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Abstract—We consider a collaborative online learning
paradigm, wherein a group of agents connected through a social
network are engaged in playing a stochastic multi-armed bandit
game. Each time an agent takes an action, the corresponding
reward is instantaneously observed by the agent, as well as its
neighbours in the social network. We perform a regret analysis
of various policies in this collaborative learning setting. A key
finding of this paper is that natural extensions of widely-studied
single agent learning policies to the network setting need not
perform well in terms of regret. In particular, we identify a
class of non-altruistic and individually consistent policies, and
argue by deriving regret lower bounds that they are liable to
suffer a large regret in the networked setting. We also show that
the learning performance can be substantially improved if the
agents exploit the structure of the network, and develop a simple
learning algorithm based on dominating sets of the network.
Specifically, we first consider a star network, which is a common
motif in hierarchical social networks, and show analytically that
the hub agent can be used as an information sink to expedite
learning and improve the overall regret. We also derive network-
wide regret bounds for the algorithm applied to general networks.
We conduct numerical experiments on a variety of networks to
corroborate our analytical results.

I. INTRODUCTION

We introduce and study a collaborative online learning
paradigm, wherein a group of agents connected through a
social network are engaged in learning a stochastic Multi-
Armed Bandit (MAB) problem. In this setting, a set of agents
are connected by a graph, representing an information-sharing
network among them. At each time, each agent (a node
in the social network graph) chooses an action (or arm)
from a finite set of actions, and receives a stochastic reward
corresponding to the chosen arm, from an unknown probability
distribution. In addition, each agent shares the action index
and the corresponding reward sample instantaneously with
its neighbours in the graph. The agents are interested in
maximising (minimising) their net cumulative reward (regret)
over time. When there is only one learning agent, our setting
is identical to the classical multi-armed bandit problem, which
is a widely-studied framework for sequential learning [1], [2].

Our framework is motivated by scenarios that involve
multiple decision makers acting under uncertainty towards
optimising a common goal. One such example is that of a
large-scale distributed recommendation system, in which a
network of backend servers handles user traffic in a concurrent
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fashion. Each user session is routed to one of the servers
running a local recommendation algorithm. Due to the high
volume of recommendation requests to be served, bandwidth
and computational constraints may preclude a central proces-
sor from having access to the observations from all sessions,
and issuing recommendations simultaneously to them in real
time. In this situation, the servers must resort to using low-rate
information from their neighbours to improve their learning,
which makes this a collaborative networked bandit setting.

Another application scenario is that of cooperative trans-
portation routing with mobile applications that provide social
network overlays, like Waze [3]. A user in this system is
typically interested in taking the fastest or most efficient route
through a city, with her app offering a choice of routes, and
also recording observations from past choices. In addition,
users can also add other trusted users as friends, whose
observations then become available as additional information
for future decision making. The social network among the
users thus facilitates local information exchange, which could
help users optimise their future decisions (choices of routes)
faster.

In our setting, the agents use their social network to aid their
learning task, by sharing their action and reward samples with
their immediate neighbours in the graph. It seems reasonable
that this additional statistical information can potentially help
the agents to optimize their rewards faster than they would
if they were completely isolated. Indeed, several interesting
questions arise in this collaborative learning framework. For
example, how does the structure of the social network affect
the rate at which the agents can learn? Can good learning
policies for the single agent setting be extended naturally to
perform well in the collaborative setting? Can agents exploit
their ‘place’ in the network to learn more efficiently? Can
‘more ‘privileged’ agents (e.g., nodes with high degree or
influence) help other agents learn faster? This work investi-
gates and answers some of these questions analytically and
experimentally.

A. Our Contributions

We consider the collaborative bandit learning scenario, and
analyse the total regret incurred by the agents (regret of
the network) over a long but finite horizon n. Our specific
contributions in this paper are as follows.

We first introduce and analyse the expected regret of the
UCB-Network policy, wherein all the agents employ an exten-
sion of the celebrated UCB1 [2] policy. In this case, we derive
an upper bound on the expected regret of a generic network.
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The upper bound involves a graph-dependent constant, which
is obtained as the solution to a combinatorial optimisation
problem. We then specialize the upper bound to common
network topologies such as the fully connected and the star
graphs, in order to highlight the impact of the social network
structure on the derived upper bound.

Second, we derive a universal lower bound on the expected
regret of a generic network, for a large class of ‘reasonable’
policies. This lower bound is based on fundamental statistical
limits on the learning rate, and is independent of the network
structure. To incorporate the network structure, we derive an-
other lower bound on the expected regret of a generic network,
as a function of a graph dependent parameter. This bound
holds for the class of non-altruistic and individually consistent
(NAIC) policies, which includes appropriate extensions of
well-studied single agent learning policies, such as UCB1 [2]
and Thompson sampling [4] to a network setting. We then
observe that the gap between the derived lower bound for the
NAIC class of policies, and the upper bound of the UCB-
Network policy can be quite large, even for a simple star
network1.

Third, we consider the class of star networks, and derive
a refined lower bound on the expected regret of a large
star network for NAIC policies. We observe that this refined
lower bound matches (in an order sense) the upper bound
of the UCB-Network. We thus conclude that widely-studied
sequential learning policies (NAIC) which perform well in
the single agent setting, may perform poorly in terms of the
expected regret of the network when used in a network setting,
especially when the network is highly hierarchical.

Next, motivated by the intuition built from our bounds, we
seek policies which can exploit the social network structure
in order to improve the learning rates. In particular, for an m-
node star network, we propose a Follow Your Leader (FYL)
policy, which exploits the centre node’s role as an ‘information
hub’. We show that the proposed policy suffers a regret which
is smaller by a factor of m compared to that of any NAIC
policy. In particular, the network-wide regret for the star-
network under the FYL policy matches (in an order sense) the
universal lower bound on regret. This serves to confirm that
using the centre node’s privileged role is the right information
structure to exploit in a star network.

Finally, we extend the above insights to a generic network.
To this end, we make a connection between the smallest
dominating set of the network, and the achievable regret under
the FYL policy. In particular, we show that the expected
regret of the network is upper bounded by the product of the
domination number and the expected regret of a single isolated
agent.

In sum, our results on the collaborative bandit learning show
that policies that exploit the network structure often suffer
substantially lesser expected regret, compared to single-agent
policies extended to a network setting.

1Our special interest in star graphs is motivated by the fact that social
networks often posses a hub-and-spoke structure, where the star is a commonly
occurring motif.

B. Related Work

There is a substantial body of work that deals with the
learning of various types of single agent MAB problems [1],
[2], [5]–[7]. However, there is relatively little work on the
learning of stochastic MAB problems by multiple agents.
Distributed learning of a MAB problem by multiple agents
has been studied in the context of a cognitive radio frame
work in [8]–[10]. Unlike these models, a key novelty in our
model is that it incorporates information sharing among the
agents since they are connected by a network. In [11], the
authors assume that each player, in each round, has access to
the entire history corresponding to the actions and the rewards
of all users in the network – this is a special case of our
generic user network model. In [12], the authors deal with
the learning of adversarial MAB problem by multiple agents
connected through a network.

The primary focus in [13] is centralized learning, wherein an
external agent chooses the actions for the users in the network.
The learning of the stochastic MAB problem by multiple users
has also been addressed from a game-theoretic perspective
in [14]; the randomised algorithm proposed therein uses the
parameters of the MAB problem, which are unknown to the
algorithm in practice. In contrast, we propose deterministic
algorithms that do not require these parameters.

In a class of MAB problems considered in [15]–[17], a
sole learning agent receives side observations in each round
from other arms, in addition to samples from the chosen arm.
Another related paper is [18] – here, the model consists of
a single major bandit (agent) and a set of minor bandits.
While the major bandit observes its rewards, the minor bandits
can only observe the actions of the major bandit. However,
the bandits are allowed to exchange messages with their
neighbours, to receive the reward information of the major
bandit. Clearly, the models described above are rather different
from the setting we consider in this work.

Organization. We describe the system model in Section II.
Section III presents the regret analysis of the UCB-Network
policy. Lower bounds on the expected regret of the network
under certain classes of policies are presented in Section IV.
Section V presents the regret analysis of the FYL policy.
Numerical results are presented in Section VI, and Section VII
concludes the paper.

II. SYSTEM MODEL

We first briefly outline the single agent stochastic MAB
problem. Let K = {1, 2, . . . ,K} be the set of arms available
to the agent. Each arm is associated with a distribution, inde-
pendent of others, say P1,P2, . . . ,PK , and let µ1, µ2, . . . , µK
be the corresponding means, unknown to the agent. Let n be
the time horizon or the total number of rounds. In each round
t, the agent chooses an arm, for which he receives a reward,
an i.i.d. sample drawn from the chosen arm’s distribution.
The agent can use the knowledge of the chosen arms and the
corresponding rewards upto round (t− 1) to select an arm in
round t. The goal of the agent is to maximize the cumulative
expected reward up to round n.



Now, we present the model considered in this paper. We
consider a set of users V connected by an undirected fixed
network G = (V,E) 2, with |V | = m. Assume that each
user is learning the same stochastic MAB problem i.e., faces a
choice in each time from among the same set of arms K. In the
tth round, each user v chooses an arm, denoted by av(t) ∈ K,
and receives a reward, denoted by Xv

av(t)(t), an i.i.d. sample
drawn from Pav(t). In the stochastic MAB problem set-up, for
a given user v, the rewards from arm i, denoted by {Xv

i (t) :
t = 1, 2, . . .}, are i.i.d. across rounds. Moreover, the rewards
from distinct arms i and j, Xv

i (t), Xv
j (s), are independent.

If multiple users choose the same action in a certain round,
then each of them gets an independent reward sample drawn
from the chosen arm’s distribution. We use the subscripts i, v
and t for arms, nodes and time respectively. The information
structure available to each user is as follows. A user v can
observe the actions and the respective rewards of itself and its
one hop neighbours in round t, before deciding the action for
round (t+ 1).

The policy Φv followed by a user prescribes actions at each
time t, Φv(t) : Hv(t) → K, where Hv(t) is the information
available with the user till round t. A policy of the network
G, denoted by Φ, comprises of the policies pertaining to all
users in G. The performance of a policy is quantified by a
real-valued random variable, called regret, defined as follows.
The regret incurred by user v for using the policy Φv upto
round n is defined as,

RvΦ(n) =

n∑
t=1

(
µ∗ − µav(t)

)
= nµ∗ −

n∑
t=1

µav(t),

where av(t) is the action chosen by the policy Φv at time t, and
µ∗ = max

1≤i≤K
µi. We refer to the arm with the highest expected

reward as the optimal arm. The regret of the entire network
G under the policy Φ is denoted by RGΦ(n), and is defined as
the sum of the regrets of all users in G. The expected regret
of the network is given by:

E[RGΦ(n)] =
∑
v∈V

K∑
i=1

∆iE[T vi (n)], (1)

where ∆i = µ∗ − µi, and T vi (n) is the number of times arm
i has been chosen by Φv upto round n. We omit Φ from the
regret notation, whenever the policy can be understood from
the context. Our goal is to devise learning policies in order to
minimise the expected regret of the network.

Let N (v) denote the set consisting of the node v and its
one-hop neighbours. Let mv

i (t) be the number of times arm
i has been chosen by node v and its one-hop neighbours till
round t, and µ̂mvi (t) be the average of the corresponding reward

2We use the adjacency matrix A to represent the network G. If (i, j) ∈ E
then A(i, j) = A(j, i) = 1, otherwise A(i, j) = A(j, i) = 0. We assume
that A(i, i) = 1 ∀i ∈ V .
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Fig. 1: Various 5-node user networks. (a) fully connected
(b) circular (c) star (d) fully disconnected

samples. These are given as:

mv
i (t) =

∑
u∈N (v)

Tui (t)

µ̂mvi (t) =
1

mv
i (t)

∑
u∈N (v)

t∑
k=1

Xu
au(k)(k)I{au(k) = i},

where I denotes the indicator function. We use mG
i (t) to

denote the number of times arm i has been chosen by all
nodes in the network till round t.

III. THE UCB-NETWORK POLICY

Motivated by the well-known single agent policy UCB1 [2],
we propose a distributed policy called the UCB-user. This is
a deterministic policy, since, for a given action and reward
history, the action chosen is deterministic. When each user in
the network follows the UCB-user policy, we term the network
policy as UCB-Network which is outlined in Algorithm 1.

Algorithm 1 Upper-Confidence-Bound-Network (UCB-
Network)

Each user in G follows UCB-user policy
UCB-user policy for a user v:
Initialization: For 1 ≤ t ≤ K
- play arm t
Loop: For K ≤ t ≤ n
- av(t+ 1) = argmax

j
µ̂mvj (t) +

√
2 ln t
mvj (t)

The following theorem presents an upper bound on the
expected regret of a generic network, under the UCB-Network
policy.

Theorem 1: Assume that the network G follows the UCB-
Network policy to learn a stochastic MAB problem with K
arms. Further, assume that the rewards lie in [0, 1]. Then,
(i) The expected total regret of G is upper bounded as:

E
[
RG(n)

]
≤

∑
i:µi<µ∗

[
CG

8 lnn

∆i
+ CG∆i

]
+ b,

where ∆i = µ∗ − µi, β ∈ (0.25, 1),

b = m
(

2
4β−1 + 2

(4β−1)2 ln(1/β)

)( K∑
j=1

∆j

)
, and

CG is a network dependent parameter, defined as
follows.



(ii) Let γk = min{t ∈ {1, . . . , n} : |{v ∈ V : mv
i (t) ≥ li =

8 lnn
∆2
i
}| ≥ k} denote the smallest time index when at least

k nodes have access to at least li samples of arm i. Let ηk
be the index of the ‘latest’ node to acquire li samples of
arm i at γk, such that ηk 6= ηk′ for 1 ≤ k, k′ ≤ m. Define
zk = Ti(γk) :=

(
T 1
i (γk), . . . , Tmi (γk)

)
, which contains

the arm i counts of all nodes at time γk. Then, CGli is
the solution of the following optimisation problem:

max ‖zm‖1
s.t ∃ a sequence {zk}mk=1

zj(ηk) = zk(ηk) ∀j ≥ k
〈zk, A(ηk, :)〉 ≥ li, 1 ≤ k ≤ m

(2)

Proof: Refer Appendix A.
Interpretation of (2): Under the UCB-Network policy, sup-

pose a node has acquired at least li samples of a sub-optimal
arm i. As shown in the Lemma 2 in the Appendix A that such
a node will not play the sub-optimal arm i subsequently with
high probability. Next, note that, zk is a vector of arm i counts
(self plays) of all nodes at time γk. The objective function in
(2) represents the sum of arm i counts of all nodes at the
smallest time index, when all nodes have access to at least li
samples of arm i. The solution to (2) represents the maximum
number of samples of arm i required by the entire network
such that (a) Each node has access to at least li samples
of arm i (the last constraint in (2)), and (b) Each node stops
choosing arm i after it has access to li samples of it (the
penultimate constraint in (2)).

For example, the solution to (2) for an m-node star network
(shown in Fig. 1) is (m−1)li. This corresponds to the scenario
where the center node never chooses the sub-optimal arm i,
and each leaf node chooses it li times.

Proof sketch: First, we show that any node v plays any sub-
optimal arm i in a given round t with small probability after
it has li samples of it, in Lemma 2. Using Lemma 2, we then
upper bound the expected regret of the network after each
node has li samples of the sub-optimal arm i. Next, we upper
bound the maximum number of samples of the sub-optimal
arm i required by the entire network such that each node has
access to li samples of it, in Lemma 3. Finally, we obtain the
desired upper bound by combining Lemma 2 and Lemma 3.
A detailed proof, along with Lemma 2 and 3 is given in the
Appendix A.

A. Application to typical networks

Solving (2) for an arbitrary network is analytically complex.
Hence, we solve the problem for a few specific networks that
range from high connectivity to low connectivity; namely,
the m-node Fully Connected (FC), circular, star and Fully
Disconnected (FD) networks. For m = 5, these networks
are shown in Fig. 1. It is easy to verify that the solution
to (2) for these four networks are li, (m − 1)li, bm2 cli and
mli, respectively. We can then evaluate the upper bounds in
Theorem 1.

Corollary 1 For an m-node FC network:

E[RG(n)] ≤
∑

i:µi<µ∗

(
8 lnn

∆i
+ ∆i

)
+ b. (3)

Corollary 2 For an m-node circular network:

E[RG(n)] ≤
⌊m

2

⌋ ∑
i:µi<µ∗

(
8 lnn

∆i
+ ∆i

)
+ b. (4)

Corollary 3 For an m-node star network:

E[RG(n)] ≤ (m− 1)
∑

i:µi<µ∗

(
8 lnn

∆i
+ ∆i

)
+ b. (5)

Corollary 4 For an m-node FD network:

E[RG(n)] ≤ m
∑

i:µi<µ∗

(
8 lnn

∆i
+ ∆i

)
+ b. (6)

A key insight can be obtained from the above corollaries is
that, the expected regret of a network decreases by a factor of
m, 2 and m/(m− 1) in the cases of m-node FC, circular and
star networks respectively, compared to FD network.

IV. LOWER BOUNDS ON THE EXPECTED REGRET

In this section, we derive lower bounds on the expected
regret of the network under various classes of policies. Our
first lower bound is a universal bound which is independent
of the user network, and holds for large class of ‘reasonable’
learning policies. Second, we derive a network-dependent
lower bound for a class of Non-Altruistic and Individually
Consistent (NAIC) policies – a class that includes network
extensions of well-studied policies like UCB1 and Thompson
sampling. Finally, we derive a refined lower bound for large
star networks under NAIC policies.

Throughout this section, we assume that the distribution of
each arm is parametrised by a single parameter. We use θ =
(θ1, . . . , θK) ∈ ΘK = Θ to denote the parameters of arms 1
to K respectively. Suppose f(x; θj) be the reward distribution
for arm j with parameter θj . Let µ(θj) be the mean of arm
j, and θ∗ = arg max

1≤j≤K
µ(θj). Define the parameter sets for an

arm j as
Θj = {θ : µ(θj) < max

i6=j
µ(θi)}

Θ∗
j = {θ : µ(θj) > max

i6=j
µ(θi)}

Note that Θj contains all parameter vectors in which the
arm j is a sub-optimal arm, and Θ∗

j contains all parameter
vectors in which the arm j is the optimal arm. Let kl(β||λ)
be the KL divergence of the distribution parametrised by λ,
from the distribution parametrised by β.

[A1] We assume that the set Θ and kl(β||λ) satisfy the
following [1]:
(i) f(.; .) is such that 0 < kl(β||λ) < ∞ whenever µ(λ) >

µ(β).
(ii) ∀ε > 0 and ∀β, λ such that µ(λ) > µ(β),∃δ =

δ(ε, β, λ) > 0 for which |kl(β||λ) − kl(β||λ′)| < ε
whenever µ(λ) ≤ µ(λ′) ≤ µ(λ) + δ.



(iii) Θ is such that ∀λ ∈ Θ and ∀δ > 0,∃λ′ ∈ Θ such that
µ(λ) < µ(λ′) < µ(λ) + δ.

Theorem 2: Let G be an m-node connected generic net-
work, and suppose [A1] holds. Consider the set of policies
for users in G to learn a K-arm stochastic MAB problem
with a parameter vector of arms as θ ∈ Θ such that
Eθ[mG

j (n)] = o(nc) ∀ c > 0, for any sub-optimal arm j.
Then, for δ ∈ (0, 1), the following holds.

lim inf
n→∞

Eθ[mG
j (n)]

lnn
≥ 1− δ

1 + δ
· 1

kl(θj ||θ∗)
. (7)

Proof: Refer Appendix B.
Note that the above universal lower bound is based on

fundamental statistical limitations, and is independent of the
network G. Next, we define the class of NAIC policies, and
derive a network-dependent lower bound for this class. In the
rest of this section, we assume that each arm is associated
with a discrete reward distribution, which assigns a non-zero
probability to each possible value.

Let ω be a sample path, which consists of all pairs of actions
and the corresponding rewards of all nodes from rounds 1
through n:

ω = {(av(t), Xv
av(t)(t)) : v ∈ V, 1 ≤ t ≤ n}.

Also, define

ωv = {(au(t), Xu
au(t)(t)) : u ∈ N (v), 1 ≤ t ≤ n}

ωv̄ = {(au(t), Xu
au(t)(t)) : u ∈ N (v)c, 1 ≤ t ≤ n}.

Definition 1 [Individually consistent policy] A policy fol-
lowed by a user v is said to be individually consistent if,
for any sub-optimal arm i, and for any policy of a user
u ∈ N (v) \ {v}

E[T vi (n)|ωv̄] = o(na), ∀ a > 0, ∀ωv̄. (8)

Definition 2 [Non-altruistic policy] A policy followed by
a user v is said to be non-altruistic if there exist a1, a2, not
depending on time horizon n, such that the following holds.
For any n and any sub-optimal arm i, the expected number of
times that the policy plays arm i after having obtained a1 lnn
samples of that arm is no more than a2, irrespective of the
policies followed by the other users in the network.

It can be shown that UCB-user and Thompson sampling [4]
are NAIC policies. In particular, we show that the UCB-user
policy is an NAIC policy in Lemma 4 in Appendix A.

Example of a policy which is not individually consistent :
Consider a 2-armed stochastic bandit problem with Bernoulli
rewards with means µ1, µ2, where µ1 > µ2. Consider the 3-
node line graph with node 2 as the center node. Let the policy
followed by node 1 be as follows: a1(t) = a2(t−1) for t > 1
and a1(1) = 2 (we call this policy follow node 2). Consider
the following ω1̄ = {(a3(t) = 2, X3

2 (t) = 0) : 1 ≤ t ≤ n}.
Then, E[T 1

2 (n)|ω1̄] = n under the node 2’s policy as follow
node 3, which clearly violates the equation (8). Hence, the
follow node 2 policy for node 1 is not individually consistent.

Note that the above policy, follow node u, is in fact a non-
trivial and rather well-performing policy that we will revisit in
Section V. We now derive a network-dependent lower bound
for the class of NAIC policies

Theorem 3: Let G = (V,E) be a network with m nodes,
and suppose [A1] holds. If each node in V follows an NAIC
class policy to learn a K-arm stochastic MAB problem with
a parameter vector of arms as θ = (θ1, . . . , θK) ∈ Θj , and
δ ∈ (0, 1) then, the following lower bounds hold:

(i) lim inf
n→∞

Eθ[mv
j (n)|ωv̄]
lnn

≥ 1− δ
1 + δ

· 1

kl(θj ||θ∗)
,∀v ∈ V

lim inf
n→∞

Eθ[mv
j (n)]

lnn
≥ 1− δ

1 + δ
· 1

kl(θj ||θ∗)
,∀v ∈ V

(ii) lim inf
n→∞

Eθ[mG
j (n)]

lnn
≥ LG ·

1− δ
1 + δ

· 1

kl(θj ||θ∗)
, (9)

where LG can be obtained from the solution to the following
optimisation problem:

min ‖zm‖1
s.t ∃ a sequence {zk}mk=1

zi(ηk) = zk(ηk) ∀i ≥ k

〈zk, A(nk, :)〉 ≥ qj =
1− δ
1 + δ

· lnn

kl(θj ||θ∗)
, ∀k.

(10)

Proof: Refer Appendix C.
The notation used in (10) is the same as the notation in
Theorem 1, except that li is replaced with qj . Further, LG is
obtained by dividing the solution to (10) by qj . Similar to (2),
solving (10) analytically for an arbitrary network is difficult.
Hence, we focus on solving (10) for the networks shown in
Fig. 1, and provide the corresponding lower bounds below. Let
∆i = µ(θ∗)− µ(θi).
Corollary 5 For an m-node FC network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥

∑
i:∆i>0

1− δ
1 + δ

· ∆i

kl(θi||θ∗)
. (11)

Corollary 6 For an m-node circular network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥ m

3

∑
i:∆i>0

1− δ
1 + δ

· ∆i

kl(θi||θ∗)
. (12)

Corollary 7 For an m-node star network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥

∑
i:∆i>0

1− δ
1 + δ

· ∆i

kl(θi||θ∗)
. (13)

Corollary 8 For an m-node FD network:

lim inf
n→∞

Eθ[RG(n)]

lnn
≥ m

∑
i:∆i>0

1− δ
1 + δ

· ∆i

kl(θi||θ∗)
. (14)

From corollaries 1-8, we infer that the upper bound of the
UCB-Network policy and the lower bound given by (9) are
of the same order, for FC (lnn), circular (m lnn) and FD
(m lnn) networks. However, for star networks, there is a large
gap between the UCB-Network upper bound and the lower



bound for NAIC policies in (13). Since the UCB-Network is
an NAIC class policy, we proceed to ascertain if either of these
bounds is too loose for star networks. Our special interest
in star networks is due to the prevalence of hubs in many
social networks, and as we shall see in the next section, this
hierarchical structure can be exploited to enhance the learning
rate.

Next, we consider a specific instance of a large star network,
for which we derive a refined lower bound for the class
of NAIC policies. This refined lower bound is of the same
order as the regret upper bound for the UCB-Network policy,
implying that the upper bound in Theorem 1 is tight in an
order sense, and cannot be improved in general.

Theorem 4: Let Gn = (Vn, En) be a sequence of mn-node
star networks learning a 2-arm stochastic MAB problem with
mean rewards µa, µb such that µa > µb. Suppose mn ≥ 2 ·

lnn
kl(µb||µa) , and that each node follows an NAIC policy. Then,

lim inf
n→∞

E[mGn
2 (n)]

(mn − 1) lnn
≥ 1

kl(µb||µa)
. (15)

Proof: Refer Appendix D.
We now briefly explain the intuition behind Theorem 4. In

a large star network, the center node learns the sub-optimal
arm very quickly (in a few rounds), since it has access to
a large number of samples in each round. Under an NAIC
policy, once a node has enough samples to learn that an arm
is sub-optimal, by definition, it stops choosing that arm with
high probability. Hence, the center node stops choosing the
sub-optimal arm with high probability, which in turn ensures
that the leaf nodes learn the sub-optimal arm themselves, by
choosing the sub-optimal arm O(lnn) times. This leads to a
regret of O((m− 1) lnn). Our simulation results, in Table I,
also illustrates this behaviour, for the UCB-Network policy
(which is NAIC) on large star networks.

Theorem 4 asserts that, for a fixed, large time horizon
n, we can construct a large star network with m nodes,
whose expected regret is atleast O((m− 1) lnn). This lower
bound matches with the upper bound for UCB-Network in
Theorem 1. Thus, we conclude that the class of NAIC policies
could suffer a large regret, matching the upper bound in an
order sense. However, for the same star network and time
horizon, the universal lower bound in (7) turns out to be
O(lnn). This gap suggests the possibility that there might
exist good learning policies (which are not NAIC) for a star
network, with regret matching the universal lower bound. In
the next section, we propose one such policy, which does not
belong to the NAIC class.

V. THE FOLLOW YOUR LEADER (FYL) POLICY

In this section, we first outline a policy called Follow Your
Leader (FYL) for a generic m-node network. The policy is
based on exploiting high-degree hubs in the graph; for this
purpose, we define the dominating set and the dominating set
partition.

Definition 3 [Dominating set of a graph] [19] A dominating
set D of a graph G = (V,E) is a subset of V such that every
node in V \ D is adjacent to atleast one of the nodes in D.
The cardinality of the smallest dominating set of G is called
as the domination number.

Definition 4 [Dominating set partition of a graph] Let D
be a dominating set of G. A dominating set partition based
on D is obtained by partitioning V into |D| components such
that each component contains a node in D and a subset of its
one hop neighbors.

Note that given a dominating set for a graph, it is easy
to obtain a corresponding dominating set partition. The FYL
policy for an m-node generic network is outlined in Algo-
rithm 2. Under the FYL policy, all nodes in the dominating
set are called leaders and all other nodes as followers; the
follower nodes follow their leaders while choosing an action
in a round. As we argued in Section IV, the policy deployed
by a follower node in FYL is not individually consistent. The
following theorem presents an upper bound on the expected
regret of an m-node star network which employs the FYL
policy.

Algorithm 2 Follow Your Leader (FYL) Policy

Input: Graph G, a dominating set D and a dominating set
partition
Leader - Each node in D :
Follows the UCB-user policy by using the samples of itself
and its one-hop neighbours in the same component
Follower - Each node in V \D :
In round t = 1 :
- Chooses an action randomly from K
In round t > 1
- Chooses the action taken by the leader in its component,
in the previous round (t− 1)

Theorem 5 (FYL regret bound, star networks): Suppose
the star network G with a dominating set as the center node,
follows the FYL policy to learn a stochastic MAB problem
with K arms. Assume that the rewards lie in [0, 1]. Then,

E[RG(n)] ≤
K∑

i:µi<µ∗

8 lnn

∆i
+ d,

where d =
[
2m − 1 + 2m

4β−1

(
1 + 1

(4β−1) ln(1/β)

) ] K∑
j=1

∆j ,

∆i = µ∗ − µi and β ∈ (0.25, 1).

Proof: Refer Appendix E.
A key insight obtained from Theorem 5 is that an m-node star
network with the FYL policy incurs an expected regret that is
lower by a factor (m− 1), as compared to any NAIC policy.
More importantly, we observe that the regret upper bound
under the FYL policy meets the universal lower bound in (7).
Hence, we conclude that the FYL policy is order optimal for
star networks.



Finally, we present a result that asserts an upper bound on
the expected regret of a generic network under the FYL policy.

Theorem 6 (FYL regret bound, general networks): Let D
be a dominating set of an m−node network G = (V,E).
Suppose G with the dominating set D employs the FYL policy
to learn a stochastic MAB problem with K arms, and the
rewards lie in [0, 1], then

E[RG(n)] ≤
K∑

i:µi<µ∗

8|D| lnn
∆i

+ d.

Proof: Refer Appendix F.
From the above theorem we infer that, the expected regret

of a network scales linearly with the cardinality of a given
dominating set. Hence, in order to obtain a tighter upper
bound, we need to supply a smallest dominating set D∗ to
the FYL policy. Suppose, if we provide D∗ as the input to the
FYL policy, then we obtain an improvement of factor m/|D∗|
in the expected regret of an m-node network compared to the
fully disconnected network.

It is known that, computing a smallest dominating set of
a given graph is an NP-hard problem [20]. However, fast
distributed approximation algorithms for the same are well-
known in the literature. For example, Algorithm 35 in [20]
finds a smallest dominating set with an approximation factor
log(MaxDegree(G)). Also, upper bounds on the domination
number for specific networks such as Erdos-Renyi, power-
law preferential attachment and random geometric graphs are
available in [21]–[23].

VI. NUMERICAL RESULTS

We now present some simulations that serve to corroborate
our analysis. The simulations have been carried out using
MATLAB, and are averaged over 100 sample paths. We fix
the time horizon n to be 105.

A. Performance of UCB-Network on various networks

We consider the following two scenarios: (i) 10 node FC,
circular, star and FD networks, 2 arms, Bernoulli rewards
with means 0.7, 0.5, and (ii) 20 node FC, circular, star
and FD networks, 10 arms, Bernoulli rewards with means
1, 0.9, 0.8, . . . , 0.1. We run the UCB-Network policy for these
scenarios, and calculate the expected regret of the network and
percentage of time the optimal arm is played by the network.
The results are shown in Fig. 2 and 3. It can be observed from
Fig. 2 and 3 that the expected regret of the network decreases
and the percentage of time the optimal arm is chosen by the
network increases, as connectivity of the network increases.
This is because, an increase in the connectivity of the network
increases the number of observations available to a user, in a
given round.

TABLE I: Expected number of times arm 2 played by a node
in star networks under UCB-Network policy, 2 armed MAB
problem with Bernoulli mean rewards as 0.7 and 0.5

Size of the network Center Node Leaf Node
5 66 448
10 79 442
25 33 486
50 10 502

100 1 514
200 1 516
350 1 513

B. Performance of UCB-Network on star networks

We consider 5, 10, 25, 50, 100, 200 and 350 node star
networks, each learning a 2-armed stochastic bandit problem
with Bernoulli rewards of means 0.7 and 0.5. We run the
UCB-Network policy on the aforementioned networks, and
summarise the results in Table I. Observe that, the expected
number of times the center node chooses arm 2 (sub-optimal
arm) decreases as the network size increases. This forces each
leaf node to choose arm 2 on its own in order to learn.
Therefore, as the star network size increases, the expected
regret of the network can be approximated as the product of
the network size and the expected regret of an isolated node.

C. Comparison of UCB-Network and FYL policies

We consider 25, 100 and 350 node star networks learning
a 2-arm stochastic bandit problem with Bernoulli rewards of
means 0.7 and 0.5. We run both UCB-Network and FYL
policies on the above-mentioned networks. It can be observed
from Fig. 4 that the star networks incur much smaller expected
regret under the FYL policy, as compared to UCB-Network,
and learn the optimal arm much faster.

VII. CONCLUDING REMARKS

We studied the collaborative learning of a stochastic MAB
problem by a group of users connected through a social
network. We analysed the regret performance of widely-
studied single-agent learning policies, extended to a network
setting. Specifically, we showed that the class of NAIC policies
(such as UCB-Network) could suffer a large expected regret
in the network setting. We then proposed and analysed the
FYL policy, and demonstrated that exploiting the structure
of the network leads to a substantially lower expected regret.
In particular, the FYL policy’s upper bound on the expected
regret matches the universal lower bound, for star networks,
proving that the FYL policy is order optimal. This also
suggests that using the center node as an information hub is
the right information structure to exploit.

In terms of future research directions, we plan to study this
model for other flavours of MAB problems such as linear
stochastic [24] and contextual bandits [25]. Even in the basic
stochastic bandit model considered here, several fundamental
questions remain unanswered. For a given network structure,
what is the least regret achievable by any local information-
constrained learning strategy? Is it possible in a general
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Fig. 2: Performance comparison of UCB-
Network policy on various 10 node net-
works: 2 arms, Bernoulli rewards with
means 0.7 and 0.5
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Network policy on various 20 node net-
works: 10 arms, Bernoulli rewards with
means 1, 0.9, . . . , 0.1
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Fig. 4: Performance comparison of UCB-
Network and FYL policies on various
star networks: 2 arms, Bernoulli rewards
with means 0.7 and 0.5

network to outperform ‘good single-agent’ policies (i.e., those
that work well individually, like UCB) run independently
throughout the network? If so, what kind of information
sharing/exchange might an optimal strategy perform? It is
conceivable that there could be sophisticated distributed bandit
strategies that could signal within the network using their
action/reward sequences, which in turns begs for an approach
relying on information-theoretic tools.
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APPENDIX A

We require the following Lemma 1, 2, 3 and inequality to
prove Theorem 1.
Hoeffding’s Maximal Inequality [26]: Let X1, X2, . . . be cen-
tered i.i.d random variables lying in [0, 1]. Then, for any x > 0
and t ≥ 1,

P

(
∃s ∈ {1, . . . , t},

s∑
i=1

Xi > x

)
≤ exp

(
−2x2

t

)
.

In order to introduce Lemma 1, we need the following.
Consider a new probability space with probability measure

P̃, for the rewards corresponding to all arms. First, for a fixed
node v ∈ V , for each action i ∈ K, we consider a sequence of
i.i.d. random variables {Yi(k)}∞k=1 with arm i’s distribution. If
a node v or its neighbours choose an arm i, then they receive
the rewards from the sequence {Yi(k)}∞k=1. Next, for each u ∈
V \ N (v), for each action i ∈ K, we consider a sequence of
i.i.d. random variables {Xu

i (k)}∞k=1 with arm i’s distribution.
If a node u ∈ V \ N (v) chooses an arm i, then it receives
a reward from the sequence {Xu

i (k)}∞k=1. Recall that, in the
setting described in Section II, if a user v chooses arm i, then
it receives a reward from the sequence {Xu

i (k)}∞k=1. In this
probability space, we considered the probability measure to
be P.

We prove that the probability of a sample path of the
network in both probability spaces are equal, in the following
lemma. Hence, this allows us to equivalently work in the new
probability space, as and when appropriate.

Lemma 1: Consider an m-node undirected user graph. Let
A(t) and Z(t) be the random variables which indicate the
actions chosen by all nodes and the corresponding rewards,
in round t. Let E(k) = (A(k), Z(k), . . . , A(1), Z(1)). Then,
∀t ≥ 1,

P[E(t) = (ā1:t, z̄1:t)] = P̃[E(t) = (ā1:t, z̄1:t)],

where ā1:t = (ā1, . . . , āt) , z̄1:t = (z̄1, . . . , z̄t) with āk ∈ Km
and z̄k ∈ [0, 1]m for any k ≥ 1.

Proof: We establish the result using induction on t. The
result trivially holds for t = 1, since a policy does not possess
any information in the very first round itself. Assume that it
is true for t = k. Then,

P[E(k) = (ā1:k, z̄1:k)] = P̃[E(k) = (ā1:k, z̄1:k)].

Now, we prove that the result holds for t = k + 1.

P[E(k + 1) = (ā1:k+1, z̄1:k+1)]

= P[A(k + 1) = āk+1, Z(k + 1) = z̄k+1, E(k) = (ā1:k, z̄1:k)],

= P[A(k + 1) = āk+1, Z(k + 1) = z̄k+1|E(k) = (ā1:k, z̄1:k)]

· P[E(k) = (a1:k, z̄1:k)],

= P[A(k + 1) = āk+1, Z(k + 1) = z̄k+1|E(k) = (ā1:k, z̄1:k)]

· P̃[E(k) = (ā1:k, z̄1:k)], (16)

since we assumed that the result is true for t = k. Note that,
in our model, the actions taken by a policy in round (k + 1)
for a given E(k), are independent of the probability space
from which the rewards are generated. Further, the reward
distributions of arms are identical in both probability spaces
P and P̃. Therefore,

P[A(k + 1) = āk+1, Z(k + 1) = z̄k+1|E(k) = (ā1:k, z̄1:k)]

= P̃[A(k + 1) = āk+1, Z(k + 1) = z̄k+1|E(k) = (ā1:k, z̄1:k)].
(17)

By substituting (17) in (16), we obtain

P [E(k + 1) = (ā1:k+1, z̄1:k+1)] =

P̃ [E(k + 1) = (ā1:k+1, z̄1:k+1)] ,

which completes the proof.
Lemma 2: Let ct,S =

√
2 ln t
S , β ∈ (0, 1). For each v ∈ V

and sub-optimal arm i, define τvi as follows:

τvi = min{t ∈ [n] : mv
i (t) ≥ li =

⌈8 lnn

∆2
i

⌉
}.

Then, for each t > τvi ,

P
(
{µ̂mv∗(t) + ct,mv∗(t) ≤ µ̂mvi (t) + ct,mvi (t)}

)
≤ 2

(
ln t

ln (1/β)
+ 1

)
1

t4β
.

Proof: For convenience, we denote

Avi (t) = {µ̂mv∗(t) + ct,mv∗(t) ≤ µ̂mvi (t) + ct,mvi (t)}.

Note that,

P (Avi (t) ∩ {t > τvi }) = P (Avi (t) ∩ {mv
i (t) ≥ li}) . (18)

Observe that, the event Avi (t) occurs only if atleast one of the
following events occur.

{µ̂mv∗(t) ≤ µ
∗ − ct,mv∗(t)}, (19)

{µ̂mvi (t) ≥ µi + ct,mvi (t)}, (20)

{µ∗ < µi + 2ct,mvi (t)}. (21)

Note that, the event given by (21) does not occur when the
event {mv

i (t) ≥ li} occurs. Hence,

P (Avi (t) ∩ {mv
i (t) ≥ li}) ≤

P({µ̂mv∗(t) ≤ µ
∗ − ct,mv∗(t)} ∪ {µ̂mvi (t) ≥ µi + ct,mvi (t)}

∩ {mv
i (t) ≥ li}),

≤ P
(
{µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)}
)

+ P
(
{µ̂mvi (t) ≥ µi + ct,mvi (t)}

)
. (22)



For each node v ∈ V and each arm i, the initialization phase of
the UCB-user policy implies that |N (v)| ≤ mv

i (t) ≤ |N (v)|t.
Therefore,

P
(
µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)
)
≤

P (∃s∗ ∈ {|N (v)|, . . . , |N (v)|t} : µ̂s∗ ≤ µ∗ − ct,s∗) ,

≤

ln t
ln(1/β)∑
j=0

P
(
∃s∗ : |N (v)|βj+1t < s∗ ≤ |N (v)|βjt,

s∗µ̂s∗ ≤ s∗µ∗ −
√

2s∗ ln t
)
, (23)

≤

ln t
ln(1/β)∑
j=0

P
(
∃s∗ : |N (v)|βj+1t < s∗ ≤ |N (v)|βjt,

s∗µ̂s∗ ≤ s∗µ∗ −
√

2|N (v)|βj+1t ln t
)
. (24)

Here, (23) is due to the peeling argument on geometric grid
over [|N (v)|, |N (v)|t]. This implies that, for β ∈ (0, 1), a ≥
1, if s ∈ {a, . . . , at} then there exists j ∈ {0, . . . , ln t

ln(1/β)}
such that aβj+1t < s ≤ aβjt. Now, we proceed to bound
the probability of the event given by (24) using Hoeffding’s
maximal inequality and Lemma 1. Hence,

P
(
µ̂mv∗(t) ≤ µ

∗ − ct,mv∗(t)
)
≤

ln t
ln(1/β)∑
j=0

exp (−4β ln t) ,

≤
(

ln t

ln (1/β)
+ 1

)
1

t4β
. (25)

Similarly, we can show that

P
(
µ̂mvi (t) ≥ µi + ct,mvi (t)

)
≤
(

ln t

ln (1/β)
+ 1

)
1

t4β
. (26)

Substituting (25) and (26) in (22) gives the desired result.
Lemma 3: Let τvi ∀v ∈ V, and li, ∀1 ≤ i ≤ K be as defined

in the Lemma 2. Assume that a node v stops playing the sub-
optimal arm i at time τvi . Then, for an arm i,

∑
v∈V

T vi (τvi ) ≤

CGli, where CGli is the solution to the optimisation problem
in (2).

Proof: We first evaluate the value of the random variable
m∑
v=1

T vi (τvi ) for all realizations. Then, we determine the max-

imum value of the random variable over all realizations. The
following algorithm gives the value of the above mentioned
random variable for a realization. Consider an m length
column vector of zeros, say y.
Algorithm:
Step 1: Select an integer I from B = {1, 2, . . . ,m}.
Step 2: Increase y(I) by 1, i.e., y(I) = y(I) + 1.
Step 3: Find the indices (say C) corresponding to elements in
Ay which are atleast li. Here, A is the adjacency matrix of
the graph G.
Step 4: Update B = B \ C and A by removing rows
corresponding to C in A
Step 5: Go to step 1, if B is non-empty else stop by

returning y.
Here, step 4 ensures that nodes having li samples of arm i
stops playing arm i further. Observe that ‖y‖1, where y is the
vector returned by the above algorithm, yields the value of

the random variable
m∑
v=1

T vi (τvi ) for a realization. Therefore,

it suffices to maximize ‖y‖1 over all realizations.
The optimisation problem in (2) captures the above. The final
constraint in (2) ensures that the node ηk has li samples of sub-
optimal arm i at time instance γk. Recall that, γk is a random
variable which tracks the least time at which atleast k nodes
have more than li samples of arm i. The penultimate constraint
ensures that sub-optimal arm i count of node ηk does not
increase(or stop playing arm i) after time instance γk. Hence, a
feasible point in the above optimisation problem is a sequence
{zk}mk=1 which satisfies the aforementioned two constraints.
Then, ‖zm‖1 corresponds to the value of the random variable
m∑
v=1

T vi (τvi ) for a realization.

By using the above lemmas, we now prove Theorem 1.
Proof: From (1), we need to upper bound E[T vi (n)] for

all v ∈ V in order to upper bound the expected regret of G.
Let Bvi (t) be the event that node-v plays sub-optimal action-i
in round t:

Bvi (t) = {µ̂mvj (t) + ct,mvj (t) ≤ µ̂mvi (t) + ct,mvi (t),∀j 6= i},
⊆ {µ̂mv∗(t) + ct,mv∗(t) ≤ µ̂mvi (t) + ct,mvi (t)}. (27)

Hence,

E

[
m∑
v=1

T vi (n)

]
= E

[
m∑
v=1

n∑
t=1

[I{t≤τvi ,Bvi (t)} + I{t>τvi ,Bvi (t)}]

]
,

= E

[
m∑
v=1

T vi (τvi )

]
︸ ︷︷ ︸

(a)

+E

[
m∑
v=1

n∑
t=1

I{t>τvi ,Bvi (t)}

]
︸ ︷︷ ︸

(b)

. (28)

Now, we upper bound (b) in (28). Let 1 ≤ v ≤ m. Since,
mv
i (t) ≥ li for t > τvi ,

E

[
n∑
t=1

I{t>τvi }IBvi (t)

]
=

n∑
t=1

P (Bvi (t), {t > τvi }) ,

(c)

≤
∞∑
t=1

2

(
ln t

ln (1/β)
+ 1

)
1

t4β
,

≤
∞∫

1

2

(
ln t

ln (1/β)
+ 1

)
1

t4β
dt,

=
2

4β − 1
+

2

(4β − 1)2 ln(1/β)
,

where (c) is due to Lemma 2. Thus, (b) in (28) upper bounded
as

E

[
m∑
v=1

n∑
t=1

I{t>τvi }IBvi (t)

]

≤ m
(

2

4β − 1
+

2

(4β − 1)2 ln(1/β)

)
. (29)



Now, we upper bound the random variable in (a) in (28) for
all realizations. Consider a new system in which each node
v stops playing sub-optimal arm i for t > τvi . By using

Lemma 3, we can calculate an upper bound on
m∑
v=1

T vi (τvi ). It

is easy to see that the same upper bound also holds for (a) in
(28). Hence,

E

[
m∑
v=1

T vi (τvi )

]
≤ CGli. (30)

Combining (28), (29) and (30) establishes the desired result.

Lemma 4: Consider a network G = (V,E) learning
a K-arm stochastic MAB problem with mean rewards
µ1 ≥ µ2 ≥ . . . µK . Assume that, each arm distribution is
discrete and it assigns a non-zero probability to each possible
value. Then, the UCB-user policy followed by any user v
in G to learn the above MAB problem is non-altruistic and
individually consistent (NAIC) policy.

Proof: First, we prove the non-altruistic part. Lemma 2
gives an upper bound on the probability that a node v
following the UCB-user policy plays any sub-optimal arm i
in round t, after it has obtained li = 8 lnn

∆2
i

samples of the
arm i, where n is the time horizon. We can treat 8

∆2
i

as a in
the definition of non-altruistic policy. Observe that, in (29), we
upper bounded the expected number of times a node v chooses
any sub-optimal arm i, after it has access to li samples of arm
i, till n. Note that, this upper bound is a constant. Hence, the
UCB-user policy satisfies the non-altruistic property. Now, we
prove the individually consistent part. Recall that, ωv̄ contains
actions and the corresponding rewards of the nodes outside the
neighbourhood of node v, from round 1 to n. Note that, the
event Avi (t) defined in the proof of Lemma 2 is independent
of any ωv̄ , given the event {mv

i (t) = a,mv
∗(t) = b}. Hence,

on the lines of Lemma 2, for β ∈ (0, 1), t > τvi (same as
defined in Lemma 2),

P (Avi (t)|ωv̄) ≤ 2

(
ln t

ln(1/β)
+ 1

)
1

t4β
. (31)

Thus,

E[T vi (n)|ωv̄] ≤ li +
∑

t=τvi +1

P (Avi (t)|ωv̄) ,

≤ 8 lnn

∆2
i

+

∞∑
t=1

P (Avi (t)|ωv̄) ,

=

(
8 lnn

∆2
i

+O(1)

)
∈ o(nc), for any c > 0.

Therefore, the UCB-user policy followed by a node v satisfy
individually consistent property, which completes the proof.

APPENDIX B

Proof of Theorem 2.

Proof: Follows from Theorem 2 in [1], by considering
mG
i (n) instead of Ti(n) in the event Cn defined in the

respective proof.

APPENDIX C

Proof of Theorem 3.
We now prove (i) in Theorem 3, in the following lemma. With
the aid of this lemma, we then prove the second part of the
theorem.

Lemma 5: Consider a node v in a network G. Assume that
node v follows an NAIC policy, and suppose [A1] holds.
Further, assume that each arm is associated with a discrete
distribution such that it assigns a non-zero positive probability
to each possible value. Then, for any θ ∈ Θj , and for any ωv̄ ,
the following holds:

lim inf
n→∞

Eθ[mv
j (n)|ωv̄]
lnn

≥ 1− δ
1 + δ

· 1

kl(θj ||θ1)
,

lim inf
n→∞

Eθ[mv
j (n)]

lnn
≥ 1− δ

1 + δ
· 1

kl(θj ||θ1)
.

Proof: Without loss of generality, assume that θ1 = θ∗

and j = 2 ⇒ θ ∈ Θ2. Consider a new parameter vector
γ = (θ1, λ, θ3, . . . , θK) such that µ(λ) > µ(θ∗), j 6= 1. Note
that, arm 1 is optimal under parameter vector θ, while arm
2 is optimal under parameter vector γ. Let X2,1, . . . , X2,n

be n i.i.d samples generated from the sub-optimal arm 2’s
distribution with parameter vector θ. Define

k̂ls =

s∑
t=1

ln

(
f(X2,t; θ2)

f(X2,t;λ)

)
.

For any v ∈ V and any sub-optimal arm j, and 0 < a < δ,
we define

Cvn = {mv
2(n) <

(1− δ) lnn

kl(θ2||λ)
and k̂lmv2(n) ≤ (1− a) lnn},

(32)

where k̂lmv2(n) =
∑

u∈N (v)

Tu2 (n)∑
t=1

ln
(
f(Xu2,t;θ2)

f(Xu2,t;λ)

)
, since

{Xu
2,t}u∈N (v) are i.i.d. For convenience, let gn = (1−δ) lnn

kl(θ2||λ)

and hn = (1 − a) lnn. For a given ωv̄ , observe
that Cvn is a disjoint union of events of the form
{mv

1(n) = n1,m
v
2(n) = n2, . . . ,m

v
K(n) = nK , k̂ln2

≤ hn}
with n1 + n2 · · · + nK = n|N (V )| and n2 ≤ gn. Further,
{mv

2(n) = n2} is also a disjoint union of the events of the
form {∩u∈N (v)T

u
2 (n) = qu} with

∑
u∈N (v)

qu = n2. Since

γ = (θ1, λ, θ3, . . . , θK) and θ = (θ1, θ2, θ3, . . . , θK), we
write

Pγ{mv
1(n) = n1, . . . ,m

v
K(n) = nK , k̂ln2

≤ hn|ωv̄} =

Eθ

[
I{mv1(n)=n1,...,mvK(n)=nK ,k̂ln2

≤hn}

∏
u∈N (v)

Tu2 (n)=qu∏
t=1

f(Xu
2,t;λ)

f(Xu
2,t; θ2)

]
. (33)



However,
∏

u∈N (v)

qu∏
t=1

f(Xu2,t;λ)

f(Xu2,t;θ2) = exp(−k̂ln2
). Therefore,

Pγ{mv
1(n) = n1, . . . ,m

v
K(n) = nK , k̂ln2

≤ hn|ωv̄} =

Eθ
[
I{mv1(n)=n1,...,mvK(n)=nK ,k̂ln2

≤hn} exp(−k̂ln2)
]
.

Note that, exp(−k̂ln2) ≥ n−(1−a), since k̂ln2 ≤ hn in the
region of integration. Therefore,

Pγ{mv
1(n) = n1, . . . ,m

v
K(n) = nK ,

k̂ln2 ≤ hn|ωv̄}
≥ n−(1−a)Pθ{mv

1(n) = n1, . . . ,m
v
K(n) = nK ,

k̂ln2
≤ hn|ωv̄}. (34)

Hence,
Pγ(Cvn|ωv̄) ≥ n−(1−a)Pθ(Cvn|ωv̄). (35)

Now, we bound Pθ(Cvn|ωv̄) as follows:

Pγ(Cvn|ωv̄) ≤ Pγ (mv
2(n) < gn|ωv̄) .

Since T v2 (n) ≤ mv
2(n),

Pγ(Cvn|ωv̄) ≤ Pγ (T v2 (n) < gn|ωv̄) ,
= Pγ (n− T v2 (n) > n− gn|ωv̄) .

Note that, n|N (v)|−mv
2(n) is a non-negative random variable

and kl(θ2||λ) > 0. Therefore, applying Markov’s inequality to
the right-hand side in the above equation, we obtain

Pγ(Cvn|ωv̄) ≤
Eγ [n− T v2 (n)|ωv̄]

n− gn
,

=

K∑
i=1,i6=2

Eγ [T vi (n)|ωv̄]

n− gn
=

(K − 1)o(na)

n−O(lnn)
,

for 0 < a < δ, since arm 2 is the unique optimal arm under
γ. Hence,

Pθ(Cvn|ωv̄) ≤ n(1−a)Pγ(Cvn|ωv̄) = o(1). (36)

Observe that,

Pθ (Cvn|ωv̄) ≥ Pθ
(
mv

2(n) < gn,

1

gn
max
i≤gn

k̂li ≤
kl(θ2||λ)(1− a)

(1− δ)

∣∣∣ωv̄), (37)

Pθ
(

1

gn
max
i≤gn

k̂li ≤
kl(θ2||λ)(1− a)

(1− δ)

)
→ 1, (38)

due to 1−a
1−δ > 1 and the maximal version of the Strong Law

of Large Numbers which is given below.
Maximal version of SLLN [7]: Let {Xt} be a sequence of

independent real-valued random variables with positive mean
µ > 0. Then,

lim
n→∞

1

n

n∑
t=1

Xt = µ a.s.⇒ lim
n→∞

1

n
max

s=1,...,n

s∑
t=1

Xt = µ a.s.

From (36), (37) and (38), we obtain

Pθ (mv
2(n) < gn|ωv̄) = o(1), ∀ωv̄,

⇒ Pθ (mv
2(n) < gn) = o(1).

Part (iii) of assumption, [A1], guarantees the existence of
a λ ∈ Θ such that µ(θ1) < µ(λ) < µ(θ1) + δ holds.
Combining µ(θ1) > µ(θ2) with the part (i) of [A1], we obtain
0 < kl(θ2||θ1) < ∞. From part (ii) of [A1], we deduce that
|kl(θ2||θ1)− kl(θ2||λ)| < ε, since µ(θ1) ≤ µ(λ) ≤ µ(θ1) + δ
for some δ. Let ε be δkl(θ2||θ1). Hence, we write the follow-
ing:

|kl(θ2||λ)− kl(θ2||θ1)| < δkl(θ2||θ1), for 0 < δ < 1.

Hence,

Pθ
(
mv

2(n) <
1− δ
1 + δ

· lnn

kl(θ2||θ1)

∣∣∣ωv̄) = o(1),

⇒ Pθ
(
mv

2(n) <
1− δ
1 + δ

· lnn

kl(θ2||θ1)

)
= o(1).

Furthermore,

Eθ[mv
2(n)|ωv̄] =

∑
i

i · Pθ (mv
2(n) = i|ωv̄) ,

≥
(

1− δ
1 + δ

)
lnn

kl(θ2||θ1)
Pθ
(
mv

2(n) >
1− δ
1 + δ

· lnn

kl(θ2||θ1)

∣∣∣ωv̄) ,
=

(
1− δ
1 + δ

)
lnn

kl(θ2||θ1)
(1− o(1)).

Hence, we have proved that for any v ∈ V , ωv̄ and any sub-
optimal arm j,

lim inf
n→∞

Eθ[mv
j (n)|ωv̄]
lnn

≥ 1− δ
1 + δ

· 1

kl(θj ||θ1)
,

lim inf
n→∞

Eθ[mv
j (n)]

lnn
≥ 1− δ

1 + δ
· 1

kl(θj ||θ1)
,

which completes the proof of this lemma, and establishes (i)
in Theorem 3.
With the help of this, we now prove the second part of
Theorem 3.

Proof: Lemma 5 implies that for each v ∈ V , ∃nv ∈ N
such that

Eθ[mv
j (n)]

lnn
≥ 1− δ

1 + δ
· 1

kl(θj ||θ1)
, ∀n ≥ nv. (39)

Let n′ = max(nv : v ∈ V ). Using (39) for each v ∈ V , and
for n ≥ n′, we determine a lower bound for Eθ[mG

j (n)]. It
is easy to see that the solution to the following optimisation
problem is a valid lower bound for Eθ[mG

j (n)] for n ≥ n′.

minimize ‖zm‖1
s.t ∃ a sequence {zk}mk=1

zi(ηk) = zk(ηk) ∀i ≥ k,

〈zk, A(nk, :)〉 ≥
1− δ
1 + δ

· 1

kl(θj , θ1)
lnn ∀k.

(40)



Note that, the notation in (40) is same as used in Theorem 1,
Lemma 3. Let LG

(
1−δ
1+δ

)
logn

kl(θj ||θ1) be the solution of (40).
Thus,

E[mG
j (n)] ≥ LG

(
1− δ
1 + δ

)
lnn

kl(θj ||θ1)
, ∀n ≥ n′,

⇒ lim inf
n→∞

E[mG
j (n)]

lnn
≥ LG

(
1− δ
1 + δ

)
1

kl(θj ||θ1)
,

which establishes the desired result.

APPENDIX D

Proof of Theorem 4.

Proof: Without loss of generality we consider that node
1 is the center node and node 2 through mn are leaf nodes.
Since a policy does not possess any information in the first
round, it chooses arm 1 with probability p1 and arm 2 with
probability p2, such that 0 ≤ p1, p2 ≤ 1 and p1 + p2 = 1.
Now, we find the expected number of nodes that chose the
arm with parameter µb in the first round as follows:

E[mGn
b (1)] =

∑
v∈V

(
1

2
p2 +

1

2
p1

)
=
mn

2
≥ lnn

kl(µb, µa)
,

(41)
since MAB is (µa, µb) with probability 1

2 , and is (µb, µa) with
probability 1

2 . Henceforth, for convenience, we replace a with
1 and b with 2. Let mG,v

i (t) be a random variable indicating
the total number of times arm i has been chosen by node v
and its one hop neighbours till round t, in the network G.
Note that, mGn

2 (1) is equals to mGn,1
2 (1), since the network

in consideration is a star network with node 1 as the center
node. Therefore,

E[mGn,1
2 (1)] ≥ lnn

kl(µ2, µ1)
, ∀n ∈ N, (42)

From Theorem 3, it follows that

lim inf
n→∞

E[mGn,v
2 (n)]

lnn
≥ 1

kl(µ2, µ1)
, ∀ v ∈ Vn. (43)

The above inequalities imply that, for any v ∈ Vn, ∃nv ∈ N
such that E[mGn,v2 (n)]

lnn ≥ 1
kl(µ2,µ1)∀n ≥ nv . Let n′ = max(nv :

v ∈ Vn).
For all n ∈ N, since the center node has obtained lnn

kl(µ2,µ1)
samples of arm 2 in the very first round, and the policy is
non-altruistic, it chooses arm 2 at most O(1) number of times
further. For all n ≥ n′, in order to satisfy all the inequalities
in (43), each leaf node has to choose the arm 2 at least(

lnn′

kl(µ2,µ1) −O(1)
)

times. Hence,

E[mGn
2 (n)] ≥ (mn − 1)

(
lnn

kl(µ2, µ1)
−O(1)− 1

)
∀n ≥ n′,

⇒ lim inf
n→∞

E[mGn
2 (n)]

(mn − 1) lnn
≥ 1

kl(µ2, µ1)
,

which completes the proof.

APPENDIX E

Proof of Theorem 5.

Proof: Without loss of generality, we assume that node
1 is the center node in the star network. Under FYL policy,
for 2 ≤ u ≤ m, au(t) = a1(t− 1) for t > 1. Hence, for any
sub-optimal arm i,

Tui (n) =I{au(1)=i} + I{au(2)=i} · · ·+ I{au(n)=i},

=I{au(1)=i} + I{a1(1)=i} · · ·+ I{a1(n−1)=i},

≤1 + T 1
i (n− 1).

Therefore, we obtain the following:
m∑
v=1

T vi (n) = T 1
i (n) + T 2

i (n) · · ·+ Tmi (n),

≤ T 1
i (n) + 1 + T 1

i (n− 1) · · ·+ 1 + T 1
i (n− 1),

≤ (m− 1) +mT 1
i (n), (44)

since T 1
i (n − 1) ≤ T 1

i (n). Now, we find an upper bound on
T 1
i (n) under FYL policy. Let τ1 be the least time step at which
m1
i (τ1) is atleast li = 8 lnn

∆2
i

. Observe that, under FYL policy
T 1
i (τ1) = d lime. Since, the center node has chosen arm i for
d lime times, (m − 1) leaf nodes must have also selected arm
i for the same number of times. This leads to m1

i (τ1) = li.
Let B1

i (t) be the event that node-1 chooses arm i in round t.
Hence,

T 1
i (n) = T 1

i (τ1) +

n∑
t=τ1+1

IB1
i (t) =

⌈ li
m

⌉
+

n∑
t=τ1+1

IB1
i (t).

By using the analysis in Theorem 1, we obtain

E
[ n∑
t=τ1+1

IB1
i (t)

]
≤ 2

4β − 1
+

2

(4β − 1)2 ln(1/β)
.

Hence,

E[T 1
i (n)] ≤

⌈ li
m

⌉
+

2

4β − 1
+

2

(4β − 1)2 ln(1/β)
.

From (44),
m∑
v=1

E[T vi (n)] ≤8 lnn

∆2
i

+ 2m− 1+

2m

4β − 1

(
1 +

1

(4β − 1) ln(1/β)

)
,

where we have substituted li = 8 lnn
∆2
i

. Therefore, the expected
regret of the FYL policy on an m-node star network upto n
number of rounds is upper bounded as:

E[RG(n)] ≤
K∑

i:µi<µ∗

8 lnn

∆i
+
[
2m− 1 +

2m

4β − 1
·

(
1 +

1

(4β − 1) ln(1/β)

)] K∑
j=1

∆j ,

which completes the proof.



APPENDIX F

Proof of Theorem 6.

Proof: Since the leader node (a node in the given domi-
nating set) in a particular component uses samples only from
its neighbours in the same component, we can upper bound
the expected regret of each component using Theorem 5. We
get the desired result by adding the expected regrets of all the
components.


	I Introduction
	I-A Our Contributions
	I-B Related Work

	II System Model
	III The UCB-Network policy
	III-A Application to typical networks

	IV Lower bounds on the expected regret
	V The Follow Your Leader (FYL) Policy
	VI Numerical Results
	VI-A Performance of UCB-Network on various networks
	VI-B Performance of UCB-Network on star networks
	VI-C Comparison of UCB-Network and FYL policies

	VII Concluding Remarks
	References

