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Fast, Responsive Decentralised Graph Colouring
Alessandro Checco and Doug J. Leith

Abstract—Graph colouring problem arises in numerous
networking applications. We solve it in a fully decentralised way
(i. e. with no message passing). We propose a novel algorithm that
is automatically responsive to topology changes, and we prove
that it converges to a proper colouring in O(N logN) time with
high probability for generic graphs when the number of available
colours is greater than ∆, the maximum degree of the graph, and
in O(logN) time if ∆ = O(1). We believe the proof techniques
used in this work are of independent interest and provide new
insight into the properties required to ensure fast convergence of
decentralised algorithms.

I. INTRODUCTION

Many fundamental wireless network allocation tasks can be

formulated as a colouring problem, including channel and sub-

carrier allocation [8], TDMA scheduling [1, 9], scrambling

code allocation [6], network coding [8] and so on. Importantly,

these tasks must often be solved while respecting strong

communication constraints due, for example, to the range

over which devices can communicate being smaller than

the range over which they interfere or otherwise interact.

Moreover, the network topology can change over time, re-

quiring the nodes to dynamically adapt to this. Recently, fully

decentralised Communication-Free Learning (CFL) algorithms

have been proposed for solving general constraint satisfaction

problems without the need for message-passing [8] and with

the ability to respond automatically to topology changes.

These Communication-Free Learning (CFL) algorithms ex-

ploit local sensing to infer satisfaction/dissatisfaction of con-

straints, thereby avoiding the need for message-passing and

use stochastic learning to converge to a satisfying assignment.

The extension to colouring problems with strong sensing

restrictions is investigated in [5].

However, this class of algorithms has not been proven to

be fast: the only analytic bound available is exponential in

the number of nodes. Further, even though the performance

observed in simulations is typically sub-exponential, the de-

pendency of the convergence rate on the algorithm parameters

is not clear.

In this paper we address both of these issues. We propose

a novel algorithm that is provably fast (O(N logN) when the

number of available colours is greater than ∆ (the maximum

degree of the graph). Moreover, this algorithm is well suited to

implementation on resource constrained devices such as RFID

tags, because it has a small memory and computation footprint,

involves no floating point arithmetic, no multiplications or
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divisions and only needs the availability of a uniform random

number generator. The algorithm makes use of a new type

of “memory” when learning a colouring and this gives some

insight into which parts of the existing stochastic learning

algorithms are needed to ensure fast convergence. We analyse

how the algorithm parameters affect the convergence rate,

and determine choices that guarantee fast convergence while

maintaining responsiveness to topology changes.

Our theoretical bounds on convergence rate are obtained

using a novel stochastic drift analysis that we believe is of

independent interest.

A. Related Work

In the graph theory and computer science literature, the

problem of colouring with ∆+1 colours has been thoroughly

studied [12, 15, 17, 21]. In particular, the family of locally

iterative algorithms has received much attention. This family

of algorithms makes use of the following strong assumptions:

1) The algorithm can use an unbounded number of colours

during its operation, although it eventually reduces the

number over time;

2) The graph topology is assumed to be known and fixed;

3) Each graph vertex needs to know which colours are used

by its neighbours.

Szegedy and Vishwanathan [21] use an heuristic argument to

show that no locally iterative (∆ + 1)-colouring algorithm

is likely to terminate in less than Ω(∆ log∆) rounds (lower

bound). More refined bounds have been obtained in [3, 11].

However, in the wireless networking field, these three

assumptions are rarely satisfied. To our knowledge, Assump-

tion 1 is not used by any work in the wireless networking

field, presumably because it is obviously inappropriate for

such applications. Assumption 2 has been relaxed in two main

ways: by using network-wide stopping/restarting techniques

in annealing-like algorithms [13], and by use of learning

algorithms [2, 4, 8, 14, 15, 21]. Assumption 3 (in the form of

either centralised or gossiping-like message passing) is used

in [7, 12, 13, 20, 23]. However, communication between nodes

often cannot be relied upon in the design of a robust algorithm

in cases where e. g. wireless nodes belong to different admin-

istrative domains or when the devices are too simple to be

able to realise such communication (see, for example, Radio-

Frequency Identification devices).

The most challenging problem of graph colouring in which

no message passing is possible (so none of the three assump-

tions hold) has recently attracted attention in the wireless

networking literature in [2, 8, 18].

The Learning-BEB algorithm, proposed by Barcelo et al. [2]

is an algorithm devised for achieving collision-free scheduling

in 802.11 networks. It is a modification of the CSMA/CA
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mechanism of truncated exponential backoff: after a successful

transmission, the transmitter uses a fixed backoff interval

P , while after a collision it selects an interval uniformly at

random (u.a.r.) in the contention window range. Within the

terminology of graph theory, this corresponds to a colouring

algorithm in which each node selects the same colour after

being locally satisfied, and selects a colour u.a.r. otherwise.

This algorithm is known to suffer from slow convergence

rates [9], but it has the advantage of being easy to implement.

Roughly speaking, for a complete graph the probability of

success for the whole graph in a step is (1/N)N . So, the

number of iterations needed to completely colour a graph with

this method with probability bigger than 1− ǫ is of the order

of log(ǫ−1)e(NlogN), that is exponential in N .

The algorithm proposed by Motskin et al. [18] is similar

to [2], with the advantage of being provably fast (O(logN)
when ∆ = O(N)) but with the major disadvantage of not

being adaptive to topology changes, since after a correct

local choice, the node keeps the chosen colour forever. The

possibility of change in topology, together with the constraint

of no message passing, makes this algorithm unable to ”reset”

when a change of topology happens, and thus this intuitive

approach does not work.

The CFL algorithm proposed by Duffy et al. [8] uses a

stochastic learning mechanism to update the probability of

choosing each colour based on local sensing. In simulations it

is fast, and it is provably adaptive to topology changes. The

main disadvantage is that it is hard to prove good convergence

rate bounds and it is too complicated to implement in simple

hardware such as Radio-Frequency Identification (RFID) tags.

It is worth noting that all three algorithms share the common

property of initially selecting colours u.a.r. and staying with

the same colour when locally satisfied. They also all belong to

the family of locally iterative algorithm, even if they do not use

assumptions 1-3. The difference between them lies in the way

they respond to a loss of local satisfaction: Learning-BEB will

go back to u.a.r. selection, the algorithm proposed by Motskin

et al. [18] will keep the same choice even if locally unsatisfied,

and CFL will distribute the probability mass amongst all

colours, decreasing the probability of choosing the current un-

satisfying colour. Learning-BEB is equivalent to CFL when the

latter uses parameters a = b = 1 (in the terminology of [8]).

To summarise, when message passing is not allowed and the

graph topology can change over time, the existing solutions

cannot provide a provably fast colouring, because of one of

these reasons:

• The ability to react to a topology change creates conver-

gence speed problems (Learning-BEB [2]).

• The ability to quickly converge comes at the expense

of being unable to react to topology changes (algorithm

in [18]).

• The ability to learn from the local graph topology by

passive observation of the local state of a vertex via

stochastic mechanisms make very arduous to prove fast

convergence (CFL [8]).

Our approach allows to gain some insight into which parts

of the existing stochastic learning algorithms are needed to

ensure fast convergence, so that a simple and provably fast

algorithm can be devised.

II. PRELIMINARIES: PROBLEM DEFINITION

We use the notation introduced in [8] for the more general

decentralised constraint satisfaction problem, applying it to

graph colouring problem as in [5].

Let G = (N , E) denote an undirected graph with set of

vertices N = {1, . . . , N} and set of edges E := {(i, j) :
i, j ∈ N , i ↔ j}, where i ↔ j denotes the existence of an

edge between i and j. Let ∆ denote the maximum degree of

vertices in graph G i. e. the maximum number of neighbours.

A Colouring Problem (CP) on graph G with D ∈ N colours

is defined as follows. Let xi ∈ D denote the colour of vertex

i, where D = {1, . . . , D} is the set of available colours, and

~x denote the vector (x1, . . . , xN ). Define clause Φm : DN 7→
{0, 1} for each edge m = (i, j) ∈ E with:

Φm(~x) = Φm(xi, xj) =

{

1 if xi 6= xj

0 otherwise.

We say clause Φm(~x) is satisfied if Φm(~x) = 1. An assign-

ment ~x is said to be satisfying if for all edges m ∈ E we have

Φm(~x) = 1. That is

~x is a satisfying assignment iff min
m∈E

Φm(~x) = 1. (1)

Equivalently, ~x is a satisfying assignment if and only if xi 6=
xj for all edges (i, j) ∈ E i. e. if i ↔ j. For any colour

allocation, we say a vertex is unsatisfied if at least one of its

neighbours has the same colour; otherwise the vertex is said to

be satisfied. A satisfying assignment for a colouring problem

is also called a proper colouring.

Definition 1 (Chromatic Number). The chromatic number

χ(G) of graph G is the smallest number of colours such that

at least one proper colouring of G exists.

We require the number of colours D in our palette to be

greater than or equal to χ(G) for a satisfying assignment to

exist.

A. Decentralized CP Solvers

Definition 2 (CP solver). Given a CP, a CP solver realizes

a sequence of vectors {~x(t)} such that for any CP that has a

satisfying assignment

(D1) for all t sufficiently large ~x(t) = ~x for some satisfying

assignment ~x;

(D2) if t′ is the first entry in the sequence {~x(t)} such that

~x(t′) is a satisfying assignment, then ~x(t) = ~x(t′) for all

t > t′.

In order to give criteria for classification of decentralized

CP solvers, we re-write the LHS of Equation (1) to focus on

the satisfaction of each variable

~x is a satisfying assignment iff min
i∈N

min
m∈Ei

Φm(~x) = 1. (2)

where Ei consists of all edges in E that contain vertex i, i. e.

Ei =
{

(j, i) : (j, i) ∈ E
}

.
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A decentralized CP solver is equivalent to a parallel solver,

where each variable xi runs independently an instance of the

solver, having only the information on whether all of the

clauses that xi participates in are satisfied or at least one clause

is unsatisfied. The solver located at variable xi must make its

decisions only relying on this information.

Definition 3 (Decentralized CP solver). A decentralized CP

solver is a CP solver that for each variable xi, must select its

next value based only on the evaluation of

min
m∈Ei

Φm(~x). (3)

That is, the decision is made without knowing

(D3) the assignment of xj for j 6= i.
(D4) the set of clauses that any variable, including itself,

participates in, Ej for j ∈ N .

(D5) the clauses Φm for m ∈ E .

III. FAST COLOURING

The basic idea used in [8] to establish convergence is to

show that (i) for any graph and starting from any choice

of colours there exists a sample path that leads to a proper

colouring and (ii) over O(N) iterations this sample path occurs

with probability bounded away from zero. While providing a

bound on the convergence rate that appears to be order optimal,

this approach cannot be used to show that fast convergence

occurs when the number D of colours is at least ∆ + 1.

For that, we need an approach that provides insight into how

the fraction of sample paths leading to a proper colouring

increases with D. In this paper we therefore adopt an entirely

different approach from that in [8], namely one based on

stochastic drift analysis.

A. FCFL Algorithm

As will become clear, it will prove helpful to consider the

following generalisation of the CFL algorithm, called Fast

Communication-Free Learning (FCFL):

Algorithm 1 Fast Communication-Free Learning

1: Define Sτ ∈ N, τ = 1, 2, . . . with Sτ+1 ≥ Sτ

2: Define D, the number of colours, parameter 0 < b ≤ 1
and vector p ∈ [0, 1]D

3: Initialise p = 1
D1, m = 0, counters τ = 1, t = 1

4: repeat

5: if t = Sτ then

6: τ = τ + 1, m = 0 ⊲ Reset, exit permanent state

7: end if

8: Select colour c with probability pc
9: if m = 0 then

10: if Satisfied then

11: p = δc ⊲ Stick with same colour

12: m = 1 ⊲ Enter permanent state

13: else

14: p = (1− b)p+ b
D1 ⊲ Unsatisfied

15: end if

16: end if

17: t = t+ 1
18: until Forever

Each vertex maintains a vector p ∈ [0, 1]D, where D is the

number of available colours, and a state m ∈ {0, 1}. When

m = 1 the vertex is said to be in the permanent state. Time is

slotted with slots indexed by t = 1, 2, · · · . A copy of the FCFL

algorithm is run by every vertex, which determines vector p

and state m at each time slot. State m is initially 0, and is

also reset to 0 at times Sτ , τ = 1, 2, . . . . When m = 0, at

each time slot a vertex selects a colour c with probability pc
(the c’th element of vector p). If none of its neighbours have

selected the same colour, the vertex is said to be satisfied

and (i) p is updated so that all elements are 0 except for

element pc which is set equal to 1, (ii) the vertex enters the

permanent state m = 1. The vertex will therefore continue to

select colour c until the next reset time1 Sτ . However, if one

or more neighbours have selected the same colour then the

vertex updates p to (1 − b)p + b
D1, reducing the probability

with with colour c is chosen, and tries again.

Evidently FCFL satisfies requirements D2-D5 of a CP

solver, and we consider requirement D1 shortly. FCFL in-

cludes CFL and the related algorithms in [2, 18] as special

cases. When Sτ = τ , so that the state m is reset to 0 at

every time step, then FCFL is equivalent to CFL2. When,

in addition, b = 1 then unsatisfied vertices select colours

uniformly at random (p equals 1
D1) and FCFL is equivalent to

that considered in [2]. When S1 → ∞ and b = 1 then FCFL

is equivalent to that in [18] (unsatisfied vertices select colours

uniformly at random and once satisfied a vertex then sticks

with the same colour forever).

Intuitively, parameter b affects the memory in the algorithm.

For example, suppose a vertex has selected colour c and

been satisfied so that pc = 1 but has subsequently become

unsatisfied (one of its neighbours has selected colour c). When

b is small, then pc reduces only slowly and so the vertex will

tend to retry colour c repeatedly. Conversely, when b = 1 then

pc is immediately reset to 1/D and becomes as equally likely

as any other colour to be selected at the next time slot. The

interval Sτ+1 − Sτ between reset times similarly affects the

rate of adaptation. When this interval is large then a vertex that

has been satisfied keeps trying the same colour even when it

becomes unsatisfied, and conversely when the interval is small.

We will discuss the impact of b and Sτ on the convergence

rate in more detail below.

B. Absorbing State and Dynamic Recolouring

Observe that the FCFL algorithm involves no stop-

ping/restarting but a proper colouring is an absorbing state

for FCFL, corresponding to a situation where all vertices are

satisfied i. e. once all vertices are satisfied then their colours

will remain fixed. Importantly, the situation where all vertices

are in the permanent state is also absorbing:

1Note that the permanent state differs from the satisfied and unsatisfied
states because a permanent vertex is guaranteed to be satisfied only at the
round in which it becomes permanent.

2We found that the key difficulty with establishing the fast convergence of
CFL is that the algorithm potentially has infinite memory (after a “success”
the probability assigned to a colour is only gradually reduced upon “failure”,
except when there is “success” on another colour). In FCFL, when b = 1

the probability is guaranteed to be reset after at most M failures and in this
sense has only finite memory.
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Lemma 1 (Absorbing States). If all vertices are in the

permanent state, then they are all satisfied.

Proof: First let us note that in the first round in which

a vertex becomes permanent, it is satisfied and it cannot

cause dissatisfaction to its neighbours; the neighbours can

still be unsatisfied, but only because of other vertices. By

contradiction, assume all vertices are in permanent state but

there is at least one vertex i unsatisfied. So there must be at

least another neighbour j unsatisfied and with same colour

of i, by symmetry of dissatisfaction sensing. Now let us call

ti, tj the (last) time in which i and j became permanent,

respectively. Assume, w.l.o.g. that ti < tj (note that equality

is not possible, because at first round a vertex becomes

permanent it is necessarily satisfied). Now at time tj , j became

permanent, so it chose a colour different from i, causing a

contradiction.

It will also prove useful later to note the following:

Corollary 1. A vertex in the permanent state can be unsatis-

fied only by non-permanent neighbours.

Observe also that a useful feature of the FCFL algorithm

(and of CFL for that matter) is that should the graph subse-

quently change, for example upon the appearance of a new

vertex, such that the colouring is no longer proper then one

or more vertices are not satisfied and these will automatically

restart searching for a proper colouring after the next reset

time Sτ+1 has been reached. That is, there is no need for a co-

ordinated restart with its associated communication overhead.

C. Convergence

Basic convergence of the FCFL algorithm can be shown an

approach similar to that used in [8] for the CFL algorithm.

Namely, we have:

Theorem 1 (Convergence). Consider a feasible CP on a graph

G = {N , E}, with palette D. Suppose the FCFL reset times

satisfy Sτ+1 − Sτ ≤ M , τ = 1, 2, · · · and S1 ≤ M . Given

any unsatisfied assignment of colours ~x(0) ∈ DN , then with

probability greater than 1−ǫ ∈ (0, 1), the number of iterations

for the FCFL algorithm to find a proper colouring is less than

MN exp(MN(N+1)
2 log(D)) log(ǫ−1).

Proof: See Appendix.

However, while we know that FCFL converges, the bound on

the convergence rate in Theorem 1 is not sufficient to establish

fast convergence when the number of colours is ∆ + 1 or

greater.

D. Outline of Drift-based Analysis

Let the random variable Zt denote the number of vertices

which are not in the permanent state at time t. Recall that,

by Lemma 1, Zt = 0 is an absorbing state. Letting R ∈
{1, 2, · · · } be the earliest time such that ZR = 0. Since Zt is

integer valued it follows that P(R > t) = P(Zt ≥ 1) and by

Markov’s inequality,

0 ≤ P(Zt ≥ 1) ≤ E[Zt].

N = 2

N = 3

N = 4

N = 5

N = 6

N = 7

Number Zt of non-permanent vertices

E
[Z

t
+
1
|Z

t
]−

Z
t

0 1 2 3 4 5 6 7

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Fig. 1: Expected change in number of non-permanent vertices

vs current number of non-permanent vertices. Results are

shown for a complete graph with N vertices, D = ∆+1 = N
colours and the FCFL algorithm with parameters Sτ = τ ,

b = 1.

Hence, it is sufficient to show that E[Zt] → 0 in order to

ensure that P(Zt ≥ 1) → 0 and so P(Zt = 0) → 1. Further

the convergence time of E[Zt] upper bounds the convergence

time of P(Zt ≥ 1).

If we could show that at all times t the drift E
[

Zt+1|Zt

]

−
Zt ≤ −ǫ for some ǫ > 0 then this would be enough to ensure

that E[Zt] decreases monotonically with time and also allow

the convergence rate to be upper bounded. Indeed, this is the

approach taken in [18] in the special case of FCFL where

S1 → ∞.

Unfortunately, this approach cannot be used more generally

since when the reset times Sτ are finite then the drift may, in

fact, be positive at these times i. e. the number of vertices in

the permanent state can decrease. Further, this positive drift

is essential to ensure that the algorithm is able to respond

to changes (such as addition of new vertices) in the graph

which require recolouring of vertices. Figure 1 illustrates this,

showing the expected change in the number of non-permanent

vertices vs the current number of non-permanent vertices for a

complete graph (each vertex is connected to every other vertex,

so the degree ∆ is N − 1). For N > 3 it can be seen that

the drift is positive as the number of non-permanent vertices

becomes small. This is quite intuitive: suppose two vertices

are in the non-permanent state and so unsatisfied. Only in the

relatively unlikely event in which they choose the remaining

two available colours will the system converge to a proper

colouring, otherwise the non-permanent vertices will cause one

or more of the permanent vertices to be unsatisfied and so to

exit the permanent state at the next reset time.

With the foregoing in mind, let S := {Sτ : τ = 1, 2, . . . }
denote the set of the reset times when the FCFL algorithm

allows vertices to exit the permanent state, and S̄ := N \ S
denote all other times. What we have is that at times t ∈ S̄
the drift E

[

Zt+1|Zt

]

− Zt must be non-positive (vertices can

enter the permanent state but cannot leave it) but at times

t ∈ S the drift may be positive i. e. E
[

Zt+1|Zt

]

may increase.

The situation is illustrated schematically in Figure 2. To show
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time t

E
[Z

t|
Z

1]

S
1

S
2

Fig. 2: Illustrating evolution of E[Zt|Z1] vs time t. At times

t ∈ S the drift may be positive and the value may increase

compared to time t− 1 ∈ S̄ . Nevertheless, at the subsequence

of times t ∈ S the net effect is for E[Zt|Z1] to decrease as

indicated by the dots on the dashed line.

convergence of E[Zt] what we would like to show is that E[Zt]
decreases monotonically at the sequence of reset times t ∈ S ,

as indicated by the dots on the dashed line in Figure 2. But of

course we want more than to just show convergence, we want

to show fast convergence and this requires tight control of the

upper bound indicated by the dashed line so that it decreases

sufficiently quickly.

E. Main Result – Fast colouring with ∆+ 1 colours

We present the proof in the next section, but using the

approach outlined above we can show that if at least ∆ + 1
colours are available (where ∆ is the maximum degree of

the graph), FCFL is provably fast. That is it converges to a

proper colouring in O(N logN) time with high probability

for any graph, and in O(logN) time for graphs of small

maximum degree, i. e. graphs where ∆ = O(1). Moreover,

this is achieved while keeping the interval Sτ+1−Sτ between

reset times small (∆+ 1), allowing the algorithm to respond

quickly to topology changes.

Theorem 2 (Fast Convergence). Consider a CP on a graph

G = {N , E} with maximum degree ∆ and suppose that we

have D > ∆ + 1 available colours. Let N := |N | ≥ 2 and

Zt be the set of vertices in the non-permanent state at time

t ∈ {0, 1, 2, . . . }, with |Zt| = Zt ∈ {0, 1, 2, . . . , N}. Let τ∗

index the first time Sτ∗ at which a proper colouring is found.

For FCFL with Sτ+1 − Sτ ≥ ∆+ 1 and b = 1 we have

P
(

τ∗ ≥ B(N,∆, ǫ)
)

≤ ǫ,

where

B(N,∆, ǫ) :=
logN + log (ǫ−1) +K

(∆ + 1) log ∆+1
∆ + K

∆+1

and K = log 1
1+2 log 2 .

Observe that Theorem 2 states the convergence rate in terms

of the reset times Sτ . When we have Sτ+1 − Sτ ≤ M then

we can immediately express the convergence rate in terms of

time slots.

Corollary 2. Let R ∈ {1, 2, · · · } be the earliest time such that

graph G is properly coloured. When ∆+1 ≤ Sτ+1−Sτ ≤M ,

τ = 1, 2, · · · and S1 ≤M , b = 1 then for FCFL

P
(

R ≥M logN + O(1)
)

≤ ǫ, as N → ∞.

Proof: Since Sτ+1 − Sτ ≤ M for all t = 1, 2, · · · and

S1 ≤M , we can bound the convergence rate in terms of time

slots, namely MB(N,∆, ǫ). Taking the limit of MB(N,∆, ǫ)
as N,∆ → ∞ ends the proof.

Corollary 3 (Small degree). When Sτ = τ(∆ + 1), τ =
1, 2, · · · (periodic reset times), b = 1 and ∆ = O(1), then for

FCFL the convergence time R = O(logN) as N → ∞.

Proof: The thesis follows as for Corollary 2, by setting

M = ∆+ 1 and assuming ∆ ≤ β.

Corollary 4 (Almost complete graphs). When Sτ = τ(∆+1),
τ = 1, 2, · · · , b = 1 and ∆ = Θ(N), then for FCFL the

convergence time R = O(N logN) as N → ∞.

Proof: The thesis follows as for Corollary 2, by setting

M = ∆+ 1 and assuming limN,∆→∞
∆
N = β > 0,.

A convergence time of O(N logN) with ∆ + 1 colours

is surprisingly close to that of the state-of-the-art given the

constraints imposed by the decentralised nature of the FCFL

algorithm. Faster convergence has recently been demonstrated

(O(∆)+ 1
2 log

∗N [4]), but only for algorithms which (i) start

with a much larger number of colours and then proceed to

prune these until only ∆+ 1 are used, (ii) require knowledge

of the graph topology and (iii) make extensive use of message

passing. Recall that FCFL imposes none of these requirements,

and is therefore much better suited to networking applications.

In Szegedy and Vishwanathan [21] it is argued that no locally-

iterative (∆ + 1)-colouring algorithm is likely to terminate

in less than Ω(∆ log∆) rounds, implying that the FCFL

algorithm may in fact be order optimal amongst locally-

iterative algorithms in the case of complete graphs (when

∆ = N ).

We note that Theorem 2 requires parameters Sτ+1 − Sτ ≥
∆ + 1 and b = 1 in the FCFL algorithm. We discuss the

analytic difficulty which is the source of this requirement in

more detail in the next section, but this is circumvented by the

introduction of the permanent state and reset times in FCFL.

As already noted, the permanent state introduces memory into

the FCFL algorithm which bears qualitative similarities to that

introduced in CFL by selecting parameter b to have a small

value (typically 0.1 in [8]). This is of interest in its own

right, quite apart from the resulting provably fast convergence,

as it significantly broadens the class of known decentralised

algorithms for graph colouring.

Further, this new approach is particularly amenable to highly

efficient implementation, making it suited to use of resource

constrained hardware such as RFID tags and sensors. For

example, selecting a constant reset time Sτ = τ(∆ + 1)
and uniform selection (b = 1) yields the following simplified

instance of FCFL:
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Algorithm 2 Simplified Fast Communication-Free Learning

1: Initialise counter t = 0
2: Select a colour uniformly at random

3: repeat

4: if t = 0 then

5: t = ∆+ 1, m = 0 ⊲ Reset, exit permanent state

6: end if

7: if m = 0 then

8: if Satisfied then

9: m = 1 ⊲ Enter permanent state

10: Leave colour unchanged.

11: else

12: Select a colour uniformly at random

13: end if

14: else

15: Leave colour unchanged.

16: end if

17: t = t− 1
18: until Forever

Observe that this simplified FCFL algorithm involves no

floating point arithmetic, no multiplications or divisions and

only needs the availability of a uniform random number

generator (which can be efficiently implemented in pseudo-

random form).

IV. ANALYSING CONVERGENCE RATE

To proceed, for each vertex i ∈ N and each time t =
1, 2, . . . define the random variable,

Xi(t) =

{

1, if vertex i is permanent at time t

0, otherwise.

Letting Zt = {i : Xi(t) = 0} denote the set of non-permanent

vertices at time t then Zt = |Zt|, the cardinality of Zt. Now,

E
[

Zt+1|Zt = Z
]

=
∑

Z:|Z|=Z,

Z⊂N

(Φt(Z) + Ψt(Z))P
(

Z|Zt = Z
)

,

where

Φt(Z) := E





∑

i∈Z

(1−Xi(t+ 1))|Zt = Z





Ψt(Z) := E







∑

i∈N\Zt

(1−Xi(t+ 1))|Zt = Z






.

Suppose, for now, that we have bounds Φt(Z) ≤ φt(Z),
Ψt(Z) ≤ ψt(Z) where Z = |Z|. That is, Φt(Z) and Ψt(Z)
can be upper bounded by functions which depend only on the

cardinality of set Z . Then it follows that,

E
[

Zt+1|Zt = Z
]

≤ φt(Zt) + ψt(Zt).

Recall S := {Sτ : τ = 1, 2, . . . } is the set of the reset times

when the FCFL algorithm allows vertices to exit the permanent

state, and S̄ := N \ S . For slots t ∈ S̄ vertices cannot exit the

permanent state and so ψt(Z) = 0. Hence,

E
[

Zt+1|Zt

]

≤
{

φt(Zt) t ∈ S̄
φt(Zt) + ψt(Zt) t ∈ S.

In order to streamline the discussion, and because they

are satisfied by the FCFL algorithm, we make the follow-

ing assumptions: (i) φt(·) is linear and time-invariant i. e.

φt(Z) = aZ with a ≥ 0 and (ii) ψt(·) is concave. For slots

t ∈ S̄ we then have,

E
[

Zt+1

]

= E

[

E
[

Zt+1|Zt

]

]

≤ E
[

φt(Zt)
] (a)
= φt(E[Zt])

where (a) follows since φt(·) is linear. Hence,

E[Z2] ≤ φ1(E[Z1])

E[Z3] ≤ φ2(E[Z2]) ≤ φ2(φ1(E[Z1]))

and

E
[

ZS1

]

≤ φ(S1−1)(E[Z1]), (4)

where φ(t)(Z) := φt ◦ · · · ◦ φ1(Z) and ◦ denotes function

composition i. e. φt+1 ◦φt(Z) = φt+1(φt(Z)). This simplifies

to φ(t)(Z) ≤ αtZ under the assumption that φ(·) is linear.

Now,

E
[

ZS1+1

]

≤ E
[

φ(ZS1
)
]

+ E
[

ψS1
(ZS1

)
]

(b)

≤ φ(E
[

ZS1

]

) + ψS1(E
[

ZS1

]

)

≤ αS1 E[Z1] + ψS1
(αS1−1

E[Z1]),

where (b) follows since ψ(·) is concave. Hence, once again

using the assumption that φ(·) is linear,

E
[

ZS2+1

]

≤ αS2 E[Z1] + ψS2(α
S2−S1−1ψS1(α

S1−1
E[Z1])), (5)

and we can repeat to obtain E
[

ZSτ+1

]

for τ = 1, 2, . . . .
However, it can be seen that the term involving ψt(·) in

the expression for E
[

ZSτ+1

]

quickly becomes complex and

messy. It is precisely this term which captures the positive

drift at times t ∈ S and which, as noted previously, makes the

analysis tricky. The key insight underlying our analysis here

is that in the case of the FCFL algorithm this term can be

successfully controlled via a upper bound which is tractable

yet tight enough to allow fast convergence to be established.

A. Bounding Φt(Z) for FCFL

Recall that Φt(Z) is the expected number of vertices that

remain in the non-permanent state at time t conditioned on the

set of non-permanent vertices being Z . The probability that a

vertex leaves the non-permanent state is characterised by the

following lemma:

Lemma 2 (Entering Permanent State). We have that

P
(

Xi(t+ 1) = 1|Xi(t) = 0
)

is the probability that a vertex

i which is in the non-permanent state at time t enters the

permanent state at time t + 1. When the number of colours

D ≥ ∆+ 1 then,

P
(

Xi(t+ 1) = 1|Xi(t) = 0
)

≥ α :=
b

∆+ 1
.
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Proof: A non-permanent vertex has at least D − ∆
available colours, and its choice is uniform, so it has a

probability at least equal to b (D−∆)
D to choose a colour not

used by any neighbour. Now ∆
D ≤ ∆

∆+1 , because D ≥ ∆+1;

so we have b (D−∆)
D = b(1− ∆

D ) ≥ b(1− ∆
∆+1 ) =

b
∆+1 .

Lemma 2 is intuitive. By design, in FCFL the probability

that a non-permanent vertex selects a colour is at least b/D
i. e. every colour has a uniformly lower bounded chance of

being selected. When the number of colours D ≥ ∆+1 then

there is always at least one choice of colour different from that

of every neighbour (since there can be at most ∆ neighbours).

Selecting this colour will cause the vertex to become satisfied

and enter the permanent state. Note that when b = 1 this

bound is tight, i. e. there exists a degree ∆ + 1 graph and a

configuration of D = ∆ + 1 vertex colours for which it is

satisfied with equality.

It follows from Lemma 2 that,

Φt(Z) = E





∑

i∈Z

(1−Xi(t+ 1))|Zt = Z





= Z − E





∑

i∈Z

Xi(t+ 1)|Zt = Z





≤ Z − αZ =
∆+ 1− b

∆+ 1
Z =: φ(Z). (6)

Observe that φ(Z) in (6) is linear in Z and time-invariant, as

required.

B. Bounding Ψt(Z) for FCFL

Now we turn to Ψ(Z) for the FCFL algorithm. Recall that,

Ψt(Z) =







0 t ∈ S̄
E

[

∑

i∈N\Z(1−Xi(t+ 1))|Zt = Z
]

t ∈ S.

Now N \ Zt is the set of vertices which are in a permanent

state at time t i. e. for which Xi(t) = 1. The following lemma

bounds P
(

Xi(t+ 1) = 1|Xi(t) = 1
)

i. e. the probability that

Xi(t + 1) remains equal to 1 (and so vertex i stays in the

permanent state) for vertices i ∈ N \ Zt.

Lemma 3 (Remaining Permanent). When the number of

colours D ≥ ∆+ 1 then at times t ∈ S ,

P
(

Xi(t+ 1) = 1|Xi(t) = 1
)

≥
(

∆+ 1− b

∆+ 1

)n(i,t)

, (7)

where n(i, t) is the number of neighbours of vertex i that are

in the non-permanent state at time t.
Proof: Let xi be the colour of vertex i. When t ∈ S ,

permanent vertex i will still keep the same colour xi. By

Corollary 1, other permanent vertices cannot affect the sat-

isfaction of vertex i, but i could lose its (permanent) state if

at least one of its non-permanent neighbours chooses xi. The

probability that a non-permanent neighbour chooses a different

colour from xi is 1 − b
D (line 14 of Algorithm 1), and since

the choice of each vertex is independent, the probability all

non-permanent vertices choose a different colour from xi is

(1 − b/D)n(i,t). Now, since D ≥ ∆ + 1, we have b
D ≤ b

∆+1

and so 1− b
D ≥ 1− b

∆+1 = ∆+1−b
∆+1 .

Observe that, once again, when b = 1 the bound in Lemma 3

is tight. It follows from Lemma 3 that

Ψt(Z) ≤
∑

i∈N\Zt



1−
(

∆+ 1− b

∆+ 1

)n(i,t)


, t ∈ S. (8)

While this provides an upper bound on Ψt(Z), this bound is

difficult to evaluate since it depends on n(i, t), the number

of neighbours of vertex i that are in a non-permanent state at

time t. We could try to use fact that n(i, t) ≤ ∆ to simplify

this bound to,

∑

i∈N\Zt



1−
(

∆+ 1− b

∆+ 1

)n(i,t)




≤
(

1−
(

∆+ 1− b

∆+ 1

)∆
)

(N − Z). (9)

Unfortunately, however, it turns out that this upper bound is

too loose to allow us to establish that E
[

ZS+1|Z1

]

decreases at

the sequence of times t ∈ S (Figure 2): as Z becomes small,

N − Z increases and we overestimate the number of edges

affecting a vertex in the permanent state. A more sophisticated

approach is needed.

We proceed as follows. Each non-permanent vertex can

affect at most ∆ permanent vertices (since the degree ∆ is

the maximum number of neighbours that a vertex can have),

and by Corollary 1 a permanent vertex cannot affect any other

permanent vertex. Hence, the set N \ Zt can be affected by

at most a number of edges equal to
∑

i∈N\Zt

n(i, t) ≤ ∆Zt, (10)

when Zt 6= N , and of course we must have n(i, t) = 0 for all

i ∈ N when Zt = N . We also have the constraints that 0 ≤
n(i, t) ≤ ∆, but it turns out that constraint (10) is sufficient

for our purposes. To obtain a tighter bound on Ψt(Z) we

find the n(i, t), i ∈ N \ Zt that maximise the RHS of (8)

subject to the constraint (10). To do this we exploit that fact

that 1 −
(

∆+1−b
∆+1

)n

is concave in n (as can be verified by

inspection of the second derivative) and so the RHS of (8) is

jointly convex in the n(i, t), i ∈ N \Zt. Using this we obtain

the following:

Lemma 4 (Tighter Bound). Let N = {1, · · · , N} and Z ⊂ N
be two integer sets of cardinality N and Z respectively, with

N > 1 and Z ≤ N . Let ∆ > 1 be an integer and n ∈ Z
N a

integer vector of length N . Suppose n = 0 when Z = N and

otherwise
∑

i∈N\Z

ni ≤ ∆Z, (11)

then we have that

∑

i∈N\Z

(

1−
(

∆+ 1− b

∆+ 1

)ni

)

≤
(

1−
(

∆+1−b
∆+1

)
∆Z

N−Z

)

(N − Z). (12)
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Fig. 3: Illustrating bounds on Ψt(Z) vs Z for N = 100
vertices and b = 1. The dashed line indicates bound (9) ,

the solid line bound (14) and the dots indicate values of (8)

for n(i, t) drawn uniformly at random from the feasible set.

Proof: When Z = N the LHS of (12) is formally zero

and the inequality holds trivially. Otherwise, we maximise over

n the concave function
∑

i∈N\Z

(

1−
(

∆+1−b
∆+1

)ni

)

subject

to linear constraint (11). Since we want an upper bound, we

can work on the relaxed problem in which we allow n ∈ R
N ,

because the maximum over this wider set will be greater than

or equal to the maximum over ZN . This relaxed optimisation

is convex. The Slater condition is satisfied, because ∆ > 1
and Z ≥ 1 and so the point ni = 0 ∀i is in the interior of the

constraint set. Hence, strong duality holds. The Lagrangian is

L = −∑i∈N\Z

(

1−
(

∆+1−b
∆+1

)ni

)

+ µ(
∑

i∈N\Z ni −∆Z)

and the main KKT conditions are −
(

∆+1−b
∆+1

)ni

log ∆+1−b
∆+1 =

µ, i ∈ N \ Z . It follows that ni = nj for all i, j ∈ N \
Z . Further, since 0 <

(

∆+1−b
∆+1

)

< 1 and the ni are finite

it follows that µ > 0 and so by complementary slackness

constraint (11) is tight. Hence, the ni maximising f are

ni =
∆Z

N − Z
, i ∈ N \ Z. Z < N, (13)

Substituting into
∑

i∈N\Z

(

1−
(

∆+1−b
∆+1

)ni

)

now yields the

stated result.

Using Lemma 4 it follows from (8) that,

Ψt(Z) ≤
(

1−
(

∆+1−b
∆+1

)
∆Z

N−Z

)

(N − Z) =: ψ(Z). (14)

The bound ψ(Z) depends only on the cardinality Z of set Z
and it can be verified (by inspection of the second derivative)

that ψ(Z) in (14) is concave in Z as required. Observe also

that ψ(Z) is time-invariant.

The upper bound (14) is considerably tighter than (9) as Z
approaches 0. This can be seen, for example, in Figure 3.

C. Some Useful Identities

The following lemma summarises identities that will prove

useful in the next section.

Lemma 5. Let ∆̃ := ∆+1−b
∆+1 . For ∆ ≥ 1 we have that:

(i) The range of ∆̃
α∆
1−α is [e−

α
1−α , 1] for any 0 < α < 1;

(ii) ∆̃(∆+1) is increasing in ∆;

(iii) lim∆→∞ ∆̃(∆+1) = 1/eb.

(iv) k
eb
< 1 for 0 < b ≤ 1 where k = 1 + 2 log 2

2−b .

Proof: (i) The derivative of ∆̃
α∆
1−α with respect to ∆ is

∆̃
α∆
1−α α

1−α

(

b
(∆+1)

∆
∆+1−b + log ∆̃

)

< 0. When ∆ ≥ 1 and

α
1−α > 0, 0 < b ≤ 1 it follows that ∆̃

α∆
1−α is decreasing.

Hence, it takes its maximum value of
(

2−b
2

)
α

1−α

< 1

when ∆ = 1 and its minimum as ∆ → ∞ is e−b α
1−α ≥

e−
α

1−α . (ii) The derivative of ∆̃(∆+1) with respect to ∆ is

∆̃∆+1
(

b
∆+1−b + log ∆̃

)

> 0 when ∆ ≥ 1. It follows that

∆̃(∆+1) is increasing as claimed. (iii) Follows from the limit

form of e. (iv) It can be verified by inspection of the derivative

that k
eb

is strictly decreasing on interval 0 < b ≤ 1. Hence,
k
eb
< 1

e0 = 1.

D. Bounding E[Zt] As Time Elapses

As already noted, the main challenge in the analysis is

controlling the ψt(·) term in (5) as time elapses. Combining

(6) and (14) we have that

E
[

ZSτ+1

]

≤ ∆̃E
[

ZSτ

]

+






1− ∆̃

∆ E[ZSτ ]
N−E[ZSτ ]






(N − E

[

ZSτ

]

), (15)

where ∆̃ := ∆+1−b
∆+1 .

To proceed we would like to substitute in (15) an upper

bound on E
[

ZSτ

]

rather than using the exact value. However,

for the inequality in (15) to continue to hold after this

substitution requires that the RHS of (15) is monotonically

increasing in E
[

ZSτ

]

. The first term on the RHS of (15) is

linear and increasing since ∆ > 0 and 1−b ≥ 0. The following

lemma establishes that the second term on the RHS of (15) is

also increasing.

Lemma 6 (Increasing). Let f(Z) :=
(

1− ∆̃
∆Z

N−Z

)

(N − Z)

with ∆̃ := ∆+1−b
∆+1 . Then f(Z) ≤ f(Y ) whenever 0 ≤

Z ≤ Y ≤ αN for any 0 ≤ α ≤ α∗ where α∗ satisfies

α∗ = h(e−
α∗

1−α∗ ) with h(x) = x log x
x−1 . Note that α = 1

2 is one

admissible choice.

Proof: It can be verified by inspection of the second

derivative that f(Z) is concave for Z ∈ [0, N ]. Hence, the

supporting hyperplane property holds i. e. f(Z) ≤ f(Y ) −
(Y − Z)f ′(Y ). For Z ≤ Y then when f ′(Y ) ≥ 0 it follows

that f(Z) ≤ f(Y ) as required. By the monotonicity of the sub

gradients of concave functions (f ′(Y )− f ′(Z))(Y −Z) ≤ 0.

Hence, for Y ≤ αN then (f ′(αN) − f ′(Y ))(αN − Y ) ≤ 0
i. e. f ′(Y ) ≥ f ′(αN) and for f ′(Y ) ≥ 0 it is sufficient to

show that f ′(αN) ≥ 0. Now,

f ′(αN) = −1 + ∆̃
α∆
1−α − 1

α
∆̃

α∆
(1−α) log ∆̃

α∆
(1−α)

The function f̃(x) = −1+x− 1
αx log x is concave on [0,∞)

(the second derivative is negative for all x ∈ [0,∞)), and

has its global maximum (equal to −1 + 1
αe

α−1 > 0) at
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x∗ = eα−1 < 1. It is strictly increasing on the left side

and strictly decreasing on the right side of this maximum.

f̃(x) has one root to the right of this maximum at x+ = 1
and a second root x− to the left at the point satisfying

α = x− log x−

x−−1 . By Lemma 5, ∆̃
α∆
1−α takes values in [e−

α
1−α , 1].

Recall that x+ = 1. Observe that since h(x) = x log x
x−1

is strictly increasing, so is its inverse h−1(·). Hence, for

α ≤ h(e−
α

1−α ) then x− = h−1(α) ≤ e−
α

1−α . It follows

that f̃(x) is non-negative in [e−
α

1−α , 1]. It can be verified that

h(e−1) > 1
2 and so α = 1

2 is an admissible choice. Observing

that f ′(αN) = f̃(∆̃
α∆
α−1 ) it follows that f ′(αN) ≥ 0 and we

are done.

Note that the condition in Lemma 6 is tight in the sense that

for a graph with sufficiently large degree ∆ the function f(·) is

not increasing when α > α∗. Lemma 6 allows us to substitute

an upper bound on E
[

ZSτ

]

into (15). However, as we will

shortly see, the resulting expression is still too complex to be

manageable. To obtain a tractable expression we need to use

the following Lemma.

Lemma 7 (Clean Upper Bound). For any ∆ ≥ 1, τ ≥ 1 and

0 < b ≤ 1 we have

∆̃τ(∆+1)+1kτ−1 +

(

1− ∆̃
∆∆̃τ(∆+1)kτ−1

1−∆̃τ(∆+1)kτ−1

)

(1− ∆̃τ(∆+1)kτ−1)

≤ kτ ∆̃τ(∆+1)+1, (16)

where ∆̃ := ∆+1−b
∆+1 and k = 1 + 2 log 2

2−b .

Proof: The required bound (16) can be rewritten equiva-

lently as
1

k
F (∆, Y ) ≤ 1,

with

F (∆, Y ) = 1 + Y
∆+ 1

∆+ 1− b



1−
(

∆+ 1− b

∆+ 1

)∆/Y


.

and Y (X) := 1−X
X , X(∆, τ) :=

(

∆+1−b
∆+1

)τ(∆+1)

kτ−1.

By Lemma 5 ∆̃τ(∆+1) is increasing in ∆. It follows that

X(∆, τ) is increasing in ∆ since τ ≥ 1. Further, X(∆, τ)
is decreasing in τ since its derivative with respect to τ
is ∆̃τ(∆+1)kτ−1 log k∆̃∆+1 ≤ e−bτkτ−1 log k/eb ≤ 0 as

k < eb for 0 < b ≤ 1, τ ≥ 1 and lim∆→∞ ∆̃(∆+1) = 1/eb

(see Lemma 5). Hence, X(∆, τ) is bounded from above by

1/eb (since X(∆, τ) is increasing with ∆ and decreasing with

τ , taking the limit as ∆ → ∞ we get 1/eb when τ = 1) and

from below by 0. It follows that Y (X) ∈ [eb − 1,∞). It

can be verified by inspection of the derivative that F (∆, Y )
is increasing with Y , so we can bound it from above with

F ∗(∆) = limY→∞ F (∆, Y ) = 1−log
(

∆+1−b
∆+1

)∆+1

. That is,
1
kF (∆, Y ) ≤ 1

kF
∗(∆). Now F ∗(∆) is decreasing with ∆ and

so 1
kF (∆, Y ) ≤ 1

kF
∗(∆) ≤ 1

kF
∗(1) = 1+2 log 2/(2−b)

k = 1 for

∆ ∈ {1, 2, . . . } as required.

It can be seen that the expression on the LHS of (16) is quite

complicated and the upper bound on the RHS in Lemma 7,

which is essential for our analysis, is not obvious. It has been

obtained by considering the limiting case when ∆ → ∞ and

building an ansatz that is exponential decaying with τ .

E. Proof of Theorem 2

Armed with Lemmas 6 and 7 we are now in a position

to prove Theorem 2. For the first S1 − 1 steps, vertices

in the permanent state cannot become dissatisfied, so as

shown in (4) we have E
[

ZS1

]

≤ φ(S1−1)(E[Z1]). Since

φ(Z) is strictly increasing in Z we can bound E[Z1] with

N , obtaining E
[

ZS1

]

≤ ∆̃S1−1N ≤ ∆̃S−1N , where S :=
minτ∈{1,2,··· } Sτ+1−Sτ ≥ 0 is the minimum interval between

the Sτ ’s and we have used the fact that 0 < ∆̃ < 1. When

S ≥ ∆ + 1 we have that ∆̃S−1 ≤ 1
2 provided that b = 1. It

then it follows that E
[

ZS1

]

≤ N/2 and we can use Lemma 6

to bound (15) with

E
[

ZS1+1

]

≤ ∆̃S+1N +

(

1− ∆̃
∆∆̃SN

N−∆̃SN

)

(N − ∆̃SN).

This expression is still too complicated to be used in (4) for

the next S2 slots, but when S ≥ ∆+ 1 then we can obtain a

clean upper bound using Lemma 7 with τ = 1. Namely,

E
[

ZS1+1

]

≤ kN∆̃(∆+1)+1
(a)

≤ k

eb
N,

where (a) follows from Lemma 5. For the subsequent slots

S1 +1 through S2 − 1, vertices in the permanent state cannot

become dissatisfied, so ψt(Z) = 0 and

E
[

ZS2

]

≤ ∆̃S2−S1−1
E
[

ZS1+1

]

≤ ∆̃2S−1
E
[

ZS1+1

]

≤ kN∆̃2(∆+1) ≤ kN

e2b
.

When b ≥ 2
3 then we have k

e2b
< 1

2 and we can again apply

Lemma 6 to obtain

E
[

Z2S+1

]

≤ ∆̃2(∆+1)+1N+

(

1− ∆̃
∆∆̃2(∆+1)N

N−∆̃2(∆+1)N

)

(N − ∆̃2(∆+1)N).

Now we can apply Lemma 7 again with τ = 2.

Iterating this procedure, for all τ = 1, 2, · · · we obtain

E
[

ZSτ

]

≤ kτ−1N∆̃τ(∆+1). (17)

With bound (17) we are now almost done. By Lemma 5 we

have ∆̃(∆+1) ≤ e−b and so the RHS of (17) is upper bounded

by N
k (

k
eb
)τ . Since k

eb
< 1 (by Lemma 5) then (17) establishes

that E[Zt] is decreasing at the sequence of times t ∈ S .

Recalling that P
(

ZSτ
≥ 1
)

≤ E
[

ZSτ

]

, to ensure

P
(

ZSτ
≥ 1
)

≤ ǫ it follows from (17) that it is enough to

choose

τ ≥ B(N,∆, ǫ), (18)

where B(N,∆, ǫ) := logN+log (ǫ−1)+log (k−1)

(∆+1) log (
∆+1
∆ )+log (k−1)

, from which

Theorem 2 now follows.

Bound (18) gives the convergence rate in terms of the reset

times Sτ . When we have Sτ+1−Sτ ≤M for all t = 1, 2, · · ·
and S1 ≤ M then we can immediately use this to bound the

convergence rate in terms of time slots, namely MB(N,∆, ǫ).
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Taking the limit of M logN+log (ǫ−1)+log (k−1)
1+log (k−1) as N,∆ → ∞

now yields Corollary 2. Corollary 3 is obtained setting M =
∆+1 and assuming ∆ ≤ β. Corollary 4 is obtained by setting

M = ∆+ 1 and assuming limN,∆→∞
∆
N = β > 0.

F. Discussion

In this analysis we have taken care to ensure that the bounds

used are tight i. e. there exists a graph and an assignment of

colours for which they are satisfied with equality. This suggests

that the bound on convergence rate in Theorem 2 is probably

almost as good as we can do without restricting attention to

specific types of graph.

The requirement in Theorem 2 that Sτ+1 − Sτ ≥ ∆ + 1
arises from Lemma 7, until that point there is no restriction

on the choice of the reset times Sτ . Extending the analysis to

settings where Sτ+1−Sτ < ∆+1 therefore requires extending

Lemma 7. However, obtaining Lemma 7 was already a difficult

step and its extension likely requires development of a new

analysis approach e. g. a new stochastic concentration bound.

The requirement that b = 1 arises from application of

Lemma 6, until this point there is no restriction on the value

of parameter b. Lemma 6 is used to ensure that the RHS of

(15) is increasing and so we can substitute an upper bound for

E
[

ZSt

]

while preserving the inequality. Lemma 6 itself gives

an exact condition. However, it might be possible to relax the

requirement on b by allowing the RHS of (15) to decrease in a

controlled way and modifying the inequality in (15) after the

substitution of the bound for E
[

ZSt

]

accordingly. However,

this also has knock-on effects on the application of Lemma 7,

so we leave it as future work. An alternative is to relax the

requirement that S ≥ ∆+1 to one that S ≥ ∆+n with n > 1.

For example, selecting n = 2 ensures ∆̃S−1 = ∆̃∆+1 ≤ 1/eb

which is less than 1/2 for b > log(2) ≈ 0.69.

V. NUMERICAL SIMULATIONS

A. Convergence Rate

Theorem 2 only provides an upper bound on the conver-

gence rate. In Figure 4 we compare the measured convergence

time with this bound for a range of graph types (bipartite,

complete, 12-partite) and sizes (up to N = 2000 vertices),

over 10 000 runs of the algorithm. Figure 4 plots the ratio

between these, which can be seen to tend towards a constant

value as N increases so confirming that the O((∆+1) logN)
behaviour in Theorem 2 indeed broadly captures the actual

scaling of convergence time with N . The ratio in Figure 4

is, however, less than one which indicates that there may be

scope to further refine the prefactor in the Theorem 2 bound,

at least for specific classes of graphs. We note that similar

results are obtained for random graphs, although we do not

include them to save space.

B. Behaviour on Graph Change

We analyse the case in which the algorithm has already

converged to a proper coloring and then a number of vertices

in the graph change change color. In Figure 5, the convergence

time after a perturbation of the 2% of the vertices is shown

N
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(N
,∆

)
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0
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Fig. 4: Ratio between measured time for simplified FCFL (Al-

gorithm 2) to converge and the bound (∆ + 1)B(N,∆, 1/2).
Median over 10 000 runs of FCFL with parameters Sτ =
τ(∆ + 1), b = 1.
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Fig. 5: Convergence time of FCFL for already correctly

colored graph after a perturbation.

and compared to the convergence time starting from a state

when all vertices are dissatisfied. The results are for complete

graphs of 60 vertices with 20% of the edges removed. This is

a challenging case since perturbations to the color of a vertex

propagate quickly to affect many neighbours. For comparison,

the corresponding measured convergence rate of the Learning-

BEB algorithm (that has exponential behaviour) has also been

computed. For FCFL data is shown for 1000 runs of the

algorithm, but for Learning-BEB we used fewer runs as each

run was extremely slow to complete being around 6 orders

of magnitude longer than with FCFL even when only 2% of

the nodes are perturbed, and thus are not shown in the figure.

This example highlights the importance of fast convergence

since with decentralised algorithms even a small perturbation

can easily disrupt a strongly connected graph.

We note that deriving analytic convergence rate bounds for

cases in which the rate of change of the graph is comparable

to the convergence rate of the algorithm is a substantial

undertaking in its own right and out of the scope of the present

paper.
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C. Brief Application Example: Reading RFID Tags

We illustrate application of the FCFL to avoid collisions

when reading RFID tags. Communication from the tags to the

reader can fail when there is a collision, i. e. when at least two

RFID tags within the coverage of the reader transmit at the

same time. To mitigate this, the RFID protocol implements

a basic slotted Aloha collision resolution mechanism [10, 19,

22].

When the reader needs to identify a tag, it issues a QUERY

command, and each tag in the coverage area selects an integer

u.a.r. in interval [0, D − 1], where parameter D − 1 is set

by the reader. All tags that select 0 reply immediately; tags

that select another number record those numbers in a counter

and don’t transmit. A tag replies by sending a 16 bit random

number. If the reader hears the random number, it echoes that

number back as an acknowledgement, causing the tag to send

its Electronic Product Code (EPC). The reader can then send

commands specific to that tag, or continue to inventory other

tags. In case of collision or the need for another identification,

the reader can issue a QUERY REP command, causing all

of the tags to decrement their counters by 1; again, any tag

reaching a counter value of 0 will respond. After M steps,

the procedure can start again with a QUERY command. The

reader can set a flag (flag B) on successfully read tags, so they

will not answer anymore to subsequent queries until the tag

reverts to flag A (usually after a time between 500ms and 5 s,
but no upper limit is set in the protocol).

Our aim is to implement a collision resolution mechanism

that possesses the following properties: (i) allows tags to be

detected quickly (reading time comparable with Aloha); (ii)

allows subsequent reads per tag to be faster; (iii) allows the

reader to correctly read all of the tags when their relative posi-

tions change; (iv) the new mechanism is backward compatible

i. e. able to work with both standard RFID tags and new tags.

The task of assigning a different time slot (different counter

value when the QUERY command is issued) to each RFID

tag can be mapped to a CP on a graph, where the structure of

the graph depends on the location of the tags. Namely, graph

G = (N , E) is built such that N is the set of tags, and an edge

e = (i, j) ∈ E iff the tags i and j are near enough for their

transmissions to potentially collide. When all tags are within

the coverage range of the reader, the problem is mapped to

colouring of a complete graph. More generally (e. g. when

the reader can cover at most k tags per time), many RFID

applications can be modeled as a CP on a complete k-partite

graph Gs1,...,sk , i. e. the graph composed of k independent sets

of (possibly different) size si, i = 1, . . . , k, such that each set

is connected with all the vertices of the other sets. This graph

is k-colourable.

The FCFL algorithm can be implemented in an existing

RFID infrastructure, ensuring backward compatibility, as fol-

lows. The idea is to modify the behaviour of the tag to allow

it to enter the permanent state after a successful QUERY, and

to possibly exit it every S periods by extending the meaning

of the QueryAdjust command. The QueryAdjust command is

normally used to modify the range [0, D − 1] in the tags, to

reduce the collision probability when many tags are present,

or to reduce the expected backoff when few of them are

present. A way to implement the reset capability is to let the

tag exit the permanent state when a QueryAdjust command

is received3. Modified tags will thus have the following

additional capabilities: (i) if the reader sets flag B the tag

will enter the permanent state, keeping in memory the random

number that allowed the communication, and stop answering

to queries, (ii) if the tag receives a QueryAdjust broadcast

command it will exit the permanent state by reverting to flag

A and thus becoming ready to decrement the counter when the

QUERY REP command is broadcast again. As for the QUERY

command, if the stored counter is equal to 0, the tag will

immediately attempt transmission. The reader is programmed

to send a QueryAdjust command every S period, i. e. every

S ·D queries, immediately after the QUERY command, so that

the tags that are leaving the permanent state will still select the

same random number, to potentially re-enter immediately the

permanent state, if no tag is colliding with them. The reader

also sets flag B on each tag that is correctly detected in a

time slot not used by previously detected tags. In this way

already identified tags will not cause collisions, and tags that

are correctly identified but that would cause a collision (with

a previous identified tag) will continue to change.

This implementation will still work together with non-

modified tags at the expense of having some collisions, be-

cause those non-modified tags will choose a new (possibly

different) time slot at every new QUERY, but each non

modified tag can at most affect one modified tag, so the overall

performance should still be superior to the standard slotted

Aloha mechanism.

We compare the convergence time of the FCFL algorithm

to each of the following algorithms from [16]:

BFSA Basic Framed Slotted Aloha, with standard superframe

size of D = 256 slots.

DFSA Dynamic Framed Slotted Aloha, where the superframe

size D doubles when the number of slots with collisions

is larger than 70% of the current superframe size, and

halves when the number of slots with collisions is less

than 30%.

EDFSA Enhanced Dynamic Framed Slotted Aloha, see [16]

for more details of this enhanced version of DFSA.

For these algorithms the superframe size D is the number

of slots after which the reader starts a new QUERY (forcing

the tags to select a new slot u.a.r.). These algorithms are all

memoryless in the sense that over each superframe they behave

statistically in the same way. In contrast, the FCFL algorithm

has a transient period during which a collision-free schedule is

determined and after which tags will deterministically select

the same slot at every subsequent superframe in a collision-

free manner.

Measurements of time taken to read all tags are given in

Table I for these algorithms. It can be seen that the FCFL

algorithm is comparable with classic slotted Aloha during the

transient period, but once in steady state performs considerably

better (yielding a 83% reduction in read time), and also better

3The QueryAdjust command will still be able to set the new value of D as
in the original command, the only change is the behaviour of the tag.



12

Algorithm 3 Simplified Fast Communication-Free Learning

for RFID

Reader block
1: Broadcast QueryAdjust command with D ⊲ Reset

2: Initialise counter t = 0
3: repeat

4: if t = 0 mod D then

5: Broadcast QUERY command

6: if t = 0 mod SD then

7: Broadcast QueryAdjust command with D
8: end if

9: else

10: Broadcast QUERY REP command

11: if New tag T detected in an unused slot then

12: Add T to inventory ⊲ (and any additional operation)

13: Set Flag=B to tag T
14: end if

15: end if

16: t=t+1

17: until Forever

Tag block
18: if Flag=A then

19: if C = 0 then

20: Send EPC to reader and establish connection

21: end if

22: if Received QUERY command then

23: Select an integer C in [0, D − 1]
24: end if

25: if Received QUERY REP then

26: C = C − 1
27: end if

28: else ⊲ Flag=B

29: if Received QueryAdjust then

30: Set Flag=A, C = C − 1
31: end if

32: end if

than the state-of-the-art dynamically adjusted slotted Aloha

(over which FCFL offers a 66% reduction in read time). Using

the ISO15693 high tag data rate [22], the reader needs at each

slot 1ms to send the QUERY (or QUERY REP) command,

and the tag needs 6ms to complete the identification procedure

with the reader (for transmission of the random number and

reception of the echo acknowledgement). This would mean

that FCFL allows 1000 tags to be read in around 7 seconds

compared with more than 40 seconds for classic slotted Aloha.

Figure 6 plots the measured convergence time (median over

10 000 runs), the time taken to read all tags initially and the

time taken in steady state. Data is shown both for FCFL and

classic slotted Aloha with flagging enabled and superframe

size D equal to ∆+1. It can be seen that the initial read time

is comparable for the both algorithms, but after convergence

(less than 5 minutes for a shelf of 1000 items) the FCFL

algorithm is able to check the status of all tags within 7
seconds, compared with the 32 seconds required by Aloha,

200 tags 1000 tags

Algorithm First inventory At steady state First inventory At steady state

BFSA 1280 1280 5850 5850

DFSA 662 662 5425 5425

EDFSA 628 628 2916 2916

FCFL 816 200 5040 1000

TABLE I: Median number of time slots needed to correctly

read all tags vs the algorithm used (for FCFL we used the

simplified version, i. e. Algorithm 2). Complete graph with

N = 200 and N = 1000.
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Fig. 6: Reading time of simplified FCFL (Algorithm 2) and

slotted Aloha vs number of tags. 12-partite complete graph.

Median over 10 000 runs.

a time saving of around 450%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we consider algorithms for quickly solving,

in a fully decentralised way (i. e. with no message passing),

the classic problem of colouring a graph. We propose a novel

algorithm that is automatically responsive to topology changes,

and we prove that it converges quickly to a proper colouring

in O(N logN) time with high probability for generic graphs

(and in O(logN) time if ∆ = O(1)) when the number of

available colours is greater than ∆, the maximum degree of

the graph. We believe the proof techniques used in this work

are of independent interest and provide new insight into the

properties required to ensure fast convergence of decentralised

algorithms.

We note that application of FCFL to general constraint

satisfaction problems is direct, but we leave analysis of con-

vergence rate in this more general setting to future work.
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APPENDIX

Consider graph G = (N , E). Let A denote the set of

assignments which are absorbing for FCFL algorithm, i. e. the

set of proper colourings. All absorbing assignments are also

satisfying. When the colouring problem is feasible (the number

of colours available is greater than or equal to χ) then A 6= ∅
(at least one satisfying assignment exists). Let a ∈ A be a

target satisfying assignment. We will refer to the assignment

at time step t as ~x(t). Let U~x(t) denote the set of unsatisfied

vertices and D the set of available colours. Define γ = b/D.

Lemma 8. If a vertex is unsatisfied, when using the FCFL

algorithm the probability that the vertex chooses any colour j
at the next step is greater than or equal to γ.

Proof: This follows from step 11 of FCFL algorithm.

Proof of Theorem 1: Consider the FCFL algorithm

starting from an assignment ~x(0). Select an arbitrary valid

solution a ∈ A. Since the CP is satisfiable, we have that

A 6= ∅. We will exhibit a sequence of events that, regardless

of the initial configuration, leads to a satisfying assignment

with a probability for which we find a lower bound.

At the first step we consider the chain of events that changes

the assignment, after S1 steps, to

xi(S1 + 1) =

{

ai if i ∈ U~x(0),

xi(0) otherwise.
(19)

This is feasible since the FCFL algorithm ensures that all

satisfied vertices at step 0 will remain unchanged for at least
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S1 steps and each unsatisfied vertex may change its colour at

step 1, and keep the same colour for S1 steps with probability

at least γS1 (by Lemma 8). The probability that this event

happens is greater than γS1|U~x(0)|. Now, the set of unsatisfied

variables could have changed. If U~x(S1+1) = ∅, we have

finished, otherwise we consider again the event that changes

the assignment similarly to equation (19), i. e. at reset time Sτ

we have

xi(Sτ + 1) =

{

ai if i ∈ U~x(Sτ−1),

xi(Sτ−1) otherwise.

The probability of this happening is greater than

γ(Sτ−Sτ−1)|U~x(Sτ−1)|. The lower bound on the probability

of this sequence is obtained when at each reset time

only one new vertex chooses the target colouring added,

giving us the bound of SN steps, with probability greater

than γM ·1 · γM ·2 . . . γM ·N = γMN(N+1)/2. This can be

easily seen considering any other sequence where some

vertices choose the target colouring at the same time: let

K be such sequence. Clearly K ⊂ {1, 2, . . . , N}| with

|K| < |{1, 2, . . . , N}| and the corresponding probability will

be
∏

k∈K γ
M ·k > γMN(N+1)/2.

Due to the Markovian nature of the FCFL algorithm and the

independence of the probability of the above sequence on its

initial conditions, if this sequence does not occur by time SN ,

it has the same probability of occurring by time S2N . The

probability of convergence in k · MN steps is greater than

1−
(

1− γ
MN(N+1)

2

)k

.
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