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Abstract— This paper investigates the problem of finding
optimal paths in single-source single-destination accumulative
multi-hop networks. We consider a single source that communi-
cates to a single destination assisted by several relays through
multiple-hops. At each hop, only one node transmits, while the
rest of nodes receive the transmitted signal, and store it after
processing/decoding and mixing with the signals received in
previous hops. This is, we consider that terminals make use of
advanced energy accumulation transmission/reception techniques
such us maximal ratio combining reception of repetition codes,
or information accumulation with rateless codes. Accumulative
techniques increase communication reliability, reduce energy
consumption, and decrease latency. We investigate the properties
that a routing metric must satisfy in these accumulative networks
to guarantee that optimal paths can be computed with Dijkstra’s
algorithm. We model the problem of routing in an accumulative
multi-hop networks, as the problem of routing in a hypergraph.
We show that optimality properties in traditional multi-hop
network (monotonicity and isotonicity) are no longer valid and
derive a new set of sufficient conditions for optimality.

I. INTRODUCTION

Introducing relay capabilities in a network has a strong

effect on the information flow that extends to all communica-

tion levels, from the achievable rates to the routing strategy.

A fundamental understanding of the role that relays play in

wireless networks is of paramount importance to the design

of efficient protocols for future communication systems.

The problem of routing in a traditional multi-hop (TM)

network model, where each relay node only listens to the

immediately previous node is quite well understood today. For

the purpose of routing, these networks are well modeled by

directed graphs. Given a routing metric criteria, the optimality

conditions that guarantee that efficient path search algorithms,

such as Dijkstra’s algorithm, find the optimal path were studied

in [1], [2].

The problem of routing in an accumulative multi-hop (AM)

network model, in which we are instead interested, is however

far from being understood today. In accumulative multi-hop

networks, a single source communicates to a single destination

assisted by several relay nodes that can accumulate the re-

ceived energy/information from previous relay transmissions.

In practice, there are two main accumulation mechanisms
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at relays: energy and mutual-information accumulation. En-

ergy accumulation can be performed at the receiving nodes,

e.g., through space-time coding or repetition coding [3], [4].

Mutual-information accumulation [5], [6] can be realized using

rateless codes e.g. fountain or raptor codes [7]. Accumulation

mechanisms are considered in current and next generation

standards since they increase communication reliability and

reduce energy consumption.

The work presented here builds, mainly, on top of the

works conducted in [1], [2]. We show that graphs can not

model the AM network, and thus, the results derived in [1],

[2] for routing over graphs can not be invoked. We model

the AM network by a hypergraph, and find new sufficient

conditions to guarantee the optimality of Dijkstra’s algorithm

in hypergraphs. We then discuss the optimality of Dijkstra’s

algorithm for the minimum energy routing in static AM

networks. In the case of decoded-and-forward (DF) relaying

this problem has been previously addressed in [3], [4], [7]–

[10]. DF relay nodes decode the source message completely

by accumulating energy, or information from all previous

transmissions. From [3] and [4], we already know that finding

the optimal transmission order for these networks is an NP-

complete problem. We show the optimality of Dijkstra’s algo-

rithm for DF accumulative networks where nodes decode the

source message by only accumulating the energy/information

coming from the immediately previous relay, and from the

source. Besides the DF relaying, we also consider the cut-set

bound (CB) for AM networks [11, Th. 14.10.1]. For the CB,

we show that Dijkstra’s algorithm finds the minimum energy

route.

The remainder of the paper is organized as follows. The

AM network model is presented in Section II. In Section III,

the minimum energy accumulative path weight function for

DF relaying and for the CB are derived. The optimality of

Dijkstra’ algorithm in AM networks is discussed in Section

IV, and particularized for the minimum energy accumulative

routing metrics in Section V. Finally, conclusions are drawn

in Section VI.

II. THE ACCUMULATIVE NETWORK MODEL

Consider a static network with N nodes. The traffic is

unicast, from a source node (S) to a destination node (D)

with the help of relay transmissions. Relay nodes transmit

according to a given transmission order described by a path

vector p, where p[0] =S, p[L+1] =D, and L is the number of

relays. Notice that we only allow one relay node in each path
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Fig. 1: A directed hypergraphH. The arrow on a hyperedge in

the figure points to the vertices in the head of the hyperedge.

position. Communications are either point-to-multipoint as in

wireless channels, or point-to-point as in wireline channels.

In a TM network model, given a path p, the signal trans-

mitted by node p[i] is only intended to node p[i + 1]. This

is so, even if transmissions are over wireless channels, and

the transmitted signals are also overhead by nodes in the path

other than the intended ones. These nodes ignore or treat as

interference the received signals. In TM routing problems, the

network is well modeled by a directed graph G(V,E), where

V is the set of nodes and E is the set of edges representing the

existence of links between pairs of nodes. Let eu,v denote the

edge between nodes u and v. A path p exits if ep[i],p[i+1] ∈ E
for all i = {0, ..., L}. Associated to each edge, there can be

one or several fixed metrics, e.g. the link distance, the link

bandwidth, the channel magnitude, the transmission delay, etc.

For simplicity, let us as assume that there is only one metric

per edge, then β (eu,v) = βu,v denotes the metric associated to

edge eu,v. In TM routing the objective is to find the better path,

or lightest path, between a source and a destination according

to some network metric. The weight of a path w(p) is a

function of the metrics of edges traversed by a path, namely

w(p) = w (βp), where βp =
{

βp[i],p[i+1], i = 0, ..., L
}

.

In the AM model, in which we are instead interested,

relay nodes do not discard the received signals from previous

nodes in the path. This is, relay and destination nodes may

benefit from the signals received from all previous nodes in

the path. In AM routing, the network is better modeled by

a directed hypergraph H(V,E), as the one shown in Figure

1, where V denotes the set of nodes, or vertices, and E
denotes the set of hyperedge, or connections between nodes.

A directed hypergraph is a generalization of a directed graph

in which each hyperedge is allowed to have multiple source

(tail) vertices and multiple destination (head) vertices. The tail

and head vertices of an edge are denoted as T (e) and H(e),
respectively. We restrict the analysis to hypergraphs where all

the edges have only one source node |T (e)| = 1, and there

is only one edge per source node. This hypergraph model is

sufficiently general to consider any wireless communication

in accumulative network if there is only one node in each

path position. There are many different notions of hyperpaths,

see [12]. Here, we define a hyperpath as a sequence of nodes

p = [p[0], ....,p[L + 1]] consisting of vertices p[i] ∈ V . Let

eu denote the hyperedge associated to node u. A hyperpath

exists if for every node in the path p[i], 0 < i ≤ L + 1 there

exits at least one preceding node p[j], 0 ≤ j < i, such that

p[i] ∈ H
(

ep[j]
)

. The existence condition of a hyperpath is

illustrated in Fig. 1. Observe that since there is no edge link

connecting nodes C and D, the path 〈A,B,C,D,E〉 does not

exists in a graph. However, the hyperpath 〈A,B,C,D,E〉 exists,

as there is an hyperedge connecting nodes B and D. Associated

to an hyperedge there might be a set of metrics. For simplicity,

we assume that there is only one metric for each of the vertices

of the hyperedge, namely, β (eu) = {βu,v, ∀v ∈ H(eu)}. Then,

the weight of a hyperpath w(p) is a function of the metrics

of the edges traversed by the path, namely w(p) = w(βp),
where βp =

{

β
(

ep[i]
)

, i = {0, ..., L+ 1}
}

.

III. MINIMUM ENERGY ACCUMULATIVE ROUTING

The implications of accumulative nodes in multi-hop routing

problems are better understood by looking at specify examples

of path weight functions. The path weight functions derived

here will also be instrumental in subsequent sections.

We consider a very simplistic accumulative communication

model for wireless channels. The link between nodes u and v

is modeled by the channel gain gu,v ∈ {R+, 0}. Let Pu denote

the transmission power at node u, then the received signal

power at node v is gu,vPu. A packet is correctly decoded at the

destination node if the received signal power at the destination

node exceeds a certain threshold level HD. This model is valid

for network that operate in the wideband power limited regime.

This regime is realistic for some wireless networks, such as

sensor networks where there exist strong energy limitations

at nodes, the traffic load is low, and there is sufficient large

frequency bandwidth. Moreover, the analysis conducted here

can be extended to any other scenario where the resource

allocation problem is linear. Such linear dependence is forced

here by considering energy accumulation in wideband signals,

as in [3], or in [4], but it can also be found in other situations,

such as when considering full-duplex relay terminals as in

[8], or when optimizing over transmission durations instead

of transmitted power as in [7] and [13].

Our network metric is the aggregated transmission power

consumption needed to successfully transmit a packet from

the source to the destination node by using wireless links.

Accordingly, we define the weight of the path p as

w(p) =

L
∑

i=0

Pp[i]

HD

.

If the above network is modelled by graph, then the metric

associated to the edge eu,v is the channel gain β(eu,v) = gu,v.

In contrast, if the network is described by a hypergraph, then

the metric associated to the edge of node u is the set of channel

gains from node u to all the network nodes, namely β (eu) =
{gu,v, ∀v}.

For the sake of simplicity, when there is no ambiguity on

which path p we are referring to, we denote gi,j = gp[i],p[j],
and Pi = Pp[i].



3
A. Decode-and-forward relaying

Let us first suppose that relay nodes must decode the source

message before transmission, and thus, they need to receive

an aggregated signal power also exceeding HD. Consider a

predetermined power transmission strategy, in which, node

p[i − 1] transmits the minimum power need for node p[i]
to accumulate exactly HD units of energy.

In a TM network, according to this communication model,

the power transmitted by the source node must satisfy HD =
g0,1P0. The weight of the partial path between the source and

the first relay, denoted as p0,1, is given by

w(p0,1) =
P0

HD

=
1

g0,1
.

In the next hop, given that node p[2] ignores the signal power

received from the source node, the power transmitted by node

p[1] must satisfy HD = g1,2P1, and thus, the weight of the

partial path p0,2 is given by

w(p0,2) =
P0 + P1

H
,

=
1

g0,1
+

1

g1,2
,

=
1

g1,2
+ w(p0,1).

It can be shown, that the weight of the partial path p0,i is

computed recursively as

w(p0,i) =
1

gi−1,i
+ w(p0,i−1). (1)

In the AM network, instead, all the nodes except the source,

and the first hop relay node can get multiple energy leakages

from previous transmissions, and thus accumulate energy from

them. The power transmitted by the source node must also

satisfy HD = g0,1P0, and thus, w(p0,1) =
1

g0,1
. However, the

power transmitted by the first relay must satisfy

HD = g1,2P1 + g0,2P0. (2)

The weight of the partial path w(p0,2) is given by

w(p0,2) =
P0 + P1

H
,

=
1

g0,1
+

1

g1,2

(

1−
g0,2
g0,1

)

,

=
1

g1,2
+

g1,2 − g0,2
g1,2

w(p0,1).

Observe that, if g0,2 > g0,1, or, equivalently, if w(p0,2) <
w(p0,1), then the relay node p[2] has already received suf-

ficient power from the source node, and thus enforcing (2)

implies P1 < 0, which is not possible. In that case, we set

w(p0,2) =∞, as it can be shown, see [4], that if we remove

node p[1] from the path, we obtain a smaller (better) path

weight. It can be shown, that then the weight of the partial

path p0,i is computed recursively as

w(p0,i) =
1

gi−1,i
+

i−1
∑

j=1

gj,i − gj−1,i

gi−1,i
w(p0,j) (3)

if w(p0,i) ≥ w(p0,i−1), and w(p0,i) =∞ otherwise.

Observe that this accumulative path weight function could

not be computed over a directed graph.

B. Cut-set bound

In the AM network model, asking every node to decode the

source message is not always needed. Relays can, for example,

amplify or compress and forward the received signals, without

decoding the information. We can have an idea of the path

weight functions that may appear for these non-regenerative

relaying strategies by looking at the cut-set bound. In addition,

recent results [14] have shown that the cut-set bound rates

can be achieved within a constant rate gap by compress and

forward like strategies. To model these communication, we

remove the decoding constraint at nodes, and consider a power

transmission policy in which the power transmitted by node

p[i] is such that subsequent nodes in the path p[j], j > i
receive an aggregated power equal to the power that node p[i]
has received from previous nodes p[j], j < i, namely

Pi

L+1
∑

j=i+1

gi,j =

i−1
∑

j=0

Pjgj,i. (4)

In this case, it is more convenient to compute the weight of a

path in a backward manner, from the destination to the source.

Only for this case, let us reverse the ordering of nodes, so that

the destination is refereed to as D= p[0], and the source as

S= p[L+1], the channel gain from node i to node j is denoted

as gj,i, and the path from node i to the destination is denoted

as p0,i = 〈p[i], ...,p[0]〉. Then, the signal power received from

the last relay at the destination node is given by g0,1P1, and

the weight of the partial path p0,1 = 〈p[1],p[0]〉 is

w(p0,1) =
P1

g0,1P1
=

1

g0,1
.

For the partial path p0,2 = 〈p[2],p[1],p[0]〉 the destination

receives an aggregated power of g0,1P1+ g0,2P2, accordingly,

the weight of the partial path p0,2 is

w (p0,2) =
P1 + P2

g0,1P1 + g0,2P2

by enforcing at node p[1], the input-output power flow condi-

tion in (4), we require g1,2P2 = P1g0,1, obtaining

w (p0,2) =
1 + g1,2w (p0,1)

g1,2 + g0.2
.

Similarly, for the partial path p0,3, the destination receives an

aggregated power of g0,1P1 + g0,2P2 + g0,3P3, and the input-

output power flow condition at relay nodes p[2], and p[1],
requires

g1,2P2 + g1,3P3 = P1g0,1,

g2,3P3 = P2 (g0,2 + g1,2) .

The weight of the partial path p0,3 is then given by

w (p0,3) =
1 + g1,3w (p0,1) + g2,3w (p0,2)

g2,3 + g1,3 + g0,3
.
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It can be shown that the weight of the partial path p0,i is

computed recursively as

w (p0,i) =

1 +

i−1
∑

j=1

gj,iw (p0,j)

i−1
∑

j=0

gj,i

. (5)

Observe that we can only compute this path weight over a

hypergraph.

IV. OPTIMALITY OF DIJKSTRA’S ALGORITHM IN

ACCUMULATIVE NETWORKS

In this section, we present sufficient conditions to guarantee

that Dijkstra’s algorithm finds the lightest path over a directed

hypergraphH(V,E). We begin by providing the mathematical

representation of a path selection criteria which is usually

called as routing metric. We represent a routing metric follow-

ing the notation in [2] as an algebra on top of a quadruplet

(Q,⊕, w,�), where Q is the set of all possible paths, ⊕ is a

binary operation that maps pairs with a path and an ordered

sequence of nodes into a path, i.e. if the path a ∈Q and the

last node in a coincides with the first node of the ordered

sequence of nodes b, then a⊕b denotes the concatenation of

path a with the ordered sequence of nodes b, with a⊕b ∈Q,

w is a function that maps a path to a weight, and � is an

order relation, where w(a) � w(b) means the path a is lighter

(better) that or equal to b. Given a routing metric (Q,⊕, w,�),
a routing protocol operates with the path weights of the paths

in Q to find the lightest path q∗ ∈ Q between a source and a

destination.

The concatenation operation as defined above differs

slightly from the one defined in [2] for graphs. In [2], ⊕
concatenates two paths in Q, and returns a path also in Q.

The definition of ⊕ presented here is motivated by the fact

that in a hypergraph, even if the ordered set of nodes b does

not belong to Q, the path a⊕ b might belong to Q.

A. Optimality Conditions in Traditional Multi-hoping

Here we review the conditions that guarantee that Dijkstra’s

algorithm finds the lightest path in a directed graph G(V,E),
and discuss their extension to directed hypergraphs H(V,E).

Given a graph, references [1] and [2] developed a compre-

hensive framework to identify the specific conditions a routing

metric needs to satisfy in order to be combined with a certain

type of optimal routing protocol to obtain the optimal path. In

particular, it was shown that Dijkstra’s algorithm with source

routing is optimal if and only if, the routing metric satisfies

right-monotonicity and right-isotonicity. These properties are

here stated, mostly, as they appear in [2] with the necessary

modifications to account for the new definition of the binary

operation ⊕.

Definition 1: The quadruplet (Q,⊕, w,�) is right-

monotonic if w (a) � w (a⊕ b), for any paths a, a ⊕ b in

Q.

Algorithm 1 Dijkstra’s algorithm

Dijkstra(R, w, o)

1: for each node t∈ R do

2: lo,t ←∞; po,t ← NIL
3: end for

4: lo,o ← 1; po,o ← o;

5: while R 6= ∅ do

6: u= argminr∈R lo,r;

7: Extract u from R
8: for each node r∈ R do

9: compute wu⊕r = w
(

po,u ⊕ 〈u,r〉)
)

10: if lo,r � wu⊕r then

11: lo,r ← wu⊕r ;po,r ← 〈po,u ⊕ 〈u,r〉〉
12: end if

13: end for

14: end while

Definition 2: Given the paths a and b between two nodes

A and B, and the paths a⊕c and b⊕c from A to a third node

C, sharing the nodes in c. If w (a) � w (b), the quadruplet

(Q,⊕, w,�) is right-isotonic if w (a⊕ c) � w (b⊕ c) for

any paths a, b, a⊕ c in Q.
This definition of right-monotonicity differs from the one

presented in [2], in that it does not restrict the paths b

to belong to Q. Similarly, the definition of right-isotonicity

differs form the one in [2] in that it does not restrict the paths

c to those in Q.

If the network is modeled by a directed graph as in the

TM network model, then the right-monotonicity and right-

isotonicity conditions are necessary and sufficient conditions

for Dijkstra’s algorithm to find the lightest path. However,

if the network needs to be modeled as a hypergraph, as is

likely the case in AM networks, then these conditions are no

longer necessary. Satisfying both conditions is still sufficient

for Dijkstra’s algorithm to find the lightest path. The proof of

sufficiency follows exactly the one provided in [2] for graphs,

and is thus not reproduced here. The lack of necessity is

demonstrated next, by presenting an alternative set of sufficient

conditions for the optimality of Dijkstra’s algorithm.

B. Optimality Conditions in Accumulative Multi-hoping

Although right-monotonicity and right-isotonicity condi-

tions are sufficient to show the optimality of Dijkstra’s algo-

rithm, they might not be very helpful for path weight function

in AM networks. The right-isotonicity condition, for instance,

can only be satisfied if there is a certain decoupling between

the nodes in paths a, or b, and those in path c. However,

it is precisely, the connection between these nodes what we

want to include by considering AM networks. In the following,

we present a new set of sufficient conditions that guarantee

the optimality of Dijkstra’s algorithm in directed hypergraphs,

with only one hyperedge per node.

Definition 3 (Condition C1): Consider a route metric

(Q,⊕, w,�) defined in a hypergraph with only one edge per

node. Given any path a whose last node is A, and the paths



5
a⊕〈A,B〉 and a⊕〈A,C〉 sharing the common root path a, we

say that the route metric satisfies condition C1 if satisfying

any of the conditions below, implies satisfying all the others

w(a ⊕ 〈A,B〉) � w (a⊕ 〈A,C〉) , (6a)

w(a ⊕ 〈A,B〉) � w(a ⊕ 〈A,B,C〉), (6b)

w(a ⊕ 〈A,B,C〉) � w (a⊕ 〈A,C〉) , (6c)

w(a ⊕ 〈A,B〉) � w(a ⊕ 〈A,C,B〉), (6d)

w(a ⊕ 〈A,C,B〉) � w (a⊕ 〈A,C〉) (6e)

for any paths a⊕〈A,B〉, a⊕〈A,C〉 belonging to Q. Observe that

for hyperpaths with only one edge per node it is guaranteed

that the paths a ⊕ 〈A,B,C〉, and a ⊕ 〈A,C,B〉 also belong to

Q.
Definition 4 (Condition C2): A path weight satisfies con-

dition C2 if for any ordered set of nodes c, with partial

paths c0,j = 〈c[0], ..., c[j]〉 , j = 0, ..., |c| − 1 satisfying

w (a⊕ 〈A,B〉)) � w(a⊕
〈

A, c0,j
〉

) for all j, implies that

w(a ⊕ 〈A,B,c〉) � w(a⊕ 〈A, c〉) (7)

for any paths a⊕ 〈A,B〉, and a⊕ 〈A,c〉 ∈ Q.

Condition C1, basically, implies that given a path a⊕〈A,C〉
there exists a lighter path to node C given by a⊕ 〈A,B,C〉, if

and only if, the path a⊕〈A,B〉 is lighter than a⊕〈A,C〉. Con-

dition C2 replaces node C by any complete path c satisfying

w (a⊕ 〈A,B〉)) � w(a⊕
〈

A, c0,j
〉

) for all j.

The next theorem states the sufficiency of conditions C1

and C2 for the optimality of Dijkstra’s algorithm in a directed

hypergraph.

Theorem 1: If a routing metric (Q,⊕, w,�) satisfies con-

ditions C1 and C2, then Dijkstra’s algorithm finds the optimal

path.

Proof: Given a hypergraph H(V,E), the set of nodes

R = V , the path weight function w, and the origin node of

the path search o, Dijkstra’s algorithm returns a set of paths

po,r, from node o to every other network node r∈ R/o, as

well as the weights associated to those paths lo,r. The pseudo

code of Dijkstra’s algorithm is shown in Algorithm 1. Let us

denote asR(i), p
(i)
o,r and l

(i)
o,r , respectively, the state of the setR

(R(0) = V ), the paths po,r and the weights lo,r at the beginning

of the i-th iteration. Suppose the initial iteration is i = 0. Let

u[i] be the node extracted from R(i) in lines 6-7 at iteration

i. We say that the path po,u[i] from node o to u[i] is found at

iteration i, as it is no longer updated by the algorithm.

We prove this theorem in two steps. First, we show that

for a routing metric satisfying condition C1 in Definition 3,

Dijkstra’s algorithm at iterations i = {1, ..., |V | − 1} finds

the path po,u[i] from the origin o to node u[i] as u0,i =
〈u0,i−1,u[i]〉 where u0,i−1 is the path found at iteration i−1,

(u[0] =o) and u[i] is the node that satisfies

u[i] = arg min
r∈R(i)

w(〈u0,i−1, r〉) (8)

whereR(i) = R(i−1)/u0,i−1. Then, we show that for a routing

metric satisfying also condition C2, the path u0,i is the lightest

path from node o to node u[i].

Step 1: Suppose condition lo,r � wu⊕r is satisfied for every

node r∈ R(i), from iteration 0 to i. At these iterations, the

weights lo,r and paths po,r are updated ∀r∈ R(i) in line 11, as

p(i+1)
o,r = p

(i)
o,u[i] ⊕ 〈u[i], r〉 , (9)

l(i+1)
o,r = w

(

p(i+1)
o,r

)

. (10)

At iteration 0, line 6 of Dijkstra’s algorithm selects u[0] =o

and thus, the paths po,r ∀r∈ R(0) are updated, as

p(1)
o,r = 〈u[0], r〉 . (11)

At iteration 1, line 6 selects u[1]. Note that p
(1)
o,u[1] =

〈u[0],u[1]〉, and thus, the paths ∀r∈ R(1) are updated as

p(2)
o,r = 〈u[0],u[1], r〉 . (12)

Observe that at every iteration the paths po,r for every node

r, share the common root path u1,i = 〈u[1], ...,u[i]〉, i.e.

p
(i+1)
o,r = u0,i ⊕ 〈u[i], r〉 = 〈u0,i, r〉 for all r. Consequently,

node u[i] in line 6 is chosen according to (8). Observe that

u[i] = arg min
r∈R(i)

l(i)o,r ,

= arg min
r∈R(i)

w
(

p(i)
o,r

)

,

= arg min
r∈R(i)

w(〈u0,i−1, r〉). (13)

It only remains to show that condition lo,r � wu⊕r in line 10

is always satisfied as previously assumed. We show that if

condition lo,r � wu⊕r is satisfied from iteration 0 to i − 1, it

is also satisfied at iteration i. At the beginning of iteration i,

we have that p
(i)
o,r = 〈u0,i−1, r〉 and l

(i)
o,r = w (〈u0,i−1, r〉). If

node u[i] is chosen in line 6, according to (8) it is satisfied

that w (〈u0,i−1,u[i]〉) � w (〈u0,i−1, r〉) for all r∈ R(i), then,

in line 9, we compute

wu⊕r = w (〈u0,i−1,u[i], r〉) . (14)

It is then a direct consequence of condition C1, that

wu⊕r = w (〈u0,i−1,u[i], r〉) ,

� w (〈u0,i−1, r〉) ,

= l(i)o,r (15)

and thus, condition lo,r � wu⊕r is also satisfied at the i−th

iteration for every node. Finally, notice that the condition lo,r �
wu⊕r is trivially satisfied at i = 0, since initially lo,r =∞ for

all r.

Step 2: Next, we show that if a routing metric satisfies

conditions C1 and C2, then the path u0,i is the lightest

paths from node u[0] to node u[i]. We prove this result by

contradiction. Assume that the lightest path s between a given

source-destination pair S-D satisfies s[i] = u[i] for j < i but

s[i] 6= u[i]. Given that u[i] is choose according to (8), we have

that

w (〈s0,i−1,u[i]〉) � w (〈s0,i−1, s[i]〉) .

Let us denote B=u[i]. We define a new path from the source

S to the destination D by including node B between nodes
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s[i−1] and s[i], namely 〈s0,i−1,B,si,L+1〉 . We show next that

this path is lighter than the original path s = 〈s0,i−1, si,L+1〉
which contradicts the assumption that s is the lightest path.

Denote a = s0,i−1, and c = si,L+1 with c[0] = s[i] =C.

In this case, the newly defined path reads 〈a,B,c〉 , and from

condition (8), we have that

w(〈a,B〉) � w (〈a,C〉) . (16)

We consider the following two possible situations: i) Assume

that the partial path c satisfies w (〈a,B〉)) � w(〈a, c0,j〉)
for all j. In this case, it is a direct consequence of condi-

tion C2 that w(〈a,B,c〉) � w(〈a, c〉) or, equivalently, that

w(〈s0,i−1,B,si,L+1〉) � w(s). ii) Instead, assume that the

partial path c satisfies

w (〈a,B〉)) � w(〈a, c0,j〉), (17)

for all j < m but not at j = m, this is

w (〈a,B〉) � w(〈a, c0,m−1,D〉) (18)

with c[m] =D. In this case, we show next, that conditions

C1 and C2 require that w (〈a,B〉)) � w(〈a,D〉), which

contradicts the assumption that node B is chosen in (8). To

prove this result, we iteratively remove the node prefixed to

node D in the path 〈a,B, c0,m−1,D〉, until node B is finally

removed. We show that a lighter path to node D is obtained at

every iteration. We begin by removing node c[m−1]. Denote,

c[m − 1]=C and a′ = 〈a,B, c0,m−2〉 . Then, combining (17)

for j = m− 1, and (18), we have that

w(〈a′,C,D〉) � w (〈a,B〉) , (19a)

� w(〈a′,C〉) (19b)

and thus, satisfying conditions C1 implies that

w(〈a′,D〉) � w(〈a′,C,D〉) (20)

or, equivalently,

w(〈a,B,c0,m−2,D〉) � w(〈a,B,c0,m−1,,D〉). (21)

This is, by removing node c[m− 1], we obtain a lighter path

to node D. Next, we remove node c[m − 2]. By combining

(17) with (18) for j = m− 2, we can write

w(〈a,B,c0,m−3, c[m− 2]〉) � w(〈a,B, c0,m−1,D〉), (22a)

� w(〈a,B,c0,m−2,D〉). (22b)

Now, denote C= c [m− 2] and a′ = 〈a,B, c0,m−3〉, then

(22b) can be rewritten as

w(〈a′,C,D〉) � w(〈a′,C〉) (23)

and thus, following previous arguments, satisfying condition

C1 implies

w(〈a,B,c0,m−3,D〉) � w(〈a,B,c0,m−2,,D〉), (24a)

� w(〈a,B,c0,m−1,,D〉). (24b)

This is, by removing node c[m− 2], we obtain a lighter path

to node D. We repeat this procedure until we remove node B.

V. OPTIMALITY ANALYSIS OF MINIMUM ENERGY

ACCUMULATIVE ROUTING METRICS

In this section, we study the optimality of Dijkstra’s al-

gorithm for the minimum energy accumulative path weight

functions presented in Section III.

A. Decode-and-Forward Relaying

We begin by discussing the optimality of Dijkstra’s algo-

rithm for the TM path weight function in (1). In this case,

the routing problem can be modeled using a graph, where

the metric of the edge between nodes u and v is given by

β (eu,v) = gu,v and thus, in that case, right-monotonicity and

right-isotonicity are not only sufficient but also necessary

conditions.

Let us consider any path weight function that admits the

following recursive computation in a graph

w(p0,i) =

{ 1
βp[i−1],p[i]

+ w(p0,i−1), if w(p0,i) ≥ w(p0,i−1)

∞ otherwise
(25)

where βu,v is the metric associated to the edge eu,v.

We can obtain the path weight in (1) for the TM, from (25)

by setting β (eu,v) = βu,v = gu,v for all u,v. Given that gu,v ≥ 0
for all u and v, it is also satisfied that w(p0,i) ≥ w(p0,i−1)
for all i.

Right-monotonicity is implicit in the path weight definition

(25) as we require w(p0,i) ≥ w(p0,i−1). Notice that it is

satisfied even if βp[i−1],p[i] < 0. To show right-isotonicity,

consider the paths a and b between nodes A and B, with w (a)
and w (b) satisfying w (a) ≤ w (b). Let us concatenate, node

C to the right of a and b, then the path weight at node C is

given by

w (a⊕ 〈B,C〉) =
1

βB,C

+ w (a⊕ C) , (26a)

w (b⊕ 〈B,C〉) =
1

βB,C

+ w (b⊕ C) . (26b)

If βB,C ≥ 0 then w (a) ≤ w (b) implies w (a⊕ 〈B,C〉) <
w (b⊕ 〈B,C〉). Instead if βB,C < 0, then w (a⊕ 〈B,C〉) =
w (b⊕ 〈B,C〉).

The path weight in (3) for the decode-and-forward relaying

in AM networks can only be defined in a hypergraph. It is

well-know that the problem of finding the optimal path for

this routing metric is NP-complete [3] and [4]. Accordingly,

although this path weight satisfies right-monotonicity, it does

not satisfies right-isotonicity, nor conditions C1 and C2, and

thus, the optimality of Dijkstra’s algorithm can not be guar-

anteed.

Let us instead discuss the optimality of Dijkstra’s algorithm

for a simpler AM with DF relaying. Let us limit the accumu-

lative capabilities at nodes and suppose that every relay node

only listens to the source, and to the immediately previous

node. Then, the power received at node p[i] from nodes

0 < j < i − 1 is not accumulated. Substituting gp[j],p[i] = 0
for 0 < j < i− 1 into (3), we obtain the path weight function
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for this situation as

w(p0,i) =
1

gi−1,i
+

gi−1,iw(p0,i−1)− g0,iw(p0,1)

gi−1,i
,

=
g0,1 − g0,i
gi−1,ig0,1

+ w(p0,i−1) (27)

if w(p0,i) > w(p0,i−1) and w(p0,i) = ∞, otherwise. This

path weight function can now be defined using a graph.

Suppose, the first relay is fixed, then, we could define the

metric associated to the edge between nodes u, and v, as

β (eu,v) = βu,v =
gu,vgS,R

gS,R − gS,v

and write (27) as in (25). Now, we can find the optimal path

from a source-relay pair 〈S,R〉 to every other network node

using Dijkstra’s algorithm. We however need to repeat the

search for all possible first relay nodes in order to get the

optimal path from the source node.

B. Cut-set bound

Next, we study the optimality of Dijkstra’s algorithm for the

cut-set bound path weight function in (5). This path weight

function can only be computed over a hypergraph, it does not

satisfies right-monotonicity nor right-isotonicity. However, as

we show in next theorem it satisfies conditions C1 and C2, and

thus, the optimal path can be found using Dijkstra’s algorithm.

Theorem 2: Consider a hypergraph H(V,E) with only one

edge per node, where the metric associated to the hyperedge

of node u is defined as β (eu) = {gu,v, ∀v}. The cut-set path

weight function in (5) satisfies conditions C1 and C2, and thus,

Dijkstra’s algorithm finds the optimal path.

Proof: We first show that condition C1 is satisfied. Let

a be a path with La relays nodes, a = 〈a[0], ..., a[La + 1]〉.
Given the paths 〈a,X〉, where X is any network node X∈ V ,

define

NX = 1 +

La+1
∑

l=1

ga[l],Xw (a0,j) ,

DX =

La+1
∑

l=0

ga[l],X.

Then, the weight of the paths evaluated in condition C1 are

given by

w(〈a,C〉) =
NC

DC

, (28)

w(〈a,B〉) =
NB

DB

, (29)

w(〈a,B,C〉) =
NC + gB,Cw(〈a,B〉)

DC + gB,C

, (30)

w(〈a,C,B〉) =
NB + gC,Bw(〈a,C〉)

DB + gC,B

. (31)

Suppose that w(〈a,B〉) � w (〈a,C〉), and gB,C, gC,B ≥ 0, then

observe that

w(〈a,B,C〉) =
NC + gB,Cw(〈a,B〉)

DC + gB,C

,

�
NC + gB,Cw (〈a,C〉)

DC + gB,C

,

= w (〈a,C〉) (32)

and

w(〈a,C,B〉) =
NB + gC,Bw(〈a,C〉)

DB + gC,B

,

�
NB + gC,Bw(〈a,B〉)

DB + gC,B

,

= w(〈a,B〉). (33)

By isolating w(〈a,B〉) from (30) and using (32), we observe

that

w(〈a,B〉) = w(〈a,B,C〉) +
DCw(〈a,B,C〉)−NC

gB,C

,

� w(〈a,B,C〉) +
DCw (〈a,C〉)−NC

gB,C

,

= w(〈a,B,C〉). (34)

Notice that, the reverse is also true, i.e. satisfying (32) implies

w(〈a,B〉) =
w(〈a,B,C〉) (DC + gB,C)−NC

gB,C

,

�
w (〈a,C〉) (DC + gB,C)−NC

gB,C

,

= w (〈a,C〉) . (35)

Next, by isolating w(〈a,C〉) from (31) and using (33), we

observe that

w(〈a,C〉) = w(〈a,C,B〉) +
w 〈a,C,B〉)DB −NB

gC,B

,

� w(〈a,C,B〉) +
w(〈a,B〉)DB −NB

gC,B

,

= w(〈a,C,B〉). (36)

Next, we show that condition C2 is also satisfied. Let

us consider the paths 〈a, c〉 and 〈a,B, c〉 where c =
〈c[0], ..., c[Lc + 1]〉 and denote the weight of the paths

〈a, c0,i〉 as

w(〈a, c0,i〉) =
Ni

Di

(37)

for i = 0, ..., Lc + 1. Let us decompose Ni and Di as Ni =
Na,i +Nc,i and Di = Da,i +Dc,i where

Na,i = 1 +

La+1
∑

l=0

ga[l],c[i]w (a0,l) , Da,i =

La+1
∑

l=0

ga[l],c[i],

Nc,i =

i−1
∑

l=0

gc[l],c[i]w (〈a, c0,l〉) , Dc,i =

i−1
∑

l=0

ga[l],c[i].
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Then, observe that if w (〈a,B〉) � w (〈a, c0,l〉) for all l and

w (〈a,B, c0,l〉) � w (〈a, c0,l〉) for l = 1 to l = i − 1, then

w(〈a,B, c0,i〉)

=

Na,i + gB,c[i]w (〈a,B〉) +
i−1
∑

l=0

gc[l],c[i]w (〈a,B,c0,l〉)

Da,i + gB,c[i] +Dc,i

,

(38a)

�
Ni + gB,c[i]w (〈a,B〉)

Di + gB,c[i]
. (38b)

=
Ni + gB,c[i]

w(〈a,B〉)
w(a,c0,i)

Ni

Di

Di + gB,c[i]
, (38c)

�
Ni + gB,c[i]

Ni

Di

Di + gB,c[i]
, (38d)

=
Ni

Di

= w(〈a, c0,i〉). (38e)

where inequality (38b) is due to w (〈a,B,c0,l〉) �
w (〈a, c0,l〉) for l = 0, ..., i − 1 and inequality (38d) is due

to w (〈a,B〉) � w(a, c0,i).

VI. CONCLUSIONS

In this paper, we studied the routing problem in accumu-

lative multi-hop networks. We showed that as opposed to

traditional multi-hoping where the network is well modeled by

graph, for routing in accumulative networks, the network needs

to be modeled by a hypergraph. We studied the properties

that guarantee that Dijkstra’s algorithm finds the optimal

path in such networks, and presented sufficient conditions

for the optimality. These conditions are particularized for the

minimum energy routing problem with decode-and-forward

relays and for the cut-set bound.

REFERENCES

[1] J. Sobrinho, “An algebraic theory of dynamic network routing,” Net-

working, IEEE/ACM Transactions on, vol. 13, no. 5, pp. 1160 – 1173,
oct. 2005.

[2] Y. Yang and J. Wang, “Design guidelines for routing metrics in multihop
wireless networks,” in IEEE INFOCOM, 2008, pp. 1615 –1623.

[3] I. Maric and R. Yates, “Cooperative multihop broadcast for wireless
networks,” IEEE J. Select. Areas Commun., vol. 22, no. 6, pp. 1080–
1088, Aug. 2004.

[4] J. Chen, L. Jia, X. Liu, G. Noubir, and R. Sundaram, “Minimum energy
accumulative routing in wireless networks,” in Proc. IEEE INFOCOM,
vol. 3, Mar. 2005, pp. 1875 – 1886.

[5] A. Molisch, N. Mehta, J. Yedidia, and J. Zhang, “Cooperative relay
networks using fountain codes,” in Proc. IEEE Global Communications

Conference (GLOBECOM), Nov. 2006.

[6] J. Castura and Y. Mao, “Rateless coding over fading channels,” Com-

munications Letters, IEEE, vol. 10, no. 1, pp. 46–48, Jan 2006.

[7] S. C. Draper, L. Liu, A. F. Molisch, and J. S.Yedidia, “Cooperative
routing for wireless networks using mutual-information accumulation,”
IEEE Trans. Inform. Theory, vol. 57, Aug. 2011.

[8] Z. Yang and A. Høst-Madsen, “Routing and power allocation in
asynchronous gaussian multiple-relay channels,” EURASIP Journal on

Wireless Communications and Networking, 2006.

[9] T. Girici and A. C. Kazez, “Energy efficient routing with mutual infor-
mation accumulation,” in Modeling and Optimization in Mobile, Ad Hoc

and Wireless Networks (WiOpt), 2012 10th International Symposium on,
may 2012, pp. 425 –430.

[10] R. Yim, N. Mehta, A. F. Molisch, and J. Zhang, “Progressive accumu-
lative routing in wireless networks,” in Proc. IEEE Global Communica-

tions Conference (GLOBECOM), Nov. 2006.
[11] T. Cover and J. A. Thomas, Elements of Information Theory, New York:

Wiley, 1991.
[12] “Linear connectivity problems in directed hypergraphs,” Theoretical

Computer Science, vol. 410.
[13] R. Urgaonkar and M. Neely, “Optimal routing with mutual information

accumulation in wireless networks,” Selected Areas in Communications,

IEEE Journal on, vol. 30, no. 9, pp. 1730 –1737, october 2012.
[14] A. Avestimehr, S. Diggavi, and D. Tse, “Wireless network information

flow: A deterministic approach,” Information Theory, IEEE Transactions

on, vol. 57, no. 4, pp. 1872–1905, 2011.


