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Abstract— This paper considers the design of online transmis-
sion policies for slotted energy harvesting point-to-point com-
munications systems in wireless fading channels. The objective
is to minimize the competitive rate gap that is defined as the
maximum gap between the optimal rates that can be achieved
by the offline, and online transmission policies over all possible
energy arrival profiles, and fading states. The paper introduces
the competitive rate gap analysis, and solves the particular case
of two transmission slots. For two time slots, we show that the
optimal competitive rate gap is 0.2075 bits/s/Hz, and present a
transmission policy that achieves it. The new online policy is
shown to outperform previously proposed online policies, such
as the myopic policy.

I. INTRODUCTION

Energy harvesting (EH) technology is considered as a major

component of future wireless networks. Harvesting energy

from the environment extends the lifetime of wireless devices,

and provides them untethered mobility, as batteries can be

charged without connecting to the power grid infrastructure.

However, designing EH communication systems bring its own

challenges. For many energy sources, such as solar, vibration

or electromagnetic, the characteristics of the EH profile change

over time. The time-varying nature of the available energy

motivates the need of designing transmission polices that take

into account the stochastic nature of the energy arrival process,

while optimizing a desired performance criteria.

Previous work addressing the design of transmission po-

lices for EH devices are typically classified based on the

assumptions made on the transmitter’s knowledge about the

EH process [1]. In the offline optimization framework the

transmitter is assumed to have access to all the future energy

packet arrival instants and packet sizes. The optimal offline

transmission policy maximizing the throughput for an EH

point-to-point additive white Gaussian noise (AWGN) channel

was first studied in [2] and, extended to fading channels in

[3]. The offline design serves as a theoretical upper-bound

and have also been proven useful in inspiring online policies

[4]. However, practical interest in offline polices is limited

to scenarios for which the EH process is more or less deter-

ministic, or is random, but can be accurately predicted. For
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example, solar based systems and shoe-mounted piezoelectric

devices. The online optimization framework, instead, assumes

that the future energy arrivals are unknown. If the transmitter

has statistical knowledge of the underlying EH process then,

the optimization problem is modeled as a Markov decision

process, and the optimal policy can be determined through

dynamic programming [1]. Most of the works available in the

literature about online optimization show performance results

that are very close to those achieved by optimal offline policies

[5]. However, it is not yet clear how much of these results

can be attributed to the particular online policy chosen, or the

stochastic model considered for the EH and fading processes.

In this work, we adopt a competitive (worst-case) analysis

framework, for which the statistics of the EH process and

the fading channel are not relevant. Our main objective is to

characterize the gap between the optimal offline and online

policies. Identifying this gap independent of the EH and fading

statistics will determine the value of the knowledge about these

random processes. If the gap between the optimal offline and

online policies is significantly large, more effort should be put

into learning the behaviour of the underlying EH and fading

processes [6]. Moreover, the value of the gap will also let

us know the value of the offline results as a performance

benchmark, a claim commonly used in the literature.

The most related paper to ours is [7], in which the authors,

resorting to the competitive analysis framework developed in

[8], introduce the competitive analysis for EH communication

systems in terms of the competitive rate ratio as the maxi-

mum ratio between the optimal offline rate and online rate.

Here, we study, instead, the competitive rate gap. For the

competitive rate gap analysis, the competitive ratio analysis

framework developed in [8] can not be directly applied. Here,

we develop a new framework for the systematic design of

algorithm solutions as well as for the establishment of worse-

case performance bounds in terms of the competitive rate gap.

The remainder of the paper is organized as follows. The sys-

tem model is described in Section II. The competitive analysis

framework is developed in Section III. The competitive rate

gap results for static channels are reviewed in Section IV. In

Section V we address the situation in which a fixed energy is

available at the beginning of the transmission, and in Section

VI the case of arbitrary time-varying energy arrivals and

channels. These results are evaluated numerically in Section

VII. Finally, concluding remarks are given in Section VIII.



2
II. SYSTEM MODEL

Consider a slotted wireless transmission from a source to a

destination over an AWGN fading channel. We assume a block

fading model, where the fading coefficients remain constant

for the duration of a slot. We denote as hn ∈ {0,R+} the

fading coefficient at time slot n = 1, 2, .., N , where N is

the total number of slots. The source terminal harvests energy

from the environment over time. The energy harvested during

time slot n − 1 is only available at the beginning of slot n,

and is denoted by En ∈ {0,R+}, n = 1, 2, . . . , N .

We consider the Shannon capacity function to relate the

achieved instantaneous rate to the power; that is, if the duration

of the communication is T , and the transmission power at time

t is p(t) then the instantaneous rate is given by r(p(t)) =
log2(1+p(t)), and the total number of bits transmitted over the

period of time T is given by
∫ T

0
r(p(t))d(t). Denote by Un the

energy allocated for transmission during time slot n. It is well

known that, due to the strict concavity of the capacity function,

the rate in each slot is maximized by equally distributing the

energy Un over the whole slot duration T
N

. Then, the total

number of bits transmitted over slot n is found as follows

Dn(Un) =
T

N
log2

(

1 +Nhn

Un

T

)

.

After N time slots, the rate achieved is R =
1
T

∑N

n=1 Dn (Un). Due to the energy causality constraint,

the total energy used by the end of slot n cannot be more

than the energy harvested by the beginning of timeslot n,

n = 1, 2, . . . , N , that is, Um values have to satisfy:

n
∑

m=1

Um ≤

n
∑

m=1

Em, ∀n ≤ N.

Hereafter, without loss of generatively, we consider T = 1.

III. COMPETITIVE ANALYSIS

For convenience, let us define Hi , 2hiEi, i = 1, ..., N ,

and H , 〈H1, h1, H2, h2, ..., HN , hN 〉. Our goal is to study

the rate gap between the rate achieved by the optimal of-

fline policy RO (H), which assumes that the fading channels

and energy arrivals (hn, En), or equivalently (hn, Hn) for

n = 1, ..., N are known in advance, and the rate RU (H)
achieved by the online policy U maximized over all possible

fading channels and energy harvesting profiles. We want to

characterize the minimum value of this maximum rate gap,

the competitive rate gap (g), defined as

g = min
U

max
H∈{0,R+}2N

RO (H)−RU (H) . (1)

The competitive rate gap here considered resembles the com-

petitive ratio most usually considered in the competitive anal-

ysis literature [8]. The competitive ratio for EH was addressed

in [7] for a EH point to point slotted communication over a

fading channels, and defined as

r = min
U

max
H∈{0,R+}N

RO (H)

RU (H)

There authors show that, if the power policy is online with

respect to both; the EH input process and the channel fading

process, then the competitive ratio is equal to the number of

slots r = N . The competitive rate gap studied here comple-

ments the information provided by the competitive ratio. For

the competitive ratio analysis it is sufficient to consider the low

power regime. However, rate gaps are maximized in the high

power regime. Competitive rate gap optimal online policies

might fail in guaranteing a bounded rate gap. Specifically, in

[7] authors show that the myopic policy that equally distributes

the available energy over the remaining slots, there referred

to as repeated equal power allocation (REPA) algorithm is

optimal in terms of the competitive ratio. However, as we show

here the rate gap obtained by the myopic policy is far from

the optimal rate gap.

For the formulation of the completive rate gap problem, we

need first to derive explicit expressions for the optimal offline

and online rates. An efficient algorithm to compute exactly

the optimal offline policy O, and offline rate was presented

in [9] refereed to as staircase water filling althorithm, and

also in [3] referred to as directional water-filling algorithm.

For the particular case of two time-slots N = 2, the resultant

optimal offline policy O :
〈

U
(o)
1 , U

(o)
2

〉

, can be expressed in

closed form as: U
(o)
1 =

(

E1 −
1
2 (λ1 − λ2)

+
)+

, and U
(o)
2 =

E1 + E2 − U
(o)
1 , where (x)+ = 0 if x ≤ 0, and (x)+ = x

otherwise, and where λ1 = 1+H1

2h1
, and λ2 = 1+H2

2h2
. Then the

optimal offline rate RO (H) is given by

RO =







RA, if λ1 > λ2, h1 (λ1 + λ2) > 1,
RB, if λ1 > λ2, h1 (λ1 + λ2) < 1,
RC, if λ1 < λ2,

(2)

where

RA =
1

2
log2

(

h2h1

(

1 +H2

2h2
+

1 +H1

2h1

)2
)

,

RB =
1

2
log2

(

1 +
h2

h1
H1 +H2

)

,

RC =
1

2
log2 ((1 +H1) (1 +H2)) .

We consider online policies U that make their decisions

based only on the past and current fading coefficients and

energy arrivals, and make no assumption about the statistics

of the EH process, namely U (H)= 〈U1, ..., UN 〉, where the

energies spent at time slots n = 1, ..., N are defined by the

functions Un (Hn) : {0,R+}
2n

→ [0, Bn], where Hn =
〈H1, h1, H2, h2, ..., Hn, hn〉, and Bn denotes the amount of

energy in the battery at the beginning of time slot n. Notice

that Un is a fraction of Bn, which we can write for conve-

nience as Un (Hn) = αn (Hn)Bn where 0 < αn (Hn) ≤
1 and the battery state at time slot n, can be computed

recursively as Bn = (1− αn−1)Bn−1 + En with Bn = 0.

It can be argued that any optimal online strategy must spend

all the energy harvested by the end of the transmission, and

thus we can fix αN = 1. For the particular case of N = 2, the
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online policy U simplifies to U1 (H1) = α1E1, U2 (H2) =
(1− α1)E1 + E2 and the online rate reads

RU (H) =
1

2
log2 (1 + α1H1)

+
1

2
log2

(

1 + (1− α1)
h2

h1
H1 +H2

)

. (3)

We solve (1) by deriving upper- and lower-bounds on g that

are tight. The upper-bound is obtained by fixing a particular

online policy U∗, and solving instead

gU = max
H∈{0,R+}2N

RO (H)−RU∗ (H) . (4)

The lower-bound is obtained by maximizing over a subset S of

all the possible fading, and energy harvesting sequences H ∈S
⊂ {0,R+}

2N
, and minimizing over all possible policies U ,

gL = min
U

max
H∈S

RO (H)−RU (H) . (5)

If channel coefficients remain constant over all the transmis-

sion slots, but energy arrivals are random, we have used this

approach in [10] and [11] to show that the competitive rate gap

is upper-bound by g ≤ log2 N and lower-bounded by gL =

− 1
N
log2

(

N
∏

n=1

α∗
n

)

where α∗
n = 1−

N+1−n
∑

l=2

(l−1)l−1

(l)l
α∗
n+l−1.

The final objective of this work is to extend these results

to fading channels. We begin here by considering the case of

two time slots. For the general case of N time slots, arbitrary

energy arrivals and time-varying channels coefficient, a close

form expression for the optimal offline rate needs to define

2N−1 different regions in a N dimensional space (λ1, ..., λN ).
Solving the competitive rate gap for such case might require

a different approach, and is left for future work.

IV. CONSTANT CHANNEL COEFFICIENTS

Let us first review the known results for the situation

in which fading coefficients remain constant for the two

transmission slots, but the energy harvested amounts change

at each time slot. The optimal offline policy and offline rate

for any number of slots was found in [12]. For two time slots,

the resultant offline rate is given by particularizing RO in (2),

with h1 = h2 = h, obtaining

RO =

{

log2
(

1+H2

2 + 1+H1

2

)

, if H1 > H2,
1
2 log2 ((1 +H1) (1 +H2)) , if H1 < H2.

Observe that given H1 and H2 neither the offline, nor the

online rates depend on the channel h, and thus the maximiza-

tion in (1) is performed over H = 〈H1, H2〉 ∈ {0,R+}
2
. The

competitive rate gap was shown in [10] to be

g =
1

2
log2

(

4

3

)

= 0.2075 bits/s/Hz.

It was also found that the online policy U∗ : 〈U1, U2〉 =
〈

3
4E1,

1
4E1 + E2

〉

is competitive rate gap optimal (g-

optimal), and that the myopic policy Um : 〈U1, U2〉 =
〈

1
2E1,

1
2E1 + E2

〉

obtains gm = 0.5 bits/s/Hz.

V. SINGLE ENERGY ARRIVAL

Next, we discuss the situation in which energy only arrives

at the beginning of the transmission, at slot 1, and no energy

arrives after that, namely E2 = H2 = 0, while the fading co-

efficients h1, h2 are arbitrarily varying. The offline and online

rates are thus a function of H , 〈H1, h1, h2〉 ∈ {0,R+}
3
. In

this case, the optimal offline policy is given by the well-known

water-filling power allocation for parallel fading channels.

For two time slots, the resultant offline rate is given by

particularizing RO in (2) with H2 = 0.

A. Lower-Bound

To compute a lower-bound on the competitive rate gap, we

consider the subset S of sequences H that results from limiting

h2 to belong to {0,∞}, and H1, h1 ∈ {0,R+}
2
, namely

S =
{

H
(0),H(∞) : H1, h1 ∈

{

0,R+
}2
}

where H
(0) = 〈H1, h1, 0〉, and H

(∞) = 〈H1, h1,∞〉. The

offline and online rates associated to the input sequences H(0)

and H
(∞) are given by

RO

(

H
(0)
)

=
1

2
log2 (1 +H1) ,

RO

(

H
(∞)
)

= lim
h2→∞







1
2 log2

(

h2

4h1
(1 +H1)

2
)

, if H1 ≥ 1,

1
2 log2

(

h2

h1
H1

)

, if H1 < 1,

RU

(

H
(0)
)

=
1

2
log2 (1 + α1H1) ,

RU

(

H
(∞)
)

= lim
h2→∞

1

2
log2

(

(1 + α1H1) (1− α1)H1
h2

h1

)

.

Define G (H) , RO (H)−RU (H). The lower-bound on the

competitive rate gap can be computed by solving

gL = min
α1(H)

max
H∈S

G (H) . (6)

If H1 > 1, G
(

H
(0)
)

monotonically decreases with α1,

whereas G
(

H
(∞)
)

has a minimum at α1 = ᾱ1 , H1−1
2H1

,

monotonically decreases for 0 ≤ α1 < ᾱ1, and monotonically

increases for ᾱ1 < α1 ≤ 1. The equality G
(

H
(∞)
)

=

G
(

H
(0)
)

is obtained at α1 = α∗
1|H1>1 , 3H1−1

4H1
. Given that

α∗
1|H1>1 > ᾱ1, the minimum in (6) for any H1 and h1 is found

at α1 = α∗
1|H1>1, as G

(

H
(0)
)

|α1=α∗
1|H1>1

= 1
2 log2

(

4
3

)

.

If H1 < 1, G
(

H
(0)
)

monotonically decreases with α1,

whereas G
(

H
(∞)
)

monotonically decreases for 0 ≤ α1 < ᾱ1

and increases for ᾱ1 < α1 ≤ 1. For G
(

H
(∞)
)

= G
(

H
(0)
)

now we need α1 = α∗
1|H1<1 , H1

1+H1
. Given that H1

1+H1
>

H1−1
2H1

, the minimum rate gap for any H1 and h1 is found at

α1 = α∗
1|H1<1, as

G
(

H
(0)
)

|α1=α∗
1|H1<1

= −
1

2
log2

(

1−
H1

(1 +H1)
2

)

,

≤
1

2
log2

(

4

3

)

.
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Finally, since G

(

H
(0)
)

|α1=α∗
1|H1<1

≤ 1
2 log2

(

4
3

)

, the com-

petitive rate gap in (6) is given by gL = 1
2 log2

(

4
3

)

bits/s/Hz,

and is achieved with equality at H1 = 1. Notice that this

lower-bound coincides with the competitive rate gap for the

case of constant channel gains, and random energy arrivals.

B. Upper-Bound

The derivation of the lower-bound suggest the online policy

U∗ : 〈U1, U2〉 = E1 〈α
∗
1, 1− α∗

1〉 , where

α∗
1 (H1) =

{

H1

1+H1
, if H1 < 1,

3H1−1
4H1

, if H1 > 1.
(7)

We obtain an upper-bound on the competitive gap by fixing

U∗, and solving (4), for the 3 regions in which the offline rate

(2) is defined:

The offline rate is given by RO = RA (H) , for any h2

satisfying ȟ2 ≤ h2, and h2 ≤ ĥ2 if 1 > H1 where ȟ2 , h1

1+H1
,

and ĥ2 , h1

1−H1
. The rate gap G∗

A (H) = RA (H)−RU∗ (H) as

a function of h2 has a minimum at h2 = h̄2 , h1

1−(1−2α∗
1)H1

,

decreases monotonically for h2 < h̄2, and increases monotoni-

cally for h2 > h̄2. Observe that ȟ2 ≤ h̄2 ≤ ĥ2. Consequently,

G∗
A (H) is maximum either at h2 = ȟ2, at h2 → ∞ if 1 < H1,

or at h2 = ĥ2 if 1 > H1. We bound the rate gap in each of

these situations:

At h2 = ȟ2 if 1 > H1, or 1 < H1, we have

G∗
A|1>H1

(〈

H1, h1, ȟ2

〉)

= −
1

2
log2

(

1−
(H1)

2

(1 +H1)
4

)

,

≤
1

2
log2

(

16

15

)

.

G∗
A|1<H1

(〈

H1, h1, ȟ2

〉)

=
1

2
log2

(

16

15

)

.

At h2 → ∞ if 1 < H1, G∗
A (〈H1, h1,∞〉) = 1

2 log2
(

4
3

)

.

At h2 = ĥ2 and 1 > H1, we have

G∗
A

(〈

H1, h1, ĥ2

〉)

= −
1

2
log2

(

1−
(H1)

4

(1 +H1)
2

)

,

≤
1

2
log2

(

4

3

)

.

Consequently G∗
A (H) ≤ 1

2 log2
(

4
3

)

.

If the offline rate is given by RO = RB (H), the rate gap

G∗
B (H) = RB (H) − RU∗ (H) increases monotonically with

h2. The conditions for RO = RB (H) require 1 ≥ H1, but

allow h2 → ∞, and thus

G∗
B (〈H1, h1,∞〉) = −

1

2
log2

(

1−
H

(1 +H1)
2

)

,

≤
1

2
log2

(

4

3

)

.

Finally, if the offline rate is given by RO = RC (H), the rate

gap G∗
C (H) = RC (H) − RU∗ (H) monotonically decreases

with h2. The conditions for RO = RC (H) allow h2 = 0, and

the rate gap depending if 1 > H1, or 1 < H1 is bounded by

G∗
C|1>H1

(〈H1, h1, 0〉) = −
1

2
log2

(

1−
H1

(1 +H1)
2

)

,

≤
1

2
log2

(

4

3

)

.

G∗
C|1<H1

(〈H1, h1, 0〉) =
1

2
log2

(

4

3

)

.

and thus G∗
C (H) ≤ 1

2 log2
(

4
3

)

. The competitive rate gap is

then upper-bounded by g∗u = 1
2 log2

(

4
3

)

.

Given that the lower- and the upper-bounds coincide, we

conclude that the competitive rate gap is also g = 1
2 log2

(

4
3

)

bits/s/Hz. Moreover, we have that the online policy (7) is g-

optimal. Using similar arguments it can be show that for the

myopic policy Um, the rate gaps G
(m)
X = RX −RUm , with X∈

{A,B,C} are upper-bounded by G
(m)
A ≤ 1

2 log2
(

4
3

)

, G
(m)
B ≤=

1
2 , and G

(m)
C ≤ 1

2 , and thus the competitive rate gap for the

myopic policy is g(m) = 0.5 bits/s/Hz.

VI. ARBITRARY ENERGY ARRIVALS AND CHANNELS

Finally, we obtain the competitive rate gap for a scenario

with random energy arrivals E1, E2, and arbitrarily varying

fading coefficients h1, and h2 at each slot. As a lower-bound

on the competitive gap, we can invoke any of the lower-bounds

presented in previous sections as they were obtained with

subset of sequences H = 〈H1, h1, H2, h2〉 ∈ {0,R+}
4

. Here,

we thus focus on the derivation of a tight upper-bound. To that

end, we fix the online policy (7), and solve (4), separately, for

each of the offline rate expressions in (2).

The offline rate is given by RO = RA (H) if H2 satisfies

Ĥ2 > H2 > Ȟ2 where Ĥ2 , h2

h1
(1 +H1) − 1, and Ȟ2 ,

h2

h1
(1−H1) − 1. The rate gap G∗

A (H) as a function of H2,

has a minimum at H̄2 = h2

h1
(1 + (2α1 − 1)H1) − 1, mono-

tonically decreases for H2 < H̄2 , and increases otherwise.

Consequently, the rate gap is maximized either at H2 = Ĥ2,

at H2 = Ȟ2 if Ȟ2 > 0, or at H2 = 0 if Ȟ2 < 0 and H̄2 > 0.
Evaluating each of these cases, we have:

If H2 = 0, we known from previous section that

GA (〈H1, h1, 0, h2〉) ≤
1
2 log2

(

4
3

)

.

If H2 = Ĥ2 and 1 > H1, or 1 < H1, we have

G∗
A|1>H1

(〈

H1, h1, Ĥ2, h2

〉)

= −
1

2
log2

(

1−
H2

1

(1 +H1)
4

)

,

≤
1

2
log2

(

16

15

)

.

G∗
A|1<H1

(〈

H1, h1, Ĥ2, h2

〉)

=
1

2
log2

(

16

15

)

.

If H2 = Ȟ2, and Ȟ2 > 0 a necessary condition is 1 > H1.
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Thus, the rate gap is bounded by

G∗
A

(〈

H1, h1, Ȟ2, h2

〉)

= −
1

2
log2

(

1−
(H1)

4

(1 +H1)
2

)

,

≤
1

2
log2

(

4

3

)

.

We thus conclude that G∗
A (H) ≤ 1

2 log2
(

4
3

)

.

If the offline rate is given by RO = RB (H), the rate gap

G∗
B (H) decreases monotonically with H2. By letting H2 → 0,

we are in the scenario considered in the previous section, and

we can bound G∗
B (〈H1, h1, 0, h2〉) ≤

1
2 log2

(

4
3

)

.

Finally, if the offline rate is given by RO = RC (H), the rate

gap, increases monotonically with H2. By letting H2 → ∞,

if H1 ≤ 1, we obtain

G∗
C|H1≤1 (〈H1, h1,∞, h2〉) = −

1

2
log2

(

1−
H1

(1 +H1)
2

)

,

≤
1

2
log2

(

4

3

)

.

else if H1 > 1, then G∗
C|H1>1 (〈H1, h1,∞, h2〉) =

1
2 log2

(

4
3

)

.

Thus, we conclude that the competitive rate gap is given by

g = 1
2 log2

(

4
3

)

.

VII. NUMERICAL RESULTS

In this section, we validate numerically the competitive

rate gap obtained, and illustrate the competitive rate gap for

several online policies. For the case of N = 2, we can obtain

numerically the competitive rate gap, as well as, the optimal

online policy for any h1, and H1, by solving

g (H1, h1) = min
α(H1,h1)

max
H2,h2

RO −RU . (8)

We solve (8), by exhaustive search. We limit H2 and h2

to belong to the finite set {0, 0.01, ..., 100}, and α ∈
{0, 0.01, ..., 1}. The resultant competitive rate gap as a func-

tion of H1 = 2h1E1 is depicted in Fig. 8, together with

the rate gaps obtained by the optimal online policy presented

here, the optimal online policy for static channels but random

energy arrivals, and the myopic policy. Observe that the g-

optimal strategy proposed in (7) reaches the competitive rate

gap already at H1 = 1, but never surpasses this value. The

g-optimal strategy for static channels instead converges from

above to the competitive rate gap as H1 increase.

VIII. CONCLUSIONS

We studied the competitive rate gap for EH communication

systems in fading wireless channels. For two-time slots, we

found the competitive rate gap, which is defined as the

maximum difference between the rate obtained with an offline

power policy and an online power policy. We showed that the

competitive rate gap is equal to 0.2075 bits/s/Hz. Interestingly,

the competitive rate gap remains the same, if we consider

static channels but random energy arrivals, or if we only

consider the fading process. We proposed an online strategy

that archives the optimal competitive rate gap, and validate

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

H
1

g
 [

b
it
/s

/H
z
]

g−Optimal Policy (Numerical)

g−Optimal Policy (Proposed)

α
1
=3/4, g−optimal policy for static channels

α
1
=1/2, Myopic Policy

Fig. 1: Competitive rate gap as a function of H1, for N = 2.

the results numerically. Future immediate work should address

the problem of obtaining the competitive rate gap for the case

of N slots. The extension of this analysis to multi-terminal

communications, such as the multiple access, the broadcast,

the relay and the interference channel are also interesting.
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