Abstract:
The ubiquitous luminaries provide a new dimension for indoor navigation, as they are often well-structured and the visible light is reliable for its multipath-free nature...Show MoreMetadata
Abstract:
The ubiquitous luminaries provide a new dimension for indoor navigation, as they are often well-structured and the visible light is reliable for its multipath-free nature. However, existing visible light-based technologies, which are generally frequency-based, require the modulation on light sources, modification to the device, or mounting extra devices. The combination of the cost-extensive floor map and the localization system with constraints on customized hardwares for capturing the flashing frequencies, no doubt, hinders the deployment of indoor navigation systems at scale in, nowadays, smart cities. In this paper, we provide a new perspective of indoor navigation on top of the virtual graph representation. The main idea of our proposed navigation system, named PILOT, stems from exploiting the peak intensities of ubiquitous unmodulated luminaries. In PILOT, the pedestrian paths with enriched sensory data are organically integrated to derive a meaningful graph, where each vertex corresponds to a light source and pairwise adjacent vertices (or light sources) form an edge with a computed length and direction. The graph, then, serves as a global reference frame for indoor navigation while avoiding the usage of pre-deployed floor maps, localization systems, or additional hardwares. We have implemented a prototype of PILOT on the Android platform, and extensive experiments in typical indoor environments demonstrate its effectiveness and efficiency.
Published in: IEEE/ACM Transactions on Networking ( Volume: 27, Issue: 1, February 2019)