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Kraken: Online and Elastic Resource Reservations
for Cloud Datacenters

Carlo Fuerst Stefan Schmid Lalith Suresh Paolo Costa

Abstract—In cloud environments, the absence of strict network
performance guarantees leads to unpredictable job execution
times. To address this issue, recently there have been several
proposals on how to provide guaranteed network performance.
These proposals, however, rely on computing resource reservation
schedules a priori. Unfortunately, this is not practical in today’s
cloud environments, where application demands are inherently
unpredictable, e.g., due to differences in the input datasets or
phenomena such as failures and stragglers.
To overcome these limitations, we designed KRAKEN, a system

that allows to dynamically update minimum guarantees for
both network bandwidth and compute resources at runtime.
Unlike previous work, Kraken does not require prior knowledge
about the resource needs of the applications but allows to
modify reservations at runtime. Kraken achieves this through an
online resource reservation scheme which comes with provable
optimality guarantees.
In this paper, we motivate the need for dynamic resource

reservation schemes, present how this is provided by Kraken,
and evaluate Kraken via extensive simulations and a preliminary
Hadoop prototype.

Index Terms—Network Virtualization; Embedding; Predictable
Performance; Algorithms

I. INTRODUCTION

Cloud-based applications, including batch processing, stream-
ing, and scale-out databases, generate a significant amount of
network traffic and a considerable fraction of their runtime
is due to network activity. For example, traces of jobs from
a Facebook cluster reveal that network transfers on average
account for 33% of the execution time [24].
Unfortunately, as reported in previous studies [5], in existing

cloud infrastructures the bandwidth available to the tenants
varies significantly over time, i.e., by a factor of five or
more [35], even within the same day. Given the time spent
in network activity by these applications, this variability has a
non-negligible impact on the application performance, which
makes it impossible to accurately estimate the execution time
in advance [26].
Over the last years, several solutions have been proposed

to improve the sharing of network bandwidth among tenants,
by leveraging admission control and bandwidth reservations,
thus enabling tenants to specify absolute guarantees [5], [9],
[17], [21], [30], [31], [33]. In particular, many of these
proposals offer a virtual cluster abstraction [5], [9], which
provides the tenants with the illusion of having their own
dedicated network. A virtual cluster guarantees a specified
minimal bandwidth between all tenant’s virtual machines,
independently of their locations in the datacenter topology.
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Berlin, Germany. S. Schmid is with University of Vienna, Austria and Aalborg
University, Denmark. L. Suresh is with VMware Research, USA. P. Costa is
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However, the vast majority of existing solutions providing
absolute bandwidth guarantees are based on offline and con-
stant reservations schemes [5], [9], [17], [21], [28], [33]: they
require that tenants announce the entire resource reservation
schedule ahead of time, i.e., at job submission time. They
typically assume that the corresponding resource reservations
need to be constant over time, and hence tenants or operators
either have to over-provision during idle times (thus reduc-
ing efficiency and inflating cost) or under-provision during
peak times (thus reducing application performance), or both.
Notable exceptions are Cicada [22], which offers predictive
instead of absolute guarantees, and Proteus [9], which allows
tenants to specify time-varying bandwidth reservations. How-
ever, even with Proteus, the reservations must be made at
the startup time and they cannot be changed afterwards. This
inflexibility is at odds with the cloud computing paradigm,
which enables elasticity by allowing to “scale out” or “scale
in” applications at runtime. We argue that in most cases
it is very hard to accurately estimate application resource
needs ahead of time, rendering offline reservation schemes
inadequate. Several factors contribute to this unpredictability
including unexpected events such as stragglers and failures [3],
[4] as well as spikes in application demand (flash crowds).
As a consequence, tenants would be likely to either over-
estimate the network usage, which would consequently inflate
their expenditure, or to under-estimate it, which would result in
poor application performance, and, as previously observed [5],
in potentially longer job running times, which would also
lead to higher customer costs. Over-estimation of network
resourc would also negatively impact the cloud provider as
it would reduce its ability to accomodate more clients, thus
reducing its market share. In contrast, we believe that a
more principled solution would be to enable re-configuring
network reservations at runtime so as to better match tenant
requirements and avoiding resource over- or under-provision.
A naive approach to enable runtime reconfiguration would

be to restart the resource allocation from scratch every time
an update request is received. This, however, would introduce
an unacceptable overhead as most (if not all) the compute
resources such as VMs need be migrated. At the other extreme,
there are approaches such as Blender [33] that support a
weak form of reconfiguration by allowing tenants to update
rate limiters at runtime. This, however, prevents users from
upgrading both compute and network resources at the same
time. More importantly, as we show in the evaluation, since
no migration is considered, the efficacy of the solution is
very limited. In this paper, we strike a balance between these
two approaches by allowing users to dynamically reconfigure
both compute and network resources simultaneously while
minimizing the number of migrations.

© 2018 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material 
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, AUGUST 2017 2

A. Our Contribution
We make the following contributions.
1) The need for online resource reservation schemes: We

show that offline resource reservation schemes are in-
sufficient: Even for simple Hadoop jobs, small internal
changes can lead to significantly different executions.
Therefore, in order to meet application performance
goals, not only strict resource isolation needs to be pro-
vided, but also a possibility to update these reservations
at runtime.

2) The Kraken system: We design Kraken, a system which
supports the online (and joint) update of both bandwidth
as well as the compute resources. Kraken can also per-
form migrations in order to satisfy upgrade requests:
While the migration of entire virtual machines may be
expensive in practice, Kraken only assumes that compute
units, the endpoints of traffic flows, can be migrated.
Kraken comes with provable performance guarantees and
ensures (i) the satisfaction of all upgrade/downgrade
requests for which this is possible, (ii) minimal recon-
figuration and resource costs, (iii) low runtimes.

3) Benefits of online resource reservations: Our simulations
show the benefits of elastic resource reservations. We also
demonstrate the feasibility of our approach in practice,
through a preliminary implementation of Kraken on top
of Hadoop.

Kraken can be used for many applications that benefit from
resource elasticity, including batch-processing applications
(e.g., graph processing or distributed databases) or high-
performance computing applications.

B. Scope and Non-Goals
We focus on how to efficiently embed and reconfigure virtual

clusters; a detailed discussion of when to change a virtual net-
work specification is left for future work. The time and extent
of upgrades and downgrades depend on the setting, on the
type of application, as well as on the tenants’ resp. operators’
objectives. We also note on this occasion that Kraken is not
online in the sense of competitive analysis [10].
In general, Kraken is agnostic to where the update requests

come from: they can come from the operator itself (e.g., by
monitoring network traffic or other application metrics similar
to Amazon Auto scaling), form the application framework
(e.g., a Kraken-aware version of Hadoop could issue an update
request when the shuffhle phase is about to start/end) or could
be triggered by the tenants themselves to improve application
performance by removing network bottlenecks, in a way
similar to how today’s tenants can increase the number VMs
rented to speed-up their applications or services. Kraken is not
tied to any of these approaches and can support all of them.
While this paper only focuses on providing the mechanisms,
we think it is an interesting direction for future work to devise
the policies that can be built on top of Kraken.

C. Organization
We first motivate the online approached pursued in this paper

in Section II. In Section III, we describe our model and give
an example illustrating the challenge of dynamic resource

reservation schemes. The Kraken system and its embedding
and reconfiguration algorithms are presented in detail and
analyzed formally in Section IV. We present our simulation
results in Section V and report on a preliminary prototype
in Hadoop in Section VI. After reviewing related work in
Section VII, we conclude in Section VIII.

II. MOTIVATION FOR AN ONLINE APPROACH

Before presenting our solution in detail, we argue that to-
day’s offline reservation schemes are not sufficient to ensure
application performance guarantees in an efficient manner.
We distinguish between two offline reservation schemes:

(1) schemes with constant resource reservations such as the
ones proposed in [5], [17]; and (2) schemes such as Proteus [9]
with time-varying resource reservations which, however, need
to be announced ahead of time and, hence, require accurately
predicting a job’s resource-utilization over time, e.g., using
data from previous runs.
Constant reservation schemes are wasteful for any applica-

tion with time-varying resource demands, such as MapRe-
duce applications, which cycle between network-intensive and
compute-intensive phases [9], or an online computer game
whose demand is subject to time-of-day effects [35].
While offline and time-varying reservations may be possible

in idealized conditions, in practice, this is rarely the case.
This is obvious for continuously running applications, such as
a web-service or video-on-demand service, whose popularity
can change significantly and unexpectedly. But, as we show
next, even the resource pattern of very simple MapReduce
applications are hard to predict accurately. It has been reported
that stragglers can be several times slower than the median
task completion time [3], [4], [12], [20], [34]. Stragglers occur
due to a variety of environmental factors such as slow disks
and failures. Cluster frameworks typically use control loops
based on these factors to (re-)schedule tasks, e.g., Hadoop’s
speculative executor. This makes it hard to predict if there will
be stragglers in the first place and if so, when and where the
cluster framework will re-schedule a slow task.
To highlight this, we rely on a very simple experiment

wherein we run a Hadoop cluster in an OpenStack-based
testbed. For this we use five physical servers (8 CPU cores
and 64GB of RAM) with one virtual machine each. Each
virtual machine is allocated 4 virtual cores with 4 GB of
RAM. Each node of the Hadoop cluster is mapped to a virtual
machine each (one master, four slaves). The Hadoop workload
consists of a TeraSort job, operating on 150 million 100-byte
records. We repeat the experiment five times with speculative
execution enabled. Figure 2 (left) indicates the variance in job
completion times across the runs: a range of 150 seconds.
This observation is also supported by Figure 2 (right) which
indicates the number of straggling tasks that were speculatively
re-executed by the Hadoop cluster.
Figure 1 indicates the bandwidth consumption in the cluster

across three different runs of the TeraSort job executed without
speculative execution enabled. In each run, the dataset is
generated afresh using the TeraGen command. Note that the
bandwidth utilization has varying profiles over time in each
case. These observations serve to demonstrate that even with
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Fig. 1: Execution unpredictability—Bandwidth utilization for
the same TeraSort workload with three different datasets of the
same size generated via TeraGen. Bandwidth utilization over
time varies between the runs, necessitating the need for online
bandwidth reservation schemes as opposed to offline ones.
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Fig. 2: Execution unpredictability—Completion times of jobs
in the presence of speculative execution (left) and the number
of speculated tasks (right).

the same workload and a dataset of the same size being re-
executed, it is difficult to predict how a job progresses over
time.
Note that since TeraSort is IO-bound and all data are ran-

domly generated with a uniform distribution, its behavior is
much more regular than most other jobs used in data analytics,
which can suffer from skewed data distribution, irregular
computation patterns, etc. Therefore, we expect real jobs to
exhibit even higher variance across runs, as it is often reported
in literature [3], [4], [12], [20].
In conclusion, we argue that offline approaches for resource

reservations such as Proteus do not suffice, as cloud envi-
ronments such as Amazon EC2 [34] are likely to be much
more noisy than our environment studied here. This makes it
more difficult to predict performance of an application a priori,
which underlines the need for dynamic and online reservation
schemes. The need for online solutions is exacerbated in
systems in which demand can vary over time, e.g., long-
running applications or streaming applications.

III. MODEL & EXAMPLE

We start by introducing the settings and the virtual network
abstraction considered in this paper, and subsequently high-
light the algorithmic challenge.

A. Setting
We consider the standard Virtual Cluster abstraction to model

virtual networks with strict performance guarantees [5], [9],
[26]. A virtual cluster offers the tenant the illusion for all
her Compute Units (CUs) to be attached to a single non-
oversubscribed switch with a minimum bandwidth b guaran-
teed. If excess bandwidth is available, it can be used in addition
to the reserved bandwidth, e.g., leveraging recently proposed
extensions to TCP such as Seawall [32].
A virtual cluster VC(n,b) has two parameters: n, the num-

ber of (identical) CUs in the cluster, and b, the bandwidth
reservation from each CU to the virtual switch. Virtual clus-
ters belonging to different tenants need to be embedded on
a given substrate: a physical network connecting a set of
servers. In this paper, we focus on multi-rooted tree (or
fat-tree) like physical network topologies [1], [16] as they
are the predominant topology in today’s datacenters. These
topologies are hierarchical and are recursively made of sub-
trees at each level. A fat-tree consists of a set of pods which
are interconnected by core routers. Pods comprise a set of
racks which are interconnected by the aggregation switch,
and racks comprise multiple servers (or hosts) which are
interconnected by the Top-of-Rack (ToR) switch. Each server
can host a fixed number of CUs. As done in previous work,
e.g., [5], [9], given the amount of multiplexing and assuming
the availability of a multi-path routing protocol such as ECMP,
we can approximate these links as a single aggregate link for
bandwidth reservations.
To save costs, some datacenter operators introduce some

degree of over-subscription, typically at the higher levels of the
hierarchy. We model these configurations with two parameters
γ1,γ2 ≥ 1 (called the over-subscription factors in [5]): γ1
denotes the factor of reduced capacity on the aggregation
network (between ToR and aggregation switches) and γ2 the
factor of reduced capacity between the aggregation switches
and the core switch.
The embedding of a virtual cluster describes its resource

allocation in the substrate: an embedding maps each CU of
the virtual cluster to a physical server in the substrate network;
multiple CUs may be hosted on the same server. In addition,
the embedding specifies the amount of bandwidth on each link
reserved for the tenant. Intuitively, a “valid” embedding is one
that does not oversubscribe server or network resources. A
“good” embedding additionally chooses servers that are close
in the physical network, thus minimizing unnecessary resource
reservations on the physical links.

B. The Challenge
The goal of this paper is to support virtual clusters whose

guarantees can be adjusted over time, in an online fashion.
Specifically, we want to be able to (1) upgrade a virtual cluster
VC(n,b) consisting of n CUs and with a bandwidth guarantee
b, both in size (i.e., number of CUs) as well as in the minimum
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Fig. 3: Upgrade of a virtual cluster VC: Left - the initial state: VC(7,1) is embedded on the right-most rack of a pod of
the fat-tree. The dashed lines indicate the current bandwidth reservations. Middle - the upgrade request: VC(7,1) needs to be
upgraded to VC(8,2). Right - after the upgrade: Three CUs were migrated in order to find a new feasible embedding of VC
which does not violate the capacity on the servers’ uplinks.

bandwidth, that is, to a virtual cluster with x≥ 0 more nodes
and a factor δ ≥ 1 more bandwidth, i.e., to VC(n+ x,b · δ );
(2) downgrade a virtual cluster in both size and bandwidth;
(3) or a combination of both (e.g., upgrade size and downgrade
bandwidth).
How to support such reconfigurations is also an algorithmic

problem. Ideally, new feasible embeddings should be effi-
ciently computable, i.e., at low runtime; moreover, we would
like to avoid or at least minimize migrations in order to satisfy
a reconfiguration request; finally, the resulting embeddings
should have small network footprints, in the sense that no
unnecessary bandwidth is reserved (on substrate links) to
implement the virtual cluster guarantees.

C. Example
To illustrate both the model and the challenge, let us consider

an example. Figure 3 (left) shows a part of a fat-tree, i.e., a
single pod consisting of three racks with two servers each;
each server has 4 CU slots. We assume that the uplinks of
the servers have a capacity of 4 units and the fat-tree provides
full bisection bandwidth (γ1 = γ2 = 1), resulting in a capacity
of 8 units on the ToR switches’ uplinks and a capacity of 24
units on the links between the aggregation switches and the
core switch. On the right most rack, currently a virtual cluster
VC is embedded; the dashed line indicates the path along with
bandwidth is reserved to connect the CUs. At some point, VC
is upgraded, from VC(7,1) to VC(8,2), see Figure 3 (middle).
How can this request be satisfied? Theoretically, the right

server in the rack still has a free CU slot which could be
used to accommodate the additional CU; however, doubling
the bandwidth reservations for each the CUs will violate the
bandwidth capacities on the uplinks of the servers. Hence it
becomes necessary to distribute the CUs in the substrate, in
order to reduce the bandwidth utilization of the uplinks of
the two servers. Thus, in this scenario, some CUs need to
be migrated to satisfy the request. Figure 3 (right) shows a
solution: the resulting embedding is valid.

IV. THE SYSTEM

In this section, we first formalize the goals of the developed
system, and then introduce the main concepts underlying
Kraken and describe its key components.

A. Objectives

Kraken is designed to accept and implement any embedding
and upgrade request whenever there are sufficient resources
available in the substrate. Downgrade requests, instead, can
always be satisfied.
Besides satisfying upgrade requests whenever this is possible,

Kraken is designed (1) to optimize the embedding cost of
the virtual cluster, i.e., the amount of bandwidth which needs
to be reserved in the physical network to host the virtual
cluster; and (2) to reconfigure existing embeddings locally,
i.e., to minimize the migration cost. To avoid affecting the
performance of other tenants, we do not allow the migration
of CUs belonging to other tenants, although in some cases
this might result in lower embedding costs. The standard
metric to evaluate the embedding cost (see also [5], [9]),
is to measure the embedding footprint F(VC) of a virtual
cluster VC: F(VC) is given by the overall network resources
consumed by the VC, i.e., the sum of bandwidth reservations
over all substrate links. (Note that the number of used CU
slots is independent of the embedding.)
In order to measure the reconfiguration costs, we count the

number of CUs which need to be embedded to a different
location during an upgrade.
Notice that there is a trade-off between the two metrics:

sometimes, at the price of higher reconfiguration costs, smaller
footprints can be realized. In the following, we design our al-
gorithms according to the following priorities (cf Section IV-F
for a discussion of alternative objectives supported by Kraken):
(1) the top priority is to satisfy a reconfiguration request;
(2) the second priority is to minimize reconfiguration costs;
and (3) the third priority, is to minimize the embedding
footprint, i.e., among all solutions of the same reconfiguration
costs, we compute the most resource efficient embedding.
Kraken provides the following worst-case guarantees.
1) Request Satisfiability: As long as a feasible solution exists

all upgrade and downgrade requests are satisfied.
2) Minimal Reconfiguration: The reconfiguration cost is

always minimized. In particular, if a solution without
migrations exists, it is used. CUs of other tenants are
never migrated.
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3) Optimal Allocation: Among all possible solutions with
minimal reconfiguration costs, Kraken computes the one
with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or
embedding) a virtual cluster is linear in the substrate size,
in the worst-case.

B. Algorithmic Concepts

At the heart of Kraken lie two main concepts: (1) The center-
of-gravity (or simply: center) of a virtual cluster and (2) the
slotCount values. The center-of-gravity concept (introduced
in [31]) allows us to decouple the embedding of the individual
Compute Units (CUs), in the sense that, given the location
of the center-of-gravity, the CUs can be mapped “greedily”,
one after the other, avoiding the combinatorial complexity
and rendering the problem polynomial time solvable. The
slotCount(v) values provide an aggregate information about
the number of available CU slots in the sub-tree of the fat-
tree below a given node v; they constitute the main data
structure used by Kraken. While previous virtual cluster em-
bedding algorithms used a similar concept [5], [9], [14], only
the combination with the center-of-gravity concept allows a
modification which enables the low runtime of the dynamic
algorithm (roughly linear in the substrate size).
Center-of-Gravity. The virtual cluster abstraction offers ten-

ants a network where each CU is connected to a virtual switch
at bandwidth b [5]. While this virtual switch is only a logical
concept, its position in the substrate matters, as resources need
to be reserved from it to each CU.1 The center-of-gravity may
also be located on a server, not only on a switch (e.g., if many
CUs of the virtual cluster are collocated on the same server).
Given a mapping of the CUs of a given virtual cluster VC, we
will refer to the optimal position of the virtual switch (with
respect to embedding footprint) as the center-of-gravity COG
of VC.
Given any node v in the fat-tree (either a server or a switch),

we can partition the nodes of VC into two sets with respect
to v: the set of CUs at or below the node v in the fat-tree, and
the remaining CUs above (or “outside”) v. Sometimes, we
use the same terminology to refer to the location of substrate
components relative to each other.
When applying the COG concept to the fat-tree topology, we

have two important properties, which Kraken leverages: (1) no
more than half of the nodes, can be above COG and (2) no
more than half of the nodes are below one of the children of
COG. The correctness of this property can be shown easily by
contradiction: If more than half of the CUs are behind one link,
moving the COG in this direction will decrease the bandwidth
costs for more than half of the CUs by 1 and increase the costs
for the other CUs by 1, resulting in a smaller footprint.
Moreover, when computing the embedding footprint of a

virtual cluster VC, it is often helpful to count the number
of CUs which are embedded below COG(VC); we will refer
to this number as β . The remaining CUs of VC which are
embedded above COG(VC), fall into three classes: the α(p)

“far-away” CUs located in a different pod, the α(r) CUs in

1Note that there could be multiple positions with the same embedding cost,
and that in a fat-tree, a distributed switch mapping does not reduce costs.

Algorithm 1 Algorithm upgrade(VC,x,δ )
Output: success or failure

1: for all nodes v in the fat-tree: compute slotCount(v) values
2: m∗← ∞; F∗← ∞; cog∗←⊥;
3: for all v in substrate do
4: M← minMig(v)
5: if |M| ≤ m∗ then
6: F ← footprint(v, |M|)
7: if F < ∞∧ (|M|< m∗∨F < F∗) then
8: cog∗← v
9: m∗← |M|

10: F∗← F
11: end if
12: end if
13: end for
14: if m∗ = ∞ then
15: return failure
16: end if
17: µ ← computeEmbedding(VC,cog∗)
18: return success

Below

CoG

Fig. 4: Example embedding of a VC(10,1). The COG is on the
left top-of-rack switch. The 8 CUs located in the left most slot
are below the COG and entail a unit bandwidth cost each. The
two remaing CUs are above (αr) the COG and inflict three
units of bandwidth cost each. Moving the virtual switch to
one of the servers in the left rack would reduce the bandwidth
costs for the 4 CUs on that server by 1, but increase the costs
for the other 6 CUs by 1. Moving it to the pod would decrease
the costs for the two CUs in the middle rack, but increase the
costs for the other 8 CUs.

the same pod but in a different rack, and the α(s) CUs in
the same rack but on a different server. This classification
results in simple formulas for the embedding footprint of a
virtual cluster. For instance, if COG(VC) is embedded to
a top-of-rack switch, the embedding footprint is given by
F(VC) = β + 3 ·α(r)+ 5 ·α(p) as the distance to servers in
the same rack (β ) is 1 and the distance to all servers in the
same pod but in different racks (α(r)) is 3 while the distance
to servers in other pods (α(p)) is 5.
slotCount-Values. The second core concept of Kraken is

the slotCount(v)-value: intuitively, the slotCount(v)-value in-
dicates how many additional CUs can be placed below a
certain substrate node v (a server or switch), such that the
currently available server and link resources are all satisfied.
The number of CUs which can be placed below a certain sub-

strate node v depends on two factors: the available bandwidth
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Fig. 5: Example for slotCount computations. Already em-
bedded are a VC1(10,1) (light gray) and a VC2(2,4) (dark
gray). We assume that the substrate has a maximum bandwidth
of 4 on the links connecting the servers to the top-of-rack
switches and that the currently processed request has the form
VC3(n,1). Obviously, the left rack is full and hence all slot
count values are 0. The center rack has one completely free
server (slotCount = 4) and one half free server (slotCount = 2)
resulting in a slotCount = 6 on the top-of-rack switch. The
two servers in the right rack are partially occupied by VC2,
but could potentially host 3 CUs of VC3 (e.g., when n = 3).
However, slotCount is based on the assumption, that COG is
above the node and the two CUs of VC2 occupy the entire
bandwidth. Hence, the slotCount values are 0 for this rack,
too.

and the available CU slots. For Kraken it is sufficient to com-
pute the bandwidth criteria for cases where COG is above v.
This eases the computation of these values significantly, since
the resulting interval of possible amounts of CUs becomes
continuous. In order to keep the runtime of the slotCount com-
putation low, we leverage the optimal sub-problem property in
our dynamic program: We start by computing the slotCount-
values on the host level. For each server s we compute
slotCount(s) = min(spareCUs(s),bspareBW (s) /bc) where
spareCUs(s) denotes the available CU slots of a server s and
spareBW (s) denotes the available bandwidth on the uplink.
The slotCount of a rack r is then defined as: slotCount(r) =
min(∑s∈r slotCount(s),bspareBW (s) /bc). The slotCount(p)-
values for pods can subsequently be computed from the racks’
slotCount-values.

Overview. Based on these concepts, in order to embed or
reconfigure a virtual cluster VC, Kraken simply cycles through
all possible center-of-gravity locations in the substrate network
(servers and switches): for each possible COG location v,
Kraken determines the minimal number of migrations needed,
in order to shift the center to v. This is a fast operation since it
does not scale with the size of the substrate, but with the size
of the VC. If COG can be implemented on v with minimal
migration costs, the slotCount values are used to calculate the
best possible embedding footprint of a mapping with the center
at v. As we will show, this also does not require scanning the
entire substrate, and is fast.

Algorithm 2 minMig(substrate node v)
Output: set of CUs

1: M← /0
2: L← computeConflictLinks(v)
3: sort L with decreasing distance from v
4: for all links ` ∈ L do
5: while ` oversubscribed do
6: let c be an arbitrary CU below `
7: M←M∪{c}
8: end while
9: end for

10: M←M∪extraCUs(v)
11: return M

C. Upgrade Algorithm
Algorithm 1 shows the pseudo-code of Kraken’s algorithm

to implement an upgrade operation upgrade, from VC(n,b)
to VC(n+ x,δ ·b) with x≥ 0 more nodes and a factor δ ≥ 1
more bandwidth. We use µ to denote the embeddings.
Kraken first pre-computes the slotCount-values for the entire

substrate network, i.e., for each substrate node v (a server
or switch). Subsequently, Kraken computes the new center-
of-gravity COG for VC which minimizes the reconfiguration
costs in terms of the number of to be released, i.e., migrated
CUs M (function minMigs) and embedding footprint F
(function footprint), by iterating over all nodes in the
substrate. Subsequently, the best found solution is embedded
(function computeEmbedding).
1) Minimal Migrations: To compute the minimal number

of migrations, function minMig proceeds as follows, see
Algorithm 2: For each node v in the substrate (i.e., all servers
and switches), it computes a list of CUs which have to be
“released” (i.e., put in a pool of CUs which will be embedded
somewhere else by the algorithm), to be able to realize the
new center-of-gravity at node v.
ComputeConflictLinks computes the set of links L

whose capacity would be oversubscribed if the center-of-
gravity cog was on v and the bandwidth was increased to
b · δ under the current embedding µ of the existing CUs.
Subsequently, we iteratively release CUs until a critical link
` ∈ L is no longer oversubscribed. This yields the first part
of the set M of CUs which need to be migrated. The conflict
resolution is ordered by distance to the center-of-gravity.
While releasing the CUs so far in M ensures that no link

is oversubscribed, additional CUs may have to be moved to
guarantee that the center-of-gravity is realized at the desired
physical node: thus, extraCUs adds more CUs to the set M,
such that the sum of the CUs which are currently hosted below
v and the cardinality of M reach n/2. To make v the center-
of-gravity of the virtual cluster, it is necessary and sufficient
that at least n/2 CUs are below v.
2) Minimal Footprint: After determining the number of

CUs that have to be migrated, we compute the embedding
footprint. Interestingly, Kraken can compute the embedding
cost of a desired center-of-gravity without determining an
explicit embedding of the new virtual cluster, by utilizing the
slotCount-values.
The function footprint is described in Algorithm 3. It

takes a desired center-of-gravity v and a target number m
of CUs which are to be migrated. Let us first observe that
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Algorithm 3 footprint(substrate node v, number of CUs
to migrate m)
Output: cost value

1: done ← 0
2: for all children v′ of v in the fat-tree do
3: done ← done +slotCount(v′)
4: end for
5: return ST(v)+height(v) ·n+costsAbove(v,m−done)

the footprint of a virtual cluster can be computed via the
following case distinction: (1) If v is a core switch, all CUs
are located below v, and hence the distance between v and
the CUs is three. Thus, F(VC) = 3 · β , where β counts
the number of CUs which are embedded below COG(VC).
(2) If v is an aggregation switch of a pod, the CUs of VC
are either located on servers in the same pod, or on servers
in different pods. Clearly, all servers in the same pod are
at distance two from v, and the servers in other pods are
at distance four from v. We have F(VC) = 2 · β + 4 ·α(p),
where α(p) is the number of CUs of VC which are embedded
above COG(VC), in a different pod. (3) In case v is embed-
ded to a ToR switch, the embedding footprint is given by
F(VC) = β + 3 ·α(r) + 5 ·α(p), where α(r) is the number
of CUs of VC which are embedded above COG(VC), in a
different rack. (4) The embedding footprint for a v on servers is
given by F(VC) = 2 ·α(s)+4 ·α(r)+6 ·α(p), where α(s) is the
number of CUs of VC which are embedded above COG(VC),
on a different server. In this case, CUs which are embedded
below the COG are omitted, as they have no bandwidth costs.
The function footprint first computes the number of CUs

which can be placed on each of the sub-trees represented
by the direct children of v. Since the center-of-gravity v
is above its children by definition, the slotCount(v)-values
of the children are accurate. Then, the embedding cost is
computed recursively by the formula ST(v) +height(v) ·n+
costsAbove(v,z−done). The first cost term ST(v) accounts
for the static costs, i.e., the costs from CUs which are not
scheduled for migration according to the minimal migrations.
The second cost term height(v) · n depends on the depth of
the center-of-gravity in the tree. The third term computes the
additional costs from the CUs above v, if any, see the function
costsAbove (Algorithm 4): we leverage the fact that the
costs for placing CUs further away from a candidate center v
increases by two for every layer in the fat-tree, regardless of
the layer where v is located. Accordingly, given z flexible CUs,
we add 2z to the costs and execute the function again with the
parent node of v as the new v and z−∑v′∈V ′ slotCount(v′) as
the new z, where V ′ is the set of siblings of v (i.e., children of
the parent node of v excluding v). If v is the core switch, or the
spare capacity on the uplink of v is less then z ·δ ·b, v cannot
be the center-of-gravity, and the upgrade request fails for this
specific location of the COG. If this is the case for all nodes
v in the substrate, the upgrade request has to be rejected.

D. Downgrade Algorithm

Downgrade operations in Kraken never require any mi-
grations. However, the center-of-gravity may change. Thus,
the downgrade algorithm of Kraken proceeds similar to the

Algorithm 4 costsAbove(substrate node v, number of
flexible CUs z)
Output: cost value

1: if z = 0 then
2: return 0
3: end if
4: if (v is a core switch or the uplink from v does not have z ·δ ·b

spare bandwidth) then
5: return ∞

6: end if
7: done← 0
8: for all for all siblings v′ of v do
9: done← done+ slotCount(v′)

10: end for
11: return 2 · z+costsAbove(parent of v,z−done)

upgrade algorithm, but without functions minMig and with-
out the need to compute the slotCount(v) values. The main
difference regards how the values are actually used to compute
the costs. While the original algorithm depends on slotCount-
values and the current distribution, we set the current distri-
bution to 0 and all slotCount-values to the distribution prior
to the upgrade.

E. Formal Guarantees

Since the calculated cost and slotCount values are exact, we
have derived the following result.

Theorem IV.1. Kraken guarantees:
1) Request Satisfiability: As long as a feasible solution exists

all upgrade and downgrade requests are satisfied.
2) Minimal Reconfiguration: The reconfiguration costs is

always minimized. In particular, if a solution without
migrations exists, it is used.

3) Optimal Allocation: Among all possible solutions with
minimal reconfiguration costs, Kraken computes the one
with the minimal embedding footprint.

4) Complexity: The time complexity of re-configuring (or
embedding) a virtual cluster is bounded by O(N · n ·∆)
in the worst-case, where N is the size of the substrate
(number of servers), n is the virtual cluster size, and ∆ =
S+R+P is the number of servers in a single rack S (i.e.,
the degree of a ToR switch), plus the number of racks in
a single pod R (i.e., the degree of an access switch), plus
the number of pods P (i.e., the degree of a core switch).

Proof. The optimality proof unfolds in two central lemmas:
Lemma 1 is the key to the Minimal Reconfiguration property,
and Lemma 2 is the key to the Request Satisfaction property.
Finally, in Lemma 3, we prove the runtime complexity.

Lemma 1. The function minMigs computes the minimal
number of migrations required to shift the center-of-gravity
to a given substrate node v.

Proof. We first note that a node v can only represent a center-
of-gravity of a virtual cluster VC under a new embedding µ ′

if (1) in µ ′ at least n/2 CUs are embedded below v, and if
(2) µ ′ describes a feasible embedding, i.e., no nodes or links
are oversubscribed (or critical). If Condition (1) is violated,
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the allocation cost under an alternative center (above v) is
strictly lower.
Let L be set the of conflict links of embedding µ (function
computeConflictLinks). For each conflict link ` ∈ L,
we can define the non-empty set S` of CUs whose bandwidth
reservation involves `, and whose removal will reduce the load
of link `. Due to the hierarchical structure of the substrate, if
two links ` and `′ are on the same path from a host to center-
of-gravity v, and ` is lower than `′ in the tree, it holds that
S`⊆ S`′ . Thus, removing CUs in a descending order of distance
to v (see function minMigs), will minimize the number of
necessary changes. Finally, minMigs fulfills Condition (2) by
adding only the necessary number of CUs below v.

Since Kraken iterates over all possible center-of-gravity loca-
tions v, Lemma 1 directly implies the Minimal Reconfiguration
property.
The next lemma shows that Kraken will always find a feasible

realization of a center-of-gravity v if it exists.

Lemma 2. Function footprint(v, |minMig(v)|) only re-
turns ∞ if it is unfeasible to make v the center-of-gravity.

Proof. From the proof of Lemma 1 we know that no so-
lutions exist with k < |M| migrations, where M is as de-
fined in minMig. Function footprint first computes the
embedding costs at and below v, after which x = |M| −
∑v′ slotCount(v′) conflicts below v are left. While each addi-
tionally released CU below v frees up one slot for some child
v′, it at the same time increases the set of conflicts from 1
to |M|. Thus, the resulting number of conflicted CUs to place
above v remains z. A cost footprint(v, |minMig(v)|) = ∞

implies that z > 0, since for z = 0, costsAbove(v,0) = 0
and hence footprint(v, |minMig(v)|) < ∞

On each tier in the substrate, costAbove(v′,z′) can return ∞

if the uplink of v′ does not have enough spare bandwidth (b ·δ ·
z′). Since minMig generated a conflict-free partial embedding,
we get z′ > 0 if there is a conflict and b and δ are positive.
The relation z′ > 0 implies that no resources are left on the
previous tiers (z′′>∑slotCount(v′′)). Hence, each released CU
will increase the spare capacity on the uplink by b · δ , but
also increase z′ by one, inhibiting a feasible solution. Once
function costAbove reaches the core switch, ∞ is returned.
In this case, the sum of all slotCount(v)-values for the pods
is less than |M|. Releasing a CU in any pod will increase the
slotCount(v)-values for that pod by one and at the same time
increase |M| by one. Hence this conflict cannot be resolved
by migrating additional CUs.

Again, since Kraken iterates over all locations v, the Request
Satisfaction holds. The Optimal Allocation property can be
shown along the same lines. The time complexity of Kraken
is as follows.

Lemma 3. The time complexity to satisfy a request is bounded
by O(N · n ·∆) in the worst-case, where N is the size of the
substrate (number of servers), n is the virtual cluster size, and
∆ = S+R+P is the number of servers in a single rack S (i.e.,
the degree of a ToR switch), plus the number of racks in a
single pod R (i.e., the degree of an access switch), plus the
number of pods P (i.e., the degree of a core switch).

Proof. The computation of the slotCount(v)-values requires
O(N · ∆) time as the dynamic program runs in a bottom-
up manner. Subsequently, Kraken iterates over all possible
center-of-gravity locations in the fat-tree (time O(N)): for each
candidate COG, conflicts are computed along the links from
the assigned server of each CU to the potential COG (time
O(n)), together with the costs for the resulting embedding
(time O(∆)). The overall runtime for finding the optimal
COG is hence O(N · n ·∆) The actual embedding can utilize
the previously computed list of conflicts and distribution of
migrated CUs across the substrate. To generate a feasible
embedding from here it is necessary to traverse through the
sub-trees which should host the migrated CUs afterwards.
During this traversal, we visit at most N nodes and check
their slotCount(v) values, again at a runtime of O(N). Hence,
the overall runtime amounts to O(N ·n ·∆).

Note that Kraken can also be used to embed virtual clusters
from scratch, and ensuring a minimal footprint. Thus, together
with property 4), Kraken also outperforms state-of-the-art
virtual cluster embedding algorithms which do not support any
reconfigurations, e.g., [14], [31], at least in the worst-case: Our
simulations show that Oktopus [5] and Proteus [9] find fairly
good embeddings with small footprints as well. However, in
the worst case, their performance can be arbitrarily bad com-
pared to Kraken. In the case of Oktopus, a small virtual cluster
which could be hosted by a single server (Kraken footprint:
0) may be embedded across multiple servers (footprint > 1). In
the case of Proteus, the ratio of the optimal footprint computed
by Kraken and the footprint by Proteus can be as high as n/3:
such an example can be constructed by exploiting the fact that
Proteus will only consider cross-pod embeddings if a request
cannot be fit in a single pod. Thus, in case n− 1 slots are
available on a single server in one pod and n times one slot
is available on servers in another pod, the Proteus footprint is
2n while the footprint of Kraken is 6.

F. Alternative Migration Cost Models

For ease of exposition, we presented Kraken for a simple
model where the objective of minimizing the number of mi-
grations is prioritized over optimizing the embedding footprint.
However, our algorithms can be extended to other migration
cost models and trade-offs between migration and footprint
costs, without sacrificing optimality. For instance, intra-pod
migration costs could be modeled to be cheaper than inter-
pod migrations, and migration costs could also depend on the
available bandwidth along the migration path.

V. EVALUATION

We conduct extensive simulations to study the feasibility of
online reservation upgrades at runtime. By default, we will
assume the same settings and parameters as used in previous
work [5]. However, given our more dynamic environment, we
also introduce a model for elastic reconfiguration requests,
and conduct a sensitivity analysis, studying the impact of
different factors (such as magnitude of reconfiguration and
system load) by using parameter sweeps.
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A. Metrics

We consider the following two metrics:
Acceptance Ratio. Ideally, a system such as Kraken should

be able to accept and satisfy as many requests as possible.
For each request (either arrival of a new virtual cluster or
a reconfiguration request), we distinguish whether or not the
request was satisfied and, if satisfied, whether it was satisfied
(1) with or (2) without migrations. Note that Kraken does not
use “strategic access control” (e.g., to favor “small” requests
to improve that acceptance ratio); in fact, Kraken never rejects
a request if it can be satisfied.
Reconfiguration Costs. While our simulation does not cap-

ture many parameters that determine the actual cost of a
migration, we count the number of migrations; this is a natural
metric given the uniform size of CUs of the virtual cluster.
In particular, we will report on the fraction of migrated CUs
relative to the virtual cluster size, which provides more insights
than an absolute number.

B. Methodology & Runtime

Substrate. We model the datacenter as a three-level fat-
tree. Overall, we have 16,000 servers distributed over P = 10
pods of R = 40 racks each; a rack contains S = 40 servers.
By varying the connectivity and the bandwidth of the links
between the switches, we change the over-subscription of the
physical network. By default, we will assume that the access
network is oversubscribed by a factor γ1 = 4, while the core is
not oversubscribed (γ2 = 1). The available bandwidth is B= 10
Gbps.
Demand. New virtual cluster requests arrive according to a

Poisson process with λ = 0.36. The lifetime of each virtual
cluster is chosen according to an exponential distribution with
average 3,600 s (one hour). By default, the size of a virtual
cluster and the bandwidth are chosen from an exponential
distribution with mean 49 and 2.5 Gbps respectively. The
parameters are normalized to induce a system load of 0.75
on average. The size of the virtual cluster in numbers of CUs
is chosen randomly from an exponential distribution, with an
average of 49 CUs per cluster.
Elastic Model. To add dynamicity to the virtual cluster

demands, we use six additional Poisson processes2 which
continuously pick virtual clusters for upgrading and/or down-
grading in a multiplicative manner. More precisely, the em-
bedded clusters are continuously reconfigured by these six
independent processes which randomly choose one of the ex-
isting clusters and perform a multiplicative update, i.e., either
(1)+(2) upgrade or downgrade the bandwidth by a factor fb ( fb
corresponds to δ in our formal sections), (3)+(4) increase or
decrease the cluster size by a factor fn ( fn is the multiplicative
version of the additive x in our formal sections), (5)+(6) jointly
upgrade or downgrade the bandwidth and the cluster size by a
factor f . By default, we assume that f = fb = fn = 1.5. With
regards to reporting the results, we focus on the upgrades as
these are the ones which trigger migrations.

2While Poisson distributions are commonly used to describe arrival patterns,
we still lack good empirical models for the kinds of workloads considered in
this paper.
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Fig. 6: Reconfiguration costs: KrakenNP vs. Kraken vs. Base-
line (augmented Oktopus)—(left:) cluster size upgrade, (mid-
dle:) bandwidth upgrade, (right:) joint upgrade. The legend on
the left is valid for all three plots.

To ensure the statistical significance, we run our simulations
for 80,000 rounds, which is roughly eighty times the duration
(i.e., lifetime) of a virtual cluster. To avoid artifacts related to
the initial empty substrate, we omit the first 10k requests.
Runtime. In this scenario, Kraken requires 86 ms on average

to satisfy any given request (the 99th percentile is 344 ms),
when run on an Intel i3-2310M CPU @ 2.10GHz.

C. Baseline Comparison

Kraken features two main mechanisms for the efficient up-
grade of a virtual cluster: (1) Kraken allows to upgrade an
existing embedding by increasing the bandwidth between CUs
at their current locations, as well as by the extending the
cluster by the local addition of new CUs; (2) if a local
extension is not sufficient to satisfy a request, Kraken also
supports the re-embedding, i.e., migration of existing CUs.
In order to understand the contribution of each of these two

features, we break down the analysis of Kraken into two
steps: We first study a variant of Kraken, called KrakenNP,
which does not perform fine-grained migrations. (NM stands
No (local) Migrations.) That is, KrakenNP is equivalent to
Kraken, but if a request cannot be satisfied with the given CU
embedding, it resorts to embedding the virtual cluster with the
new specification from scratch. Subsequently, we study the
full-fledged Kraken system which can migrate CUs arbitrarily
in order to satisfy requests (subject to the usual constraint
that the number of migrations should be kept minimal).
For a simple baseline comparison, we also re-implemented
Oktopus [5]; we extended Oktopus so that requests can be
satisfied by re-embedding.
To give a basic understanding of the number of migrations

required to support elastic virtual clusters, Figure 6 plots
the empirical cumulative distribution function (ECDF) of the
migration cost for the three algorithms KrakenNP, Kraken
and Oktopus, and the three operations: add CUs, upgrade
bandwidth, and joint upgrade of CUs and bandwidth. Note
that when a new embedding is performed to satisfy an upgrade
request, the mechanism will guide the embedding process to a
similar configuration. This means that when possible, the CUs
will be assigned to the same old location, which, hence, will
not be counted toward the migration cost. This explains why
in some cases the migration cost of Oktopus and KrakenNP
can also have values different from zero (no migrations) and
one (all CUs are migrated).
We first discuss a scenario where only the bandwidth is

upgraded. In Figure 6 (middle), we can observe that already
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Fig. 7: Kraken acceptance ratios: without migration (dark
gray), with migration (light gray)—(left:) cluster size upgrade,
(middle:) bandwidth upgrade, (right:) joint upgrade.

KrakenNP is far superior to Oktopus as it can satisfy 45% of
the upgrade requests without migrations at all, while Oktopus
has to migrate all CUs of a VC for 80% of the upgrade
requests. In general, we find that Oktopus will likely find
similar embeddings (with few migrations) if the upgrade
request happens temporally close to the embedding time.
However, later it becomes likely that virtual clusters will be
embedded on a different sub-tree (or pod), resulting in many
migrations. The performance of Kraken is very similar to the
one of KrakenNP. However, the missing support of partial and
coordinated migrations leads to ≈ 50% cases where KrakenNP
has to migrate all CUs, while Kraken can avoid migrating more
then 50% of the CUs for nearly 80% of the requests.
The corresponding results for cluster size upgrades are shown

in Figure 6 (left). While Oktopus can only embed about 10%
of the upgrade requests without migrating any CUs, Kraken
can upgrade 70% of the requests without migration. KrakenNP
achieves a similar performance, and only for 10% of the
requests, we can observe an improvement ≥ 5% with Kraken
in terms of reconfiguration costs.
Figure 6 (right) studies joint upgrades (bandwidth and cluster

size). Here, the overall performance of Oktopus remains the
same, and the performance of Kraken and KrakenNP becomes
a mixture of the previous cases. While both variants of Kraken
need no migrations for 35% of the requests, KrakenNP has to
migrate all CUs for 40% of the requests, while Kraken can
satisfy about 70% of all requests without migrating all CUs.

D. Sensitivity Study
Next, we conducted a sensitivity study of Kraken, in which

we performed parameter sweeps for the up- and downgrade
ratios fb and fn, the mean number of CUs per request, the
bandwidth requirements per CU, the substrate load, and the
access network over-subscription ratio. We will first study the
effect of the upgrade ratios fb = fn in greater detail, and
subsequently, we report on our general observations for the
other parameters.
Figure 7 shows the acceptance ratio for virtual cluster

upgrades as bar plots. The dark gray area corresponds to
upgrade requests that do not require migration. The light
gray component of the bar corresponds to those requests that
can be satisfied by Kraken but require migration. We again
have three subplots corresponding to the three operations:
adding CUs, upgrading bandwidth, and joint upgrades of
CUs and bandwidth. The impact of the upgrade factor f is
significant, opening a spectrum from “accepting almost all
requests without migrations” (for factors close to one) to “no
migration for only 50% of the cluster size upgrade requests”.
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(left:) cluster size upgrade, (right:) bandwidth upgrade.
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Fig. 9: Kraken reconfiguration costs for upgrades with
migrations—(left:) cluster size upgrade, (middle:) bandwidth
upgrade, (right:) joint upgrade.

The impact of f on the bandwidth upgrades is even more
articulated. As expected in the joint upgrade scenario, the two
factors are amplified. Indeed, the problem is unfeasible for
more than 40% of the requests if the upgrade factor is 2.
To explain why it is often possible to satisfy cluster size up-

grade requests without migrations, Figure 8 plots (for upgrade
factor 1.5) the reconfiguration cost (in terms of migrations)
vs. the fan-out ratio (number of used servers), i.e., the fan-
out after the upgrade operation divided by the fan-out before
the upgrade. Let us start with the cluster size upgrades.
Figure 8 (left) has two interesting areas: First, the one with no
migrations which corresponds to zero reconfiguration costs.
Here the fan-out ratio increases up to a factor of three as
additional CUs can simply be added in the corresponding
sub-tree. Second, those that require migrations require full
re-configurations and therefore fall to the right hand side of
the plot. There are not that many requests in between the
two extremes, and the fan-out is often around 1.5 if there
are partial migrations, which is reasonable given the 50 %
upgrade. The plot for bandwidth upgrades (Figure 8 (right)) is
quite different. Since only the bandwidth is upgraded, the fan-
out does not change if no CU is migrated. In this case, there are
many upgrade requests with relatively small reconfiguration
costs while the cluster size upgrades created more extremes.
This can be explained by the collocation strategy used by
Kraken: for instance, if three CUs are hosted on a single server
prior to the upgrade, a bandwidth increase may require that
one CU be moved to another server to alleviate the load on
the uplink.
To better understand the difference between adding CUs

and upgrading the bandwidth, Figure 9 zooms into the light-
gray area and plots the distribution of the relative number
of migrations, given that the upgrade required at least one
migration. While in most cases it is sufficient to migrate less
than half of the CUs for bandwidth upgrades, it is necessary to
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migrate more than 90% of the CUs, if any reconfigurations are
necessary during a size upgrade. This can be explained by the
different triggers of migrations for the two operations: In many
situations, the CUs of a VC are collocated with each other.
Adding CUs in this cases does not require reconfigurations,
as long as there is sufficient spare bandwidth on the sub-
tree, which currently hosts the VC. Contrary, even a small
bandwidth upgrade can change the maximum number of CUs
which can be collocated (e.g., a bandwidth upgrade from 2.4
Gbps to 2.6 Gbps changes maximum number of collocated
CUs from 4 to 3), which will require a share of the CUs
(in this case 25%) to be migrated. The only case in which
adding CUs will actually trigger migrations, occurs when the
sub-tree which currently hosts the VC is already highly filled,
and the center has to be moved in order to meet the bandwidth
guarantees. This can also happen during a bandwidth upgrade,
but the first case occurs more often, and hence has a strong
impact on the outcome shown in Figure 9. The joint upgrade
case, shows the combined effects of the other two described
upgrades.
We will now report on our observations for the other pa-

rameters: Varying any of the above parameters by 50% never
caused the acceptance ratio to drop below 80%. Moreover, the
acceptance ratio for CU as well as bandwidth upgrades are
comparable to those of Figure 7. Joint upgrades are slightly
more complex but the acceptance ratio is still above 80%. The
largest difference we observed in the worst case acceptance
ratio was 6%.
With regards to the reconfiguration costs we find that cluster

size upgrades are typically more expensive. This is fully
consistent with the observations above. It also points out that
even local greedy search strategies for re-embedding CU size
upgrades can be fairly successful.
In general, we see that most parameters only have a very

small effect on the reconfiguration costs of bandwidth up-
grades, and a small effect on the joint upgrade. On average
across all evaluated parameters, bandwidth upgrades need
approximately one third reconfigurations per CU, while joint
upgrades typically require two third reconfigurations per CU.
This indicates that these operations benefit from the rigorous
optimizations of Kraken.

E. Bandwidth for Migrations

While compute units can be small and light-weight, it may
sometimes be desirable to migrate more state or entire VMs.
Therefore, we investigate the bandwidth available during CU
migrations. Figure 10 shows that for bandwidth upgrades,
on average, approximately 3 Gbps can be guaranteed along
the migration path of each CU on average; the minimum is
around 2 Gbps. For joint upgrades, the values are 2 Gbps
on average and 1 Gbps for the CU with the lowest available
bandwidth. These values are encouraging, indicating that even
large migrations are feasible in reasonable time. However, we
also see that on the occasion where cluster size upgrades
trigger migrations, the bandwidth can become critical: only
10% of the requests can guarantee more then 1Gbps of
bandwidth for the migrations. In such settings, one may have
to resort to a separate management network for migration.
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Fig. 10: CDF of the available bandwidth to migrate a compute
unit for upgrades which require migrations. Left: avg. band-
width; Right: min. bandwidth.
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Fig. 11: Top: Map and reduce progress of a TeraSort job in best
effort conditions (dotted) and when using Kraken (solid lines).
The X marks indicate the point of job completion. Bottom:
Bandwidth utilization for a TeraSort job (black) with online
bandwidth reservations (red) via Kraken.

VI. CASE STUDY WITH HADOOP

We now go back to the Hadoop case study introduced in
Section II. Hadoop is an appealing application for Kraken, as
the Hadoop framework natively supports tracking the progress
of a task. In Hadoop-YARN, MapReduce tasks inform the
Application Master about the progress of a task periodically.
The Application Master uses this information, for instance,
to speculate tasks that are straggling. A Kraken scheduler
can easily leverage this information. Moreover, the notion
of compute units in Kraken fit cleanly with Hadoop-YARN’s
model in which tasks execute inside containers, an abstraction
for a fixed amount of resources. Hadoop also supports the
re-spawning of tasks at other Node Managers, a facility
already employed by the speculative execution mechanism.
Therefore, the Kraken model can be implemented within
Hadoop, wherein a container also includes a specification of
bandwidth, and the Application Master may migrate tasks
to different containers in order to satisfy upgrade and/or
placement requests.
While we defer a full-fledged implementation of Kraken as

future work, in the following, we report on a preliminary
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prototype, essentially a simplified version of the bandwidth-
reservation mechanism demonstrated in PANE [11]: however,
while PANE enforces bandwidth reservations as specified by
the administrator, we envision Kraken to feed a system like
PANE with the exact guarantees to enforce.
We implemented a simple controller that runs inside a virtual

machine and uses the Linux tc utility in order to make
bandwidth reservations. We instrumented the Hadoop source
code such that tasks inform the controller prior to executing
a shuffle. If there is spare bandwidth to be allocated, the
controller increases the corresponding endpoint’s bandwidth
reservation. Once the shuffle is completed, the Hadoop frame-
work informs the controller of the same in order to release its
reservations. Migrations are not supported yet.
Using this framework, we then executed the TeraSort bench-

mark against a dataset size of 100 million 100-byte records
(a total of ˜10 GB of data). We co-locate the Hadoop data
nodes against a set of VMs that generate UDP flows on the
network using iperf. The UDP flows are set to last 400
seconds at a throughput of 600 Mbps, which significantly
stresses the underlying 1 Gbps network. Hadoop is initially
allocated only 100 Mbps of bandwidth, but requests additional
bandwidth when shuffles are to be executed (with the UDP
tenant given best-effort service, and left to consume the
remaining bandwidth throughout). Figure 11 (top) indicates the
map and reduce progress with and without online reservations.
Without online reservations, the UDP tenant interferes heavily
with Hadoop’s network usage, thus prolonging the TeraSort
job until the UDP flows terminate. With online reservations
however, Hadoop requests bandwidth when it needs it, leading
to just under 300 seconds of improvement in job completion
time. Figure 11 (bottom) indicates the the bandwidth reserva-
tions over time as requested by Hadoop (red) and the actual
bandwidth used by Hadoop (black). Note that this is in contrast
to having to provision for the peak utilization for the entire
duration of the run, which would in turn affect efficiency.

VII. RELATED WORK

Cloud Network Performance. Over the last few years,
researchers and practitioners have recognized the importance
of predictable network performance in a multi-tenant datacen-
ter [26]. One solution is the one adopted by Amazon’s Com-
pute Cluster approach, which avoids multi-tenancy entirely but
comes at the cost of reduced efficiency (limited or no resource
sharing). Other solutions, instead, extend the max-min per-
flow based fairness model provided by TCP to support new
per-tenant fairness models [21], [23], [28], [32]. With these
proposals, however, the performance for a given tenant is still
dependent on the number of other tenants and their workload,
and, hence, cannot be accurately predicted.
In contrast, solutions based on explicit bandwidth reserva-

tions [5], [9], [17], [29], [30] allow the tenant to specify
the desired bandwidth, usually assuming a Hose model [13],
and sometimes even with work-conservation guarantees [18].
The main motivation for our work is that none of these
solutions allows tenants to update their bandwidth reservation
at runtime.
Proteus [9] introduces the concept of Time-Interleaved Virtual

Clusters which model the time-varying nature of networking

requirement of cloud applications such as Hadoop. However,
in contrast to Kraken, the number of virtual machines as well
as their location in the substrate is constant (i.e., fixed) during
the entire execution; only the bandwidth reservation between
the CUs can be changed over time. Also, it may not be possible
to satisfy certain time-varying requests upfront, as they can
only be realized with migrations. Finally, Proteus is an offline
approach: In Proteus, each application is profiled first, and
the inferred execution patterns are then taken into account
when embedding the virtual networks. As we have argued, we
believe that this approach is problematic in multi-tenant data-
centers, where unexpected events and stragglers are a reality;
moreover, it limits the approach to batch-processing type of
applications with limited runtimes only (long-running services
like interactive web-sites or data stores cannot be modeled).
Finally, even in the absence of failures or stragglers, we argue
that execution patterns may significantly differ from execution
to execution, due to factors such as varying data inputs and
differences in data-locality caused by the application.
Elastic Computing: A recent class of systems exploit the so-

called time malleability of many batch processing framework
to reconfigure at runtime the amount of resources allocated to
each job. For example, Amoeba [2] and Natjam [8] use task
preemption to re-distribute at runtime the resources allocated
to running jobs. This can be used, for instance, to compensate
for deviations from the expected performance due to strag-
glers [12] or to enable flexible pricing mechanisms [25].
Due to the lack of systems that enable dynamic reconfig-

uration of network resources, all these systems only focus
on computation resources. However, in real workloads, a
large fraction of the time of a job is spent on network
transfers [24]. Therefore, by disregarding network resources,
the effectiveness of these systems is greatly reduced.
We believe that Kraken can be successfully integrated with

these systems to provide comprehensive solutions that take
into account both compute and network resources. We leave
the exploration of these opportunities to future work.
Kraken can also be applied to systems such as Bazaar [19]

that provide a job-centric interface and allow the provider to
select the best combination of CUs and network resources. By
adding the ability of reallocating CUs and network resources at
runtime, we can expand the range of scheduling opportunities.
Embedding: Many existing systems try to maximize the

number of virtual networks that can be hosted concurrently
on a given physical infrastructure, while providing the spec-
ified resource isolation. [6] Accordingly, embedding and/or
scheduling algorithms have been proposed to multiplex virtual
networks. Since the underlying problems are often computa-
tionally hard in many models [7], approximation algorithms
or heuristics are typically used.
This paper focuses on the embedding of virtual clusters in fat-

tree networks, and hence, from an embedding algorithm point
of view, Oktopus and Proteus are the papers most related to
ours. Both systems are based on a collocation strategy which
try to place CUs of the same virtual network close to each
other, in order to minimize the overall bandwidth allocation.
As a side contribution of our current paper, we also present a
linear-time algorithm to solve the virtual cluster embedding
problem in the fat-tree optimally: the problem considered
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in [5], [9] is not NP-hard and our algorithm is significantly
faster than the algorithms presented in [14], [31] for other
topologies.
Bibliographic Note. A shorter version of this paper (without
detailed analysis and prototype) appeared at the IEEE INFO-
COM 2016 conference [15].

VIII. DISCUSSION

This paper presented the Kraken system which allows to
dynamically scale up and down the bandwidth and compute
resources allocated to a cloud application at runtime. Thus,
Kraken overcomes the weaknesses of existing solutions, in
which resource reservations either cannot be changed [5],
[17], [30], in which the entire resource schedule has to be
computed at job submission time [9], or in which either only
the bandwidth or the compute resources can be adapted, but
not both [9], [27], [33].
We described algorithms to find a configurable and opti-

mal trade-off between embedding and reconfiguration costs,
and complemented the formal guarantees by simulation and
through a preliminary Hadoop prototype.
While we have motivated our approach for batch-processing

applications such as MapReduce, the problem is relevant
more generally. We also believe that our perspective nicely
complements the recent work on time malleable systems like
Amoeba [2] and Natjam [8] or scheduling frameworks such
as Jokey [12]. Kraken can also be applied to systems such as
Bazaar [19] that provide a job-centric interface and allow the
provider to select the best combination of CUs and network re-
sources. The ability of reallocating CUs and network resources
at runtime can expand the range of scheduling opportunities.
We believe that our work opens several interesting direc-

tions for future research. On the theoretical side, it will be
interesting to study how to generalize our algorithms beyond
fat-tree networks: related work (such as [31]) on single re-
quest embeddings without support for migration suggests that
polynomial-time algorithms may still exist. The main open
question however concerns the study of scheduling algorithms
that leverage the Kraken interface to better schedule executions
over time, also leveraging possible prediction models.
Acknowledgments. Research supported by the Aalborg Uni-
versity’s Talent Management Programme (Project PreLytics)
and the German Ministry for Education and Research (Berlin
Big Data Center, BBDC).
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