
1

Utility-centric Networking: Balancing Transit Costs
with Quality of Experience

Truong Khoa Phan, David Griffin, Elisa Maini, and Miguel Rio

Abstract—This paper is focused on techniques for maximizing
utility across all users within a total network transit cost budget.
We present a new method for selecting between replicated servers
distributed over the Internet. First, we introduce a novel utility
framework that factors in quality of service metrics. Then we
design an optimization algorithm, solvable in polynomial time, to
allocate user requests to servers based on utility while satisfying
network transit cost constraints, mapping service names to
service instance locators. We then describe an efficient, low
overhead distributed model which only requires knowledge of
a fraction of the data required by the global optimization
formulation. Next, a load-balancing variant of the algorithm is
explored that substantially reduces blocking caused by congested
servers. Extensive simulations show that our method is scalable
and leads to higher user utility compared with mapping user
requests to the closest service replica, while meeting network
traffic cost constraints. We discuss several options for real-world
deployment that require no changes to end-systems based on
either the use of SDN controllers or extensions to the current
DNS system.

Index Terms—Utility Function, Server Selection, Name Reso-
lution, Optimization.

I. INTRODUCTION AND MOTIVATION

As the Internet becomes the enabler for an increasing variety
of services with a wide spectrum of requirements, pressure
is being put onto the Internet ecosystem to facilitate service
placement and to select the best replica for each user request.
This replication always involves multi-stakeholder trade-offs
between costs and quality of service (QoS).

In this paper we are addressing the problem of enabling
a high Quality of Experience for users by selecting service
replicas that provide high utility while at the same time
keeping the solution within an acceptable total cost, where cost
is composed of transit costs for an ISP incurred by interdomain
traffic. In essence we are maximizing utility across all users
within the bounds of a total interdomain traffic cost.

There are many drivers for service replication, including
server resilience, network diversity, and proximity of servers to
users. Deploying services close to the users allows application
providers to improve on QoS metrics such as latency and
throughput. Some frameworks, such as fog computing [1],
even attempt to put service instances at the extreme edge of
the network in locations such as access points.

Service quality has two major sets of component metrics,
relating to computation and networking parameters. Servers

Truong Khoa Phan, David Griffin and Miguel Rio are with the Department
of Electronic and Electrical Engineering, University College London, UK.
E-mail: {t.phan, d.griffin, e.maini, miguel.rio}@ucl.ac.uk

Elisa Maini is with Vodafone, UK. E-mail: elisa.maini@vodafone.com

need to be properly provisioned for the arrival rate and holding
time of user requests otherwise users will not be served
or blocked. The service selection system needs to take into
account both computation and networking factors to optimize
its selection.

Resolution involves converting a service name to a specific
network locator for the selected replica. Our work assumes that
the user’s ISP is in the best position to make this selection (ei-
ther through name resolution or software defined networking).
The ISP has accurate information regarding the user’s position
in the network and detailed knowledge of the current network
status. Furthermore, implementation of the resolution process
by the ISP allows the ISP to apply its own network policies
in the selection process, for example to manage inter-domain
transit traffic load and hence costs. A centralized approach
would, in theory, allow global optimization but is unrealistic
at global scales. A central entity would not have access to
information on the detailed user location, the network topology
or current network status. Furthermore, it would be incapable
of implementing ISPs’ specific traffic policies as it would have
to arbitrate between conflicting policies of different ISPs which
would be problematic from a business point of view. For those
reasons, our server selection model can be implemented in a
similar way to PaDIS [2] which allows ISPs to better assign
users to servers by exploiting its own knowledge of network
conditions and user locations.

The main contributions of the work described in this paper
are as follows:
• First, we introduce a novel utility function to model user

perception of service performance relating to one or more
underlying QoS metrics. Application providers are able to
define the parameters of the utility functions per service,
according to the requirements of that service. A key novel
feature of our utility function is the ability to define
the threshold beyond which user perception of quality
improvements will not improve further.

• Secondly, we design a centralized optimization algorithm
that can be solved in polynomial time that allows ISPs
to redirect their users to the best replica of the service,
allowing a trade-off between traffic costs and users’
QoS. The model allows to optimize for multiple services
simultaneously.

• Finally, we propose a low overhead distributed model
that allows ISPs to run a local version of the selection
algorithm without the need for global knowledge of all
service replicas and network conditions. We demonstrate
that the algorithm always converges to a stable state and
can perform load balancing to significantly improve the



2

overall performance.
This paper is organized as follows: We start by surveying

related work in Section II. Section III introduces the utilitarian
server selection model and is followed by the formulation
of the centralized optimization problem (Section IV) and
a distributed model (Section V). Section VI presents the
algorithm evaluation results and Section VII presents a
small-scale testbed deployment and discusses how the model
can be deployed in practice. We draw our conclusions on the
work in Section VIII.

II. RELATED WORK
A. Utility function

In general, utility is a measure of user satisfaction and
is a function of received QoS. Most of the work in the
literature considers a utility function which is, in general,
a non-decreasing function of the effective transmission rate
(bandwidth) [3], [4], [5] or signal-to-interference ratio (SIR)
of ongoing connections [6]. In this work, we consider utility
as a non-increasing function of latency, although additional
performance metrics will be incorporated in future work.

Differing from most of the work in the literature, our utility
function has a special initial region [0, Tmin] in which the
utility score is unchanged. This feature better captures the
nature of services (see the example in section III-A) and,
as we show in Section VI-B, optimization based on such a
utility function improves overall system performance. To the
best of our knowledge, there are no or few practical solutions
of the utility work deployed in actual networks due to their
complexity [5], [6]. For instance, the proposed algorithms in
[5] require the modification of TCP stacks at the end-hosts,
however they also do not guarantee the algorithms convergence
in a general network.

Our work does not require any change in the end-host TCP
stacks and, therefore, can be more easily deployed in real
networks (see section VII for more detail).

B. Server selection

Our work is related to recent work on optimizing
performance-cost for server selection [7], [8]. For example,
Wendell et al. [7] introduce DONAR - a decentralized replica-
selection system that considers client locality, server load, and
policy preferences. Like DONAR our model can also balance
client requests across replicas according to a manually set
capacity cap at each replica, but in addition we also adopt
a new strategy called maximizing the minimum spare capacity
which automatically allocate resources between replicas in a
fair way. Zhang et al. [8] focuses on optimizing cost and per-
formance in online service provider networks. The objective is
to search for an optimal “sweet-spot” in the performance-cost
Pareto front. Auspice [9] uses a heuristic placement algorithm
to determine the locations of active replicas so as to minimize
client-perceived latency.

The work described in these papers trades off latency, cost
and load balancing. However, by simply minimizing latency,
selection of the lowest latency replica is always preferred. Our
utility function models the fact that the user perception of

utility is not increased by reducing latency below a certain
threshold, which depends on service type. This is a less-greedy
approach, resulting in a fairer solution by improving perfor-
mance for all users without reducing utility for individual
users, as we demonstrate in Section VI-B.

In the distributed version of our algorithm we rely solely
on updates from servers to resolvers and no messages need
to be exchanged between servers or between resolvers. This
significantly reduces communication overhead and system
complexity compared to other approaches in the literature.
Our algorithm can find the optimal solution in polynomial
time and can optimize for multiple services simultaneously.
Moreover, in the case of insufficient resources at servers, the
algorithm allows a trade-off between blocking probability and
total utility.

III. UTILITARIAN SERVER SELECTION

The goal of our utilitarian server selection algorithm is to
provide the highest QoS for the greatest number of users [10]
within the bounds of a total budget on transit traffic costs. Our
framework unifies the objectives of several stakeholders and
the QoS of the end users. In our approach, the stakeholders
involved in service selection are as follows:
• Execution zones (EZ): These are the entities running

the computational infrastructure hosting the distributed
application. Note that in the remainder of the paper the
term server is also used as an equivalent of EZ.

• Application (Service) Providers: These are the organi-
zations that run applications over a distributed set of
execution zones.

• Internet Service Providers (ISP): These will implement
resolution algorithms to resolve users queries, mapping
service names to locators. The algorithms as described in
this paper are candidates for deployment in ISP resolvers
that will trade-off the QoS of their users with the costs
incurred by inter-domain transit traffic.

Given these stakeholders, we next present an overview of the
server selection process and the role of the utility function in
the optimization algorithm.
A. Illustrative Example

We have observed that for several services, the user per-
ception of QoS does not improve further beyond a certain
threshold. For instance, people do not perceive any degrada-
tion in the quality of voice services if the latency is equal
to or less than 20 ms [11]. For web services, a response
time of 100 ms (including network latency and processing
time) is the limit for users to perceive that the system is
reacting instantaneously [12]. For video streaming no further
improvement in quality will be achieved by increasing the
bandwidth beyond the maximum bit rate of the video stream.
Based on these observations, we illustrate the capped nature
of the utility function by means of a simple example in Fig. 1.
There are two users requiring a voice service which is available
in both EZ1 and EZ2. However, each EZ has capacity to
serve only one user at a time. Assuming there is sufficient
bandwidth on all links, the classical closest-based algorithms
[7], [13], [8] would minimize average latency and result in



3

EZ2 

EZ1 

user1 

user 2 

20 ms 

Internet 

Fig. 1: Utility based vs. closest based selection.

(user 1 → EZ1) and (user 2 → EZ2) (shown with dashed
lines) with an average latency of (5 + 30)/2 = 17.5 ms. This
means user 1 will experience excellent quality while user 2
experiences degradation (compared to the threshold of 20 ms
for voice services). However, by using a utility-based selection
algorithm, a better solution can be achieved (user 1 → EZ2)
and (user 2 → EZ1) where both users receive the highest
QoS, with a latency of 20 ms. It should be noted that this is a
simple example with only two users and two EZs, for which
the solution is trivial. In a real-world scenario with thousands
of users and EZs the optimal solution is non-trivial, which
the algorithms proposed in this paper aim to solve with both
centralized and distributed versions.

B. Utility Function

Our general utility function is based on practical research
on quality of service utility [14], [15] and prior investigations
into mean opinion scores [16]. Our interval data points map
to user ratings of excellent, good, fair, poor and no service or
blocked (Fig. 2) [17].

T1
min t T1

fair T1
max 

0

1/k1 

excellent good fair poor no service 

U1fair 

Ub 

1/k2 

Fig. 2: Utility function vs. latency.

Using our utility framework, application providers specify
the utility function by two thresholds: Tmin and Tmax. Note
that utility is not restricted to only latency, in future work,
we will extend the utility function to be a combination of
several QoS metrics such as latency, bandwidth, loss, etc. As
shown in Fig. 2, we use a non-increasing piecewise linear
utility function that is characterized by:
• We use k ≥ 1 to set user priority. Two users of the same

service are shown in Fig. 2. The user with lower k (1 ≤
k1 < k2) gets a higher utility for the same latency value.
As a result, the algorithm gives higher priority for users
with low k to connect to closer EZs.

• If t ≤ Tmin: depending on the service type, an appro-
priate value of Tmin is selected meaning that even if
the latency is below this value, the improvement is not

TABLE I: Key Notations (in Alphabetical Order)

bij bandwidth required by user i for service j
COST the maximum transit cost (budget)
ciz unit transit cost between user i and EZ z
D set of user requests D = {(i, j), ∀i ∈ I, j ∈ J }
dij number of session slots of service j requested by user i

(i, j, z) user i, service j and EZ z
I set of user I = {i}
J set of services J = {j}
kij important parameter of a pair (user, service)
ljiz latency between user i and EZ z for service j

MMSC Maximizing the minimum spare capacity
Sj
z quantity of available session slots for service j at EZ z

tij average latency for user i to access service j
Ub utility value of a blocked user
uij utility of user i when receiving service j

xj
iz fraction of user group i receiving service j from EZ z

yij variable used to compute utility
Z set of execution zones (EZ) Z = {z}

perceived by the users of that service, thus the utility is
unchanged (Umax = 1/k).

• If Tmin < t ≤ Tmax: QoS is within an acceptable range
(0 ≤ U < 1/k). User satisfaction reduces as the latency
increases. We also define an optional parameter Tfair ∈
[Tmin, Tmax] as the point from which users are aware of
reduced performance but it is still within an acceptable
range. Note that Tfair is used to simply qualify where
is the point that has a fair QoS, and it does not change
the slope of the utility graph which is only affected by
Tmin, Tmax and k.

• If Tmax < t: the request is blocked (no service) because
the latency is beyond the acceptable range. More details
on blocked requests are presented in Section IV-A.

Based on this utility function, the utilitarian server selection
solution for the problem in Fig. 1 will be (user 1→ EZ2) and
(user 2 → EZ1) where both users receive maximum utility
Umax with t = Tmin = 20ms.

IV. CENTRALIZED OPTIMIZATION

We use linear programming (LP) to formulate the server
selection problem which maximizes the total utility of all users
while taking into account constraints on the data transit cost
and the load balancing strategy. A central prerequisite for our
model is the existence of a forecasting demand component
that provides an input to the optimization algorithm. Although
client demand varies with time, work in the literature [7]
points to a reasonably stable demand within 10 minutes
intervals. Note that, we aggregate individual users with the
same preference to form a group. This can be done, for
example, according to users’ postal codes [7] or by users’ IP
prefixes [8]. Aggregation of this kind reduces the quantity of
input variables for the optimization and also stabilizes request
rates per-group [7]. For simplicity, we use the term “user i”
to represent “user group i”.

First, we define the utility function for each pair of (user i,



4

service j) described in Section III-B as follows:

uij =


0 < 1

kij
≤ 1 if tij ≤ T ij

min

−tij+T ij
max

kij(T
ij
max−T ij

min)
≥ 0 if T ij

min < tij ≤ T ij
max

Ub < 0 otherwise

A constant kij ≥ 1 is used to indicate the priority level for
each pair of user i and service j. By selecting values for kij ,
T ij
min and T ij

max, we can draw the utility graph as in Fig. 2.
When the latency is larger than T ij

max, the request is considered
to be blocked. We set Ub to be a small negative value to
indicate the utility of a blocked request. More details on how
to set value for Ub are presented in Section IV-A.

Given the key notations in Table I, we use linear program-
ming to formulate the utilitarian server selection problem.

max[
∑

(i,j)∈D

uij ] (1)

uij ≤ 1 is utility value of user i requesting service j. The
objective function (1) is to maximize the total utility over all
users. Given the objective, we add the following constraints
to the formulation.∑
z∈Z

xjiz = 1 ∀(i, j) ∈ D (2)

xjiz ≤ 1 is the fraction of user i receiving service j from EZ
z. Constraint (2) ensures that all requests of the user i for the
service j have to be served by at least one EZ.∑
i∈I

dijx
j
iz ≤ Sj

z ∀j ∈ J , z ∈ Z (3)

Sj
z is the maximum number of session slots of service j

which can be served by EZ z. We use session slot as a unit
of measurement representing how many user requests can be
accommodated simultaneously. dij is the demand volume of
user i for service j. The capacity constraint (3) guarantees the
available session slots of z is sufficient to serve user requests.

tij =
∑
z∈Z

ljizx
j
iz ∀(i, j) ∈ D (4)

ljiz is the network latency for user i to get service j from EZ
z. Hence tij in equation (4) is the average latency for the user
i to get the service j. We consider a full mesh connection
between users and EZs. We then remove all pairs of (user i
and EZ z) if the latency ljiz > T ij

max. This step guarantees that,
even without adding explicit constraints in the LP model, the
latency for any user i to connect to any EZ z to get service j
is always less than or equal to T ij

max.

yij ≥ 0 ∀(i, j) ∈ D (5)

yij ≥ tij − T ij
min ∀(i, j) ∈ D (6)

yij is a temporary variable used to compute the utility function.
Constraint (5) - (6) ensure that yij ≥ 0 if tij ≤ T ij

min,
otherwise yij ≥ tij − T ij

min > 0.

uij =
T ij
max − T ij

min − yij
kij(T

ij
max − T ij

min)
∀(i, j) ∈ D (7)

Equation (7) is used to model the utility function uij defined
in Section III-B. There are two possibilities:

- If tij ≤ T ij
min, based on constraints (5) - (6), yij can be

any values that are greater or equal to 0, however, due to the
objective function maximizing the total utility, the minimum
value of yij should be chosen. In other words, yij is set to 0
and thus, uij = 1

kij
(the maximum utility, when tij ≤ T ij

min).
- If tij > T ij

min, based on constraints (5) - (6), the formula-
tion will set yij = tij −T ij

min and thus uij =
−tij+T ij

max

kij(T
ij
max−T ij

min)
.∑

z∈Z

∑
(i,j)∈D

cizbijx
j
iz ≤ COST (8)

xjiz ∈ [0, 1], uij ≤ 1 ∀(i, j) ∈ D, z ∈ Z (9)

Constraint (8) limits the data transit cost. As shown in [13], [8],
the linear transit cost we use here is also a good approximation
to the 95-th percentile transit cost.

The optimization formulation presented above is a pure
linear programming model as there are no integer variables as
constraints (9); hence it can be solved efficiently in polynomial
time. The number of variables xjiz in the LP problem is
|I| × |Z| × |J | where |I| is the number of users, |Z| is the
number of EZs and |J | is the number of service types. Since
|Z| and |J | are usually much smaller than |I|, the worst case
complexity of the LP problem is O(|I|3.5) [8]. We report the
execution time of the algorithm in Section VI-C.

A. Blocked user requests

When there are insufficient resources (either due to reaching
the EZ capacity or transit cost budget) constraints (3) and (8)
can be violated resulting in no feasible solution. We relax
this by allowing user requests to be blocked when there are
insufficient resources. To model this, we define a virtual EZ
which has a large capacity such that the constraint (3) can
never be violated. The transit cost between users and the
virtual EZ is zero. The latency between all users to this virtual
EZ is set at a value which is larger than Tmax, therefore the
utility for a blocked request is Ub < 0 (Fig. 2). We evaluate
different values of Ub and show its impact on the number of
requests to be blocked (Section VI-A2). Intuitively, the closer
to 0 the value of Ub is, the greater the probability for requests
to be blocked due to a smaller difference in utility between
a request at Tmax (UTmax

= 0) and a blocked one (Ub < 0).
By using a virtual EZ the LP always finds a feasible solution
because the constraints (3) and (8) cannot be violated, but the
total utility could be extremely small, or negative. The requests
that have been assigned to the virtual EZ are considered to
be blocked.

B. Load balancing

The linear program can be adapted to support load balancing
between EZs, which we name maximizing the minimum spare
capacity (MMSC) strategy. Spare capacity is the available
capacity at an EZ, specified as a percentage of the total
capacity: an EZ with a capacity of 100 slots where 70 slots
have been used, has a spare capacity of 30%. Assume that
there are two EZs, both with a capacity of 100 slots, and that
there are two possible solutions. In solution 1, EZ1 and EZ2



5

both have a spare capacity of 30%. In solution 2, EZ1 and
EZ2 have spare capacities of 20% and 40%. The minimum
spare capacity in solution 1 is 30% while in solution 2 it is
20%. As the MMSC strategy tries to maximize the minimum
spare capacity over all possible solutions, solution 1 will be
chosen.

Because the MMSC algorithm tries to spread the load over
all EZs, there is a trade-off between load balancing and the
perceived utility. We present here a strategy that sets priority
on performing load balancing first, and optimizing the total
utility in the next step.

1) Step 1: minimizing blocking probability: As the virtual
EZ has very large capacity, the MMSC algorithm first mini-
mizes the blocking probability, otherwise all requests would be
forwarded to the virtual EZ (as this solution would maximize
the minimum spare capacity). To do so, we replace the
objective function (1) with:

QMIN = min
∑

(i,j)∈D

dijx
j
iz z = virtualEZ (10)

to minimize the number of requests going to the virtual EZ,
i.e. blocked.

2) Step 2: maximizing the minimum spare capacity: From
the set of feasible server selection solutions in Step 1, we
choose the one in which the minimum spare capacity is max-
imized. To implement this, we replace the objective function
(10) in Step 1 with:

SMAX = max Smin (11)

and add the following constraints:

sz = 1−
∑

(i,j)∈D

dijx
j
iz/
∑
j∈J

Cj
z ∀z ∈ Z (12)

Smin ≤ sz ∀z ∈ Z (13)∑
(i,j)∈D

dijx
j
iz ≤ QMIN z = virtualEZ (14)

Equation (12) is used to compute the spare capacity (i.e.
1− total load) of each EZ, and the minimum spare capacity
Smin is calculated by constraint (13). In constraint (14),
QMIN is the minimum blocking probability found in the
objective function in Step 1. The objective function (11)
maximizes the minimum spare capacity over all EZs.

3) Step 3: maximizing the total utility: In this step, we
remove constraint (13) and add the following:

sz ≥ SMAX ∀z ∈ Z (15)

where SMAX is a constant and is found from (11). To
maximize the total utility, we use a model with objective
function (1) and constraints (2)-(9), (12), (14), (15). We show
that this MMSC strategy has several advantages over the
simple distributed server selection model in Section VI-C.

V. DISTRIBUTED MODEL

Although the centralized optimization model can be solved
in polynomial time, it is impractical in real deployments as a
single global resolver would be required to collect information
from all EZs and networks and would also handle all resolution

TABLE II: Key Notations in Distributed Algorithm

Az
i (k) # slots used by Ri from EZ z at epoch k
Cz capacity (total session slots) at EZ z
k epoch (iteration) number
M # resolvers that share an EZ
N # EZs that one resolver can see in its visibility set
Ri resolver i (0 ≤ i < M )

Sz
i (k) # slots can be seen by Ri from EZ z at epoch k
Z set of execution zones

requests from all users. Designing an efficient distributed
algorithm is a classical problem [7], [18], [13], which needs
to satisfy the following general requirements:

1) Low overhead: a small number of control messages
should be exchanged.

2) Convergence: the algorithm should always converge to
a stable solution.

3) Efficiency: the solution of the distributed algorithm is
close to the centralized one.

Existing approaches in the literature can be used to help satisfy
requirements (2) and (3) by using optimization decomposition
methods [7], sub-gradient methods [18] or alternating direction
method of multipliers [13]. However, they result with high
complexity formulations and require high control overhead.
Potentially, control messages can be exchanged in both direc-
tion between: resolvers - resolvers, resolvers - EZs, and EZs -
EZs. In this work, we propose a novel distributed model sat-
isfying all the three aforementioned requirements. Compared
with existing work, our model is simpler (polynomial time
solvable) and low overhead (only one-way control messages
from EZs to resolvers are needed). In addition, the messages
exchanged are simple, as we describe later.

A. Distributed algorithm

We divide the time into intervals in which we assume the
traffic demand is unchanged (e.g. 10 minutes as observed
in [7]). Each interval is sub-divided into epochs and the
distributed algorithm is run at the beginning of each epoch.
We call the subset of EZs that are closest to a resolver and
can be seen by that resolver the visibility set.

Resolver 1 

EZ 

Capacity C 

S0 S1 

A0 A1 

Resolver 1 

EZ 

Capacity C 

S0 S1 

A0 A1 

Epoch k Epoch (k+1) 

Shared border 
Shared border 

Fig. 3: Example: EZ z is shared by two resolvers R0 and R1.

We introduce the notations used in the distributed algorithm
in Table II. Considering an EZ z with total available session
slots Cz which are shared by M resolvers. A resolver i can
use at most Si slots from the EZ z (Si ≤ Cz). Ai is the actual
slots used by the resolver i (Ai ≤ Si ≤ Cz). A visualization
of those notations are shown in Fig. 3.

At an epoch k ≥ 0, let resolver Ri(0 ≤ i ≤ M − 1) see
Sz
i (k) ≤ Cz session slots from the shared EZ. To guarantee

the capacity constraint, we have
∑M−1

i=0 Sz
i (k) ≤ Cz . Let

Az
i (k) ≤ Sz

i (k) be the number of session slots that the resolver



6

Ri allocates for its users to connect to EZ z at epoch k. The
algorithm, step-by-step, at each resolver is then as follows:

1) At the beginning of each interval: collect the estimated
user demand and network metrics. We assume that these
values do not change during an interval.

2) At the beginning of each epoch: each EZ announces the
latest capacity (Cz) and the total-in-allocation session
slots (

∑M−1
i=0 Az

i (k)) to all resolvers that share it.
3) Each resolver updates available session slots that it

can see (Sz
i (k + 1)) in the next epoch based on the

information received from the EZs in its visibility set:

Sz
i (k + 1) = Az

i (k)
[
1 +

Cz −∑M−1
i=0 Az

i (k)∑M−1
i=0 Az

i (k)

]
(16)

if
∑M−1

i=0 Az
i (k) = 0, we set Sz

i (k + 1) = Cz . In other
words, resolver i will see full capacity of the EZ z if no
other resolvers send request to that EZ.

4) Given new available session slots from EZs in step (3),
the resolvers execute the linear program in Section IV
(polynomial execution time) to find server selection
solutions for their local users.

By using the equation (16), we show that our algorithm
satisfies all three of the previously mentioned requirements
of a distributed algorithm:
• Low overhead: only one-way messages from EZs to

resolvers are required: each EZ sends message contain-
ing its capacity (Cz) and the total in-use session slots
(
∑M−1

i=0 Az
i (k)) by all resolvers sharing it. Each resolver

then uses this updated information and the local user
demand and its used session slots in the previous epoch
(Az

i (k)) to find a new solution.
• Convergence: we show, both by mathematical proof (Ap-

pendix A) and simulations (Section VI-C2) that local
decisions always converge within a handful of iterations.

• Efficiency: each resolver uses the linear program in Sec-
tion IV, thus it guarantees that the resolver can find the
optimal solution based on its visibility set in polynomial
time. We show by simulations (Section VI-C) and by
mathematical analysis (Appendix B) that the distributed
algorithm is efficient and is close to the centralized one
when visibility set is large enough.

In addition, we show that the equation (16) also achieves the
fair share on demand requirement. As shown in Fig. 3, at
the epoch k, the resolver R0 just uses a small fraction of its
shared available session slots (A0 < S0) while R1 requires all
the slots that it can see (A1 = S1). Therefore, in the epoch
(k + 1), we should move the shared border to the left (but
do not touch the red area - the allocated slots of R0) so that
there will be more free space for R1 to forward its requests
to the EZ if needed. This can be done automatically by using
equation (16) (see the example in V-B).

Initially, when services are first started, each EZ announces
its available session slots to all resolvers that can see it.
Given the available session slots and the local user demand,
each resolver executes the linear formulation in section IV
to find a solution. In this initial step, some EZs can be
overloaded as they are shared by many resolvers, but there is

no message between resolvers to say that. However, by using
the equation (16) to update available capacity at EZs after each
epoch, the capacity constraints are not violated after the initial
step. We present a simple example to make the algorithm clear.

B. Illustrative Example

EZ3 

EZ2 

EZ1 

100 slots 

100 slots 40 slots 

user 2 
user1 

Fig. 4: Example of distributed algorithm.

Assume that user 1 and user 2 each requires 100 session
slots. The capacities of the EZs are as shown in Fig. 4. The
latencies between resolvers, users and EZs are as follows:
• l(R1, EZ2) < l(R1, EZ1) < l(R1, EZ3)
• l(R2, EZ3) < l(R2, EZ2) < l(R2, EZ1)
• Tmin < l(u1, EZ2) < l(u1, EZ1) < l(u1, EZ3) ≤ Tmax

• Tmin < l(u2, EZ2) < l(u2, EZ3) < l(u2, EZ1) ≤ Tmax

Recall that depending on the visibility set size, we can have
different solutions to the server selection problem. Using the
above network metrics, we consider two scenarios:

- Scenario 1 (visibility set size is 1): resolver 1 can only see
EZ2 (as EZ2 is the closest EZ of R1) and resolver 2 can only
see EZ3. Therefore, the solution will be: resolver 1 sends all
100 requests to EZ2 and similarly, all requests of resolver 2
go to EZ3. This solution does not change (stable solution) if
the user requests are unchanged.

- Scenario 2 (visibility set size is 2): resolver 1 can see (EZ1

and EZ2) and resolver 2 can see (EZ2 and EZ3). Assume that
the requests do not change, we present results for each resolver
within 2 epochs (or 2 iterations of the distributed algorithm).
• Epoch k = 0:

- Resolver 1 sees from EZ1: S1
1(0) = 40, and from

EZ2: S2
1(0) = 100. As l(usr1, EZ2) < l(usr1, EZ1),

it forwards all 100 requests to EZ2.
- Resolver 2 sees from EZ2: S2

2(0) = 100, and from
EZ3: S3

2(0) = 100. As l(usr2, EZ2) < l(usr2, EZ3), it
assigns all 100 requests to EZ2.
The total allocated session slots at EZ2 is 200, and the
EZ2 is overloaded at epoch 0.

• Epoch k = 1:
- Resolver 1 is updated with the current available slots it
can see using the equation (16):

– S1
1(1) = C1 = 40 (as A1

1(0) +A1
2(0) = 0)

– S2
1(1) = 100× (1 + 100−200

200 ) = 50

Solution after epoch 1 is: 40 requests go to EZ1; 50
requests go to EZ2 and 10 requests are blocked (as there
are insufficient session slots).
- Resolver 2 is updated with the current available slots it
can see using the equation (16):

– S3
2(1) = C3 = 100 (as A3

1(0) +A3
2(0) = 0)



7

– S2
2(1) = 100× (1 + 100−200

200 ) = 50

Solution after epoch 2 is: 50 requests go to EZ2; 50
requests go to EZ3 and no requests are blocked.

It is clear that, after epoch 1, due to equation (16), no
EZs are overloaded. In this example, the solution does not
change after 2 epochs provided that the user demands do not
change. This means that the distributed algorithm converges
to a stable solution. On the other hand, session slots are
assigned proportionally to the requirement of each resolver.
For instance, in the stable solution, R1 and R2 both can use
50 slots (fair share) from EZ2. This is because in epoch 0,
both R1 and R2 require 100 slots but EZ2 only has a capacity
of 100 slots, and the share ratio between R1 and R2 will be
100
100 and each resolver uses 50 slots. We call this feature fair
share on demand.

Another observation is that, because resolvers do not talk
together and each of them greedily grabs available session
slots, 10 requests from resolver 1 are blocked. We show that
by using the maximizing the minimum spare capacity (MMSC)
strategy, we reduce the greediness at resolvers and obtain a
better solution. With the above example, we show a solution
with MMSC strategy as follows:
• Epoch 0:

- Resolver 1 sees from EZ1: S1
1(0) = 40, and from EZ2:

S2
1(0) = 100 and assigns 28 requests to EZ1 and 72

requests to EZ2 (because the spare capacity at EZ1 and
EZ2 is 40−28

40 = 30% and 100−72
100 = 28%, respectively).

- Resolver 2 sees from EZ2: S2
2(0) = 100, and from

EZ3: S3
2(0) = 100 and assigns 50 requests to EZ2 and

50 requests to EZ3.
The total allocated session slots at EZ2 is 122, and the
EZ2 is overloaded at the initial step.

• Epoch 1:
- Resolver 1 is updated with the current available slots it
can see using the equation (16):

– S1
1(1) = 28× (1 + 40−28

28 ) = 40
– S2

1(1) = 72× (1 + 100−122
122 ) = 59

The solution after epoch 1 is: 40 requests go to EZ1;
59 requests go to EZ2 and 1 request is blocked.

- Resolver 2 is updated with the current available
slots it can see using the equation (16):

– S3
2(1) = 50× (1 + 100−50

50 ) = 100
– S2

2(1) = 50× (1 + 100−122
122 ) = 41

The solution after epoch 1 is: 29 requests go to EZ2; 71
requests go to EZ3 and zero requests are blocked.

As a result, we reduce the number of requests blocked at
resolver 1 from 10 to only 1 by using MMSC. We further
evaluate the benefit of the MMSC strategy in section VI-C.

VI. PERFORMANCE EVALUATION

In this section, we present the results of extensive simu-
lations of our algorithms operating on a large-scale network
dataset. First, we evaluate the algorithms with different param-
eters: supply

demand ratios, Ub on blocking probability and visibility
set sizes for the distributed algorithm. Next, we compare

our novel utilitarian server selection (USS) with classical
closest-based and min cost-based server selection algorithms.
Then, we evaluate the distributed algorithm with and without
maximizing the minimum spare capacity (MMSC) strategies,
and compare with the centralized one. Next, we show the
impact of a mismatch between supply and demand on the
server selection solution. And finally, we discuss the impact of
inaccuracies in demand forecasting on our algorithm. We solve
the linear program model using IBM CPLEX solver [19]. All
computations were carried out on a computer equipped with
a 3 GHz CPU and 8 GB RAM.

We use a dataset with 2508 data centers distributed in 656
cities around the world [20]. For the distributed model, we
assume that each city has one resolver. Since data centers in a
city are geographically close to one other, we group them as
a single execution zone (EZ) whose capacity is proportional
to the number of data centers in that city. We assume that
the services are available in all EZs. As real transit costs are
commercially sensitive and therefore difficult to obtain from
ISPs, we have adopted a simple model for the transit costs to
different EZs based on a snapshot of the actual Amazon EC2
regional charging model. The user demand is proportional to
the population of each city [21]. Latency between users and
execution zones are computed based on Haversine distance
between two points around the planet’s surface [22].

A. Parameters of the Algorithm

1) Supply/Demand Ratios: We first find server selection
solutions for different supply

demand ratios with the centralized
algorithm - without maximizing the minimum spare capacity
(non-MMSC). We set Tmin = 20 ms, Tfair = 100 ms,
Tmax = 150 ms and k = 1 for all pairs of (group user,
service). In Fig. 5a - 5b, we show the utility and the cumulative
distribution function (CDF) of latency for three supply

demand ratio
scenarios: 80%, 130% and 200%. supply

demand = 80% means that
the total available capacity in all EZs is scaled down to equal
to 80% of the total requests. As a result, 20% of the requests
will be blocked while maximizing total utility of the served
requests. In the CDF of latency in the 80% scenario (Fig. 5b),
only 80% of requests receive service within less than Tmax

and the remaining requests are blocked. For the two other
scenarios (130% and 200%), since there are sufficient session
slots, no user requests are blocked. Obviously, the greater the
supply of session slots the better the solution (Fig. 5a - 5b).

2) Utility of a Blocked User: As explained in Section IV-A,
our algorithm allows some user requests to be blocked while
still maximizing the total utility. By selecting different values
of utility for blocked requests (Ub < 0), we obtain solutions
with different blocking probabilities. We show in Fig. 5c
the results for the centralized algorithm (non-MMSC) with
different values of Ub. When Ub is close to 0, e.g. Ub = −1.1
or Ub = −2, blocking user requests does not incur a large
penalty in the total utility. A significant number of requests
are blocked despite total utility being maximized. When Ub is
much smaller (e.g. Ub = −100), blocking a single request can
dramatically reduce the total utility, thus the algorithm tries to
avoid as many requests being blocked as possible. In Fig. 5c,
when Ub = −100, no user request is blocked.



8

0 

20 

40 

60 

80 

80% 130% 200% 

%
 o

f r
eq

ue
st

s 

Supply/Demand ratios 

u == 1 0 <= u < 1 
-0.625 <= u < 0 queued 
u == 1 
0 <= u < Ufair blocked 

Ufair<= u < 1 

(a) Utility with supply
demand

ratios

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

supply/demand 80%
supply/demand 130%
supply/demand 200%

%
 o

f r
eq

ue
st

s 

(b) CDF latency with supply
demand

ratios

0 

20 

40 

60 

80 

ratio = 1.1 ratio = 2 ratio = 10 ratio = 100 

%
 o

f r
eq

ue
st

s 

u == 1 0 <= u < 1 
-0.625 <= u < 0 queued 

Ub = -1.1 Ub = -2 Ub = -10 Ub = -100 

u == 1 Ufair<= u < 1 
0 <= u < Ufair blocked 

(c) Utility with different values of Ub

Fig. 5: Different values of supply
demand ratios and Ub.

In the remaining evaluation, if not stated otherwise, default
values are used as follows: supply

demand ratio = 130%, Ub = −100,
Tmin = 20 ms, Tfair = 100 ms, Tmax = 150 ms, k = 1 and
the max budget is 320.

3) Visibility Set Size: In a distributed manner, each resolver
only sees its local user demand and the subset of EZs in the
visibility set. We vary the size of the visibility set by changing
parameter N , the percentage of the total 656 execution zones
that can be seen by a resolver. For example, N = 0.3% means
that each resolver can see its two closest EZs.

0 

20 

40 

60 

80 

N = 0.3% N = 5% N = 10% N = 20% N = 40% N = 100% 

%
 o

f r
eq

ue
st

s 

Visibility set size 

u u u u u == 1 Ufair<=u<1 0<=u<Ufair blocked 

(a) non-MMSC strategy

0 

20 

40 

60 

80 

N = 0.3% N = 5% N = 10% N = 20% N = 40% N = 100% 

%
 o

f r
eq

ue
st

s 

Visibility set size 

u u u u u == 1 Ufair<=u<1 0<=u<Ufair blocked 

(b) MMSC strategy

Fig. 6: Utility with different visibility set sizes.

Intuitively, as N increases, more EZs and, hence, more
session slots are available for a resolver to allocate user
requests. As shown in Fig. 6, with both MMSC and non-
MMSC strategies, the percentage of blocked requests reduces
as we increase N . With the MMSC strategy, resolvers are
less greedy in allocating high-QoS execution zones for their
users. As a result, more session slots are available which
reduces blocking probability for users in “poor resource” areas.
Therefore, the MMSC strategy (Fig. 6b) performs better than
the non-MMSC one (Fig. 6a). Note that in the centralized

algorithm, there are no blocked user requests when the supply
demand

ratio is 130%.

B. USS vs. closest and min cost algorithms

1) USS vs. closest selection algorithms: Given the param-
eters in VI-A2, Figs. 7a - 7b compare the results of our USS
algorithm versus the classical closest algorithm, as used in
other work, for example [7]. The closest algorithm tries to
allocate user requests to nearby EZs with available session
slots; if the nearest EZ does not have available session slots,
the algorithm considers the next closest and so on. Requests
are only blocked in the case that there are no available session
slots in any EZ within a Tmax latency range. The latency of all
user requests is then mapped to utility according to the utility
function for voice services (Tmin = 20 ms, Tfair = 100
ms and Tmax = 150 ms [23]) (Fig. 7a). As can be seen in
Figs. 7a - 7b, the USS algorithm performs better with less
blocking probability. This is because the USS algorithm is
less greedy, providing more flexibility for requests to connect
to any of multiple servers within the Tmin latency range that
provide maximum utility. Taking a closer look at the CDF
of latency (Fig. 7b), more requests receive low latency in the
closest algorithm; however, more requests are also blocked,
due to its greedy behavior.

2) USS vs. min cost selection algorithm: We show in
Fig. 7c - 7d the comparison between the USS and the min
cost server selection algorithms. The min cost algorithm uses
a similar linear program formulation as the USS, but with
an objective function of minimizing transit cost. Therefore,
user requests being forwarded to EZs in the same domain is
favored over those in remote domains, to reduce transit costs
on interdomain links. As a result, a large fraction of users
receive low latency and, hence, high utility. However, for some
domains, the supply is not sufficient for their users, therefore
we can see around 15% of user requests being blocked. The
USS algorithm is focused on maximizing total utility over all
users and blocking probability is low.

C. Distributed Algorithm

We show in Fig. 8 the average utility score per successful
request of the centralized and the distributed algorithms with
different visibility set sizes.

Regarding execution time, the centralized algorithm with
full knowledge of execution zones and user demands takes
approximately 2 minutes to find an optimal solution, while the
distributed algorithm only requires a few seconds to finish.



9

0 

20 

40 

60 

80 

100 

USS algorithm Closest algorithm 

%
 o

f r
eq

ue
st

s 

u 
u 
u 
u 

u == 1 

Ufair<=u<1 

0<=u<Ufair 

blocked 

(a) Utility - USS vs. closest alg.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

CLOSEST algorithm
USS algorithm

%
 o

f r
eq

ue
st

s 

(b) Latency - USS vs. closest alg.

0 

20 

40 

60 

80 

100 

USS algorithm Min cost algorithm 

%
 o

f r
eq

ue
st

s 

u 
u 
u 
u 

u == 1 

Ufair<=u<1 

0<=u<Ufair 

blocked 

(c) Utility - USS vs. mincost alg.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

min cost algorithm
USS algorithm

%
 o

f r
eq

ue
st

s 

(d) Latency - USS vs. mincost alg.

Fig. 7: Voice: USS vs. closest and min cost algorithms

0.5$

0.6$

0.7$

0.8$

0.9$

1$

1$ 2$ 3$ 4$ 5$ 6$

U
.l
ity

$sc
or
e$

cent.$(non:MMSC)$ cent.$(MMSC)$ dist.$(non:MMSC)$ dist.$(MMSC)$

N=0.3% N=5% N=10% N=20% N=40% N=100% 

Fig. 8: Distributed vs. centralized algorithms.

We first compare the MMSC (“cent. (MMSC)”) and the
non-MMSC (“cent. (non-MMSC)”) strategies for the central-
ized algorithm in Fig. 8. The MMSC strategy maximizes the
minimum spare capacity over all EZs, thereby distributing load
more evenly. As a result, for the centralized algorithm, MMSC
performs worse in terms of QoS in comparison with the non-
MMSC strategy which only tries to maximize total utility.
However, as we show later, the MMSC strategy is useful in
the distributed algorithm.

1) MMSC vs. non-MMSC: Fig. 6 shows that the MMSC
strategy is better than non-MMSC in terms of blocking
probability. In terms of utility score, the distributed MMSC
algorithm improves QoS until N = 10% (Fig. 8). However,
when N > 10% we see a reduction in utility score. This is
due to two reasons. First, there is more resource contention
as N increases (EZs are shared by more resolvers). Second,
the MMSC strategy prioritizes reducing the load at execution
zones over maximizing utility. As more EZs are visible to
a resolver, requests are distributed over multiple EZs, which
has the side effect of reducing user utility in some cases. On
the other hand, the distributed non-MMSC algorithm tries to
maximize user utility, thus QoS depends on the quantity of
resources available to a resolver according to its visibility set
size. In general, the larger the visibility set, the better the
QoS the distributed non-MMSC can achieve. Note that when
N = 5 − 10%, the non-MMSC algorithm achieves a good
overall utility score (Fig. 8) for non-blocked requests, however,
as can be seen in Fig. 6, many requests are blocked due to
insufficient resources.

2) Convergence of distributed algorithm:
Synchronous mode: To evaluate the convergence of the

distributed algorithm (MMSC), Fig. 9a shows the quality of
the solution after 10 epochs. After the first epoch, we already
have a reasonably good solution and the quality of solution
improves over the next epochs. After 4 epochs, the solution
is close to the stable state, which is achieved after 8 epochs.
These simulation results, along with the mathematical proof
in Appendix A confirm that the distributed algorithm always
converges to a stable state.

Asynchronous mode: In this evaluation we investigate the
situation where resolvers do not simultaneously receive session
slot availability updates from the EZs. At each epoch, we
randomly select 20% of the resolvers to use the old value
of available session slots. Fig. 9b compared the CDF of
load of EZs in synchronous and asynchronous modes using
the distributed algorithm with MMSC strategy and visibility
set size N = 20%. As we have shown in Section V no
EZs are overloaded after the initial epoch (epoch 0) with
the synchronous mode of the distributed algorithm. In the
asynchronous mode, however, we observe that 10% of EZs
are overloaded at epoch 1 (the maximum load is 104% - Fig.
9b). This is a limitation of the distributed algorithm when
working in asynchronous mode. However, as shown in Fig.
9b, the number of overloaded EZs is reduce in next epochs.

In Fig. 9c we examine the impact of asynchronous mode
of operation on the latency experienced by the users. The
synchronous mode of operations provides slightly better re-
sults with only 3.5% of session slots being blocked compared
to 4.5% with the asynchronous mode. However, these results
show that the algorithm can work well in a distributed asyn-
chronous environment.

3) Load balancing: We show in Fig. 10 the load of all
EZs using the distributed algorithm: MMSC vs. non-MMSC
with N = 100%. The x-axis shows the “id” of the EZ: we
have 656 EZs with “id” from 0 to 655. The y-axis is the load
in percentage of EZ capacity (used session slots / capacity).
Fig. 10a shows the load for the non-MMSC algorithm. EZs
have a wide range of load (from 0% to 100%) as the objective
of the non-MMSC algorithm is to maximize total utility rather
than balance load. Figs. 10b - 10d show the results when
applying the MMSC strategy after 1, 3 and 5 epochs. It can
be seen that the algorithm converges to a constant load across
all EZs. Since we use supply

demand = 130%, the algorithm should
converge to a state where each EZ uses 100

130 ' 78% of their
capacity as shown in Fig. 10d, after 5 epochs.

D. Mismatch between supply and demand

To evaluate the impact of mismatch between supply and
demand, we first run the centralized model (section IV) but
without the capacity and the cost constraints in order to find
the baseline capacity required at each EZ for an optimal server
selection solution. Then we scale these values to achieve 130%
supply
demand ratio. We call this configuration the perfect allocation.
Next, we create different levels of mismatch between supply
and demand by varying a parameter “X% rand.” (Fig. 11).
This means that we reallocate X% of capacity, in terms of
session slots, from each EZ to a common pool which is then



10

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

epoch 1
epoch 4
epoch 8

epoch 10

%
 o

f r
eq

ue
st

s 

(a) Convergence of distributed algorithm.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

lo
ad

 (%
)

percentage of execution zones

asynchronous - epoch 1
asynchronous - epoch 2

synchronous - epoch 1

Lo
ad

 (%
) 

(b) Load - synchronous vs. asynchronous

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100  120  140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

asynchronous algorithm
synchronous algorithm

%
 o

f r
eq

ue
st

s 

(c) Latency - synchronous vs. asynchronous

Fig. 9: Convergence of distributed algorithm.

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600

lo
ad

 (%
)

EZ id

epoch 5

(a) non-MMSC (epoch 5)

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600

lo
ad

 (%
)

EZ id

epoch 1

(b) MMSC (epoch 1)

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600

lo
ad

 (%
)

EZ id

epoch 3

(c) MMSC (epoch 3)

 0

 20

 40

 60

 80

 100

 0  100  200  300  400  500  600

lo
ad

 (%
)

EZ id

epoch 5

(d) MMSC (epoch 5)

Fig. 10: Load at EZs for non-MMSC and MMSC strategies.

distributed evenly across all EZs so that total capacity across
the entire population of EZs remains the same under perfect
allocation and “X% rand.” scenarios. “0% rand.” is equivalent
to the perfect allocation while in “100% rand.”, there is a
uniform distribution of sessions slots between all EZs.

0 

20 

40 

60 

80 

100 

0% rand. 25% rand. 50% rand. 75% rand. 100% rand. 

%
 o

f r
eq

ue
st

s 

u u u u u == 1 Ufair<=u<1 0<=u<Ufair blocked 

Fig. 11: Utility with different mismatch levels.

Fig. 11 shows evaluation results for the distributed algo-
rithm with visibility set size N = 5% with different values
for “X% rand.”. Under perfect allocation (“0% rand.”), the
distributed algorithm performs well with no blocked requests.
It is clear that as X% increases and the level of mismatch
between localised supply and demand increases, more requests
are blocked. It is noted that because we use a 130% supply

demand
ratio, the scenario “25% rand.” is within an acceptable range
of mismatch and the solution is close to the “0% rand.” case.

E. Impact of inaccuracy in demand forecast

A central prerequisite for our model is the existence of
a forecasting demand component that provides input to the
optimization algorithm. We discuss in this section the ro-
bustness of our solution to inaccuracy in forecasting demand.
In Fig. 11 “0% rand.” represents the perfect match between
forecasted demand and actual capacity with a visibility set
size of N = 5%. In this case there are no blocked requests;

however, compared to Fig. 6b, with N = 5%, there are
around 17% blocked requests. This is between the cases of
“50% rand.” and “75% rand.” in Fig. 11. This shows that our
previous simulation environments were undertaken in range
of 50% − 75% inaccuracy of the perfect resource allocation
in EZs, or, put another way, the forecasting demand was
50%− 75% inaccurate. As shown in Fig. 6b, to achieve zero
blocking when forecasted demand is 50% − 75% inaccurate
we need a visibility set size of N = 40%.

VII. DEPLOYMENT CONSIDERATIONS

A. System Implementation

In this section, we describe the implementation of our
optimization algorithm and its integration into a small-scale
testbed1 over the Internet to show the proof of concept trade-
off between service utility and network cost in a real network.
Fig. 12 gives an overview of the implementation architecture

Client to Service Mapping 

FW/resolution 
table 

Service Request Handler 

Network map/
cost client 

User request 

RESTful 
interfaces ALTO 

interfaces 

External interface Internal interface 

Execution 
zones  

I1 

I2 
I3 

I4 

I5 

Fig. 12: Resolver architecture.
of the deployed resolver. The optimization algorithm is in-
tegrated in the “Client to Service Mapping” component. This
component collects network state information (e.g. latency and

1http://www.fusion-project.eu/



11

transit cost) via interface I2 which takes the form of IETF-
ALTO interface according to RFC 7285. It also connects to
execution zones via interface I1 to retrieve the number of
available session slots. The optimization algorithm is executed
periodically and updates new entries (via RESTFUL web
service interface I3) to the FW (forwarding)/resolution table,
which is read by the Service Request Handler. The Service
Request Handler is responsible for handling client requests
received on the I5 interface. To this end, it accesses the
FW/resolution table using I4 interface to find the appropriate
server in which the client should connect. Further details on
the implementation can be found in section 5 of [24].

1) System Setup: We set up two execution zones (EZs):
(1) The Virtual Wall testbed of iMinds2 located in Ghent,
Belgium; and (2) The private network of Spinor3 located in
Munich, Germany. In this specific scenario, we have two users
located in the Spinor network. We assume that the network
cost between the users and the EZ in Spinor is high while it
is cheaper for the users to connect the EZ in Virtual Wall. We
deploy the Shark 3D application by Spinor on those EZs.

Packet arrival time (s)  

D
el

ay
 b

et
w

ee
n 

us
er

s 
(m

s)
 

D
el

ay
 b

et
w

ee
n 

us
er

s 
(m

s)
 

Packet arrival time (s)  
(a) Maximizing utility (b) Minimizing cost 

Fig. 13: Maximizing utility vs minimizing cost.

2) Experiment Results: The focus of this evaluation is on
the latency experienced by users in a multi-user scenario.
We collect the latency the users experience depending on the
resolution result of the resolver. Note that we measure the
latency at the Shark 3D application level which includes both
network latency and processing time at the application level.
In Fig. 13a, we show the latency recorded over 30 seconds
of the experiment in case of maximizing the utility regardless
the cost. As a result, both users experience low latency as
they connect to the service deployed at Spinor which is close
to them. On the other hand, when we try to minimize the cost
(Fig. 13b), the user requests are resolved to use the service at
the Virtual Wall which results in higher latency.

With this proof of copncept deployment we have shown
the operation of the algorithm in a real-world testbed and
that different policies of maximising utility and minimising
cost results in different behavior of the resolver. Further
experimental results can be found in [25].
B. Discussion on Real World Deployment

Utility based networking solutions have suffered in the
past from difficult implementation road-maps, for example see
[5], [6]. Our proposal has the potential for a much simpler
deployment path compared to prior utility-based solutions
since it only requires some changes in a single ISP. This can

2http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html
3www.spinor.com

be achieved in two ways: through software defined networking
(SDN) or with simple additions to the domain resolution
system.

With SDN our algorithm can be deployed as part of a
centralized controller within an ISP. If the controller is aware
of the location of the replicas, it can redirect flows targetted to
an anycast addresses to the desired EZ instance. This would
work by allocating a particular anycast address to each service,
as is commonly done today.

Using name resolution is even easier as we have imple-
mented in Section VII-A. Moreover, there has been a wide
range of proposals to improve name resolution in the Internet.
They can be broadly classified in three types [26]: indirection,
name based routing and name resolution. The ideas in this
paper can be applied to all of these with varying degrees
of difficulty. Indirection proposals like [27] can use utilitar-
ian server selection at redirection time whilst name based
routing techniques such as [28], [29], [30], [31] can do it
at packet forwarding time. This will be straightforward for
content based services. However, if the service is stateful and
requires packets of the same flow to always reach the same
server, both of these solutions need appropriate mechanisms
to guarantee consistent resolution decisions for the duration of
a session. Name resolution has also been the topic of several
research papers [32], [9] and this is where utilitarian server
selection can be applied with fewer changes needed to the
Internet architecture, since no modifications of end systems or
applications are required.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented utilitarian server selection, a new
method to implement service instance selection that can work
both in centralized and distributed manner, with the aim of
maximising user utility within an upper budget of transit
network costs. These ideas can be deployed in several ways,
such as through the use of SDN or through DNS, without
requiring changes to client/server interfaces. As further work,
we are planning to extend the utility function to support more
QoS metrics. We are also implementing a working DNS server
that implements our extensions.

APPENDIX A
CONVERGENCE OF DISTRIBUTED ALGORITHM

We present in this section a proof that the distributed
algorithm always converges to a stable state. We show the
proof by considering all possible cases that can happen over
two consecutive epochs (k) → (k + 1) of the distributed
algorithm. We show that the algorithm will always converge to
one of the stable states as shown Fig. 14. When the algorithm
reaches a stable state the solution will not change over subse-
quent iterations unless the input data (latency, demand, etc.)
is updated. Note that Fig. 14 shows two consecutive epochs k
and (k+1) and the transition between (k+1) and (k+2) can
be seen as a new diagram of k′ and (k′+1) where k′ = k+1,
and so on.

Remark 1: Az
i (k) ≤ Sz

i (k) ∀ resolver i, epoch k, EZ z
(see the notations in Table. II): each resolver cannot use more
resources than it can see from an EZ (capacity constraint).



12

Epoch k 

Case 1 Case 2 

Case 2.1 Case 2.2 

Case 2.2.1 Case 2.2.2 

stable state 

unstable state 
(2) (1) 

(2.1) (2.2) 

(2.2.1) (2.2.2) 

(1) 8z, Az(k) < Sz(k)

(2) 9z 2 Z, Az(k) = Sz(k)

(2.1) 8z 2 Z, Sz(k + 1) = Az(k)

(2.2) 9z 2 Z, Sz(k + 1) > Az(k)

(2.2.1) 8z 2 Z, Az(k + 1) = Az(k)

(2.2.2) 9z 2 Z, Az(k + 1) > Az(k)

Fig. 14: convergence of distributed algorithm.

Theorem 1:
M−1∑
i=0

Az
i (k) ≤ Cz ∀ k ≥ 1

This theorem means that when M resolvers share an EZ,
the total slots used by those M resolvers does not exceed the
capacity C of the shared EZ. We prove this theorem based on
the equation (16).

Proof: considering an EZ z which has capacity C and is
shared by M resolvers, we present the distributed algorithm
step-by-step as follows:

- At epoch k = 0, all M resolvers see C available slots
from the shared EZ z (hereafter, we omit the notation z):
• At resolver R0:
S0(0) = C; A0(0) ≤ S0(0) (as remark 1)

• At resolver Ri(0 < i ≤M − 1):
Si(0) = C; Ai(0) ≤ Si(0) (as remark 1)

The total session slots used by M resolvers at epoch 0 is:
M−1∑
i=0

Ai(0) ≤
M−1∑
i=0

Si(0) =M × C ≥ C

Therefore, it can make the EZ overloaded at epoch 0.
- At epoch k = 1:
• Resolver R0 updates new available slots it can see at

epoch k = 1 using equation (16):

S0(1) = A0(0) +
A0(0)[C−

M−1∑
i=0

Ai(0)]

M−1∑
i=0

Ai(0)

;

A0(1) ≤ S0(1) (as remark 1)
• Resolver Ri(0 < i ≤M −1) updates new available slots

it can see at epoch k = 1 using equation (16):

Si(1) = Ai(0) +
Ai(0)[C−

M−1∑
i=0

Ai(0)]

M−1∑
i=0

Ai(0)

;

Ai(1) ≤ Si(1) (as remark 1)
By summing the left and the right hand sides of the above
equations, we have the total session slots of EZ z seen by M
resolvers at epoch k = 1:

M−1∑
i=0

Si(1) =

M−1∑
i=0

Ai(0) +

M−1∑
i=0

Ai(0)

C −
M−1∑
i=0

Ai(0)

M−1∑
i=0

Ai(0)

= C

Therefore, the total session slots allocated by M resolvers
at epoch 1 will be:

M−1∑
i=0

Ai(1) ≤
M−1∑
i=0

Si(1) = C

and there is no overload at the EZ.
- At epoch k > 1:
• Resolver R0 updates new available slots it can see at

epoch k > 1 using the equation (16):

S0(k) = A0(k − 1) +
A0(k−1)[C−

M−1∑
i=0

Ai(k−1)]

M−1∑
i=0

Ai(k−1)
;

A0(k) ≤ S0(k)
• Resolver Ri(0 < i ≤M −1) updates new available slots

it can see at epoch k > 1 using the equation (16):

Si(k) = Ai(k − 1) +
Ai(k−1)[C−

M−1∑
i=0

Ai(k−1)]

M−1∑
i=0

Ai(k−1)
;

Ai(k) ≤ Si(k)

Similarly, by summing the left and the right hand sides of the
above equations:

M−1∑
i=0

Si(k) = C ∀ k ≥ 1

and:
M−1∑
i=0

Ai(k) ≤
M−1∑
i=0

Si(k) = C ∀ k ≥ 1 �

Theorem 2: Si(k) ≥ Ai(k− 1) ∀i ∈ [0,M − 1], k > 1.
The theorem says that the available slots that resolver Ri

can see in the next epoch should be greater or equal to the
amount that Ri has used in the current epoch. That is to say,
at epoch (k + 1) the shared border can shift to the left but
does not cross the used (red) area of R0 (Fig. 3).

Proof: recall that resolver Ri(0 ≤ i ≤M − 1) updates new
available slots it can see at epoch k using the equation (16):

Si(k) = Ai(k − 1) +

Ai(k − 1)[C −
M−1∑
i=0

Ai(k − 1)]

M−1∑
i=0

Ai(k − 1)

(17)

As theorem 1, C −
M−1∑
i=0

Ai(k − 1) ≥ 0 ∀ k > 1, thus:

Ai(k − 1)[C −∑M−1
i=0 Ai(k − 1)]∑M−1

i=0 Ai(k − 1)
≥ 0 (18)

From (17) and (18) we have:

Si(k) ≥ Ai(k − 1) ∀ i ∈ [0,M − 1], k > 1 �

We now show the proof of the distributed algorithm’s
convergence based on remark 1, theorem 1 and theorem 2.
Considering inside one visibility set (Fig. 15), the resolver
i can see N EZs. At epoch k > 0, let Sz(k) ≤ Cz

(z ∈ [0, N −1]) be the available session slots that the resolver
i can see from EZ z (Fig. 15a). Ri cannot use all capacity
of those EZs because they are also shared by other resolvers.
Based on remark 1, we have Az(k) ≤ Sz(k) ∀z ∈ [0, N − 1].
We consider 2 possible cases:

Case 1: Az(k) < Sz(k) ∀z ∈ [0, N − 1] (strictly less than
- Fig. 15b): the available session slots at all EZs are strictly



13

Resolver i 

EZ0 

EZ1 

EZ(N-1) 

S0(k) 

S1(k) 

SN-1(k) 

Resolver i 

EZ0 

EZ1 

EZ(N-1) 

A0(k) 

A1(k) 

AN-1(k) 

Resolver i 

EZ0 

EZ1 

EZ(N-1) 

A0(k) 

A1(k) 

AN-1(k) 

(a) (b) (c) 

C0 

C1 

CN-1 

C0 

C1 

CN-1 

C0 

C1 

CN-1 

Fig. 15: Resource allocation at each visibility set.

more than the requirement of the resolver. In the next epoch,
the available slots of those EZs can increase or decrease. If
it increases, the resolver sees more available slots but the
solution does not change as increased capacity does not help to
improve the utility because if it did, the strictly less than case
will not happen. In case the available session slots reduces in
the next epoch, we have Sz(k + 1) ≥ Az(k) ∀z ∈ [0, N − 1]
(theorem 2). Therefore, in the next epoch, the resolver will
keep the same solution (it is still feasible) because there is no
better solution. Thus, case 1 is a stable state (Fig. 14).

Case 2: ∃ z ∈ Z,Az(k) = Sz(k) (Fig. 15c with z = 1
and z = N − 1). As theorem 2, in the next epoch, we have
Sz(k + 1) ≥ Az(k). We consider 2 cases:

• Case 2.1: Sz(k+1) = Az(k) ∀z ∈ Z. That is, in Fig. 15c
we have S1(k+1) = A1(k) = S1(k) and SN−1(k+1) =
AN−1(k) = SN−1(k). This means that at epoch (k+1),
the available slots the resolver can see from EZ1 and
EZN−1 do not change. This only happens when other
resolvers who also share EZ1 and EZN−1 (not shown
in Fig. 15) see that those EZs provide a good solution
and they do not want to move requests to any other EZ.
And this property is held over the next epochs unless
the input data (e.g. latency, demand pattern, etc.) change.
Therefore, the same (feasible) solution is kept as no other
solution can improve the utility. That means case 2.1 is
a stable state (Fig. 14).

• Case 2.2: ∃ z ∈ Z, Sz(k + 1) > Az(k). Because there
are more slots at the EZs that the resolver may be
interested in, solution in the next epoch can be changed.
We consider 3 possible cases:
- Case 2.2.1: ∀ z ∈ Z,Az(k + 1) = Az(k). This means
that increased capacity at EZs does not help to improve
the utility. In other words, we cannot improve the current
solution and case 2.2.1 is a stable state (Fig. 14).
- Case 2.2.2: ∃z ∈ Z,Az(k + 1) > Az(k). The solution
changes as new available session slots at EZs can give a
better solution. Because the total number of user requests
does not change, increasing allocation in some EZs means
that the new solution needs to decrease the number of
slots used in other EZs.
- Case 2.2.3: ∃z ∈ Z,Az(k + 1) < Az(k). Even
increasing available session slots, the number of slots
used in those EZs can decrease because there is an
increase of allocation in other EZs (note again, the total
number of user requests does not change). We can see
that this case is equivalent to the case 2.2.2: increasing

slots used in some EZs, and decreasing slots used in other
EZs. Therefore, we can consider only one case 2.2.2 for
both of them.

It is noted that case 2.2.2 is not a stable state, meaning that
resolver can change solution in the next epoch. From Fig. 14,
we can observe that the distributed algorithm will not converge
if and only if the algorithm is trapped in case 2.2.2 forever.
This means that there is a self loop or Az(k+1) has increased
to infinity. The latter case cannot happen because the allocation
is bounded as theorem 1. We consider an example: at epoch
k+1, the solution increases the number of slots used at EZi

and reduces some from EZj because this helps to improve
the utility. The self loop will happen if at some points (e.g.
at epoch k′ > k + 1), the solution increases the slot used
at EZj and reduces some from EZi. This means that using
more slots of EZj instead of EZi helps to improve the utility,
which contradicts the first statement: using more slots at EZi

and less at EZj can get better utility. Therefore, the self loop
in case 2.2.2 cannot happen. In other words, at some points,
the distributed solution has to get out of case 2.2.2 and as
shown in Fig. 14, the distributed algorithm always converges
to a stable solution. �

APPENDIX B
COMPARISON BETWEEN THE RESULTS OF THE

CENTRALIZED AND DISTRIBUTED ALGORITHMS

There are some remarks regarding the centralized and the
distributed algorithms:

1) Both of them use the same linear programming for-
mulation. The only difference is that each resolver in
the distributed algorithm has only a partial view of the
global dataset (user requests and EZs’ capacity).

2) The distributed algorithm always converges to a stable
state. In other words, each resolver will use a fixed
amount of EZs’ shared capacity in the stable state.

R1 R2 

Global view 
(centralized alg.) 

Local view of R1 

Local view of R2 

(a) Non-overlapping 

R1 R2 

Global view 
(centralized alg.) 

X1 

(b) R1 and R2 are overlapped 

X2 X’ 

Fig. 16: Two scenarios of resolver R1 and R2.

Based on those remarks, we show an analysis on the gap
between the distributed and the centralized algorithms. We
consider the case of two resolvers but this analysis can be
easily extended to a general case of M resolvers. Assume that
there are two resolvers R1 and R2, each has their own local
view of resources depending on the visibility set size as shown
in Fig. 16. Two scenarios can happen, as follows:

- In Fig. 16a, the views of the two resolvers do not overlap.
If the visibility set size is large enough, the resolver can obtain
the same global optimal solution as given by the centralized
algorithm (remark 1). On the other hand, if the visibility set
size is too small, many user requests will be blocked. This



14

phenomenon can be observed in Fig. 6 when the visibility set
size N = 0.3%.

- If the views of the two resolvers overlap, let Xi be the
EZ resources dedicated to Ri and X ′ be the shared resource
between the two resolvers (Fig. 16b). Assume that αi ∈ [0, 1]
is the fraction of the shared resource occupied by resolver Ri

in a stable state. As mentioned in remark 2, αi is unchanged
in the stable state. Thus the gap between the local (distributed
algorithm) and the global (centralized algorithm) solutions is:

gap =
X∗i

Xi + αX ′

where X∗i is the optimal view of resolver Ri where it
can find a global optimal solution. As observed in Fig. 8,
when the visibility set size N ≥ 20%, (Xi + αX ′) is
large enough, and the gap between the distributed and the
centralized algorithms is small. This gap is also small when
N = 5 − 10% although many requests are blocked due to
insufficient resources (Fig. 6). Note that the performance of
the distributed algorithm (MMSC) is worse in term of utility
score when N > 10% (Fig. 8). This is due to the effect of
load balancing, as explained in section VI-C1.

ACKNOWLEDGMENT

This work has been supported by the FP7 FUSION (grant
agreement 318205), the U.S. Army Research Laboratory and
the U.K. Ministry of Defence (agreement number W911NF-
16-3-0001), the H2020 5G-MEDIA (grant agreement 761699)
and the CHIST-ERA CONCERT (grant agreement I1402)
projects. The authors would like to thanks our colleagues from
FUSION project for their help and support.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in MCC, 2012.

[2] I. Poese, G. Smaragdakis, B. Frank, S. Uhlig, B. Ager, and A. Feldmann,
“Improving Content Delivery with PaDIS,” Internet Computing’11.

[3] H. Chan, P. Fan, and Z. Cao, “A Utility-based Network Selection
Scheme for Multiple Services in Heterogeneous Networks,” in Interna-
tional Conference on Wireless Networks, Communications and Mobile
Computing, 2005.

[4] X. Duan, Z. Niu, and J. Zheng, “Utility Optimization and Fairness
Guarantees for Multimedia Traffic in the Downlink of DS-CDMA
Systems,” in IEEE GlobeCom, 2003.

[5] R. La and V. Anantharam, “Utility-based Rate Control in the Internet
for Elastic Traffic,” IEEE/ACM Transactions on Networking, vol. 10, pp.
272 – 286, 2002.

[6] M. Xiao, N. Shroff, and E. Chong, “A Utility-based Power-control
Scheme in Wireless Cellular Systems,” IEEE/ACM Transactions on
Networking, vol. 11, pp. 210 – 221, 2003.

[7] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford., “DONAR:
Decentralized Server Selection for Cloud Services,” in SIGCOMM,
2010.

[8] Z. Zhang, Y. Hu, M.Zhang, R.Mahajan, A. Greeberg, and B. Christian,
“Optimizing Cost and Performance Online Service Provider Networks,”
in NSDI, 2010.

[9] A. Sharma, X. Tie, D. Westbrook, H. Uppal, A. Yadav, and A. Venkatara-
mani, “A Global Name Service for a Highly Mobile Internetwork,” in
SIGCOMM, 2014.

[10] J. Bentham, An Introduction to the Principles of Morals and Legislation,
London, 1789.

[11] M. Stone and B. Moore, “Tolerable Hearing Aid Delays. Est. of Limits
Imposed by the Auditory Path Alone using Simulated Hearing Losses,”
Ear and Hearing, vol. 20, no. 3, 1999.

[12] J. Nielsen, “Usability Engineering: Response Times: The Three Impor-
tant Limits,” 1993.

[13] H. Xu and B. Li, “Joint Request Mapping and Response Routing for
Geo-distributed Cloud Services,” in INFOCOM, 2013.

[14] M. A. Khan and U. Toseef, “User Utility Function as Quality of
Experience (QoE),” in ICN, 2011.

[15] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade, “Utility-
based Placement of Dynamic Web Applications with Fairness Goals,”
in NOMS, 2008.

[16] Http://www.itu.int/rec/T-REC-P.800-199608-I/en.
[17] T. K. Phan, E. Maini, D. Griffin, and M. Rio, “Utility-maximizing Server

Selection,” in IFIP NETWORKING, 2016.
[18] S. Boyd and A. Mutapcic, “Subgradient Methods,” in Lecture notes of

EE364b, Stanford University, 2006.
[19] Www-01.ibm.com/software/commerce/optimization/cplex-optimizer.
[20] Http://www.datacentermap.com/.
[21] Https://github.com/richardclegg/multiuservideostream.
[22] G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spher-

ical Trigonometry. Princeton Uni. Press, 2013.
[23] S. Gangam, J. Chandrashekar, I. Cunha, and J. Kurose, “Estimating TCP

Latency Approximately with Passive Measurements,” in PAM, 2013.
[24] Http://www.fusion-project.eu/deliverables/fusion-d4.3-public-final.pdf.
[25] Http://www.fusion-project.eu/deliverables/deliverable-d5.3-final.pdf.
[26] Z. Gao, A. Venkataramani, J. Kurose, and S. Heimlicher, “Towards a

Quantitative Comparison of the Cost-Benefit Trade-offs of Location-
Independent Network Architectures,” in SIGCOMM, 2014.

[27] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko,
J. Rexford, and M. J. Freedman, “Serval: An End-Host Stack for Service-
Centric Networking,” in NSDI, 2012.

[28] V. Jacobson, D. K. Smetters, N. H. Briggs, J. D. Thornton, R. L. Bray-
nard, and M. F. Plass, “Networking Named Content,” in CoNEXT’09.

[29] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, I. Stoica, and
S. Shenker, “ROFL: Routing on Flat Labels,” in SIGCOMM, 2006.

[30] M. Gritter and D. R. Cheriton, “An Architecture for Content Routing
Support in the Internet,” in USITS, 2001.

[31] D. Naylor, M. Mukurjee, P. Agyapong, R. Grandl, R. Kang, and
M. Machado, “XIA: Architecting a More Trustworthy and Evolvable
Internet,” ACM CCR, vol. 44, pp. 50–57, 2014.

[32] M. Handley and A. Greenhalgh, “The Case for Pushing DNS,” in
HotNets’05.

Truong Khoa Phan received the B.Sc from HCMC
University of Technology, Vietnam in 2007 and the
M.Sc and PhD from INRIA/I3S, Sophia, France, in
2011 and 2014, respectively. He is currently a Re-
search Associate the Department of Electronic and
Electrical Engineering, University College London
(UCL), UK. His research interests include network
optimization, cloud computing, multicast and P2P.

David Griffin is a Principal Research Associate in
the Department of Electronic and Electrical Engi-
neering, University College London. He has a BSc
from Loughborough University and a PhD from
UCL, both in Electronic and Electrical Engineering.
His research interests include planning, management
and dynamic control for providing QoS in multiser-
vice networks and novel routing paradigms for the
future Internet.

Elisa Maini is a Research Associate in the De-
partment of Electronic and Electrical Engineering,
University College London. She received her PhD
in Computer and Automation Engineering from the
University of Naples Federico II. Her current re-
search interests include network optimization and
modeling, software-defined networking, and network
function visualization.

Miguel Rio is a Professor in the Department of
Electronic and Electrical Engineering, University
College London where he researches and lectures on
Internet technologies. His research interests include
on real-time overlay streaming, network support for
interactive applications, Quality of Service routing
and network monitoring and measurement.


