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Loop-Free Route Updates
for Software-Defined Networks

Klaus-Tycho Foerster Arne Ludwig Jan Marcinkowski Stefan Schmid

Abstract—We consider the fundamental problem of updating
arbitrary routes in a software-defined network in a (transiently)
loop-free manner. Our objective is to compute fast network
update schedules which minimize the number of interactions
(i.e., rounds) between the controller and the network nodes. We
first prove that this problem is difficult in general: The problem
of deciding whether a k-round update schedule exists is NP-
complete already for k = 3, and there are problem instances
requiring Ω(n) rounds, where n is the network size. Given these
negative results, we introduce an attractive, relaxed notion of
loop-freedom. We show that relaxed loop-freedom admits for
much shorter update schedules (up to a factor Ω(n) in the best
case), and present a scheduling algorithm which requires at most
Θ(logn) rounds.

Index Terms—Software-Defined Networking; Graph Algo-
rithms; Scheduling; NP-hardness

I. INTRODUCTION

Software-Defined Networks (SDNs) introduce interesting
new flexibilities in terms of traffic-engineering and program-
matic network control, by outsourcing and consolidating the
control over a set of nodes (switches or routers) to a logically
centralized (but potentially distributed) software controller. The
controller can define and flexibly change arbitrary routes (i.e.,
forwarding rules): routes are not limited to shortest paths and
are not necessarily based on IP destination addresses (only),
but can depend on Layer-2, Layer-3 and Layer-4 header fields
(e.g., TCP ports), and beyond.

While the logically centralized perspective offered by SDNs
has the potential to significantly simplify network operations,
an SDN still has to be regarded as a distributed system which
comes with fundamental challenges. One such fundamental
challenge regards the consistent implementation of route
updates: In order to update a route r1 to a route r2, the
controller needs to communicate the new forwarding rules
to all nodes. However, as both the transmission as well as the
installation of rules take time and are subject to variance [1],
inconsistencies can be introduced during the update: For
example, the same packet may still be forwarded according to
the old rules (of r1) at some nodes while it is forwarded already
according to the new rules (of r2) at others. The resulting actual
routes may transiently violate basic consistency properties such
as loop-freedom [2].

One possible solution is to use a 2-Phase Commit Protocol
(2PC) and (packet) tagging [3]: In a first round, the controller
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communicates the new rules of r2 to all nodes. However, the
rules only apply to packets with a certain tag (say, “new”), and
hence existing packets without the new tag are still forwarded
according to r1. Once all nodes confirmed the successful
installation of the new rules, in a second round, the controller
instructs the ingress ports of the network to tag all packets
with “new”, forcing the packets to use the new route r2. The
2PC protocol ensures a strong per-packet consistency [3]: each
packet will be forwarded according to r1 (exclusive-)or r2, and
loops are avoided. However, the use of tagging is undesirable,
as it consumes header space in the packets and requires the
installation of additional forwarding rules (matching the tagged
packets), wasting precious switch memory; moreover, tagging
can be problematic in the presence of middleboxes which
change headers [4].

An alternative approach to ensure loop-free updates, without
tagging, is to communicate updates to nodes in a staged manner:
The controller first updates only a safe subset of nodes V1 ⊆ V .
After these nodes asynchronously installed the new rules, they
send an acknowledgement to the controller, which then in turn
schedules the next subset V2 ⊆ V of nodes to update, until the
final subset Vk completes the route update. This protocol, which
is based on a node-ordering technique [5], does not require
packet tagging, and, as argued in [2], also has the advantage
that some of the edges of r2 become available earlier to packets:
there is no need to wait for the full installation of r2.

A. Our Contributions

This paper initiates the study of scheduling fast loop-free
network updates, i.e., updates which require a minimal number
of controller interactions while providing transient consistency
guarantees. We consider a model where network routes can
follow arbitrary paths and are not necessarily destination-based
(arguably a key benefit of SDN [6]). We ask: How many
communication rounds k are needed to update a network in a
(transiently) loop-free manner?

Besides the inherent advantages of being faster, fewer
rounds improve the agility of the network’s control loop, also
ensuring faster reactions to failures or changing workloads [1].
For example SWAN aims at upper bounding schedules to at
approximately 3 rounds in their inter-datacenter Wide-Area
Network (WAN) [7].

We show that answering this question is difficult. By leverag-
ing an interesting problem symmetry, we first (constructively)
show that deciding whether a k-round schedule exists can be
decided efficiently for k = 2. However, the problem becomes
NP-complete already for k = 3. Moreover, we show that there
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exist problem instances which require Ω(n) rounds, where n
is the network size. We will also prove that just aiming to
“greedily” update a maximum number of nodes in each round
(as proposed in previous work [2], however, for a different
model) may result in Ω(n)-round schedules in instances which
actually can be solved in O(1) rounds; even worse, a single
greedy round may inherently delay the schedule by a factor of
Ω(n) more rounds.

Given these negative results, we propose an attractive
alternative to the utterly strict loop-free requirement: relaxed
loop-freedom. Relaxed loop-freedom is motivated by the
observation that loops are only really problematic if they
occur on the (changing) path between source and destination:
topological loops in other parts of the network will never receive
any new packets. We argue that relaxed loop-freedom not only
expresses better the actually desired consistency in practice,
but we also show that it comes with interesting benefits: We
show that while relaxed and strong loop-freedom are equivalent
for k < 3, in general, a relaxed loop-free update schedule can
be Ω(n) times shorter than the best strong loop-free update
schedule. More importantly, we prove that O(logn)-round
relaxed loop-free schedules always exist and can be computed
efficiently: we present an elegant algorithm accordingly. We
also provide an asymptotically matching lower bound, proving
that our bound is tight: in a problem instance with heavily
nested new routes, our algorithm needs Ω(logn) rounds in the
worst case.

Finally, we also establish a connection to a line of works by
Wattenhofer et al. [2], [8], [9], which focuses on destination-
based routing. In particular, we prove that our hardness results
can be transferred to their model, providing new insights into
their problem as well.

B. Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces our formal model. Section III studies the
strong consistency model for transient loop-freedom, and Sec-
tion IV studies relaxed loop-freedom. Section V complements
our formal worst-case analysis by reporting on simulation
results for different synthetic workloads. After reviewing related
literature in Section VI, we conclude our work in Section VII.

II. MODEL

We are given a network and two routes r1 (the old route)
and r2 (the new route). Both r1 and r2 are simple directed
paths. Initially, packets are forwarded (using the old rules,
henceforth also called old edges) along r1, and eventually they
should be forwarded according to the new rules of r2. Packets
should never be delayed or dropped at a node: whenever a
packet arrives at a node, a matching forwarding rule should
be present.

Without loss of generality, we assume that r1 and r2 lead
from a source s to a destination d. Since nodes appearing only
in one or none of the two paths are trivially updatable, we
focus on the network G induced by the nodes V which are
part of both routes r1 and r2, i.e., V = {v ∶ v ∈ r1 ∧ v ∈ r2}.
Thus, we can represent the routes as r1 = (s = v1, v2, . . . , v` =

d) and r2 = (s = v1, π(v2), . . . , π(v`−1), v` = d), for some
permutation π ∶ V ∖{s, d} → V ∖{s, d} and some number `. In
fact, we can represent routes in an even more compact way: we
are actually only concerned about the nodes U ⊆ V which need
to be updated. Let, for each node v ∈ V , out1(v) (resp. in1(v))
denote the outgoing (resp. incoming) edge according to route r1,
and out2(v) (resp. in2(v)) denote the outgoing (resp. incoming)
edge according to route r2. Moreover, let us extend these
definitions for entire node sets S, i.e., outi(S) = ⋃v∈S outi(v),
for i ∈ {1,2}, and analogously, for ini. We define s to be the
first node (say, on r1) with out1(v) ≠ out2(v), and d to be the
last node with in1(v) ≠ in2(v). We are interested in the set
of to-be-updated nodes U = {v ∈ V ∶ out1(v) ≠ out2(v)}, and
define n = ∣U ∣. Given this reduction, in the following, we will
assume that V only consists of interesting nodes (U = V ).

A. Strong Loop-Freedom

We want to find a schedule U1, U2, . . . , Uk with minimum
k, i.e., a sequence of subsets Ut ⊆ U where the subsets form a
partition1 of U (i.e., U = U1 ⊍U2 ⊍ . . .⊍Uk), with the property
that for any round t, given that the updates Ut′ for t′ < t have
been made, all updates Ut can be performed “asynchronously”,
that is, in an arbitrary order without violating loop-freedom.
That is, consistent paths will be maintained for any subset of
updated nodes, independently of how long individual updates
may take.

More formally, let U<t = ⋃i=1,...,t−1Ui denote the set of
nodes which have already been updated before round t, and
let U≤t, U>t etc. be defined analogously. Since updates during
round t occur asynchronously, an arbitrary subset of nodes X ⊆
Ut may already have been updated while the nodes X = Ut∖X
still use the old rules, resulting in a temporary forwarding
graph Gt(U,X,Et) over nodes U , where Et = out1(U>t ∪
X) ∪ out2(U<t ∪ X). We require that the update schedule
U1, U2, . . . , Uk fulfills the property that for all t and for any
X ⊆ Ut, Gt(U,X,Et) is loop-free.

Later in this paper, we will sometimes refer to this definition
of loop-freedom as the Strong Loop-Freedom (SLF), to
distinguish it from Relaxed Loop-Freedom (RLF). By default,
throughout this paper, the term loop-freedom without additional
qualifier will refer to the strong variant.

Example. Fig. 1 illustrates our model: We are given two
routes (the old rules of r1 are solid, the new ones of r2 are
dashed), see Fig. 1 (left). We focus on the updateable nodes
which are shared by the two routes. Thus, in our example,
the update problem can be reduced to the 5-node chain graph
in Fig. 1 (right). Throughout this paper, we will stick to this
representation, and will indicate the old route r1 using solid
lines, and the new route r2 using dashed lines. Moreover, we
will depict the initial network configuration (before the update)
such that the old route goes from left to right. In the following
we will call an edge (u, v) of the new route r2 forward, if v is
closer (with respect to r1) to the destination, resp. backward, if
u is closer to the destination. It is also convenient to name nodes
after their outgoing dashed edges (e.g., forward or backward);

1We can w.l.o.g. assume a partition of U, as a later identical update of an
already updated node v does not change any forwarding behavior at v.
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Fig. 1. Overview of model and reduction. The network on the left is reduced to the line representation on the right. The solid lines show the old route r1 and
the dashed lines show the new route r2. Nodes shown in white are the only ones which are part on both paths, and hence relevant for the problem. Regarding
the two-letter codes introduced in Section III-A, s is FF, v1 is FB, v2 is BB, and v3 is BF, see Fig. 3 for a more detailed explanation of two-letter codes.
Hence, the here shown problem does not permit a 2-round schedule, as it contains a BB, which cannot be updated in the first or last (second) round.

similarly, it is sometimes convenient to say that we update an
edge when we update the corresponding node. Finally, we will
treat the terms edge and rule, as synonyms in this paper.

B. Relaxed Loop-Freedom

In this paper, we will also propose a weaker notion of loop-
freedom, denoted as Relaxed Loop-Freedom (RLF). Relaxed
loop-freedom is motivated by the practical observation that
transient loops are not very harmful if they do not occur
between the source s and the destination d.

Example. In Fig. 2, any SLF schedule needs to update v2
before updating v3, which in turn requires to first update v4,
which requires to first update v5, and so on, requiring n − 2
rounds in total. However, by updating s in the first round, all
new packets take the path s, vl−1, d, skipping over v2 to vl−2.
As such, when updating v2, . . . , vl−2 in the second round, no
new packets from s will enter a loop. After, we can update
vl−1 in the third round. Recall that SLF required a factor Ω(n)
more rounds, which is worst possible.

RLF Definition. As thus motivated, our following definition
of relaxed loop-freedom will focus on the loop-freedom of
current delivery path from the source s. The nodes not currently
on the path from s to d may be updated even if they induce
transient loops, until they eventually rejoin the path from s to
d.

Concretely, and similar to the definition of SLF, we require
the update schedule to fulfill the property that for all rounds
t and for any subset X , the temporary forwarding graph
Gt(U,X,E′

t) is loop-free. The difference is that we only care
about the subset E′

t of Et consisting of edges reachable from
the source s.

Impact of RLF. If relaxed loop-freedom is preserved, only
a constant number of packets can loop: we will never push
new packets into a loop “at line rate”. In other words, even if
switches acknowledge new updates late (or never), new packets
will not enter loops.

In practice, the technique of relaxed loop-freedom can also
be applied without any packets entering loops, by trading in a
small amount of extra update time. Towards this end, we make
the assumption that the latency, or time of flight, for any packet
in the network is upper bounded by some `, unless the packet
enters a loop. Observe that loops may only be introduced in
RLF for paths that are disconnected from the packet source.
Hence, after a time of `, each such path will be drained of

Fig. 2. RLF vs SLF: An SLF schedule needs to update backward edges one
by one from left to right, requiring Ω(n) rounds; for RLF, an O(1)-round
schedule exists, e.g., U1 = {s}, U2 = {v2, . . . , vl−2}, U3 = {vl−1}.

packets. In other words, by waiting for ` after each round,
no packets will loop – though the forwarding rules may still
contain loops. As the update time of switches is commonly
larger than the latency [1], the extra time spent will be small
in comparison. Even if the switch update time were to be
instantaneous, the latency of the packets used for controller-
switch interaction will be similar to `, inducing only a small
constant-factor overhead.

In theory, we cannot assume a bound on `, and the definition
of RLF does not put a limit on how long the packets will loop.2

However, the number of looping packets is still bounded by
the packets on route of the affected path segments. To illustrate
said number with an example, assume a rate of 1Gbit/s and a
10ms latency segment: at most 10Mbit of packets will loop.

III. FAST UPDATES ARE DIFFICULT

How many rounds are needed to update a network in a
(strongly) loop-free manner? At first sight, the problem may
seem difficult: the problem of breaking cycles even in a single
round, is related to the well-known NP-hard Feedback Arc
Set Problem [10]. On the other hand, our graphs have a very
special structure, as they essentially only consist of two simple
paths (namely the old and the new route).

In this section, we show that updating networks quickly is
difficult, even for such simple graphs: while we can exploit an
interesting symmetry property to efficiently compute 2-round
schedules (Section III-A), it turns out that deciding whether
3-round schedules exist is already NP-complete (Section III-B).
Also recall our example from Fig. 2 which shows that there
exist problem instances which cannot be updated in less than
Ω(n) rounds.

2Our Peacock algorithm presented later limits it to one round, see
Section IV-B.
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Fig. 3. Left: “Looking backward in time”, an example with reversed update pattern (from dashed to solid path). We obtain the following classification: v1 is
FF; v2, v3 are FB; v4 is BB and v5, v6 are BF. Right: Intuition why node updates can be moved from round 2 to round 1 or 3. There are two different valid
update schedules for the standard scenario. Schedule S1 is updating everything as early as possible with, e.g., FB node v2 in round 1 and BF node v6 in
round 2, with U1 = {v1, v2, v3}, U2 = {v4, v6}, and U3 = {v5}. Schedule S2 is updating everything as late as possible, e.g., v2 in round 2 and v6 in round
3, with U1 = {v3}, U2 = {v2, v4}, and U3 = {v1, v5, v6}. We depict updated nodes without their outgoing solid edges (no new packets will be sent this
way), and dashed edges turn into solid edges.

A. 2-Round is Easy

Before we show how to find 2-round update schedules
efficiently, let us introduce the following edge (resp. node)
classification, which will be useful more generally. We already
discussed the notion of forward and backward dashed edges
(resp. nodes), indicating whether a dashed edge points in the
same direction as the solid edge. This distinction is useful
as, for example, it is always safe to update any number of
forward-pointing edges: they can never introduce any loops.

A key insight is that the network update problem features
a symmetry property: A legal update schedule leading from
the old policy to the new policy backward must also be a
legal update schedule leading from the new policy to the old
policy. We introduce the following additional classification: we
classify edges also with respect to an update schedule leading
from the new policy to the old policy, “looking backward in
time”. That is, we consider updating edges from the dashed
(“new” r2) rules to the solid (“old” r1) ones, starting with
the last round. Given this perspective, we can classify the old
(solid) rules as backward or forward relative to the new ones
(dashed): we just need to draw the new route as a straight path
and see, if the old rule points forward or backward.

Based on this classification, we propose two-letter codes to
describe the nodes—the first letter will denote, whether the
outgoing dashed edge points forward (F) or backward (B).
Similarly, the second letter will describe the solid edge relative
to the dashed path. We refer to Fig. 1 and Fig. 3 for examples.

Recall that any set of forward rules cannot introduce a loop:
hence, 1) it is always safe to update any subset of FB and FF
rules in the first round, and 2) as a schedule backward must
also be legal, it is also always safe to update any BF and FF
rules in the last round (which are then FB and FF rules).

Given this intuition, we can determine whether two rounds
are sufficient: if there is any BB edge, it can neither be updated
in the first round, nor in the last, so two rounds are not enough.
Otherwise, we update FBs in the first round, BFs in the second
round, and have complete freedom on when to update the FF
nodes.

B. 3-Round is Hard

Unfortunately, it is already NP-complete to decide whether
a problem instance has a 3-round update schedule.

Theorem 1: Deciding whether a k = 3-round schedule exists
is NP-complete.

The k-round problem is certainly in NP: the correctness of a
schedule can be verified easily. The hardness proof proceeds as
follows. First we make a couple of observations which allow
us to narrow the ground for choosing 3-round update schedules,
reducing the problem to the selection of edge subsets. Second,
we will present a slight modification of 3-SAT and—using
gadgets—transform it into an instance of the edge selection
problem. Finally, the graph built using the gadgets will be
patched up to a proper instance of the network update problem
(namely, two paths traversing the same set of nodes).

1) Classifying Nodes: When we aim for three rounds, the
FB nodes can be updated in the first or second round. As we
will observe in the following, it is however never necessary to
update FB nodes in the second round: everything can just as
well be done in the first round.

Lemma 1: If there exists a 3-round update schedule S which
updates any nodes V ′ ⊆ V of type FB, then there is also a
3-round update schedule which updates all nodes of V ′ in the
first round. The same holds true for nodes of type FF.

Proof: Consider the temporary forwarding graph Gt(X) =
(U,X,Et) during the tth round update of S, for t ∈ {1,2}.
Since S is correct, both G1(X) = (U,X,E1) and G2(X) =
(U,X,E2) are loop-free, for any subset X ⊆ Ut. By moving
updates of forwarding nodes FB and FF from round 2 to
round 1, we will make G2 only sparser, and will hence not
introduce loops. However, also G1 will remain loop-free, as
the forwarding edges F⋅ respect the topological order of r1.

The same argument also holds in the other direction, using
our “backward perspective”: We can move BF (and FF) updates
to the last round. Therefore, without loss of generality, we
focus our analysis on schedules where all the BB nodes are
updated in the middle (i.e., second) round, all FB nodes in
the first round, and all the BF nodes in the last round. Thus,
the problem boils down to finding a distribution of the FF
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Fig. 4. Choosing the right set of FF nodes is important. An update of only
v4 would enable the BB node v6 to be updated in the second round. An
additional update of v3 would then lead to a loop (note that v5 will definitely
not be updated in the first round).

updates to the first and the third round. As we will show in
the following, finding such a distribution is NP-hard.

Fig. 3 provides intuition for why FB updates can be moved
into the first round and BF updates in the third round. The
right part shows two different 3-round schedules for a given
scenario. The FB node v3 needs to be updated in the first round
in any valid 3-round schedule, since the only BB node v4 needs
to be updated in the second round. Schedule S2 updates the
FB node v2 in round 2 and schedule S1 shows that it would
also be possible to update it in the first round. The BF node
v6 is updated in round 2 in S1 and delayed to round 3 in
S3. According to Lemma 1, there also exists a schedule S3

updating every FB node in the first round and every BF node in
the third round (U1 = {v1, v2, v3}, U2 = {v4}, U3 = {v5, v6}).

In order to be able to update every BB node in the second
round, one needs to be careful which (of the FF) nodes to
update in the first and which in the third round. Fig. 4 shows
a snippet of a line where the BB node v6 needs to be updated
in the second round. An update of FF node v4 in the first
round would enable this update for the second round, but
updating the FF node v3 as well would render an update of
v6 impossible. Node v5 is B⋅ and cannot be updated in the
first round, and hence an update of v6 would result in a loop
(v3 → v5 → v6 → v3).

2) Modifying 3-CNF: For our reduction, we take an instance
of the 3-SAT problem, C, which we will eventually transform
into an instance of a network update problem that is updatable
in 3 rounds, if and only if the formula is satisfiable. However,
we will first modify C, using a standard construction, and
replace each appearance of a variable in C using a new variable:
concretely, a variable appearing λ times in C decays into λ+ 4
new variables. By this trick, we will reduce the number of times
any (new) variable appears in the (new) formula, allowing us
to implement the low in- and out-degree requirements of our
network update problem.

We create the following clauses:
1) For every variable x, we create variables

x0, x1, . . . , xpx , xl, x0, x1, . . . , xnx , xl,

where px is the number of positive appearances of x, and
nx the number of negative appearances. In every clause
we replace the literals with the appropriate new variables
(from the collections x1, . . . , xpx and x1, . . . , xnx ). Also,
for every original variable x we add an “assignment
clause” (x0 ∨ x0).

2) For every original variable we add “implication clauses”
(xi → xi+1) for i = 0 . . . px − 1 and (xi → xi+1) for i =
0 . . . nx − 1; the last implications, for i = px resp. i = nx

must lead to xl and xl respectively ((xpx → xl) and
(xnx → xl)).

3) Finally, for every original variable x, we add an “exclu-
sive clause” (¬xl ∨ ¬xl).

For each variable x, with the assignment clause, we ensure
that at least one literal is true; with the exclusive clause we
ensure that at most one literal is true; and with the implication
clause, we ensure that the value is consistently preserved
through all clones.

It is straightforward to translate any satisfying assignment of
variables of one formula to the other, therefore the satisfiability
problem for the new formula is equivalent to the original one.
We will refer to the modified formula by C′.

3) Creating and Connecting the Gadgets: For the reduction,
we will create (network) gadgets representing the different
clauses. Concretely, first, for every variable xi in C′, we create
a node xi, which will be of type FF (we will refer to the node
using the variable’s name). The idea is that updating the node
in the first round will correspond to the positive valuation of
the variable. In general, we will create for each gadget a path
of solid edges pointing upward; eventually, we will connect
these paths from left to right (using solid edges), to establish
route r1.

Every clause K is encoded as a gadget in the graph using a
separate solid path (drawn as a vertical line pointing upwards)
with the variable-related (xi) FF nodes on it. Above those
nodes on the path, there is a BB node, vK1 , the starting point of
a backward, dashed edge that will end just below the variables
with a node vK2 (Fig. 5 left). The backward edge and the solid
path form a cycle, which needs to be disconnected in the first
round. The only way to do this, is by updating at least one
of the variable–related edges. Obviously, the dashed, forward
edges starting at the FF nodes inside the clause must reach
outside the clause-related backward edge (vK1 , vK2 ). In fact,
they will end just below the nodes representing the variables
that are followed in the implications (see Fig. 5 on the right),
so the dashed edge starting at the node xi will point to the
node xi+1 in a gadget representing another clause (actually
it points to a special node xIN

i+1 that serves as a connecting
point: we will present the details in the next paragraph; the
last xi will point to xl situated in the exclusive gadget clause
for x, which we describe later). For convenience, we order
the clauses from left to right, and name the variables xi, yi,
and zi with increasing i from the left to the right according to
this order. Thus, every dashed edge connecting two different
gadgets points rightwards when it is a forward F⋅ edge, and
leftwards when it is a backward B⋅ edge.

For each implication clause K = (xi → xi+1), we already
have the nodes representing the two variables xi and xi+1
(lying on two separate solid paths belonging to their respective
gadgets) and a dashed edge from the antecedent, xi, to a
new node xIN

i+1 placed below the consequent one. The gadget
(Fig. 5 right) assures that if xi is updated in the first round, then
xi+1 must be updated as well, or there will be a cycle in the
second round (xi → xIN

i+1 → xi+1 → xBB
i+1 → xHi → xIN

i → xi):
we draw a new node xBB

i+1 of type BB slightly above xi+1 (on its
solid path) and a dashed edge pointing from it to another new
helper node (to meet the in-degree constraint of the network
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Fig. 5. Left: Gadget for clause xi ∨ yj ∨ zk . At least one node needs to be updated to prevent the loop over vK1 and vK2 . Right: More details about the gadget
including also the implication clause xi → xi+1 representation, and a second clause xi+1 ∨wj′ ∨ uk′ . It is assured that xi+1 is updated if x1 is updated,
otherwise the BB edge from xBB

i+1 would form a cycle. White nodes will eventually be FF, black nodes BB. The grey nodes will later be assured to be of type
B⋅, to guarantee that they cannot be updated in the first round.

Fig. 6. Gadget for exclusive clause. An update of either xl or xl prevents
the other one from being updateable: the BB nodes v2 and v4 would form a
cycle in the second round.

update problem), xHi , slightly below xi (in the figure we draw
it below xIN

i as well).
Then for every exclusive clause Kx = (¬xl ∨ ¬xl) (shown in

Fig. 6), we draw four solid paths. On the first, the FF node xl
is drawn and a dashed edge pointing from it to another helper
node v1 lying on the third solid path. Similarly, xl on the
second path points, with its forward dashed edge, towards v3,
which we place as the last of the four solid paths. Above v1 and
v3 we draw another pair of BB nodes, v2 and v4 respectively.
Then v2 points back to the second solid path with its backward
dashed edge, to another new node, xHl placed just below xl on
the first path. In the same manner, the backward edge starting
at v4 ends with xHl below xl. This way, updating both xl and
xl in the first round will result in a cycle in the second round,
since, as we know, all BBs must be updated in the second
round. The cycle which can exist in the second round includes
the following nodes xl, v1, v2, xHl , x

IN
l , xl, v3, v4, x

H
l , x

IN
l , xl. xl

and xl have been updated in the first round, the nodes v2 and
v4 have been updated in the second round and the rest of the
nodes in the cycle (the grey nodes) have not been updated yet.
It will be later assured that they are of type B⋅ and therefore
cannot be updated in the first round, hence making a scenario
possible where they are delayed until the end of the second
round. Therefore an update of both xl and xl is not possible
in the first round.

While the composition of gadgets described so far is not
yet a proper instance of a network update problem, we can

already make some observations about the graph.
Theorem 2: If setting VT ⊂ V ar(C′) to true satisfies the

formula, then there is no cycle (⇒). Moreover, a cycle-free
update schedule gives us a satisfying variable assignment (⇐).

Proof: We prove the two directions ⇒ and ⇐ in turn.
⇒: Cycles are composed of: dashed edges starting at VT

nodes, solid edges starting at any other nodes to get somewhere,
and any edges starting at BB nodes to get back. We will show
that by following an arbitrary path consisting only of the listed
edge types, we will never return to the starting point of the path.
If the path ever chooses to take an FF updated dashed edge
(starting at xi), it will need to continue with edges starting
at xi+1 up to xl (this is ensured by the implications), and
there is no way back from there: it cannot constitute a cycle.
Conversely, a path which does not take any FF dashed edges
would not be able to jump from one of the solid, vertical paths
to another one more to the right, so if it returns to the starting
point, it must use nodes lying on one of the solid paths. At
the same time, a cycle on one of the solid paths would mean
that one of the clauses is not satisfied, which contradicts the
definition of VT .
⇐: Clearly, the construction assures that if the formula C′ is

not satisfiable, when we have a selection of FF nodes which
make the situation with all BB edges (which must be updated)
acyclic then each clause must be true: it contains a true variable
showing a path out of the cycle.

4) Connecting the Pieces: The presented gadgets leave us
with a number of independent solid paths and many dashed
edges starting at nodes of particular types (FF or BB). In order
for the network to represent a valid problem instance, we need
to connect the solid paths as well as the dashed paths. Our
goal is to connect the solid path from left to right (and vertical
lines are from bottom to top). The dashed path will be more
complicated.

Let us first focus on connecting the dashed edges to a
path. From the endpoint of each dashed edge, we will draw a
backward dashed edge to a completely new node (one for each)
placed far left from our solid paths. Hence, all nodes in R — the
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Fig. 7. Overview of how the path is connected. The grey nodes are used to connect everything into one solid path. They also join the dashed path at the last
nodes. This way, all nodes in R (white cycles) are of type FF.

Fig. 8. Pattern of a scenario where maximizing the number of updates per round will result in a Ω(n)-round schedule, although a O(1)-round schedule
would be possible. Left: An overview where π≤sk2 shows the edges of the new route before sk and π>sk2 those behind sk . Right: A detailed representation of
the blocks Bi.

set of new nodes — will appear earlier in the concluding solid
path: edges pointing to R are backward, edges pointing away
from R forward. Then we connect all the resulting 2-length
dashed paths (including the previously constructed dashed ones,
and the new ones pointing to R), using forward dashed edges
starting at the new nodes, as described in the following.

Some of the nodes in our gadgets were of type BB while
the others were FF. Recall that these type-properties are fairly
local: we only need to look at the next node on the solid path
and determine if it is preceding on the dashed path. To preserve
the types of the nodes, we must therefore connect the 2-length
paths in a correct order — first come the FF dashed edges,
then the clause-related downward-pointing BB edges and in the
end implication-related horizontal BB edges. In each of these
groups the edges starting more to the left should precede those
more to the right. Also – to ensure, that all the type assignment
clause-related edges indeed start with a BB node – above each
of those nodes vC1 , in their respective gadgets, we draw a new
node vCb . On each of the four solid paths used in the gadgets

for the exclusive clauses Kx, we do the same: we create nodes
vKx

b 1
, . . . , vKx

b 4
. Then we connect all the vb’s into a dashed

path going from right to left. The path must be connected to
the beginning of the dashed path we composed before, which
will ensure the BB property of the previous nodes: the solid
edge now points backwards relative to the dashed path. Each
of the new vCb nodes will be of type BF. The nodes in R are
ordered so that the dashed path ends at the leftmost node.

The nodes of R are positioned in a row, followed by our
vertical solid paths. We draw a new node above each of them,
connect it with a solid edge and connect the new node with
what is next in the row, from the top of a vertical path to the
bottom of the next one (Fig. 7). This way, we finally have one
solid path. The new nodes are connected by a chain of forward
dashed edges (so they can all be updated). In the end we add a
starting node, which points with the solid edge to the leftmost
R node, and with the dashed edge to the beginning of the
dashed path which is the beginning of the path we constructed
to ensure the BB properties (this point is BF).
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It is important to note that in the last steps we have not
jeopardized the reduction by introducing disconnections of the
gadget-BB edges, nor have we created any loops that cannot
be easily broken (by updating all the empty nodes in Fig. 7).
Therefore, the possibility of making the second round cycle-
free in our instance is still equivalent to the satisfiability of C′,
which makes the 3-round network update problem NP-hard.

C. It’s bad being greedy

Given the NP-hardness result of Theorem 1, one may wonder
whether simple approximation algorithms exist. While we
cannot prove the opposite, we conjecture that the problem
is generally hard to approximate. To give some intuition, in
the following, we show that a “greedy” approach which tries
to maximize the number of updatable edges in each round
(essentially the model studied in [2]) can fail miserably. In fact,
a single greedy round may unrevokably change the required
number of rounds from O(1) to Ω(n).

Fig. 8 shows a scenario where a greedy update takes Ω(n)
rounds even though an O(1) round solution exists. The left
side shows the general structure of the scenario which consists
of several blocks Bi (more details on the right side). These
blocks are connected via backward edges one by one, e.g., see
the edge emerging from i3. If a greedy algorithm picks all
forward edges to be updated in a first round, it will include
the nodes i1 and i2 as well as their representatives in the other
blocks. The update of the i1-type nodes essentially leads to a
situation reminiscent of the one shown in Fig. 2, where many
backward rules must be updated one after the other. Delaying
the i1-type nodes on the other hand will make it possible to
update most of the backward edges in the next round, since
the cycle is broken by the edges outgoing from the i2-type
nodes. This allows for an update in 4 rounds, independent of
n. In case of the greedy algorithm, each additional block will
increase the number of rounds by two. Each block consists of 4
nodes within the block and an additional node for connectivity
to the right part of the line, resulting in 2n/5 rounds: up to
n/10 additional rounds are required.

IV. RELAXED LOOP-FREE UPDATES ARE TRACTABLE

Given the potentially large number of rounds required to
update a network in a strongly loop-free manner, we now
propose to relax loop-freedom to only include actually used
paths, between source and destination. We believe that this
is an attractive alternative: although some unlucky packets
currently on transit on an edge may end up in a (temporary)
loop, we will never route any packets entering the network
at the source into a loop. Moreover, as we will see, relaxing
the loop-freedom is also attractive because it enables fast and
computationally tractable updates. In particular, we will present
a fast and elegant algorithm which never requires more than
O(logn) rounds: a potentially large gain given the Ω(n) lower
bound for stronger models.

A. First Observations

We first observe that for k < 3, the relaxed problem variant
does not help: in this case, relaxed and strong loop-freedom are

equivalent. To see this, recall Section III-A where we showed
that it is easy to decide if rules r1, r2 permit a 2-round update
schedule in SLF: If no BB edge is present, update all FBs in
round one, BFs in round two, and FFs in either round. Else,
two rounds do not suffice.

We may ask: Are there networks that do not permit a 2-
round update schedule in SLF, but in RLF? As it turns out,
the answer is no:

Even using relaxed loop-freedom, a BB node cannot be
updated in the first round. As every schedule must also be
valid in reverse, a BB node cannot be updated in the last
(second) round either under RLF. Furthermore, every schedule
that satisfies SLF (recall Section III-A), also satisfies RLF.

Observation 1: The problem instances that permit 2-round
update schedules are identical for strong and relaxed loop-
freedom.

While there is not much we can gain from relaxing the
notion of loop-freedom for k < 3, in general, the benefits can
be significant. To see this, recall the example in Fig. 2: SLF
required Ω(n) rounds, while RLF permitted a 3-round solution.

B. Algorithm and Upper Bound

Before presenting our scheduling algorithm in detail, let us
introduce some concepts. During its execution, our algorithm
will repeatedly perform node merging: when updating a node
v, we will merge it with the node out2(v) it pointed to with
its dashed edge. This can safely be done after each round,
due to the irrelevance of already updated nodes (they will
simply forward packets to the next node, without influencing
the remaining problem at hand). I.e., after merging, we treat v
and out2(v) as a single node,3 with incoming rules from v and
out2(v), but just outgoing rules from out2(v). This merging
concept can be iterated: when v and out2(v) are updated, both
nodes get merged into out2(out2(v)). We refer to Fig. 9 for
further examples of node merging.

As we will see, while the initial network configuration
consists of two paths, in later rounds, the already updated solid
edges may no longer form a line from left to right, but rather
an arbitrary directed tree, with tree edges directed towards the
destination d; due to the node merging, the in-degree (from
the solid edges) may also increase, while the out-degree and
in-degree from the dashed edges remains one. We will use the
terms forward and backward also in the context of the tree:
they are defined with respect to the direction of the tree root.
However, there also emerges a third kind of edges: horizontal
edges in-between two different branches of the tree. Moreover,
note that while the destination d will always be the root of the
tree, the source s does not necessarily have to be at the leaf
all the time (due to merging).

The proposed algorithm Peacock4 is based on repeated node
merging, and hence tree shrinking: starting from the line, it
constructs various trees of decreasing sizes, until only a single
node is left. At this point, the update is complete and the

3When eventually updating from out1(out2(v)) to out2(out2(v)) in some
round t, we denote this by adding out2(v) to Ut.

4The name of the algorithm is due to its branch resp. “feather” spreading
strategy.
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Fig. 9. Example execution of Peacock. Updated nodes are shown in white. The initial network is a line (on the left). An update of the node with the largest
distance v4 and the merging of v4 and v9 leads to a tree shown for round 2, where the node from the merger is denoted by v4,9 for re-traceability. Observe
that the incoming rules of v4,9 are from v4 and v9, while the outgoing rules are from v9. Next, in round 2, the nodes v5 − v8 can be updated since they are
not on the s− d path. E.g., v7 merges with v8 into v7,8, which in turn gets merged with d into dv7,8. This results in a line again, shown for round 3. In round
4, v2 will be updated and merged into dv2,3,6,7,8,9, before the last node, which will be updated in round 5, resulting in the single node sv2,3,4,5,6,7,8,9.

Algorithm 1 Peacock
Input: initial network G, set of to-be-updated nodes U
Output: relaxed loop-free schedule (U1, U2, . . . , Uk)

1: t← 0, for all t: Ut ← ∅
2: while (G contains more than one node) do
3: t + +
4: X ← U ∖U<t
5: if (t odd) then
6: sort dashed forward edges in out2(X)
7: for u ∈X , starting with max forward distance do
8: if (∄v ∈ Ut s.t. (v < u < out2(v)) ∨ (v < out2(u) <

out2(v))) then
9: add u to Ut

10: for v ∈ Ut do
11: merge v with out2(v) in G
12: else
13: add to Ut all nodes not on the path from s to d
14: for v ∈ Ut do
15: merge v with out2(v) in G
16: return (U1, U2, . . . , Ut)

algorithm terminates. As we will see, Peacock manages to
decrease the remaining network size by at least a constant
factor, for each pair of consecutive rounds, resulting in the
O(logn)-round upper bound.

Concretely, Peacock toggles between two simple strategies:

1) Shortcut: In odd rounds (i.e., in the 1st, 3rd, etc. round),
Peacock tries to reduce the distance between source s
and destination d as much as possible, by updating a
disjoint set of “far-reaching” (dashed) forward edges: we
define the distance of a dashed edge as the number of
solid edges it skips on the current path from s to d. The
idea is that by updating these far-reaching edges, we
obtain a tree with many branches (of which only one
contains the s-d path).

2) Prune (and re-establish line): In the even rounds (i.e.,
in the 2nd, 4th, etc. round), Peacock updates all nodes
which are not on the current path from s to d. Since

in the preceding odd round we shortened the length of
the path from s to d, we can now update a significant
number of nodes (namely a constant fraction of the still
to-be-updated ones), and due to the subsequent merging
operation, the resulting network size is significantly
reduced. Intriguingly, the even round, after pruning and
merging nodes, will always result in a simple line network
again. Based on this line, we can easily determine the
next set of far-reaching updatable edges again, enabling
a subsequent “productive” even round. Furthermore, as
Peacock re-establishes the line in every other round,
packets disconnected from the destination in the odd
rounds will loop for at most one round at a time.

Algorithm 1 gives the formal listing for Peacock and Fig. 9
illustrates an example. In the first round there is only one node
(v4) updated. Peacock is in the Shortcut phase and updates the
“far reaching” edges. Once it adds node v4 there is no other
dashed forward edge remaining which is not interfering with
the update of v4. Hence Peacock switches to the Prune phase
in round 2 and updates every node which is not on the s − d
path (v5, v6, v7, v8). Peacock then uses the Shortcut strategy
again in round 3.

Theorem 3: Peacock solves any problem instance in at most
⌈6 logn⌉ rounds.
We will make use of two helper lemmas, one targeting odd
rounds (the extent to which the distance from s to d can be
shortened) and one targeting even rounds (the number of nodes
which can be pruned to produce a smaller resulting tree). We
will see that after each pair of a consecutive odd and even
round, only a constant fraction of nodes is left due to merging.

Lemma 2: In each odd round, Peacock reduces the number
of nodes on the solid path from s to d by nt/3, where nt is
the number of nodes on the path.

Proof: Peacock orders the nodes in decreasing order of
distance, i.e., the number of solid edges they bridge. Including a
node v (and its dashed edge), may block other nodes (resp. their
intervals) from being scheduled in this round. However, due
to the descending distance order, the set of blocked dashed
edges span at most twice the distance from v to out2(v) on the
current path: since we choose a maximal distance edge (say of
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distance x), edges entering or exiting the corresponding interval
may block at most an additional distance of 2x. Assuming
that these distances cannot be covered by any other updates,
Peacock loses at most twice the distance which it covered. This
leaves, in the worst case, at most 2nt/3 nodes on the path from
s to d.

Lemma 3: Peacock can simultaneously update all nodes
which are not on the path from s to d. The subsequent merge
operation, re-establishes the line topology.

Proof: First, we observe that by updating these nodes, we
cannot introduce any loop, since we do not touch any outgoing
dashed edges. Dashed edges, at any time, must form a simple
path. Each branch which is currently not on the s-d path will
therefore point with at least one new rule to the s-d branch. All
nodes of the branch can hence be merged with the respective
nodes of the new rules on the s-d branch: a line topology. Also
note that the source s does not necessarily have to be at the
leaf of a tree. But also in this case, it is possible to update
everything on the branch below s. Imagine a node u′ which is
not on the (solid s − d) path. Due to node merging, this node
will be merged with out(u′), which itself is now either part
of the s − d path, or will be updated together with another
node. Thus, we will successively merge nodes until a node
(necessarily) lies on the s − d path and will not be updated.
This leads to a line with s as a leaf.
We can now prove Theorem 3:

Proof: Lemma 2 shows that Peacock reduces the number
of nodes on the s-d path by nr/3 if the underlying network is a
line. All of these nodes are not part of the s-d path in the next
round, and on different branches. This shows that an update
of these nodes is possible in even rounds without introducing
a (relaxed) loop. Since, according to Lemma 3, an update of
every node but those on the s-d path leads to a line again, we
have shown that the number of remaining nodes is reduced by
a third every second round. Hence, as n ⋅ (2/3)3 logn ≤ 1 for
n ≥ 1, ⌈2 ⋅ 3 logn⌉ rounds always suffice.

C. A Matching Lower Bound

The above analysis is asymptotically tight:
Theorem 4: Peacock requires Ω(logn) rounds in the worst

case.
Proof: We prove the theorem by constructing problem

instances for which Peacock requires many rounds. Concretely,
we construct graphs Gj , j ∈ N with 8 ⋅ 2j nodes: to update a
given Gj , Peacock requires 2j + 5 rounds.

In the constructed instance, when there are multiple forward
edges which cover the same distance, we will fix the one to be
picked by Peacock. This simplifies the presentation and comes
without loss of generality.

We first present the general idea of the construction, before
describing the technical details. By executing Peacock for two
rounds (i.e., shortcut and prune), we reduce graph Gj into a
graph isomorphic to Gj−1, requiring 2(j − 1) + 5 rounds to
complete. As ∣V (Gj)∣ ∈ Θ(2j), the number of rounds used
by Peacock is in Θ(logn). An illustration is given in Fig. 10,
starting with the 16-node graph G1.

Let us now elaborate on the details of this construction.

Construction of Gj: For all 3 ≤ i ≤ 2j + 2, we create the 8
nodes

v −1+2i
2i

−7/8, v −1+2i
2i

−6/8, . . . , v −1+2i
2i

−1/8, v −1+2i
2i

−0/8

resulting in 8 ⋅2j nodes. E.g., for j = 0, nodes v0, v1/8, . . . , v7/8
are created. The old edges are created by ordering the nodes
by their index, defining an s − d path with −1 + 8 ⋅ 2j edges,
with the node v0 representing s and the node v(−1+22j+2)/22j+2
representing d. The new edges consist of 1/2 ⋅ 8 ⋅ 2j forward
edges and of −1 + 1/2 ⋅ 8 ⋅ 2j backward edges. All forward
edges cover the same distance, namely half of the nodes, e.g.,
(s = v0, v4/8), (v7/32, v23/32), or

(v −1+22j+2
22

j+2 −4/8, v −1+22j+2
22

j+2
= d)

The construction of the backward edges is as follows, for every
3 ≤ i ≤ 2j + 2, except for d:

(v −1+2i
2i

−3/8, v −1+2i
2i

−5/8) ,(v −1+2i
2i

−1/8, v −1+2i
2i

−6/8) ,

(v −1+2i
2i

−2/8, v −1+2i
2i

−4/8) ,(v −1+2i
2i

−0/8, v −1+2i+1
2i+1 −7/8)

i.e., −1+1/2 ⋅8 ⋅2j backward edges. The 8 ⋅2j nodes are created
in 2j layers, denoted by the index 3,4, ...2j + 2, with s being
in layer 3 and d being in layer 2j + 2. The new forward and
backward edges thus form an s−d path as follows: First, layer
3 is traversed, then layer 4, then 5, . . . , until lastly, layer 2j +2
is traversed, ending at d = v(−1+22j+2)/22j+2 .

To prove the logarithmic runtime, we proceed by induction.
Base case: For G0 with 8 nodes, Peacock will in the first
round update the edge (v0, v4/8) (shortcut), then prune nodes,
resulting in the 4 nodes v0,4/8, v1/8,5/8, v2/8,6/8, v3/8,7/8. Next,
(v0,1/4, v2/4,6/8) is chosen as the shortcut, where pruning
results in the two nodes v0,4/8,2/8,6/8, v1/8,5/8,3/8,7/8. The last
shortcut is the only forward edge left, with no more pruning
needed. As such, Peacock uses 2j +5 = 5 rounds to update G0,
cf. Fig. 10.
Inductive step: We next show that one iteration of Peacock
turns Gj+1 into a graph (isomorphic) to Gj . Let (v0, v4/8) be
the shortcut edge. Then, in the pruning phase, all nodes with
an index k < 4/8 will be updated, merging with vk+4/8, with
s = v0 being merged with v4/8 already in the shortcut update.
The old edges between v4/8 and d in Gj+1 thus form all the
old edges in Gj .

The correctness of the proof now relies on the technical
construction of the backward edges in Gj+1, as they will be
responsible for all new edges in Gj . The idea is as follows:
Gj+1 has 2j+1 = 2 ⋅ 2j layers, twice as many as Gj with 2j

layers 3,4, . . . ,2j + 2. The layers 3 and 4 from Gj+1 with 8+8
nodes will form the 8 nodes in layer 3 in Gj , layers 5 and 6
from Gj+1 will form layer 4 in Gj , etc., and layers 2j+1 + 1
and 2j+1 + 2 from Gj+1 will form the layer 2j + 2 in Gj .

Towards this end, consider any 3 < i < 2j + 2: The 16 nodes
from layers 2(i − 2) + 1 and 2(i − 2) + 2 in Gj+1 have to be
pruned into layer i in Gj . We start with layer 2(i − 2) + 1 in
Gj+1, consisting of the 8 nodes

v −1+22(i−2)+1
22(i−2)+1 −7/8, . . . , v −1+22(i−2)+1

22(i−2)+1 −0/8
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0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/81/16 3/16 5/16 7/16 9/16 11/16 13/16 15/16

(a) The graph G1 with 16 nodes. When Peacock selects the edge from 0/8 to 4/8 as a shortcut, pruning results in the graph in Fig. 10b.

0/8 1/8 2/8 3/8

4/8 5/8 6/8 7/8
1/16 3/16 5/16 7/16

9/16 11/16 13/16 15/16

(b) After two rounds with Peacock, isomorphic to G0 in Fig. 10c.

0/8 1/8 2/8 3/8 4/8 5/8 6/8 7/8

(c) The graph G0 with 8 nodes. 0/8 to 4/8 is the next shortcut.

0/8 1/8
2/8 3/8

4/8 5/8
6/8 7/8

0/8 1/8 2/8 3/8
4/8 5/8 6/8 7/8

0/8 1/8
2/8 3/8

4/8 5/8
6/8 7/8

0/8 1/8 2/8 3/8
4/8 5/8 6/8 7/8

(d) To the left, the output of Peacock on G0 after two rounds. To the right, after two more rounds, selecting the first forward edge as a shortcut each time.

0/8 1/82/8 3/84/8 5/86/8 7/8 1/16 3/165/16 7/169/16 11/1613/16 15/16

(e) The resulting updated graph, expanded into 16 nodes again.

Fig. 10. Example of the operation of Peacock on G1. The v is omitted in node names for better readability. Starting on G1 in Fig. 10a, Peacock performs
two updates (shortcut+prune), resulting in the graph in Fig. 10b – which is isomorphic to the graph G0 in Fig. 10c. Then, five further updates are needed:
Resulting, first in the left graph in Fig. 10d, second, in the right one in the same figure, and third, the completed update schedule, expanded in Fig. 10e.

which are pruned to just 4 nodes

v −1+22(i−2)+1
22(i−2)+1 −7/8,⋅⋅⋅−3/8, . . . , v −1+22(i−2)+1

22(i−2)+1 −4/8,⋅⋅⋅−0/8.

The same happens at layer 2(i − 2) + 2 in Gj+1, resulting in
the 4 nodes

v −1+22(i−2)+2
22(i−2)+2 −7/8,⋅⋅⋅−3/8, . . . , v −1+22(i−2)+2

22(i−2)+2 −4/8,⋅⋅⋅−0/8

We now iterate through all corresponding 8 backward egdes
in Gj+1, the 4 from layer 2(i − 2) + 1 and the 4 from layer
2(i− 2)+ 2. For ease of readability, we will refer to nodes just
by their (combined) ending index, e.g., −1/8 or −2/8,−6/8,
as long as the layer is clear from the context. Note that in
layer 3 in Gj , the node −7/8 (representing s) will have no
incoming edges, and in the highest layer 2j +2, the node −0/8
(representing d) will have no outgoing edges.

1) Layer 2(i − 2) + 1: The node with index −1/8 points to
−6/8, resulting in the new backward edge from the index
−5/8,−1/8 to −6/8,−2/8, which we identify as from
−3/8 to −5/8 (backward) in layer i in Gj . Similarly:

a) −2/8 → −4/8 ⇒ −2/8,−6/8 → −4/8,−0/8 ⇒
−5/8→ −1/8 (forward) in layer i in Gj .

b) −3/8 → −5/8 ⇒ −3/8,−7/8 → −5/8,−1/8 ⇒
−7/8→ −3/8 (forward) in layer i in Gj .

c) −0/8 → −7/8 (2(i − 2) + 2) ⇒ −0/8,−4/8 →
−7/8,−3/8 (2(i − 2) + 2) ⇒ −1/8 → −6/8 (back-
ward) in layer i in Gj .

2) Layer 2(i−2)+2: Using analogous arguments, we iden-
tify the resulting backward edge from index −5/8,−1/8
to −6/8,−2/8 as from −2/8 to −4/8 (backward) in layer
i in Gj . Again, similarly:

a) −3/8,−7/8 → −5/8,−1/8 ⇒ −6/8 → −2/8 (for-
ward) in layer i in Gj .

b) −2/8,−6/8 → −4/8,−0/8 ⇒ −4/8 → −0/8 (for-
ward) in layer i in Gj .

c) −0/8,−4/8 → −7/8,−3/8 (2(i − 2) + 3) ⇒
−0/8 (i) → −7/8 (i + 1) (backward) in Gj , does
not exist for i = 2j + 2 in Gj .

As Peacock leaves the old edges beyond the index −3/8
intact, we have shown the inductive step to be correct,
i.e., one iteration of Peacock turns Gj+1 into Gj .

It thus follows that Peacock needs 2j + 5 rounds to finish
updating Gj . As Gj has n = 8 ⋅ 2j nodes, Peacock needs
Θ(logn) rounds on Gj , which concludes the proof.

V. SIMULATION STUDY

We established so far that strong and relaxed loop-freedom
differ heavily in their worst case behavior, but are identical
for extremely short schedules. Specifically, recall that there are
instances where strong loop-freedom requires Ω(n) rounds, but
relaxed loop-freedom always takes at most Θ(logn) rounds.
On the other hand, the instances solvable in two rounds are
exactly the same for both strong and relaxed loop-freedom.

In order to complement our formal analysis and evaluate the
number of update rounds required in “on average” and in more
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Fig. 11. Plots of the experiments conducted to compare SLF (left) and RLF (right), with about 500 instances per number of nodes, ranging from 10 to 60
(x-axis). The number of rounds is displayed on the y-axis, but note that the scale is logarithmic for the left SLF. We depict the mean, bottom 5%, 5% to 95%,
and the top 5% in terms of numbers of rounds needed. On average, RLF is roughly between a half and a full round faster than SLF, but starting at around 35
nodes, SLF heavily deviates in the top 5%, taking over 10 times more rounds in extreme cases. For the bottom 5%, both SLF and RLF behave similarly.

realistic settings, we conducted a series of experiments, in
different settings. In particular, we also implemented a Mixed
Integer Program (MIP) in order to have an optimal baseline
to which we can compare the quality of the produced update
schedules. As the runtime of the mixed integer program is high
in large networks, in the following, we focus on networks of
up to size 60. To enable other researchers to reproduce our
results, we release the code of our implementation together
with this paper.

We now first describe the experimental methodology in
Section V-A, followed by our results and discussion in
Section V-B, where we also briefly study optimal solutions for
the Peacock lower bound construction of the last section.

A. Comparison Methodology

In order to compare the strong and relaxed loop-freedom,
we consider an optimal baseline, adapting the Mixed Integer
Program presented in [11] by removing waypoints and not
considering any flow extensions.

We generate random instances ranging from 10 to 60 nodes,
performing 500 experiments per number of nodes, 25,500 in
total. Each experiment is allocated 30 minutes of computing
time on a single thread of an Intel Xeon E5-4627 v3 at
2.60GHz, with 6GB of memory per experiment. We use Gurobi
7.5.1 [12] to solve the MIP formulations. In total, less than
ten experiments did not finish in the time limits and were
terminated.

B. Comparison Results

We present our experiment results in Figure 11. As can
be seen in the lower left corner of both plots, the 2-round
instances are identical, as expected. Until around 35 nodes,
RLF is around one round faster in average than SLF. This
speed-up matches the experiments (with waypoint-enforcement)
performed in [11]. Beyond 35 nodes however, SLF experiences
peaks in the number of rounds required, taking up to roughly 10
times longer than RLF in the top 5% of experiments performed.

Summarizing, in over 25,000 experiments, RLF and SLF
did not deviate much in average, but the tail heavily differs:

while RLF peaked at just 5 rounds, SLF took up to around
50 rounds. As the duration of the update process “determines
the agility of the control loop” [1], SLF can thus cause heavy
delays for the network operation, whereas the performance of
RLF is dependable. Furthermore, as pointed out in Section II-B,
the downside of some packets entering loops in RLF can be
negated in practice.

Lastly, we also evaluated instances of the lower bound graphs
Gj from Section IV-C. Optimal relaxed loop-free schedules
for networks of size 8 require 3 rounds, for size 16 to 256,
4 rounds, and for networks of size 512, 7 rounds. Thus, we
conclude that while the problems can in principle be solved
faster than with Peacock, no algorithm exists to compute very
short schedules for these instances.

VI. RELATED WORK

Although some of our insights are of more general nature,
our work is mainly motivated by the SDN paradigm, and
especially its traffic engineering flexibilities and its support
for a programmatic, dynamic, yet formally verifiable network
management [13]. Indeed, a more flexible traffic engineering,
that is, selection of forwarding routes, is considered one of the
main motivations for SDN, and has been studied intensively
over the last years. [6], [14]. Our paper is orthogonal to this
line of research, in the sense that in our model, the routes are
given and can be arbitrary.

The problem of updating [1], [2], [3], [15], [16], [17],
synthesizing [18] and checking [19] policies [20] as well as
routes [21] has also been studied intensively. In their seminal
work, Reitblatt et al. [3] initiated the study of network updates
providing strong, per-packet consistency guarantees, and the
authors also presented a 2-phase commit protocol. The paper
sparked much research, and the protocol also forms the basis
of the distributed control plane implementation [15]. For an
overview of the network update literature and a discussion
of how the problem in the SDN context related to similar
problems in traditional networks, we refer the reader to the
recent survey [5].

Our work is also motivated by the measurement studies in [1]
and [22] providing empirical evidence for the non-negligible
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time and high variance of switch updates, as well as by the work
by Mahajan and Wattenhofer [2], later extended in [8], which
started investigating weaker transient consistency properties—
in particular also (strong) loop-freedom—for destination-based
routing policies (DLF). This line of research focuses on the
problem of maximizing the number of links which can be
updated simultaneously at a given moment in time. This
problem is known to be NP-hard as well [9], both for SLF
and RLF [23], but there also exist approximation algorithms
and optimal algorithms for special instances [23].

Our model is different in two main respects:

1) Objective function: Rather than maximizing the number
of links which can be updated concurrently [2], we
study the natural problem of computing short schedules:
schedules which minimize the number of controller
interactions. We have shown in this paper that a greedy
update of links can significantly delay a route update.

2) Arbitrary paths: In contrast to prior work on loop-free
updates [2], our model is not limited to destination-based
routing. Rather, routes from a source s to a destination
d can be arbitrary paths. Given the traffic engineering
flexibilities introduced by SDNs, this is an important use
case.

Despite these differences, interestingly, some of the results
presented in this paper also provide new insights for the DLF
model. In particular, our problem instances can be transformed
into destination-based instances (on special graphs), and hence
our NP-hardness proofs (in particular Theorem 1) also apply
in the model by Wattenhofer et al. Conversely, all algorithms
(maximizing the number of links) in the DLF-model are also
consistent in SLF and RLF. It is however an open problem
if finding a k = 2-round update schedule is NP-hard in DLF.
However, analogously to the approach presented in this paper,
we can argue that any k = 2 instance for DLF may not contain
any BB nodes, due to symmetry properties. However, it is not
clear if BBs completely characterize k = 2 instances in DLF,
as further so-called horizontal edges can be present.

Besides these closely related works, there exists a number of
additional results in the field. Inspired by [24], a local proof-
labeling scheme for DLF was presented in [25], where nodes
decide to update based on their direct neighborhood. This way,
the controller needs to send out only a single update, with
the nodes themselves updating asynchronously, but still in a
provably consistent fashion. The work in [25] draws upon ideas
of François et al. [26], [27], who studied transient loops in
link-state routing protocols.

Wattenhofer et al. [2], [8] showed that multi-destination-
based rules (without considering the source) can be handled
by temporary splitting and joining them afterwards. Vanbever
et al. [28] showed in this context that if a router has to update
all its rules for a linear number of destinations at once, finding
a strongly loop-free router ordering is NP-hard. Furthermore,
already for two destinations without rule-splitting, sublinear
scheduling of updates in DLF is NP-hard as well [9].

Dudycz et al. [29] considered the joint optimization of
multiple routes, aiming to minimize the number of times a
router has to be updated via the controller. The authors showed

how to optimally combine consistent update schedules, for
example from [2], [8] or from our work.

Researchers have also started investigating consistent updates
for networks which include (network function virtualized)
middleboxes [30]. Ludwig et al. [17] presented update protocols
which maintain security critical properties such as waypoint
enforcement via a firewall, in a transiently consistent manner;
the authors also showed that the loop-freedom and waypoint
enforcement properties may even conflict, deciding if both are
possible is NP-hard to decide [11]. Vissicchio and Cittadini [31]
propose to jointly use update ordering and packet tagging in this
context. Further ideas can be found in [32]. Cerný et al. [33]
investigate when update ordering without tagging allows for
per-packet consistency, i.e., every packet may only use the old
or new route.

Considering congestion-freedom adds another layer of com-
plexity, a hierarchy first explored in [2], [8]: Using a 2-phase
commit and tagging, deciding if a congestion-free update exists
can be performed in polynomial time for splittable flows [34],
or is even always possible in anycast scenarios [35], but is
NP-hard for unsplittable flows [9], [34]. If just node ordering
is allowed, the latter problem becomes already NP-hard for
just two flows [36].

A further standpoint is promoted by Ghorbani and Godfrey
in their work [37]: the authors argued that in the context of
network function virtualization, not weaker but rather stronger
consistency properties are required.
Bibliographic note. Preliminary versions of this paper were
presented at ACM HotNets 2014 [17] (introducing the round-
based model) as well as at ACM PODC 2015 [38].

VII. CONCLUSION

This paper initiated the study of fast and loop-free network
update algorithms requiring a minimum number of update
rounds. We have shown that the existing, strict definitions of
transient loop-freedom are problematic, as short schedules are
hard to compute and may not even exist. We have proposed
a weaker notion of loop-freedom which we believe expresses
the actually required consistency.

We believe that our work opens interesting directions for
future research. Most importantly, it would be interesting to
derive ω(1)-round lower bounds, or to show that O(1)-round
schedules for relaxed loop-free problems always exist. Our
computational experiments (using mixed integer programs)
indicate that larger problem instances require more rounds.
So far, the worst problem instance (consisting of 512 nodes,
based on our lower bound topology in the proof of Theorem 4)
requires 7 rounds.

Another important direction for future research regards the
development of benchmarks and rigorous methodologies to
evaluate and compare the performance of different network
update algorithms. While we in this paper have focused on
random as well as “hard” update instances, as SDN is moving
intro production, it will be interesting to better understand the
types of route updates arising in emerging SDN deployments.

For reproducibility purposes and to ease comparisons in
future works, we made the code of our evaluation publicly
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available to the community at https://github.com/MatthiasRost/
NetworkUpdateScheduler.
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