On Hardware Programmable Network Dynamics
with a Chemistry-Inspired Abstraction

Massimo Monti, Manolis Sifalakis, Christian F. Tschudin, and Marco Luise

Abstract—Chemical algorithms (CAs) are statistical control
algorithms described and represented as chemical reaction net-
works. They are analytically tractable, they reinforce a determin-
istic state-to-dynamics relation, they have configurable stability
properties, and they are directly implemented in state-space using
a high-level —visual- representation. These properties make them
attractive solutions for traffic shaping and generally the control
of dynamics in computer networks.

In this paper, we present a framework for deploying chemical
algorithms on Field Programmable Gate Arrays (FPGA). Besides
substantial computational acceleration, we introduce a low-
overhead approach for hardware-level programmability and re-
configurability of these algorithms atf runtime, and without service
interruption.

We believe that this is a promising approach for expanding
the control-plane programmability of Software Defined Networks
(SDN), to enable programmable network dynamics. To this end,
the simple high-level abstractions of chemical algorithms offer an
ideal northbound interface to the hardware, aligned with other
programming primitives of SDN (e.g., flow rules).

Index Terms—Chemical algorithm, Programmable networks,
Software defined networking, Traffic shaping, FPGA.

I. INTRODUCTION

Research and engineering efforts in Software Define Net-
works (SDN) and Network Function Virtualisation (NFV)
propose solutions to make the Internet infrastructure more
volatile and software programmable. Although SDN research
initially focused on control-plane operations, more recently
attention has also shifted towards the data-plane functionality.
Efforts in this direction [1], [2], [3] propose FPGA technology
as the means to provide a volatile data-plane for a SDN switch.
A main objective is software-configurable network dynamics.

Network dynamics is a loosely defined term for various tran-
sient phenomena emerging in a queueing network. These phe-
nomena arise from the way packet flows multiplex, aggregate,
and access shared network resources (memory at the interme-
diate nodes and link capacities). Common network functions
for controlling network dynamics include flow scheduling,
traffic shaping and policing, differentiated services, and active
queue management (AQM).

Initial submission 2014. This work has been supported in part by Swiss
National Science Foundation grant #132525.

M. Monti is with Elettronica Monti, P.zza G.Rossa 15, 56024 Ponte a Egola
(PI), Italy (e-mail:massimo @elettronicamonti.it). This work was conducted as
part of his PhD thesis at the University of Basel.

M. Sifalakis is with the IBM Zurich Research Lab, CH-8803 Riischlikon,
Switzerland (e-mail:emm @zurich.ibm.com). He was previously in the Dept.
of Mathematics and Computer Science, University of Basel.

M. Luise is a Prof. in the Information Engineering Department, University
of Pisa, V. Caruso 16, 56126 Pisa, Italy (e-mail:marco.luise @iet.unipi.it).

C. Tschudin is a Prof. in the Department of Mathematics and Computer
Science, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland (e-
mail:christian.tschudin @unibas.ch).

In this paper, we propose the use of FPGA technology
to create a programmable data plane, on which one can
implement functions for controlling network dynamics. For
the first time, we pair an effective overlay technology on
FPGAs and an unusual representation for algorithmic logic
derived from chemical reaction network engineering. The
achievement is high performance and representation simplic-
ity, two desirable properties for network dynamics control
functions. While a “chemical” representation of algorithms
seems unconventional at first glance, upon use, it becomes
an intuitive process of describing control systems directly in
state-space (real chemical reaction networks are dynamical
systems). As we demonstrate in this paper, this approach has
two notable advantages: (i) an accurate and straightforward
mapping of a mathematical model to an algorithm and its
implementation on programmable hardware, and (ii) short
conception-to-deployment timescales on FPGA fabric. The
approach we propose is very much aligned with the way how
SDN solutions orchestrate topology changes nowadays.

Specifically in this paper we extend previous work [4], [5]
in the topic of Chemical Algorithms (CAs), and make the
following new contributions:

1) Auto-generation of parallelisable, fast-to-deploy imple-
mentations of mathematical models, without requiring
intermediate translation to a discrete program (nor HDL
code for hardware programming).

2) Runtime re-programming and re-configuration on
FPGAs, which is more lightweight than partial-
reconfiguration technology [6], [3], and simpler than
compiler-dependent execution environments, e.g., [7].

3) Simple, expressive representation of algorithms for con-
trolling network dynamics, consistent with SDN rule-
based programmability yet extended to data plane func-
tions.

The remaining of the paper is structured as follows. In
Sect.Il, we discuss the needs that motivated this work. In
Sect.Ill, we summarise the theory of CAs, focussing on
key aspects that influenced the design of our hardware-
programmability framework. In SectIV and Sect.V, we
present our system design and we provide a validation of
various programmability-related aspects on our prototype with
Xilinx FPGA devices. Among others, we show-case various
“real-world” examples of network dynamics control functions.
In Sect.VI, we revisit our main contributions in more detail
and in the context of the related literature. In Sect.VII, we
conclude the paper.

II. MOTIVATION AND REQUIREMENTS

Programmable hardware, based on FPGA technology, is an
appealing solution for enabling a reconfigurable data-plane.
However, SDN-style programmability, as well as “on-the-fly”
deployment of functions for network dynamics control, sets-
out challenges that make this task not straightforward. These
challenges mainly involve finding expressive primitives for
algorithmic logic, engineering the runtime interface to the
programmable fabric, as well as achieving narrow timescales
and small resource overhead for dynamic deployment.

Formally, algorithms for controlling network dynamics im-
plement functions of multiple inputs, driven by events in the
system’s fast (data) path. Despite being data-plane functions,
architecturally, they do not need to be embedded in the
packet processing pipeline per-se. Instead, simple event hooks
along the data-path can provide a sufficient and lightweight
integration interface (e.g., packet enqueue and dequeue pro-
cesses). Typically, such hooks are already available as packet
monitors/meters in suites like OpenFlow [8], OpenV Switch [9]
and Netfilter [10]. Such a decoupling allows these (often
computationally intensive) functions to execute independently
and in parallel to the packet processing workflow. As far as the
dynamic composition and management of data-path pipeline
are concerned (e.g., FIB configuration, routing, packet header
processing, etc.), these functions do not introduce a significant
complexity to existing SDN primitives.

Nevertheless, network dynamics functions control the tem-
poral behaviour of flows as they traverse a node’s data path.
Thus, functions’ operational resolution must be sufficient to
avoid introducing undesired latency overheads to the various
stages of the packet-processing pipeline. To achieve high
performance (ideally, higher speeds than the line speed of the
network interface), network dynamics control functions have
to exploit dedicated processing resources and to be hosted on
acceleration hardware (FPGA, ASIC, etc.).

Two main questions, however, emerge. (i) Can we achieve
the timescales for on-the-fly customisation that SDN-style net-
work re-configuration requires? (ii) Can we balance simplicity
versus algorithmic expressibility at the northbound interface,
to effect SDN-programmability? The former is a hot topic
of current research on FPGA technology (e.g. programmable
overlay IP cores, accelerator virtualisation, partial reconfigu-
ration, etc). Often, sought solutions are not lightweight. For
example, partial reconfiguration in the SDNet [3] framework
from Xilinx duplicates spatial resources on chip to implement
a dual-image/buffer solution, in order to meet timescales
for on-the-fly TCP-IP stack re-configuration. Regarding the
tradeoff between simplicity and expressibility of algorithms,
current SDN primitives seem at first glance overly restrictive
for expressing state-machines or describing the temporal and
differential behaviour of a control algorithm. On the other
hand, a compile time API in Hardware Description Language
(HDL) renders implementation of algorithms tedious and slow.
Moreover, a discrete programming based on a high-level
language, e.g., [11]-[14] (as in High-level Synthesis, or with
OpenCL), always brings to multiple implementations, often
characterised by different/incompatible temporal behaviour

and resolution.

III. CHEMICAL ALGORITHMS (CAS) AND THE CONTROL
OF (NETWORK) DYNAMICS

Chemical Algorithms, or Chemistry-inspired Algorithms
(CAs) refer to a class of stochastic algorithms whose logic
is described and implemented as a chemical reaction net-
work. Inputs, outputs and internal states are represented by
concentrations of molecular species, and their (mathematical)
relationships are represented by reaction rules. Such a rep-
resentation offers a few very simple primitives that can be
implemented on hardware logic using only integer arithmetic
(addition, multiplication).

The operation of CAs obeys to kinetics laws of Chemistry
(the Law of Mass Action and conservation laws), which
dictate and influence the behavioural characteristics of the
algorithm. Thanks to these laws, CAs are robust, analysable,
and guarantee deadlock-free operations. CAs are dynamical
systems that continuously process event signals, and respond
consistently to errors or perturbations [4], [15], [16]. CAs are
stochastic but with a deterministic average behaviour that can
be accurately described by a system of equations, directly de-
rived from its (graphical) representation as a reaction network
[4], [16]. For this reason, numerous interesting projects have
formalised the chemical metaphor as a general computational
and programming model e.g., [17]-[22].

A. Representation of CAs

Instead of state diagrams or pseudocode that describe a
sequential logic, the logic of CAs is (suitably) expressed
(and visualised) in drawings of chemical reactions among
molecular species (e.g., Fig. 1(a), rounded-corner square). The
species represent the algorithm’s inputs, outputs, and internal
state variables. The reaction network diagram encodes the
parameters that control the behaviour of the system (reac-
tion coefficients and reactant stoichiometric coefficients). A
reaction captures a causal relationship between the system’s
state-variables (reactants and products). Formally, a reaction
network (and therefore a CA) is represented by a set S of
molecular species (variables), and a set R of reaction rules in
the general form

reR: ZamngBms (1)
seS sES

This equation specifies how reactant molecules interact to
create product molecules. For a reaction r, k, is a constant
parameter, known as reaction coefficient, which regulates the
relative speed of the reaction (more details later). Parameter
o s 18 the stoichiometric reactant coefficient, specifying the
number of molecules of a species s € S consumed by reaction
r. Similarly, parameter (3, is the stoichiometric product
coefficient, specifying the number of molecules of a species
s € § produced by reaction r.

A simple example that illustrates a chemical traffic con-
trol algorithm is shown in Fig. 1. As we demonstrate in
the following, similar to the traditional Token Bucket (TB)
scheme, this chemical mechanism can be used to control the

queue/server

A Vtx
I'Uout
k k
ST
(%)

chemical dynamical system

r:S+E 4 ES
o : ES 22 E 4+ P

(a) System (b) Reactions

Fig. 1. Rnetl: The enzymatic reaction network used as a traffic rate
controller (pacing and rate capping). CA’s input is connected to a queue’s
arrival process and the CA’s output controls the queue’s service process.

service process of a queue and rate cap the outgoing traffic
up to a predefined, adjustable threshold. The service process,
implemented with a CA, is graphically shown in Fig. 1(a)
and its logic is formally described by reactions r; and 72 in
Fig. 1(b). For each enqueued packet (or certain amount of
bytes), a molecule of species S is created. The dequeueing
and transmission of a packet is authorised by the execution of
reaction 79, which implies the production of a P molecule and
the consumption of an ES molecule. The production of ES
molecules in turn is controlled by reaction r;, and depends
on S molecules (arrivals of packets in the queue) and the
availability of E molecules, which embody tokens. Molecules
of species E (tokens) are replenished from the separation of
ES molecules at the rate at which reaction r» occurs. Overall,
the effective queue service policy is non work-conserving: the
queue is not served as fast as possible; its service is instead
regulated by the relationship between rates of reactions r; and
ro (as explained in the next section).

B. Operation and Dynamical System Aspects

Dynamics of CAs (when and which reaction is executed) are
regulated by the Law of Mass Action (LoMA). The LoMA [23]
states that the average rate v,.(t) of occurrence of a chemical
reaction 7 € R is proportional to its reactant concentrations:'

or(t) =k [] 5 (8) 3)

seS

where c¢4(t) is the amount of molecules of species s € S at
time ¢ (c,(t) can be seen as a time-continuous, discrete-valued
signal that the system processes), and k, is the coefficient
that regulates the reaction speed (regulating the relationship
between molecular mass and rate). Reactant concentrations
affect the reaction speed in a non-linear way, based on the
stoichiometric reactant coefficients; the sum Zse s Qs Of
reactant coefficients of a reaction r is known as reaction order.

The LoMA couples the state and the dynamics of the
system, and plays a key role in CAs (as a self-adaptive internal
scheduler). For example in the (enzymatic) rate controller in
Fig. 1, the effectiveness of the loop (E-ES) to control the
transmissions (generation of P molecules) stems from the strict
relation that the LoMA imposes between the current state of
the system (how many transmissions have been authorised and

'The rate value found in (3) can be regarded as a simplified value
quantifying the propensity a, of a reaction r to occur.

how many packets await in the queue) and the rate along
the E-ES loop. By comparison, work-conserving scheduling
disciplines would cause tokens to loop infinitely accelerated,
making the mechanism ineffective to shape and limit the
traffic.

The other operational principle behind the automatism of
the control loop is the mass-conservation law, which states
that the total sum of molecular concentrations along a loop
remains constant if (i) the total number of molecules consumed
by reactions along the loop is equal to the total number of
molecules produced, and (ii) all concentrations along the loop
are altered only by reactions involved in this or another loop.
It follows that, in the (enzymatic) rate controller in Fig. 1, the
number of tokens cg + cgs = €g is conserved. This limits the
maximum number of P molecules that can be generated per
second, and thus enforces a rate cap to the packet transmission.

C. Modelling and Analyzability

In CAs, the dual relationship between system state and dy-
namics guarantees an exact/accurate mathematical description
of the system. This makes signal- and control-theory viable
tools to analyse the behaviour of the algorithm.

Specifically, the behaviour of each CA is mathematically
expressed as a fluid model, i.e., a set of Ordinary Differential
Equations (ODEs) of the form

¢(t) =2 -v(k,c(t)). 4)

The term on the left-hand side represents the vector of
state changes (concentration variations), whereas the right-
hand side specifies how reactions effect these changes. The
stoichiometric matrix = captures the topology of the reaction
network, whereas the reaction rate vector v encodes the speeds
of all reactions, by combining reaction coefficients k and
concentrations ¢ according to the LoMA in (3). For example,
referring back to our rate controller in Fig. 1, and given the
reaction set in Fig. 1(b), the resulting system of ODEs is

cs(t) -1 0 1 o

)| _|-1 1 0) = 7
s " |1 -1 0 [krcsce kaces Al (%)
co(t) 0 1 0

where the term kocgg reflects the rate of reaction r9 and thus
the dequeueing/transmission rate vyy.

From the developer’s perspective, the stoichiometric ma-
trix = provides the means to program any certain CA, and
the reaction coefficient vector k represents the means to
calibrate/tune it. The concentration vector c(t) then represents
changes in the CA’s state, as the system evolves over time.

From (5), it follows (by solving the homogeneous system for
the steady state) that, as long as A < egke, the concentration
cs remains stable and the steady-state transmission rate vy
follows the packet arrival rate A (see [24] for more details). On
the other hand, by applying the mass conservation law (cg +
CEs = ep), one obtains the Michaelis-Menten (biochemical)
equation:

Umax

Cs

f =k =eoky ————
Vix = R2CES = €QR2 (k’z/k’l)—i—cs)

from which it follows that, when A > egks and thus when
cs grows without bounds, the transmission rate vy, grows
asymptotically towards the rate cap of vpm.x, given by the
product of the terms eg and ks. The ratio ko /k; controls how
fast the rate limit is enforced.

From the transient/sensitivity analysis in [24], it also stems
that the control algorithm has a low-pass filtering behaviour.
The cut-off frequency is directly controllable through ko-
coefficient (i.e., higher k5 values lead to higher cut-off fre-
quencies; the outgoing traffic from the system is more bursty).

IV. ENABLING CAS ON FPGA TECHNOLOGY

Having discussed CAs from a formal perspective, we can
now describe how to exploit the introduced concepts in order
to engineer a generic programmable hardware platform for
CAs, on FPGA technology. The underlying intent is having
a means to programmatically express functions to control
network dynamics in an FPGA-based data-plane.

The fundamental abstraction we sought to provide is a
“chemical engine”, which serves two important purposes. One
is to hide low-level hardware logic description inside “chemi-
cal” primitives, exploited to obtain a high-level representation
for CAs by means of reaction networks. The other is to divide
the programming/deployment time of CAs based on a two-
level configuration process.

At the lower level (level-1), configuring a chemical engine
pre-allocates chemical resources on the FPGA and creates an
execution environment, as an overlay core [2], [25], [26].
Practically, a large enough grid of chemical resources are
reserved (hardware logic circuitry on the FPGA). Level-1 con-
figuration process thus involves automatic RTL synthesis and
bitstream generation, followed by “slow-path” programming
at device initialisation. This, as any execution environment,
provides all background functionalities for accommodating
different CAs and embodies internally the chemical kinetics
“rules” for executing them. Furthermore, by resorting to partial
reconfiguration technology [27], [28], device initialisation with
multiple chemical engines can be effected without power-
cycling and while other accelerated functions are still running
on the FPGA.

At the higher level (level-2), the actual programming of
CAs is effected as a configuration task which assigns part of
the chemical resources and interconnects them in the corre-
sponding reaction network. This involves the setting of values
in memory-mapped registers on the FPGA, for the number
of species, the initial values for their concentrations, and the
set of reactions with their coefficients. These resources can
be re-assigned or modified at any time (through a new level-
2 configuration), in order to implement another CA. Level-2
configuration is the essence of fast runtime programmability of
CAs, since it makes hardware programming a mere update of
register values within the overlay core of the chemical engine.
How fast level-2 modifications are effected depends on the
access-time to registers on the specific FPGA device and is
determined by the latency characteristics of the employed I/O
interface and protocol (e.g., GPIO, PCle, buffered 1/O, etc.).

Very frequent updates of CAs may interfere with the conver-
gence time to new steady-states of the implemented control-

I Y. Wal manager
: 2 . |UART 9600
clk AC —» monitor +—»
—
k mem < program +—
ext. r - | ext.
input G mem r re'acflo'n output
:._; ﬁ mem . reaction T <
. T . . >
1 scheduler >
C mem
&
—'
Fig. 2. Block-diagram illustrating the main components of the chemical

middleware platform for programming CAs on FPGA hardware.

system (CA). However, in such a case, the stability properties
of a CA are straightforward to infer from chemical kinetics
analysis [4], and the required queue characteristics are there-
after easy to profile. In this way, the accuracy in executing CA
is not compromised by its implementation. Moreover, although
not addressed in our prototype implementation, introducing
queuing and batch buffered updates can address the potential
issues of frequent updates.

Conceptually, the instantiation of a CA (at level-2) within
the chemical engine (configured at level-1) implements a so-
called Artificial Chemistry [29] AC = {{S},{R}, A}. At
level-1, the chemical engine provides the LoMA reaction
scheduling logic A in the execution environment. At level-
2, CA instantiation provides the structural information of a
species set {S} and a reaction set {R}.

A. Prototype Platform Overview (Level 1)

The key building blocks (operational modules and func-
tional structures) of our platform are shown in the block
diagram of Fig. 2. Runtime operation is divided across three
main nested modules: (i) the manager module, (ii) the
AC module that implements one or more chemical engines
as part of the CA execution environment, and (iii) the
reaction-scheduler module (LoMA core) that imple-
ments the reaction algorithm A that schedules reactions for
execution.

The manager module may serve simultaneously (taking
advantage of the hardware parallelisation) more than one AC
modules, each hosting a separate CA. It handles the I/O
for each AC module by mapping input and output signals
(events such as packet arrivals) to specific species of a CA.
It also serves the monitoring of the CA’s state by logging
concentration values of selected species.

An AC module represents the principal container of in-
stantiated CAs in hardware. It maps in memory the func-
tional data structures for the structural representation of a
CA - i.e., species concentrations, stoichiometric reactant and
product coefficients, and reaction coefficients. Values in these
structures, which are runtime accessible, provide the inputs to
the addressing logic embedded in the AC module, in order
to inter-connect the various parts of the CA and orchestrate
its execution. For example, the values of the stoichiometric
memories a-mem and S-mem decode the addresses of reactant
and product concentrations of each reaction. Similarly, the

1

33zllsisls

11b
11
00l
)

TTE—
| —re— ' g =g
I — |
TR

log>(]S| + 1) bits
(@)

TR
Max #
reactants

Reactant Order - |- 5|

S Qir,S, x addrg,

, 00 00 00
QrS, xaddrg,

x addrg,=10 00 00

Qr,S; X addrg,

addrg, = 11 00

‘ HLS

HLS

HLS

Ma,
A
s

addrg, = 11

a ag [)
decoder]
03 02 01 0y

decoder
03 02 01 0g

77y

2-bit down-cnt

03 02 01 0p
T

d oy
ar ¢ o
go2

|

exeReact|
clk_nnr

0001

as.ag by bo
en sub/add
03 02 01 O

[]

az ag bz by
en sub/add
03 02 01 0o

ik
T T T £

S3-register

FIiFlop
S2-register St-register

(b)

Fig. 3. Addressing logic for updating reactant concentrations (analogous for
product concentrations). (a) 3D organisation of the stoichiometric memory
of reactants: number of reactions — reaction order — reactant order.
(b) Circuitry schematic related to the stoichiometric memory (example for
maximum 3 species, 3 reactants per reaction, up to 3rd order reactants).

reaction coefficients stored in k-mem control the computation
of the next reaction time according to (3).

The reaction-scheduler module (LoMA-core) com-
putes the propensity of a reaction from its reactant concentra-
tions and from the reaction coefficient, and produces as output
the time at which each reaction has to be executed.

B. Reaction Network Instantiation (Level 2) — CA topology

Individual species are implemented as registers each using a
chain of flip-flops, whose size determines the maximum value
(as a power of 2) that a concentration can assume.

Reactions provide information about which species partic-
ipate as reactants, which as products, and in what quanti-
ties (respective stoichiometric coefficients). The stoichiometric
information of reactants and products is divided in two re-
spective 3D array structures that store address information of
species (Fig. 3(a)). This information is used by the chemical
engine in order to update the right species concentrations
whenever a reaction takes place. The size of these arrays
reflects the maximum chemical resources available to the user
for instantiating CAs. In the following description, we confine
our discussion to the operations involving the reactant species
only. An analogous description involves product species with
the sole difference that logic elements for addition replace
those of subtraction (Fig. 3(b)).

The stoichiometric array a-mem of reactants (Fig. 3(a)) is
dimensioned by the maximum number of reactions (1D), by
the reaction order (2D), and by the reactant order (3D). One
filled record implies a Ist-order reactant, and activates once its
nesting reactant (indexed at 2nd-level), in a specific reaction
(indexed at the 1st-level). Two filled records with the same
species address implies a 2nd-order reactant, which activates
twice the nesting reactant indexed at the 2nd-level, and so
forth.

As illustrated in Fig. 3, the structure of the stoichiometric
array reflects the fact that processing for each indexed reactant
(2nd-level) is active in separate Hardware Logic Slices (HLS).
Multiple HLSs are engaged in parallel computations of the
CA, such that reactions that involve reactants of 1st-order
(e.g., S1+S2+S3 — ...) update their species’ concentrations
in simultaneous steps. At the same time, reactants of 2nd-order
or higher engage in processing within an HLS in pipelined
fashion. The number of active address-records at the 3rd-
level (encoding the reactant order) enumerates how many
consecutive processing steps are required to complete the full
update of the reactant’s state, during the execution of the
reaction. 3rd-level address-records directly enable a respective
number of decoder elements within each reactant’s HLS. Upon
reaction execution (exeReact signal transient), decoders get
active in sequence by a step-down counter. The address stored
in each address record of the stoichiometric array is fed to
the decoder so as to trigger a subtraction operation on the
respective species concentration. As a result of this process,
a reaction of the sort 3S; — ... is computed in a number of
steps that reflects the reactant order (S1) + (S1) +(S1) — ...
(where each parenthesis pair denotes a single processing step).

The maximum number of indexable reactions (1D), reaction
order (2D) and reactant order (3D) records is part of the
chemical resource reservation that takes place at the time of
(re-)initialisation of the FPGA with a (partial) bitstream for the
chemical engine. For example, the addressing logic of Fig. 3(b)
refers to a resource reservation (maximum allocations) for
3 species with concentration size up to 15 molecules, and
one indexable reaction with at most 3 reactants/products per
reaction, and of up to 3rd order each. For 3 species, 2-bit
addresses are needed to resolve access to their registers (S3,
S2, S1), each of which is 4-bit wide (number of flip-flops in
each register); thus serving concentration size values < 15.
The corresponding reactant stoichiometric array structure (see
Fig. 3(a) for reaction r1) can index reactions (lst-level), of
maximum 3 reactants (2nd-level), each in turn of up to 3rd-
order.

For a reaction of the form 2S3 + S, — ... (Fig. 3), the
two reactants S, and S3 occupy two 2nd-level records (out of
the three available). The one corresponding to Ss, which is
a 2nd-order reactant, has two 3rd-level records (out of three
available) filled with the species address 11b of the S3 register.
By analogy, for the 1st-order reactant So, only one 3rd-level
record (out of three available) is filled with the species address
10b (see Fig. 3(a)).

When the reaction is active (exeReact-signal), the reac-
tant species are processed at separate HLSs in parallel, e.g.
S3 will be processed at the first HLS, S, at the second,

while the third HLS will remain unused since there are only
two reactants. Within each HLS, e.g. for each reactant, the
2-bit species address stored in each 3rd-level record of the
stoichiometric array is input to one decoder. For reactant
S3, its address 11b appears in the inputs of two of the
three decoders. The output of each decoder is processed in
subsequent steps of the step-down counter and activates (EN-
input) a subtracter that decrements by 1 molecule (in every
step) the contents of the respective species register. In fact,
this reduces the concentration of S3 by 2 in two steps, and
respectively the concentration of S, by 1 in one step. Overall,
the discussed hardware logic computes 2S3 + So — ..., as
(S3+82)+(S3) — ...

C. Reaction Scheduling (Level 2) — CA Dynamics

Reactions execute in real-time according to a time-schedule
as described in (3) (LoMA). Computing the reaction-times
schedule is the most costly operation, in terms of hardware
logic. After a reaction has fired, and the update of species
concentrations of reactants and products has completed, a
computation is triggered for the next reaction time slot of
each dependent reaction (i.e., reactions whose reactant con-
centrations have been modified). For a reaction 7, this requires
to compute the propensity, ie., the product of reactants’
concentrations cg~° and the reaction coefficient k,., according
to (3). The reaction coefficients k are stored in a separate bank
of registers.

To engage the relevant (reactant) species for computing the
propensity of each dependent equation, we use the hardware
logic design in Fig. 4. As with the addressing logic for
updating the concentrations in the previous section, we rely
on information from the reactant stoichiometric array to index
across HLSs and decoders. However, in this case, the output
of each decoder selects inputs of a multiplexer chain. At every
step of the counter, one multiplexer outputs the address of the
decoded species register (for s3...so = 1000 it forwards the
value of the S3-register, for s5...s9 = 0100 the value of
the S2-register, and for s3...s9 = 0010 the value of the S1-
register), or the fixed value 1111 for the identity element of
the multiplication.

Outputs from each HLS contribute to the computation of
the power for each reactant concentration cs™* (e.g., c§3),
while the combination of the outputs across HLSs contribute to
the computation of the product of reactants’ terms [], s cs"’
(e.g., cgg ¢s,). To complete the computation of the propensity,
these values alongside the reaction coefficient k,., are input to a
multiplier module. Depending on the desired trade-off between
logic density and computation speed, this operation can be
performed by a single multiplier in as many as |¥| X |« time
steps (]| being the maximum possible number of reactants,
i.e., reaction order), and accounting for the additional multi-
plication by k..), or by up to |¥| parallel scaled-multipliers in
as few as || time steps.

Generating the new time schedule requires (i) computing
the reciprocal of the propensity value of the reaction that was
just executed, and (ii) possibly rescaling the old propensity
value of all its dependent reactions, so as to update their time
schedules according to new reactant concentrations.

6

Reactant Order - |, s

S oo RoaanOuorlonal
~ Qip S, x addrg,
HLS :
2 00 00 00
HLS 5," Q. s, xaddrs,
& xaddr =]() 00 00
- 5 Qir,S; X addrg,
S/ addrg, =11 addrg,= 11 00
ljl a aj ap (ﬁ[;l
decoder decoder decoder |
2t downent Top g Loy
2 OOU 111 [
N e]viviv) L
E (Ve
exeReact|
clk_nnr
93 538g =
0
bs S %:
by m oy O+
% x =T
o |
2 1= e S
= L= —
% _— b3 O [
| I = {8
—bo 7 o %, [
€3 B
o 1111
ds EEJ
— r
1|

S3-register S2-register S1-register

Fig. 4. Addressing logic for selecting concentrations to compute reaction
propensities (example for a single reaction and for maximum 3 species, 3
reactants per reaction, up to 3rd order reactants).

The propensity and reaction-time
can also be parallelised by means of
reaction—-scheduler modules (ie,
AC up to one per reaction).

computations
|R| separate
from one per

D. Realisation on Xilinx Spartan-6 FPGA Family

We originally prototyped the FPGA overlay frame-
work for CAs discussed so far on a relatively small
low-cost low-end FPGA device: the Xilinx Spartan-6
XC6SLX9 [30] on the Avnet Spartan-6 LX9 MicroBoard.
For the reaction-scheduler module, we have used
a Xilinx single-precision floating-point IP core [31] (IEEE-
754 Standard compliant, ~ 42'27 dynamic range, ~2723
resolution).

For the experiments presented here, we have configured the
CA framework with the chemical resource reservation shown
in Tables I and IL.> A single chemical engine can host up
to 255 species in 8 reactions of up to 8 reactants/products
of maximum 8th-order. For most of the network dynamics
functions we have implemented, reactants/products go up to
2nd order, and individual reactions rarely involve more than
3-4 reactants and 1-2 products each. Thus, reservation shown
in Table I is sufficient for implementing most of network
dynamics control functions.

The c-mem of species concentrations is 16-bit wide. It is
initialised with 00...0b, except for the first (reserved) posi-
tion set to 00...10. Concentrations interfacing to input/output

2Source VHDL code can be
http://cn.cs.unibas.ch/projectss HWAC/.

retriecved from the URL

parameter value description
R| 8 max number of reactions
|| 8 max number of reactants/products
S| 255 max number of species
|C| 16bit max concentration value/size (2/€1 — 1)
| 8 max reactant stoichiometric coefficient value
18] 8 max product stoichiometric coefficient value
|k 32bit reaction coeff. size (single-precision floating point)

TABLE I
CHEMICAL MIDDLEWARE PLATFORM RESOURCE RESERVATION
PROGRAMMED ON THE XC6SLX9 FPGA FOR OUR EXPERIMENTS.

table size

c-mem [S[pos x [C] bit

a-mem (|R| x |¥] x |a]) pos x loga2(]|S]) bit

B-mem (|R| x |[¥] x |B]) pos x log2(]S|) bit

k-mem |R| pos x |k| bit
TABLE I

CAPACITIES OF CA MEMORIES

events are updated in batch according to a molecules-per-event
ratio. The a-mem and [-mem store the stoichiometric array
structures, and the k-mem stores single-precision floating-point
values of reaction coefficients. Because of limited space on the
XC6SLXO9 chip, there is a single reaction scheduler module
that makes use of four floating-point modules (DSP48Els):
two multipliers and two divisors.

V. EVALUATION

The following evaluation of the CA framework aims to
(i) validate the runtime re-programmability of CAs using
FPGA hardware, (ii) quantify the performance benefits/costs
from enabling FPGA-based acceleration of CAs, (iii) assess
their deployability in real network environments, given the
capabilities of available FPGA devices on the market, and
(iv) assert the expressibility of CAs to implement various
functions for controlling network dynamics.

A. Experiment Setup

We used CAs to control the service process of the egress
queue of a standard Linux host (Linux, Kernel 3.8.6), and
thereby control the dynamics of outgoing traffic. To this end,
we isolated a traffic class in a separate FIFO queue (tc
facility). The arrival process of that queue provided the input
events for the CA: for each enqueued packet, an amount
of molecules corresponding to the number of bytes in the
packet was added to an input species S in the chemical
engine. The service process of the queue was controlled by
the concentration of output species P: for each P-molecule
produced, a fixed number of bytes were allowed to leave the
queue at packet granularity (given enough molecules to match
the byte-size of the packet at the front of the queue, the packet
was dequeued and transmitted). In both cases, the molecules-
to-bytes ratio was kept fixed at 1 mol/KB.

To interface the chemical engine on the FPGA (LX9 board)
with the queue management subsystem of the linux kernel,
we use the parallel port together with the Parapin kernel
module. This allowed us to use the parallel interface signals
for custom I/O (i.e., handling interrupts at the port pins, and
accessing directly port registers), and wire them to one of

— > >

Sender

«Parallel port Receiver -
_JI/Qconn.

Fig. 5. Experiment setup to rate control PC’s egress traffic by means of
CAs. The FPGA hosting the chemical engine was connected to the parallel
interface of the sender host for facilitating the signalling between the CA and
the queue-management subsystem of the linux kernel.

queue/server

ro: S— P

chemical dynamical system

(a) System

(b) Reaction

Fig. 6. Rnet2: Simple reaction network enforcing the LoMA (3) as a queue
service process, so as to implement a traffic pacer.

the LX9’s I/O connectors. With this setup, it was possible to
produce/process interrupts and exchange events every 100 ns.

The traffic exchanged was host-to-host, over a high-speed
switched network (Fig. 5). The results and graphs that follow
concern UDP traffic produced with the iperf tool (client side
running on the controlled node). With TCP traffic, results are
inherently more difficult to illustrate because of the coupling
between the two control-loops in the protocol state machine.

B. Runtime Programmable Hardware — Proof of Concept

We began by instantiating a simple CA (Fig. 6) that paces
packet transmissions by a variable time delay. This rather basic
reaction network directly imposes LoMA (3) behaviour as the
queue service policy. The CA “program” is essentially the
following reaction network specification:

S={S,P}, R={ro} ©)

9=0, ko=10s"1

In the first 5s of the experiment (see Fig. 7), the output rate
followed the average load of the queue. At the same time, the
burstiness of the arrival process was filtered and smoothed out,
by setting the cut-off frequency via kg-coefficient (=10s~1).

After t = bs, we replaced Rnet2 with Rnet1 in the AC
(enzymatic rate controller of Fig. 1), by directly loading (while
the system ran) the following CA specification.

S= {S’E7 E57P}> R= {T17T2}

cg = 25 Kmol, cg = cgs = cg =0, k1 =1(@mols)~ !, ko=20s""1
The values chosen for ¢3 and ks set the rate cap at 0.5 GBps.

At t = [6.5s,14s] (Fig. 7), a new burst of UDP transmis-
sions increased the load above the predefined rate cap. The
output rate ramped-up to the cap rate, and remained at that
limit until the burst ended. A third round of UDP transmission
started at time ¢ = 19s. The load had a mix of high-frequency

Rnet2 :
(Pacing) :

Rnetl

12 (Pacing + Rate limiting)

Rate [GBps]
=}
[e]

1
N H
I‘II‘J\NU\ IU‘\ hv‘\‘ l\ll‘ "

(=}
~
T

0.0
0

Time [s]

Fig. 7. Traffic shaping effects of 2 programmed CAs: Between t=[0-5s] the
chemical engine was programmed with Rnet2, then between t=[5-27s] the
chemical engine was re-programmed with Rnet1. A is the input rate (load
presented by the network layer), vmax is the rate limit set by Rnet1, v is
the output rate (actual transmissions authorised by the CA).

and low-frequency bursts, but this time it did not exceed the
rate cap. In this case, the CA worked as a pacer, i.e., the
transmission rate followed closely the slow fluctuations of the
arrival rate, but very high-frequencies were filtered out.

We used again Rnet2 (Fig. 6) to demonstrate fine grained
runtime modifications of individual CAs, as well as system
state consistency with regard to modifications. Fig. 8 shows
the test results. While traffic was arriving at the queue with
a constant mean rate, we modified the existing CA by first
setting kg = 20 s~1 at t; = 1.5s. This caused a noticeable
discontinuity (step) in the transmission rate. At to = 2.5s,
a second modification reverted back ko = 10 s~!, but at the
same time we also modified the state of concentration cg, such
that B cg(ty +x) - ko(te + o) = m cg(ty —x) - ko(t2 —)
(so as to preserve the instantaneous reaction rate). In con-
trast with the first modification, this one did not cause any
inconsistent behaviour at the queue. Such carefully accounted
modifications draw from the analysability and predictability
of CAs, which indeed can help confining potential consis-
tency pitfalls in the queue state. Sound knowledge of the
dynamics of the implemented control system (see [4]) helps to
understand, foresee and contain transient interruptions of the
implemented service due to perturbations, caused either from
algorithm changes or other external factors (e.g. other system
management tasks).

In summary, so far we validated that new algorithms can be
programmed/deployed and modified. We specifically focused
on system consistency during service.

C. Quantifying Gains from Hardware Acceleration

When functions for network dynamics control are integrated
in the packet processing pipeline, they introduce a computa-
tional overhead for the CPU, which adds to the processing
delay of the fast-path. Even worse, if because of this overhead
CPU reaches 100% utilisation and cannot compensate for the
packet arrival rates anymore, delay variance in the processing
pipeline can start interfering with the nominal operation of
the implemented traffic/queue control function, with potential
effects not foreseeable by the algorithm model. This penalty
for enabling traffic/queue control functions is avoided as soon

1.2

Rate [GBps]
=}
oo

IN
'S

0.0
0

Time [s]

Fig. 8. Programmable dynamics and service consistency: The input traffic
pattern A was the input of a CA configured as Rnet 2, initially with kg =
10 s—L, at t; = 1.5 s with kg = 20 s~1, and at to = 2.5 s with ¢g =
500 mol, kg = 10 s™1. vy is actual transmissions authorised by the CAs.
A discontinuity is visible at 1 but not at ¢o. Vertical dashed lines highlight
when kg was modified.

as the computation is offloaded to an accelerator (or to a
separate CPU core in a multicore system), and as long as the
accelerator is not slower than the packet processing pipeline.
As we have already stated, one of the advantages of CAs is
such an implicit decoupling, as CAs rely only on input/output
event hooks to the data path.

To quantify the benefits from hardware acceleration of CAs
we measured the computational overhead when executing CAs
in CPU, within the linux kernel. This overhead is the “saving”
from moving CAs on the FPGA.

Using the ChemFlow software (from the experiments of
[4], [5]), we were able to isolate the CA (algorithmic) com-
putations in a separate kernel thread, for which we track
the utilisation of the CPU. This measurement excludes other
queue management and packet processing tasks. We per-
formed measurements for two CAs of different complexity,
Rnetl and Rnet2 (Rnetl has double amount of species
and reactions than Rnet2). For each CA we measured the
impact of different packet arrival rates (input events). The
results are shown in Fig. 9, grouped by the rate of input
events. Beyond a certain rate (1M mol/s) the CPU utilisation
increases dramatically, eventually at the expense of other
(application) tasks in the system. Doubling the amount of
chemical resources does not double the load, but nevertheless
increases it significantly (~ 10%). We note that aside of all
benefits, implementing dynamics control functions as CAs is
computationally expensive [4], [5], due to the frequency of
reaction-scheduling.

In the case of the FPGA implementation, these computa-
tions are offloaded to an external hardware and do not steal
resources to the CPU. Still implementations of CAs on FPGAs
have limits in terms of maximum handleable rates. Clocking
our device at 80 MHz and using 1 mol/KB resolution, this
limit is approximately at 800 Mbps when two reactions are
involved in the CA, and at 1.6 Gbps when there is one reaction
involved. However, in an implementation tailored for scalable
performance (i.e., with parallel reaction schedulers), the CAs’
complexity would not affect the performance.

The reported rates from our low-end device do not seem
to fit the needs of today’s high-end core Internet routers, still

SO mm Rner2
40 || Rnetl
8
5 30+
Ay
O 20t
10
0
0.01 0.1 1.0 1000.0 1500.0 2000.0

load [K mol/s]

Fig. 9. CPU utilisation when executing directly on the main CPU (as software
task in kernel space of the OS) the CAs in Rnet1 and Rnet2 with different
input loads. Monitored for 20 seconds and then averaged separately for each
input load (until 1M mol/s load the host CPU utilisation is near zero).

RI=2 [R[=4 [R[=8 [R|]=32
Slice Registers 1’338 1°533 1°922 4290
Slice LUTs 3’071 3’464 3’931 7°838
Occupied Slices 1’145 1’340 1’792 4’398
DSP48Els 4 4 4 4
TABLE III

LOGIC RESOURCE REQUIREMENTS ON XC7K325T FPGA FOR A
CHEMICAL FRAMEWORK WITH UP TO |R| REACTIONS AVAILABLE.

they are indicative for current last-mile and edge connectivity.
Moreover, newer top-of-the-range FPGAs together with a
high-bandwidth host interface (e.g., PCle Gen3, NVlink, efc.)
are suitable to serve the needs of high-end core Internet routers
(as asserted by the numbers of the next section).

D. Performance as a Function of Logic Resources

In this section, we report on three potentially concerning
features of the hardware platform we propose.

1) Logic resources: With the chemical resource provision
of Table I, one is able to express (mathematical) models
described by a system of up to 8§ ODEs with a maximum
of 256 8th-order terms, using 16-bit variables. For network
dynamics control functions this corresponds to rather big
and expressive models. On Xilinx XC6SLX9 FPGA (the 2nd
smallest device of the Spartan-6 family), this implementation
consumed around 70% of the slice LUTs. On a XC7K325T
FPGA (device on NetFPGA-1G-CML board), the exact same
framework instantiation barely utilises 1% of the slice LUTs
available. Indicatively, in Table III we provide summary re-
ports produced by the Xilinx EDA tool, for the amount of logic
resources consumed on the XC7K325T FPGA when we scaled
up the maximum accommodated number of reactions |R|
(number of ODEs) under the same design. Note that increasing
the maximum amount of chemical resources available for CAs
does not change the requirements in terms of logic resources
of the LoMA scheduler (LoMA scheduler is one and, to be
implemented, needs 722 Slices, 798 Slice Reg, 2334 LUTs,
79 LUT-RAM, and 4 DSP48Els on the XC7K325T FPGA).

2) Speed performance: There is substantial room for im-
provement in terms of parallelisation and pipelining (trading
logic resources). Specifically, by employing a LoMA scheduler
per reaction, each reaction benefits from a completely inde-
pendent processing path, eliminating the latency from inter-
reaction re-scheduling. Furthermore, by using many parallel
DSPs for each LoMA scheduler further reduces the number
of clock-cycles in the computation of the propensities. We

experimented with these optimisations on the larger of the two
devices we had available (XC7K325T FPGA). By allocating
a separate LoMA core to each reaction in the configuration
of column 4 of Table III, the number of clock-cycles for re-
scheduling the reactions dropped from ~1600 to 52, while
the logic resource budget increased to 30’055 slice registers,
79°016 slice LUTs, and 128 DSPs. By additionally changing
the pipeline of the LoMA core, we attained a further reduc-
tion to only 24 clk-cycles, while the utilised logic resources
increased to 54’154 slice registers, 113’495 slice LUTs, and
320 DSPs. This still amounts to less than 50% of the logic
resources available on the XC7K325T FPGA. With such a
performance-optimised configuration, the CA controller can
theoretically deal with up to 216 Gbps rates, still considering
1 mol/KB as resolution and an FPGA clock of 80 MHz, as
we did in Sect.V-A.

3) Resolution in processing events: Our single-scheduler
implementation can handle events occurring approximately
every 10 ps, 5 ps, and 2.5 ps, for the nominal XC6SLX9
FPGA clock frequencies of 40 MHz, 80 MHz, and 160 MHz
respectively. In the XC7K325T device, the device can be
clocked at up to 650 MHz, enabling our prototype to process
events at 615 ns resolution. In this case, a design with multiple
parallel LoMA schedulers achieves roughly 27 ns-resolution.

E. Algorithmic Expressibility of CAs

Algorithmic expressibility of CAs has been demonstrated
with implementations for congestion control in [4], rate control
and distributed resource access in [5]. Here, we extend the
range to include an AQM scheme and an implementation for
traffic prioritisation/conditioning (and thereby the examples
recorded in the literature cover most typical applications of
network dynamics control functions).

1) CAs for AOM: An extension of the enzymatic rate
controller scheme in Fig. 1 suffices to turn the CA into an
AQM scheme with a packet dropping tendency analogous to
RED [11]. As shown in Fig. 10, the extension involves one
additional reaction (r3) and one additional species (D), whose
concentration regulates the drop process at the queue.’

Reaction r3 (much slower than 7;) occasionally “samples”
the queue fill-level (i.e., concentration of species S). If the
queue size starts growing (i.e., too-slowly dequeued packets
or too high arrival rates), r3 accelerates fast (as a 2nd-order
function of the queue size), creating drop tokens (D) that
in turn remove packets from the queue. As the queue size
decreases, r3 quickly recovers its low speed and slows-down
packet drops.

Fig. 11 validates experimentally this behaviour in a simple
scenario where iper f-generated variable bit rate (VBR) UDP
traffic goes through a queue controlled by this CA. The upper
rate limit of the enzymatic controller was set to 0.4 Gbps,
representing the maximum desired link utilisation (condition
under which no queue is built-up). The UDP traffic was
admitted to the queue initially at 0.2 Gbps and then at 1 Gbps,

3Discussing the specific dropping policy (e.g., head- or tail-dropping) is
outside the context of this paper’s focus. Anyway, both dropping policies can
be facilitated in the CA system.

queue/server
)\ Vtx

r:S+E L ES
ro: BS *2 E P
1"3:QSQ>S+D

Uout | |Vdrop
=

chemical dynamical system

(a) System (b) Reaction set

Fig. 10. Rnet3: The enzymatic reaction network (Rnet1) can be extended
to be used as a AQM scheme. The CA has two outputs: species P controls the
departure process, and species D regulates the drop process of packets from
the queue. The scheme guarantees a maximum transmission rate of packets
while keeping the queue size low.

[Gbps] / [Gbits]

Time [s]

Fig. 11. Experimental result of an AQM-style chemical controller. A, v, Vdrop
are rates of enqueued traffic, transmissions, and drops as shown in Rnet3
in Fig. 10). q/vmax is the maximum queue level and the related maximum
transmission rate (set via ka-eg) and gy is the level of the queue.

during different phases of the experiment (~ [2s,13s] and
~ [14s,25s]). The drop rate (black line) remained effectively
zero under low-load conditions (first phase). But as soon as the
rate cap was reached and the queue started building up (second
phase), the drop-mechanism kicked in and drained the queue
at a pace synchronised (no phase lag) with the queue fill-level
variations.

Note, that while the CA operates on the queue size (S
species), its configuration is in terms of a throughput cap
(0.4 Gbps) at the queue (close analogy to “automatic adjust-
ment” in modern AQM schemes [12], [13]).

2) CAs for traffic prioritisation: By combining the dis-
tributed rate control scheme presented in [5] with the CA for
AQM of the previous section, we created a CA for weighted,
or proportional, fair-queuing (Fig. 12). The servers of the
participating queues in the scheme (typically corresponding
to distinct classes of traffic) were controlled by identical
reaction sub-networks, which nevertheless shared tokens in
molecular state (aggregate of species P; feeds back to each
T;). Coefficients kg ; at each sub-network configure the relative
proportional bandwidth share of each queue. The outputs of
these queues aggregate at a single egress queue, which is
then controlled by the last stage of the CA, a sub-network
implementing the AQM in Sect.V-EI.

Without delving into analysis details (due to space lim-

ueue/server

Utx, 0
Vout

Vtx ’Ll + Utx,z

)

chemical dynamical system
queue/server

Vtx
Uout||Vdr

queue/server
Al UVtx, 1 | AN

Uout

Vtx,0tVtx2

chemical dynamical system

chemical dynamical system

queue/server
/\2 Utx, 2

Uout

Vtx,0+Vtx,1

chemical dynamical system

Fig. 12. Rnet4: The combination of Rnet3 with the distributed rate
controller scheme in [5] leads to a CA capable of weighted/proportional fair-
queuing. Priorities are configurable via kg ;.

itation),* we show an experimental validation in Fig. 13.
The service processes of three intermediate queues and the
egress queue were controlled by the reaction network Rnet4.
The top plot in Fig. 13 shows the constant bit rate (CBR)
admission of UDP traffic to all three queues with iperf,
in two phases: (1) t < 10s, and (2) t > 10s. The second
plot in Fig. 13 shows fair-sharing, and the last two plots
demonstrate weighted (proportional) fair-sharing, enforced by
choosing different k, ; configurations.

In the first phase, the total aggregate admission rate (at the
intermediate queues) did not exceed the configured 2 Mbps-
limit at the egress queue. All flows claimed and received what
they needed from the available bandwidth. In the second phase,
the total aggregate admission rate exceeded by far the rate
limit and prioritisation kicked in. The share each flow received
is (statistically) proportional to the weights expressed as kg ;
parameters.

VI. DISCUSSION AND RELATED WORK
We review the three main contributions of this work in light

of our evaluation results. By comparison to current literature,
we highlight the benefits of the CA-based framework.

A. Algorithms on Hardware: Models vs Discrete Programs
Traditionally, the implementation of algorithms on FPGA
devices implies a time-consuming tedious process that requires
competence in logic design and in hardware description lan-
guages such as VHDL [32] and Verilog [33]. It is therefore
undertaken only by a small community of designers (much

4The analysis is a straightforward application of the theory in [4].

25 - -
T T T T T »¥—x A,]
1
20+ X +—+ 2,2 J
I — A3
1
—
215} | - - Mot
=) 1
S P Vmax
Q 1
:“;'3 10+ [
1
1
5k i i
[
ey e e bt ettt ettt
0
2.5
< Vix.1
2.0 i, AT R L e Ay S BT AT L — Vix2 |
’I\II’\\‘“\\II\\I’I\\‘u\ltllli\’\ Vixs
— N
- -V
§ 150 ’ tot
/
s S Vmax
N /
o
5 1.0+
24 1
1
I
0.5}F
1
1y
0.0 1 1 1 1 1 1 1 1
2.5 T
VX1
_ g - v L
2.0 _..,.,..,.,.,..,.,.I:.,\.I,..,\)\I.\('.‘,\l,7".‘;,‘,\:‘;\114‘,”\11,.‘r.‘,l.\,.,‘\l,‘l\,.‘\i..\I.f,‘./.(,\,,.\,,.ﬁ\l, — X2
,\'I\/J \ | Valat vy b ! LR Vix 3
— /7
3 - = W
B1SE v tot
/
E 72 S S IR Vmax
1
L
5 1.0}
~ 1
1
1
0.5}
!
1)
0.0
2.5 T
< Vix.1
- . ~fan Vi
2.0F i, T A LD g S Ll SRR LTy VX
. I Vo !
) LR T L LA e A O I AL A I A I T Vix 3
—_ n
Z 1 -~ Vot Lﬁ
215k 4
= ,’ ----- Vmax
= I
Qo
5 1.0+
24 1
1
1
0.5}
1
I
00 | | | | | | | |
0 2 4 6 8 10 12 14 16
Time [s]

Fig. 13. Prioritisation of traffic classes via k2 ;-values. \; is the load at the
i-th queue, A is the total load (Zi Ai)s Umax is the configured maximum
output rate, vi,; is the dequeueing rate related to the i-th queue, and vio is
the aggregate output rate (3, vx,i), see CA in Fig. 12. Curves A; and A3
overlap and appear as one.

more restricted than the one of software programmers). More
“modern” ways of programming FPGAs try to elevate the level
of abstraction with high-level frameworks like OpenCL [7],
[34], [35] and High Level Synthesis [36], [37] or by using
visual primitives for data-flow-based programming such as
in [38]. These new approaches bring to task modularity,
implementation homogeneity and code verification. However,
these approaches rely on static compilation and synthesis
every time an algorithm is changed. They are also typically
engineered to first translate sequential constructs of discrete
programs into sequential finite state machines (FSM) in HDL
or register-transfer logic (RTL), and eventually generate a

configuration (bitstream) for programming the FPGA device.

While this hybrid programming has recently boosted the
popularity of FPGAs as an attractive solution for computation
acceleration (e.g., alternative to GPUs), it also poses some
important limitations. The implementation of a mathematical-
model-based algorithm as a discrete program implies es-
sentially a serialisation process (algorithm expressed as a
sequence of steps). This inevitably compromises some, or
occasionally many, facets of parallelisability available in the
original model. Moreover, as this mapping is not deterministic,
some versions may suit better than others the automated
heuristic process of generating a parallelised RTL designs.

By contrast, the approach presented in this paper directly
maps mathematical models to RTL, without going through
the intermediate serial transformation into a discrete program.
Parallelisability is thus not limited by the translation of a
discrete program. Furthermore, there is no heuristic process
that may give better results for some implementations than
others. Instead, an algorithm instantiation has access to all pos-
sible degrees of parallelisation that its expression as a model
allows. The algorithm is only limited by resource logistics
during deployment (resource economy vs. performance), not
implementation limitations.

The approach shown in this paper benefits from the ex-
pressibility of mathematical (ODEs) models, directly derived
from chemical reaction networks. We exploit this simple rep-
resentation, in terms of operators, encoding of dependencies,
and parallel computation paths, in order to create a generic
addressing fabric pre-installed on the FPGA (as an overlay
execution environment). Thereafter an algorithm instantiation
is an activation of the right parts of this addressing fabric.
This mapping is deterministic, and fully parallelised. Par-
allelisability allows local algorithmic interventions on parts
of the program during execution time (by updating register
or memory data), without compromising system integrity (of
course, algorithmic integrity can be compromised).

B. Re-Programmable data-plane on FPGAs

There is a mismatch between typical deployment timescales
in SDN (e.g., flow table updates) and deployment latencies of
algorithms on FPGAs. Compiling a bitstream can easily take
hours. Downloading it on the device takes several minutes,
and re-programming may require reseting (often re-powering).
There are two approaches in practical use today trying to
overcome these constraints.

1) Partial Reconfiguration (PR): PR technology [27], [28],
initially available on Xilinx devices, has the philosophy of soft-
ware plugins. A bitstream (FPGA program) is divided in two
parts: the “skeleton” with hooks and APIs at the RTL level,
and a set of partial bitstreams (PBs) that can be interchanged
on the skeleton hooks according to these APIs. The whole
process is faster than downloading the entire bitstream and
does not require to reset the device. Unlike software plugins,
the spatial dimensions (logic resources) and the connectivity
of the PBs need to be confined in advance. This may limit
the functionality PBs may implement, and challenges their
compactness. More importantly, the deployment timescales do
not match those of typical SDN updates.

2) Overlay-based approach: These approaches avoid hard-
ware re-programming altogether and make use instead of so-
phisticated IP cores called overlays, which implement a more
generic execution environment. Such IP cores may provide tai-
lored functionality for some class of functions [2] or a certain
task [25], or may involve general purpose processing elements,
such as soft processors [39] or DSPs [26], for executing code
written in a high-level programming environment. Unlike PR
technology, this approach is very attractive for fast (runtime
scale) deployment of accelerator functions, and does not
require the tedious process of synthesising and generating (par-
tial) bitstreams. Overlay cores typically come with domain-
specific language (DSL) or ELF compilers/interpreters, which
allow programming and prototyping using high-level language
frameworks. Overlay IP cores represent a fast alternative to
conventional re-programmability on FPGAs with bitstreams.

In this paper, we present in fact a two-level approach.
The chemical framework with the chemical engines is an
overlay IP core, on which CAs instantiate accelerated model
functions. An instantiation of our framework per-se with a
certain chemical resource reservation can be implemented and
programmed as a partial bitstream at much coarser deploy-
ment timescales. Multiple of these bitstreams may co-exist or
replace one another. Finally, in contrast with typical use of
overlay IP cores to date, programming CAs on the chemical
engines does not require static compilation and allows partial
modifications of a running algorithm (interactively).

C. Software Defined Network Dynamics

As SDN technologies have started maturing, configurability
and programmability of data-plane functions has also started
to attract engineering attention, with a number of projects
focusing on programmable network dynamics [2], [3], [40]-
[44] (not all of the cited works are within the SDN community
but they share the same objective).

The NetFPGA project [1] has been one of the first large
scale initiatives to integrate FPGA technology directly on the
networking fabric in order to accelerate network functions, as a
joint effort by academia and large FPGA manufacturers. While
the focus has been infrastructure (board) development, a few
parallel activities and independent projects, benefiting from
the availability of the NetFPGA technology, have showcased
individual dynamics control functions such as packet pacing
[45], rate limiting [46], [47], [48] for isolated packet flows, as
well as ECN-based [49] congestion control [50], [51], [14].
Most of these examples of dynamics control functions have
been either implemented as discrete programs running on soft-
CPU IP cores, or translations of discrete programs as FSMs
in HDL.

Chimpp [2] raises the level of abstraction while program-
ming network functions on a FPGA-based data-plane. Chimpp
relies on the design-by-module-composition approach of the
Click framework [52]. It uses a description of device capabil-
ities and objectives written in a DSL, which upon compilation
synthesises a complete RTL design and generates a bitstream
from pre-developed HDL modules. The deployment setting is
a hybrid environment combining host CPUs and NetFPGA
devices configured at boot time.

OF Protocol
OF Channel OFPT_EXPERIMENTER
FPGA i
Group Table ‘{ Meter Tables I. 3 Chemical Middleware |
1

f Module

Pt~ ,
"J Q Discs —v[u Flow Tables]—m Q Discs H——; Chemical
l

1
Port [| Port || Port Port H Port H Port r L
§ Ingress Egress §

Fig. 14. Integration of CAs in the OpenFlow architecture

SDNet [3] is probably the most promising framework for
delivering a hardware runtime-programmable data plane. Sim-
ilar to Chimpp, it relies on a DSL for describing data-plane
features and capabilities, which upon compilation however
delivers a partial bitstream. PR is therefore used in SDNet
to enable reconfiguration and replacement of functions at
runtime.

Finally, the ServerSwitch hardware programmable plat-
form [41] enables hardware programmability with an approach
similar to that of Active Networks [53]. It relies on ASIC tech-
nology to perform basic tasks and on kernel-level processing
on a host CPU to perform the more complex tasks.

Focussing on network dynamics control functions in SDN,
authors in [40] effectively pinpoint a minimal set of primitives
required to support southbound extensions for controlling the
fast-path scheduling and queueing behaviour of an OpenFlow
switch. In fact, the integration of our chemical engines in
the SDN environment is subject to the availability of such
an interface in order to allow monitoring of the internal
state of CAs (northbound), and instantiation/modification of
CAs on the FPGA fabric (southbound). We are currently
working on a similar but less extensive set of primitives
using the “experimenter extensions” of OpenFlow. The block
diagram in Fig. 14 illustrates how this integration is effected
conceptually, with chemical engines operating in parallel with
current OpenFlow infrastructure.

As no I/O is involved in explicit managing or buffering
packet state on the side of the chemical engines, there is
no requirement to operate CAs in packet boundaries. Time
synchronisation with events and ordering is also not critical
because CAs operate statistically; (“macroscopically”) at the
signal level, a few event misses are averaged out and do not
impact the correctness of the system.

VII. CONCLUSION

We have introduced, implemented and evaluated a frame-
work that enables runtime (re-)programmable algorithms for
the control of network dynamics on FPGA hardware. The
representation of these algorithms in programs is by means
of chemical reaction networks. This provides an expressible
and easy-to-use metaphor for designing and implementing
functions to control arrival and departure processes at network
queues. This simple and high-level representation

o has allowed the expression of accurate mathematical

models directly on hardware without the need for low-
level HDL programming,

e leads to modular parallel implementations where parts

of an algorithm can be modified separately and indepen-
dently of the rest of the program,

¢ has enabled fast instantiation and modification of func-

tions on FPGA hardware at runtime, and without the need
to re-synthesise RTL code or re-generate bitstreams.

Moreover, CAs can be studied with accurate mathematical
models and designed using a robust analysis methodology.
This helps to foresee CAs’ effects and the artefacts of their
customisation/tuning. Thanks to the simple visual primitives
describing a CA and its parameters, the framework pre-
sented in this paper represents an expressive programmatic
northbound interface for SDN-based management. Moreover,
integrating CAs with existing SDN infrastructure is straight-
forward and requires hooks that are already available in most
suites like OpenFlow.

[1]
[2]

[3]
[4]

[6]

[7]

[8]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

REFERENCES

“The NetFPGA project,” http://netfpga.org.

E. Rubow, R. McGeer, J. Mogul, and A. Vahdat, “Chimpp: A Click-
based programming and simulation environment for reconfigurable net-
working hardware,” in Architectures for Networking and Communica-
tions Systems (ANCS), ACM/IEEE Symp. on, La Jolla (CA), USA, Oct
2010, pp. 1-10.

Xilinx Inc., “Software defined specification environment for networking
(SDNet),” White Paper, 2014.

M. Monti, T. Meyer, C. F. Tschudin, and M. Luise, “Stability and
sensitivity analysis of traffic-shaping algorithms inspired by chemical
engineering,” in IEEE Journal on Selected Areas of Communications
(JSAC), vol. 31, no. 6, Jun 2013, pp. 1-11.

M. Monti, M. Sifalakis, T. Meyer, C. F. Tschudin, and M. Luise, “A
chemical-inspired approach to design distributed rate controllers for
packet networks,” in Proc. of the IFIP/IEEE-IM Workshop on Distributed
Autonomous Network Management Systems (DANMS), Ghent, Belgium,
May 2013.

A. Barkalov, L. Titarenko, and J. Bieganowski, “Synthesis of com-
positional microprogram control unit with extended microinstruction
format,” in Mixed Design of Integrated Circuits Systems (MIXDES), Int.
Conf. on, Lodz, Poland, Jun 2009, pp. 328-331.

P. Jddskeldinen, C. de la Lama, P. Huerta, and J. Takala, “OpenCL-based
design methodology for application-specific processors,” in Proc. of the
IEEE Int. Conf. Embedded Computer Systems (SAMOS), Samos, Greece,
Jul 2010, pp. 223-230.

N. McKeown, G. Parulkar, T. Anderson, L. Peterson, H. Balakrishnan,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” ONF White Paper, Mar 2008.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of Open vSwitch,” in Proc. of USENIX
Symp. on Networked Systems Design and Implementation, Oakland
(CA), USA, May 2015, pp. 117-130.
“Netfilter, firewalling, NAT, and packet
http://www.netfilter.org/.

S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. on Networking, vol. 1, no. 4,
pp. 397-413, Aug 1993.

K. Nichols and V. Jacobson, “Controlling queue delay,” in Magazine
Communications of the ACM, vol. 55, no. 7, May 2012, pp. 42-50.

R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A lightweight control scheme to address
the bufferbloat problem,” Draft Standard 00 draft-pan-agm-pie, Internet
Engineering Task Force (IETF), Dec 2012.

M. Kuhlewind, D. Wagner, J. M. R. Espinosa, and B. Briscoe, “Imme-
diate ECN,” IETF-88 TSVAREA, Nov 2013.

M. Monti, L. Sanguinetti, C. F. Tschudin, and M. Luise, “A chemistry-
inspired framework for achieving consensus in wireless sensor net-
works,” in IEEE Sensors Journal, vol. 14, no. 2, Feb 2014, pp. 371-382.
T. Meyer, “On chemical and self-healing networking protocols,” Ph.D.
Dissertation, University of Basel, Switzerland, 2011.

mangling for Linux,”

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]
[31]
[32]
(33]

[34]

[35]

[36]

[37]

[38]
(39]

[40]

[41]

[42]

[43]

P. Dittrich, “The bio-chemical information processing metaphor as a pro-
gramming paradigm for organic computing,” in Proc. of the Workshop
Self-Organization and Emergence, Conf. on Architecture of Computing
Systems (ARCS), Innsbruck, Austria, Mar 2005, pp. 95-100.

J. Banétre, P. Fradet, and Y. Radenac, “Principles of chemical program-
ming,” in Electronic Notes in Theoretical Computer Science, Elsevir,
vol. 124, no. 1, Mar 2005, pp. 133-147.

G. Patin, “Computing with membranes,” in Journal of Computer and
System Sciences, vol. 61, no. 1, 2000, pp. 108-143.

W. Banzhaf, P. Dittrich, and H. Rauhe, “Emergent computation by
catalytic reactions,” in Nanotechnology 7 (1996) 307-314, vol. 7, no. 4,
Dec 1996, pp. 307-314.

J. Giavitto and O. Michel, “MGS: a rule-based programming language
for complex objects and collections,” in Electronic Notes in Theoretical
Computer Science, Elsevir, vol. 59, no. 4, Nov 2001, pp. 286-304.

N. Matsumaru, P. Kreyssig, and P. Dittrich, “Organisation-oriented
chemical programming,” in Organic Computing — A Paradigm Shift for
Complex Systems Autonomic Systems, vol. 1, 2011, pp. 207-220.

F. Horn and R. Jackson, “General mass action kinetics,” Archive for
Rational Mechanics and Analysis, vol. 47, no. 2, pp. 81-116, 1972.
M. Monti and M. Sifalakis, “Extending the artificial chem-
istry to design networking algorithms with controllable dynam-
ics,” Technical Report CS-2012-003, Univ. of Basel, Switzerland,
http://cn.cs.unibas.ch/pub/doc/cs-2012-003.pdf, Jul 2012.

R. Polig, K. Atasu, H. Giefers, and L. Chiticariu, “Compiling text ana-
lytics queries to FPGAs,” in Proc. of Int. Conf. on Field Programmable
Logic and Applications (FPL), Munich, German, Sep 2014, pp. 1-6.
A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughput oriented FPGA
overlays using DSP blocks,” in Proc. of Design, Automation & Test in
Europe Conference & Exhibition (DATE), Dresden, Germany, Mar 14-18
2016, pp. 1628-1633.

E. El-Araby, 1. Gonzalez, and T. El-Ghazawi, “Exploiting partial runtime
reconfiguration for high-performance reconfigurable computing,” ACM
Trans. Reconfigurable Techn. Syst., vol. 1, no. 4, pp. 1-23, Jan. 2009.
L. Wirbel, “SDAccel - a unified development environment for tomor-
row’s data center software defined spec,” Xilinx Inc., White Paper, 2014.
P. Dittrich, J. Ziegler, and W. Banzhaf, “Artificial chemistries — a review,”
in Artificial Life, vol. 7, 2001, pp. 225-275.

Xilinx Inc., “Spartan-6 family overview,” Product Specifications DS160
(v2.0), Oct 2011.

——, “LogiCORE IP floating-point operator v6.0,” Application Note
DS816, Jan 2012.

IEEE Computer Society, “IEEE standard VHDL language reference
manual,” IEEE Standard 1076-2008, Jan 2009.

——, “IEEE standard for Verilog hardware description language,” IEEE
Standard 1364-2005, Apr 2006.

J. Auerbach, D. F. Bacon, I. Burcea, P. Cheng, S. J. Fink, R. Rabbah, and
S. Shukla, “A compiler and runtime for heterogeneous computing,” in
Proc. of ACM/EDAC/IEEE Design Automation Conf. (DAC), Jun 2012,
pp. 271-276.

A. Bourd, “The OpenCL Specification Version: 2.2 Document Revision:
06,” Khronos OpenCL Working Group, April 2016.

G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design Test of Computers, vol. 26, no. 4, pp. 18-25, July 2009.
D. O’Loughlin, A. Coffey, F. Callaly, D. Lyons, and F. Morgan,
“Xilinx Vivado high level synthesis: Case studies,” in Proc. of Irish
Signals Systems Conf. and China-Ireland Int. Conf. on Information
and Communications Technologies (ISSC/CIICT), Limerick, Irland, Jun
2014, pp. 352-356.

J. Travis and J. Kring, LabVIEW for Everyone: Graphical Programming
Made Easy and Fun, 3rd Edition. Prentice Hall, 2006.

V. Kale, “MicroBlaze embedded processor,” White Paper, Xilinx Inc.,
September 2015.

A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan, “No
silver bullet: Extending SDN to the data plane,” in Proc. of the ACM
Workshop on Hot Topics in Networks (HotNets), New York (NY) USA,
Nov 2013, pp. 1-7.

G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong, R. Gao,
and Y. Zhang, “ServerSwitch: A programmable and high performance
platform for data center networks,” in Proc. of the USENIX Conf. on
Networked Systems Design and Implementation, Berkeley (CA), USA,
Jun 2011, pp. 15-28.

C.-L. Hsieh and N. Weng, “Virtual network functions instantiation on
SDN switches for policy-aware traffic steering,” in Proc. of the ACM
Symp. on Architectures for Networking and Communications Systems
(ANCS), Santa Clara (CA), USA., Mar 2016, pp. 119-120.

S. Meier, “Software defined active queue management,” October 2014.

[44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

[52]

(53]

S. Gu, J. Kim, Y. Kim, C. Moon, and I. Yeom, “Controlled queue
management in software-defined networks,” in Proc. of IT Convergence
and Security (ICITCS), Kuala Lumpur, Malaysia, Aug 24-27 2015, pp.
1-3.

A. Dwaraki, “Hardware implementation of queue length based pacing
on NetFPGA,” M.Sc. Thesis, University of Massachusetts, Ambherst
(MA),US, Feb 2014.

N. Malangadan and G. Raina, “Rate based feedback: some experimental
evaluation with NetFPGA,” in Proc. of the IEEE Int. Conf. on Commu-
nication (ICC), Kyoto, Japan, Jun 2011, pp. 1-6.

M. Anwer, M. Motiwala, M. Tariq, and N.Feamster, “SwitchBlade: A
platform for rapid deployment of network protocols on programmable
hardware,” in Proc. of the ACM SIGCOMM, Jun 2010, pp. 1212 — 1221.
A. Lombardo, D. Reforgiato, V. Riccobene, and G. Schembra, “Netfpga
hardware modules for input, output and ewma bit-rate computation,” Int.
Journal of Future Generation Communication and Networking, vol. 5,
no. 2, pp. 116-123, june 2012.

K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” RFC 3168, IETF, September 2001.
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data center TCP (DCTCP),” in
ACM SIGCOMM Computer Comm. Review, vol. 40, no. 4, Oct 2010,
pp. 63-74.

A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar, “AF-
QCN: Approximate fairness with quantized congestion notification for
multi-tenanted data centers,” in Proc. of the IEEE Hot Interconnects,
Mountain View (CA), USA, Aug 2010, pp. 58-65.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp.
263-297, Aug. 2000.

N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An intel-
lectual history of programmable networks,” ACM SIGCOMM Computer
Comm. Review, vol. 44, no. 2, pp. 87-98, Apr 2014.

Massimo Monti obtained the M.E. degree in
Telecommunication Engineering in 2010 from the
University of Pisa (IT). In 2014, he got the PhD
degree with highest honours from the University
of Basel, Mathematics and Computer Science, CH,
and the Ph.D. degree in Information Engineering
from Doctoral School “Leonardo da Vinci” of the
University of Pisa (IT). He did post-doctoral re-
search at the University of Basel (CH) on applying
chemistry-inspired algorithms for traffic shaping and
controlling network dynamics. He is currently work-

ing in Elettronica Monti (IT) as a consultant in developing measurement and
monitoring instruments for electromagnetic interferences (EMI).

Manolis Sifalakis holds a bachelor degree in Com-
puting Systems Engineering from the Piraeus Uni-
versity of Applied Sciences (GR), a MSc degree
in Computer Science from the University of Ed-
inburgh (UK), and a PhD Degree on Active and
Programmable Networks from Lancaster University
(UK). After post-doctoral research at Lancaster Uni-
versity (UK) and the University of Basel (CH),
he joined IBM Research (CH) where he currently
works on algorithm acceleration based on FPGA,
GPU and multicore technologies. His past work

focused on programmable network technologies, network dynamics, network
measurements, and content-centric networking.

Christian F. Tschudin is a Full Professor at the
University of Basel and lead the Computer Networks
Group. Before joining the University of Basel, he
was at Uppsala University as well as ICSI in Berke-
ley, and did his Ph.D. at the University of Geneva.
He is interested in mobile code, artificial chemistries,
wireless networks and security.

Marco Luise is a Full Professor of Telecommunica-
tions at the University of Pisa, Italy. He’s authored
more than 250 international publications and led
a number of international research programs, in-
cluding the recent European Network of Excellence
in Wireless Communications NEWCOM#. He was
the co-general-chair of IEEE’s ICASSP, Florence
2014. Formerly an Associate Editor of IEEE Trans.
Commun., he is the co-founder of the Intl. J. of
Navigation and Observation, and a Division Editor
of the J. of Commun. and Networks. His main

research interests lie in the broad area of signal processing for communications
and of wireless communications and positioning.

