paths rather than the
degree of the nodes.

Theorem 3 (Maximum achievable τc given A and Γ). When
the network topology, A, and traffic load, Γ, are known, then

τc = τmaxc when R = R∪SPT

where R∪SPT is the routing matrix of the shortest paths by
hop count between all possible node pairs in A.

Proof. Let R∗ denote the binary routing matrix of an arbitrary
routing protocol. We know that

∑N
n=1

∑N(N−1)
k=1 r∗n,k is min-

imum iff R∗ = R∪SPT . Conditioned by a fixed Γ, and after
applying Eq. 9, we can observe the following:

N∑
m=1

c∪SPTn,m ≤
N∑
m=1

c∗n,m : ∀n.

This implies that the total node involvement for delivering
infectious agent in the network is inflated since by not using
the shortest paths, more nodes are involved in delivering the
same amount of infectious agents (i.e., ρ∪SPT ≤ ρ∗). Hence,

τmaxc = τ∪SPTc ≥ τ∗c
where τ∪SPTc denotes the critical threshold of the system when
shortest path routing by hop count is used.

Theorem 3 defines the upper bound of τc for a specific
workload in a network and this upper bound is achieved when
the routing protocol uses only hop count as the metric to
compute the shortest paths between all node pairs. However,
routing in real networks does not always minimize hop count.
For instance, although the Open Shortest Path First (OSPF)
intra-domain routing protocol used in IP networks is based
on Dijkstra’s shortest path algorithm, it is often interfered
by traffic engineering operations that uses link weights to
change the resulting routes. It is worse for inter-domain
routing where the routing protocol used (i.e., Border Gateway
Protocol (BGP)) is policy-based and does not even attempt
to minimize any specific length criterion. As such, based on
Theorem 3, it is often possible to decrease the spreading
conduciveness of networks by changing the routing protocol
such that R∗ → R∪SPT .

Theorem 4 (τc of different networks). For two different
networks of size N denoted by A and A′,

τc(A) ≤ τc(A′) (31)

when

1

N

N∑
n=1

N(N−1)∑
k=1

rn,k ≥
1

N

N∑
n=1

N(N−1)∑
k=1

r′n,k

under the same load where τc(A) denotes the critical epidemic
threshold of network A.

Proof. When Γ is equivalent for both networks, then according
to Eq. 9, the determining factor of τc is R. However, the
construction of R (i.e., the computation of paths between node
pairs) are constrained by the topology, A. Since A determines
possible R matrices, from Theorem 3, we know that

µCmax ∝
1

N

N∑
n=1

N(N−1)∑
k=1

rn,k

i.e., the higher the average path lengths between all pairs of
nodes, the higher the spectral radius of C. Consequently, the
C of A having higher average path lengths will result in higher
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magnitude of spectral radius, µCmax. Since the threshold is
inversely proportional to µCmax and by the monotonicity of
τc (i.e., Theorem 2), this theorem is proven.

This theorem is especially useful for cases where the
network topology can be flexibly constructed either follow-
ing certain requirements (e.g., data center networks) or spe-
cific rules/guidelines (e.g., self-organizing wireless sensor net-
works). Depending on the application scenario, the topology
can be constructed to promote or suppress epidemic spreading.

For instance, in data center (DC) networking, the design of
DC topology is a complex problem, already constrained by
various factors (e.g., resource fragmentation, oversubscription
ratio, etc.). Theorem 4 allows the direct comparison of differ-
ent DC topology designs with regards to the spreading capacity
of the topologies. On the other hand, self-organizing sensor
networks often operate in highly volatile conditions with
uncertainties (e.g., due to changing environment, intermittent
connectivity, failures, power conservation requirements etc.),
resulting in time varying topologies. In such a scenario, a
network conducive to information spreading is often desirable
to ensure high availability and persistence of information.

VII. CASE STUDIES

In this section, we apply our path-based epidemic analytical
framework to three real world Tier-1 networks (i.e., Level-
3 (AS1), Sprint (AS1239) and AT&T (AS7018) at point-of-
presence (POP)-level based on the data from [21]) to inves-
tigate how conducive they are regarding path-based epidemic
spreading. Table II outlines the relevant properties of these
networks. Two sets of values are computed for parameters
related to paths, (1) non-weighted and (2) weighted links. We
can see from the table that contact-based epidemics have lower
critical thresholds than path-based ones, implying that path-
based epidemics are easier to die off. This may be slightly
misleading. While for a contact-based epidemic, infection is
always possible between neighboring nodes (i.e., each infected
node is infecting all its neighbors at all times), the path-
based epidemic relies on the infectious agent to carry the
infection. As such, increasing the traffic load in the system,
Λ, will monotonically decrease τc (cf. Theorem 2) and at
one point, the path-based epidemic will have lower τc than
its counterpart. We also show in Fig. 10 the dependence of
the threshold and the size of the epidemic on the traffic load
and infection rate for the three networks. Increasing the traffic
load and/or infection rate in the system will also increase the
prevalence of the epidemic and decrease the critical epidemic
threshold.

Furthermore, we see that for each case, routes computed via
weighted graphs result in a more vulnerable network against a
path-based epidemic. However, for all cases, even though not
all shortest paths are used, the overall average path lengths
are still relatively close [54] and the critical thresholds do not
deviate significantly from the lower bound of τc (cf. Theorem
3). Table III compares the top ranked nodes for both contact-

7All properties relevant to C in this table assume λn = 1 : ∀n ∈ V .

and path-based epidemics based on degrees and i∞ (i.e., the
probability of the node be in the infected state at steady state).

It illustrates the vulnerability of the network at nodal-level.
For a contact-based epidemic, the probability of a node being
infected is strongly correlated with its degree (i.e., compare
columns 2 and 3). The set of top ranked nodes is almost iden-
tical with the nodes having the highest degrees. However, this
relationship is weaker for path-based epidemic. For example,
in the Sprint network, Tuckerton, London and Manasquan are
three cities having low degrees but with relatively important
role in the overall epidemic spread. This is especially high-
lighted by Tuckerton which has only four direct neighbors
but has the highest probability of being infected based on the
paths computed using the inferred weights. In this case, the
operator of the Sprint network should “immunize” Tuckerton
first when combating against path-based spreading in their
weighted network while they should do the same to Chicago
for contact-based spreading. For the Level-3 network, the
operator should protect Washington, Denver and Indianapolis
against contact-based, path-based unweighted and path-based
weighted epidemics respectively. For the AT&T network,
Chicago is the most important node both for contact-based
and path-based epidemics (with uniform traffic distribution).

Going beyond uniform traffic distribution, we further con-
structed traffic matrices for each of the three networks based
on the observed traceroute traffic in the dataset from [21] to
investigate a hypothetical infection spreading via traceroute
traffic. The respective {min, max, mean} values of the traffic
matrices for Level-3, Sprint and AT&T networks are {2,
266295, 32275}, {2, 228201, 41556} and {2, 384754, 17690}.
The top ranked cities based on their steady state infection
probabilities are given in column 6 of Table III. The non-
uniform traffic distribution again changes the infection prob-
ability of different nodes. For instance, Houston, only having
the degree of two in the Level-3 network, is now among the
most vulnerable nodes. On the other hand, New York emerges
as the most vulnerable city for the AT&T network. With
these traffic matrices, we further computed the corresponding
critical thresholds, τc as 2.7522 × 10−6, 2.2200 × 10−6 and
1.9899×10−6 for Level-3, Sprint and AT&T networks respec-
tively. The very low thresholds further support the reported
observations of [29], [30] whereby epidemics in real networks
are highly persistent.

VIII. CONCLUSIONS

Many infection spreading phenomena follow paths. Infec-
tion passed from one node to another also relies on certain
infectious agent as the physical transport medium. In this
paper, we model such path-based epidemic spreading taking
into account the volume and distribution of the infectious
agent. Although our modeling methodology is general in
nature, we focus our work in the context of communication
networks and consider data packets as the infectious agent.
Extending [18] as the modeling basis, our analytical frame-
work considers each node individually rather than aggregating
node behaviors and is of polynomial complexity. We express

8Bracketed values in columns 2-6 indicate the node degrees.
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TABLE II
TOPOLOGICAL PROPERTIES OF SAMPLE REAL NETWORKS [21], [52], [53]7
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Fig. 10. (Color online) The fraction of infected nodes, ρ∞, shown above as contour for Level-3, Sprint and AT&T networks (all using the weighted paths),
driven by traffic conditions and infection rate. As traffic flows increases (λn), the size of epidemic increases while the critical threshold, τc, decreases.

the impact of traffic intensity and distribution in the network
as well as the paths computed by the routing protocol via
an epidemic characterization matrix C that is able to describe
the epidemic behavior. We then find that the critical path-based
epidemic threshold equals the reciprocal of C’s spectral radius
(i.e., τc = 1/µCmax). Infection permeation in contact-based
epidemic is largely determined by the topology structure, A.
This is not the case for path-based epidemic as the primary
factors for infection spreading are now related to the traffic
load and the way this is routed to destinations. This provides
us with two “tuning knobs” to control the behavior of the
epidemic within the same network structure: (1) by modifying
traffic intensity through traffic engineering, shaping/policing
and admission control techniques and (2) by using different
routing protocols to construct delivery paths. Based on these,

we further derive conditional bounds for τc, subject to the
availability of information regarding traffic load in the network
and the routing algorithms, such that the network operator may
use to control the epidemic as needed. In addition, since we
consider each node separately, we can also easily identify/rank
nodes within the network that are the most conducive to
spreading the infection. Such nodal-level information may be
used as a new centrality metric when designing immuniza-
tion/protection schemes. We illustrate the applicability of our
scheme to three real networks by using their inferred link
weight sets and traceroute data. Based on our model, the
critical epidemic thresholds are diminishingly small with λ
and this re-affirms the observations reported in [29], [30] that
epidemics in communication networks are extremely robust to
extinction. Our modelling approach is general in nature and
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TABLE III
TOP 10 NODES IN THE THREE NETWORKS RANKED IN DESCENDING ORDER BASED ON DEGREES (COLUMN 2) AND i∞ (COLUMNS 3-6).8

Path-based Path-based Path-based
AS Degrees Contact-based Unweighted links, Weighted links, Weighted links,

λn = 1; ∀n λn = 1; ∀n λn → traceroute data [21]
Level-3 (AS1) Washington (8) Washington (8) Denver (5) Indianapolis (4) New York (5)

Carrolton (7) Carrolton (7) Carrolton (7) Chicago (6) Boston (5)
Los Angeles (7) Chicago (6) Atlanta (5) Philadelphia (4) Philadelphia (4)

Chicago (6) Denver (5) Chicago (6) Denver (5) Chicago (6)
San Jose (6) Los Angeles (7) Washington (8) Washington (8) Denver (5)
Boston (5) San Jose (6) San Jose (6) Carrolton (7) San Jose (6)
Atlanta (5) Atlanta (5) Indianapolis (4) San Jose (6) Indianapolis (4)

New York (5) New York (5) Los Angeles (7) Atlanta (5) Washington (8)
Denver (5) Indianapolis (4) Boston (5) Los Angeles (7) Carrolton (7)

Indianapolis (4) Boston (5) Philadelphia (4) New York (5) Houston (2)
Sprint (AS1239) Chicago (14) Chicago (14) Chicago (14) Tuckerton (4) Chicago (14)

Dallas (9) Pennsauken (8) San Jose (8) Relay (9) Relay (9)
Relay (9) Dallas (9) Relay (9) San Jose (8) New York (8)

Pennsauken (8) Relay (9) Tuckerton (4) Chicago (14) Dallas (9)
New York (8) New York (8) London (5) London (5) Atlanta (5)
San Jose (8) San Jose (8) Dallas (9) Manasquan (4) Tuckerton (4)
Anaheim (7) Stockton (6) Manasquan (4) Anaheim (7) San Jose (8)
Stockton (6) Atlanta (5) New York (8) Pennsauken (8) Manasquan (4)
Atlanta (5) Anaheim (7) Anaheim (7) Dallas (9) Anaheim (7)

Kansas City (5) Kansas City (5) Pennsauken (8) New York (8) London (5)
AT&T (AS7018) Chicago (25) Chicago (25) Chicago (25) Chicago (25) New York (18)

St. Louis (18) St. Louis (18) Dallas (12) Washington (16) Philadelphia (8)
New York (18) New York (18) New York (18) New York (18) San Francisco (11)

Washington (16) Washington (16) Atlanta (10) Dallas (12) Chicago (25)
Los Angeles (13) Los Angeles (13) Washington (16) Atlanta (10) Washington (16)

Dallas (12) Dallas (12) St. Louis (18) St. Louis (18) Los Angeles (13)
San Francisco (11) San Francisco (11) Los Angeles (13) Cambridge (8) Dallas (12)

Atlanta (10) Detroit (9) Orlando (7) Los Angeles (13) Seattle (7)
Detroit (9) Atlanta (10) Philadelphia (8) Philadelphia (8) St. Louis (18)

Cambridge (8) Seattle (7) San Francisco (11) Orlando (7) Atlanta (10)

can be easily extended to model different epidemic models
such as SIR (analogous to [35] for contact-based epidemic).
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[49] P. Erdős and A. Rényi, “On random graphs I,” Publicationes Mathemat-
icae no. 6, pp. 290-297, 1959.

[50] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.

[51] A. Berman, R. J. Plemmons, “Nonnegative matrices in the mathematical
sciences,” Society of Industrial Mathematics, 1994.

[52] N. Spring, R. Mahajan and D. Wetherall, “Measuring ISP Topologies
with Rocketfuel,” Proc. of the Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM
’02), pp. 133-145, 2002.

[53] R. Mahajan, N. Spring, D. Wetherall and T. Anderson, “Inferring Link
Weights Using End-to-end Measurements,” ACM SIGCOMM Workshop
on Internet Measurement (IMW ’02), pp. 231-236, 2002.

[54] N. Spring, R. Mahajan and T. Anderson, “Quantifying the causes of
path inflation,” ACM SIGCOMM, 2003.

Wei Koong Chai received the B.Eng. degree in
electrical engineering from the Universiti Teknologi
Malaysia, Johor Bahru, Malaysia, in 2000, and both
the M.Sc. (Distinction) and the Ph.D. degrees from
the University of Surrey, Surrey, U.K., in 2002 and
2008, respectively. He is currently a Senior Re-
search Associate at the Department of Electronic and
Electrical Engineering, University College London,
London, U.K. His research spans across heteroge-
neous networks including wired/wireless networks
and cyber physical systems. His current research

interests include information-centric networking, smart grid communication
and network science. He has in the past involved in research on quality
of service, resource management (e.g., for satellite networks and wireless
mesh networks), cross-layer design (specifically on interaction of protocols at
different layers), traffic engineering, and network optimization.

George Pavlou received the Diploma degree in
engineering from the National Technical University
of Athens, Athens, Greece, and the M.Sc. and Ph.D.
degrees in computer science from University Col-
lege London, London, U.K. He is a Professor of
communication networks in the Department of Elec-
tronic and Electrical Engineering, University College
London, where he coordinates research activities in
networking and network management. His research
interests include networking and network manage-
ment, including aspects such as traffic engineering,

quality of service management, autonomic networking, information-centric
networking, grid networking, and software-defined networks. He has been
instrumental in a number of European and U.K. research projects that
produced significant results with real-world uptake and has contributed to
standardization activities in ISO, ITU-T, and IETF. He has been on the
editorial board of a number of key journals in these areas and he is the
Chief Editor of the bi-annual IEEE Communications Network and Service
Management Series. In 2011 he received the IFIP/IEEE Daniel Stokesbury
Award for distinguished technical contributions to the growth of the network
management field.


