
1

Extracting Routing Events from Traceroutes:
a Matter of Empathy

Marco Di Bartolomeo, Valentino Di Donato, Maurizio Pizzonia, Claudio Squarcella, Massimo Rimondini

Abstract—With the increasing diffusion of Internet probing
technologies, a large amount of regularly collected traceroutes
are available for Internet Service Providers (ISPs) at low cost.
We show how it is possible, given solely an arbitrary set of
traceroutes, to spot routing paths that change similarly over time
and aggregate them into inferred routing events. With respect to
previous works, our approach does not require any knowledge
of the network, does not need complex integration of several
data sources, and exploits the asynchronicity of measurements
to accurately position events in time. The formal model at
the basis of our methodology revolves around the notion of
empathy, a relation that binds similarly behaving traceroutes.
The correctness and completeness of our approach are based
on structural properties that are easily expressed in terms of
empathic measurements. We perform experiments with data from
public measurement infrastructures like RIPE Atlas, showing
the effectiveness of our algorithm in distilling significant events
from a large amount of traceroute data. We also validate the
accuracy of the inferred events against ground-truth knowledge
of routing changes originating from induced and spontaneous
routing events. Given these promising results, we believe our
methodology can be an effective aid for troubleshooting at the
ISPs level. The source code of our algorithm is publicly available
at https://github.com/empadig.

Index Terms—Internet routing, network monitoring, tracer-
oute, empathy, root-cause analysis, routing events, Internet mea-
surement platforms.

I. INTRODUCTION

One of the primary goals of a network operator is to ensure
its network works as expected. Since misbehaviors can happen
for a variety of reasons, constant monitoring is performed by
operators to timely detect problems and limit users complaints.
Directly monitoring the health of each network element works
in many situations, but may fall short when the element itself
lacks the necessary agent support or is not under the operator’s
control.

Many works show methods to detect and localize faults,
like disconnections or service degradation. The spectrum of
the proposed solutions is quite broad: they can focus on

M. Di Bartolomeo, V. Di Donato, M. Pizzonia and C. Squarcella are with
the Department of Engineering, Roma Tre University, 00146, Rome, Italy
(e-mail: dibartolomeo@ing.uniroma3.it, didonato@ing.uniroma3.it; squar-
cel@ing.uniroma3.it; pizzonia@ing.uniroma3.it).

M. Rimondini is with the Network Design & Engineering group of Unidata
S.p.A., 00148, Rome, Italy (e-mail: m.rimondini@unidata.it)

A preliminary version of this paper appeared in [1].
c© 2019 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
This is the “accepted version” (author version) of the paper. The published
version can be obtained at https://doi.org/10.1109/TNET.2019.2911330.

enterprise networks, Internet backbone or access networks,
they can exploit control-plane and/or data-plane sources, they
can exploit active and/or passive measurements, etc. The
quality of these solutions is usually evaluated by estimating
their capability not to miss occurred events and not to report
fictitious events. To reduce errors, a typical approach is to
increase the information to analyze considering several kinds
of data sources and to apply several detection techniques
at the same time. However, this comes with an increase in
complexity of the whole system.

Currently, there is a growing trend in the network mea-
surement landscape: the availability of Internet measurement
platforms, which are infrastructures composed of a large
number of small low-cost devices (called probes or monitors)
that can independently perform several kinds of measurements
towards a large number of targets. These devices have been
deployed all over the world at strategic locations within access
and backbone networks and behind residential gateways [2].
This trend is also supported by a standardization process [3]
and by an increasing request from regulators for reliable
third-party measurements [4]. These projects are designed to
scale on the amount of deployed probes. Hence, they provide
a source of data, of unprecedented size and diversity, with
possibly Internet scope, that might have a large impact on
fault detection.

Many measurement platforms can perform traceroutes,
which allow operators to gather information about the path
traversed by traffic from any probe towards any host in the
Internet. Advantages of performing this kind of monitoring
are manifold: 1) traceroutes are end-to-end measurements
which are not easy to obtain by other monitoring approaches;
2) traceroutes can provide information about portions of the
network outside the direct control of an operator, helping in
the assignment of responsibility for network misbehaviors;
3) traceroutes might detect failures that other approaches may
overlook (some examples of “silent failures” are provided
in [5]); 4) the support needed for traceroutes is quite basic
and widespread.

Measurement platforms run continuously and therefore pro-
duce a huge amount of data. However, extracting meaningful
information from a large number of traceroutes is a challeng-
ing task.

In this paper we introduce a novel methodology and an
algorithm that enable the analysis of large collections of
traceroute measurements in search of significant changes, with
the intent of easing management and troubleshooting. Our
methodology takes as input a set of traceroutes, identifies paths
that evolve similarly over time, and reports them aggregated

2

into inferred events (e.g., routing changes, loss of connec-
tivity), augmented with an impact estimate and a restricted
set of IP addresses that are likely close to the cause of the
event (a piece of information similar to those provided by
tomography-based techniques [6]). The methodology, as well
as its correctness, is founded on the notion of empathy, a
relation that binds similarly behaving traceroutes, which are
therefore a good evidence of the same network event. Our
approach does not need a-priori knowledge of the network
topology, does not assume a stable routing state, and does not
impose restrictions on the schedule of traceroutes, which may
be collected asynchronously and at arbitrary intervals. Instead,
it takes advantage of asynchronous measurements to improve
the timeliness and precision of event detection, and is resistant
to measurement errors (e.g., due to software errors or routing
anomalies), which in most cases only generate fictitious events
with a small impact that are easy to filter out.

We provide experimental evidence of the effectiveness of
our approach by running our algorithm on data collected by
large-scale measurement infrastructures, such as RIPE Atlas,
and by comparing the inferred events with ground truth derived
from induced routing changes or third-party information.

The rest of the paper is organized as follows. In Section II
we review related contributions. In Section III we describe
our network model and the fundamental properties of the
empathy relation. In Section IV we introduce a methodology
and an algorithm, based on empathy, to infer events and report
relevant data about them. In Section V we report on some
applicability considerations. In Section VI we analyze the
results of the application of our methodology to real-world
data and finally in Section VII we draw conclusions and
present ideas for future work.

II. RELATED WORK

An Internet measurement platform is an infrastructure of
dedicated probes that periodically perform network measure-
ments such as ping or traceroute on the Internet. A number
of such platforms have emerged in the last decade and a
comprehensive survey can be found in [2]. Some examples
include SamKnows [7], RIPE Atlas [8], PlanetLab [9] and
CAIDA Ark [10], and a standardization effort to make these
platforms interoperable is also ongoing, as attested by [3],
[11], [12]. Data produced by these platforms have been used
in the past in a variety of contexts and have been combined
with control-plane data by a number of systems mostly aimed
at detecting and localizing path changes and various types
of anomalies in the network [13]–[16]. In the following
we review the most relevant contributions in this ecosystem
classifying them based on their objectives, data sources and
target networks.

a) Systems to detect and localize Internet interdomain
path changes: The algorithm presented in [17] aims at de-
tecting interdomain path changes in the Internet considering
RIPE RIS [18] and the Oregon RouteViews project [19] as
data sources. The proposed technique is based on a previously
published method presented in [20]. Feldmann et al. propose
in [21] a novel technique to localize interdomain path changes

and therefore identify the autonomous system(s) responsible
for the changes and for their propagation. Subsequently Teix-
eira et al. [22] explain why considering public BGP data only
is not sufficient to find the root cause of routing changes.
A decade after, Javed et al. introduce PoiRoot [23], a novel
system to detect interdomain path changes that combines
BGP feeds coming from RouteViews with active traceroute
measurements performed via PlanetLab nodes.

b) Systems to detect and localize faults in the Internet:
Fault detection and localization at the BGP level has been
extensively studied as attested by a recent survey appeared
in [24]. In this context, it is often the case that BGP routing
data are combined with active measurements in such a way
to better quantify and characterize the scope of the inferred
anomalies. Hubble [13] for example, is a system that monitors
BGP feeds but also looks at ping measurements performed
by PlanetLab probes. PlanetSeer [14] and LIFEGUARD [15]
are two systems that passively monitor traceroutes to detect
anomalous behavior, and then coordinate active traceroutes
to confirm and further investigate the anomalies. NetDiag-
noser [16] instead, combines traceroutes and BGP feeds, along
with information extracted from BGP Looking glasses.

c) Systems to detect and localize faults in known net-
works: Systems listed in this section still deal with fault
detection and localization but are mostly targeted to specific
types of networks for which the topology is, at least partially,
known in advance. Controlled environments also offer the
possibility to install software on the agents and therefore to
collect finer-grained information on the connectivity status.
SCORE [25] and MaxCoverage [26] are for example two
systems aimed at the backbone of an ISP. The former is based
on risk models whereas the latter adopts a spatial-correlation
approach. Sherlock [27] is suited for large enterprise networks
and requires each host to install a software agent in such a way
to analyze the incoming and outgoing packets and infer the
structure of the network. Gestalt [28] tries to adapts to different
types of networks and combines the best elements of existing
techniques to obtain a higher localization accuracy and a lower
running time with respect to the alternatives. Another set of
contributions that notably assume at least a partial knowledge
of the network topology, goes under the name of binary to-
mography. The binary tomography approach, firstly proposed
for trees [6] and then extended to general topologies [16],
[29], has applicability problems which have been discussed
in [30]–[32]. A natural extension to this approach has been
successfully implemented in NetDiagnoser [16].

Finally, a relevant contribution that is outside the previous
classification appeared in [33]. In this paper, the authors search
for patterns in traceroute data collected by RIPE Atlas probes.
They do so by developing a measure for the differences
between successive traceroutes and then by using this measure
to cluster routing changes across all the considered vantage
points. The idea of this work is somewhat similar to ours,
but the paper focuses more on providing meaningful interpre-
tations of traceroute behavior rather than on easing network
management and troubleshooting.

In contrast with current literature we propose a methodology
to search for significant path changes in the Internet at the

3

pi(t)
pi(t

′)1 2

3 4 5

6 7

8 9

v1

v3 v4 v5

v′3 v′4

v′1 v′2

v2

s d

v6 v7

v′5 v′6

Fig. 1: Example of two traceroute paths from s to d collected
at different time instants t and t′. Gray lines are network links.

IP level. Our technique takes as input a set of traceroutes
only, does not assume any knowledge on the topology of the
network, and does not impose any restrictions on the schedule
of the considered traceroutes.

III. THE EMPATHY RELATIONSHIP

In this section, we describe the model we use to analyze
traceroute paths, which is at the basis of our event inference
method. We also introduce several assumptions that make our
approach easier to understand and allow us to take advantage
of several properties. We illustrate in Section VI how, even
under these assumptions, interesting results can be obtained
with real-world data, and discuss in Section V their impact on
the practical applicability of our approach.

Informally speaking, we introduce the concept of empathic
traceroutes, which are traceroutes that happen to change sim-
ilarly at roughly the same time, even if measured between
unrelated sources and destinations. As explained in the fol-
lowing, when an event occurs (e.g., a router or link fault),
a set of empathic traceroute changes can be observed and
they are pairwise empathic. We call impact the size of this
set, since, under certain conditions, detailed in Section V.8, a
higher number of changed traceroutes is associated with more
relevant events.

Let G = (V,E) be a graph that models an IP network:
vertices in V are network devices (routers or end systems),
and edges in E are links between devices. Some devices in V ,
called network probes or sources, periodically perform tracer-
outes towards a predefined set of destinations. We assume that
each traceroute is acyclic (otherwise there is evidence of a
network anomaly). We assume each traceroute measurement
to be not affected by any ongoing routing change. This is
equivalent to consider it instantaneously performed when its
execution ends. For this reason, in the following, we always
formally associate a single instant of execution for each
traceroute.

Let i = (s, d), where s ∈ V is a source and d ∈ V is a
destination. We call i a source-destination pair, or sd-pair. A
traceroute path pi(t) measured at time t by s towards d is a
sequence 〈v1 v2 . . . vn〉 such that v1 = s, vj ∈ V for j =
1, . . . , n, and there is an edge in E for each pair (vk, vk+1),
k = 1, . . . , n − 1. While we include the source in pi(t), the
destination may not appear because a traceroute may end at an
unintended vertex different from d. For convenience, let V (p)
be the set of vertices of path p.

Now, consider two traceroute paths pi(t) = 〈v1 v2 . . . vn〉
and pi(t

′) = 〈v′1 v′2 . . . v′m〉 between the same source-
destination pair i = (s, d), with t′ > t, and assume that

p1(t)

p2(t)

1s1

4 5

s2

d1

3

d2102

6

7

8 d2

9

p1(t
′)

p2(t
′)

Fig. 2: Example of empathy relations. Link (5, 6) fails, and
we have (s1, d1)

pre∼t (s2, d2) but (s1, d1) 6post∼t (s2, d2).

pi(t) 6= pi(t
′). Fig. 1 shows two such paths: i = (1, 9),

pi(t) = 〈1 2 3 4 5 8 9〉, and pi(t′) = 〈1 2 6 7 8 9〉. Since the
path from s to d has changed between t and t′, we call the pair
consisting of pi(t) and pi(t′) a transition, indicated by τi, and
say that it is active at any time between the endpoints t and
t′, excluding t′. To analyze the path change, we focus on the
portion of the two paths that has changed in the transition: let
δpre(τi) indicate the shortest subpath of pi(t) that goes from a
vertex u to a vertex v such that all the vertices between s and u
and between v and the end of the path are unchanged in pi(t′)
and are in the same order. If there is no such v (for example
because the destination is unreachable at t or t′), δpre(τi)
goes from u to the end of pi(t). Referring to the example
in Fig. 1, it is δpre(τi) = 〈2 3 4 5 8〉. We define δpost(τi)
as an analogous subpath of pi(t′). Referring again to Fig. 1,
it is δpost(τi) = 〈2 6 7 8〉. In principle, δpre(τi) may have
several vertices in common with δpost(τi) besides the first and
the last one: we still consider δpre(τi) as a single continuous
subpath, with negligible impact on the effectiveness of our
methodology. The same applies to δpost(τi).

We can now introduce the concept of empathy, that deter-
mines when two traceroute paths exhibit a similar behavior
over time. Consider two transitions τ1, with source s1 and
destination d1, and τ2, with source s2 and destination d2,
such that both transitions are active between t and t′, t′ > t,
at least one has an endpoint in t, and at least one has an
endpoint in t′. We say that (s1, d1) and (s2, d2) are pre-
empathic at any time t ≤ t̂ < t′ if the portions of p1(t)
and p2(t) that change during τ1 and τ2 overlap, namely
V (δpre(τ1)) ∩ V (δpre(τ2)) 6= ∅. Intuitively, traceroute paths
relative to pre-empathic sd-pairs stop traversing a network
portion that they shared before an event occurred. Similarly,
we say that (s1, d1) and (s2, d2) are post-empathic at any time
t ≤ t̂ < t′ if V (δpost(τ1)) ∩ V (δpost(τ2)) 6= ∅. Post-empathy
captures a different kind of path change: traceroute paths of
post-empathic sd-pairs start traversing a common portion that
they did not use before the event occurred. Fig. 2 shows two
traceroute paths p1, from s1 to d1, and p2, from s2 to d2,
that change between t and t′ due to the failure of link (5, 6).
Considering the corresponding transitions τ1 and τ2, we have
δpre(τ1) = 〈5 6〉, δpost(τ1) = 〈5 9 6〉, δpre(τ2) = 〈4 5 6 8〉,
and δpost(τ2) = 〈4 10 8〉. Since δpre(τ1) and δpre(τ2) share
vertices 5 and 6, (s1, d1) and (s2, d2) are pre-empathic be-
tween t and t′, whereas (s1, d1) and (s2, d2) are not post-
empathic despite the fact that p1(t′) and p2(t′) share a subpath.
Indeed, p1 and p2 behave similarly before the link fails and

4

change to two independent routes afterwards.
In order to understand how empathy is useful to infer

network events, we need to formally introduce the notion of
event, qualifying it as physical to distinguish it from events
inferred by our algorithm. We call physical event at time t̄
the simultaneous disappearance of a set E↓ of links from E
(down event) or the simultaneous appearance of a set E↑ of
links in E (up event), such that:
• either E↓ = ∅ or E↑ = ∅ (a physical event is either the

disappearance or the appearance of links, not both);
• E↓ ⊆ E (only existing links can disappear);
• E↑ ∩ E = ∅ (only new links can appear);
• ∃v ∈ V | ∀(u,w) ∈ E↓ : u = v or w = v, and the

same holds for E↑ (all disappeared/appeared edges have
one endpoint vertex in common). Vertex v is called hub
of the event (an event involving a single edge (u, v) has
two hubs: u and v; any other event has a unique hub).

When the type of an event is not relevant, we indicate it as
E↓↑. This event model captures the circumstance in which one
or more links attached to a network device fail or are brought
up, including the case in which a whole device fails or is
activated. Such events may be caused, for example, by failures
of network interface cards, line cards, or routers, by accidental
link cuts, by provisioning processes, and by administrative
reconfigurations, if they fit this model. Congestion may be
detected as an event if it makes a balancer shift traffic away
from a set of links. Failures or activations of links that do
not have a vertex in common are considered distinct events.
We only consider visible physical events, namely those that
cause at least a transition to occur. Moreover, we assume
that every transition comprises at least one edge involved in
a physical event, an assumption that is long-argued in the
literature about root-cause analysis (see, e.g., [23]) and yet
we deem reasonable because our goal is to detect events, not
reconstruct their original cause. Given a physical event E↓↑

occurred at time t̄, we define the scope S(E↓↑) of E↓↑ as the
set of sd-pairs i = (s, d) involved in the transitions that are
active at t̄. The sd-pairs of the scope are pairwise empathic.
We also call impact of E↓↑ the cardinality of S(E↓↑).

In our model, there is a strong relationship between the
occurrence of a physical event and the existence of a set of
sd-pairs that, when that physical event occurs, are all pair-
wise empathic. We exploit this relationship in our inference
algorithm shown in Section IV and we formally state and
prove it in Theorems 1 and 2. Since not all the assumptions
of our model hold in real networks, the effectiveness of our
algorithm, when run on real data, depends on how small are
the errors introduced by deviations of real networks from our
model. In Section V, we discuss some of these deviations. The
experimental evaluation of Section VI is intended to provide
evidences that, in practice, errors are small.

IV. SEEKING EVENTS: METHODOLOGY AND ALGORITHM

In this section, we describe our inference algorithm for
detecting routing events. The algorithm takes as input a set
of traceroute paths, and produces as result a list of inferred
events, each described by a tuple (t1, t2, S,Π, type), where,

Fig. 3: An example of down event where the hub is the node
1. The event affects three sd-pairs.

i) [t1, t2] is an interval of time in which the event is supposed
to have occurred, ii) S is a set of sd-pairs affected by the event
(the scope), iii) Π is a set of IP addresses that, after the event
has occurred, (dis)appeared in all the traceroutes performed
between sd-pairs in its scope and that contains the hub of a
physical event, and iv) type ∈ {up,down,unknown} is the
type of the event.

We refer to the model illustrated in the previous section,
considering the general case of non-synchronized traceroute
measurements. That is, for an sd-pair i = (s, d) traceroute
paths pi(t) are only available at specific time instants t ∈ R
that depend on s (if probes are synchronized via NTP, whose
precision is high enough for our needs, we can refer to
a universal clock). As we will show later, unsynchronized
traceroutes can improve the accuracy of the interval reported
by our algorithm for an inferred event. For convenience, for
a transition τi we define the changed set ∆(τi) consisting
of extended addresses, namely IP addresses in V (δpre(τi))
labeled with a tag pre and IP addresses in V (δpost(τi)) labeled
with a tag post.

Our algorithm consists of three phases.
Phase 1 – Identification of transitions: in this phase, for each

sd-pair i, input samples pi(t) are scanned and all transitions τi,
with the corresponding ∆(τi), are identified. As an example,
consider the network event shown in Figure 3 where three sd-
pairs a, b, and c are associated with three transitions, which are
the consequence of a physical down event with hub 1, denoted
τa, τb, and τc, respectively. The upper part of Figure 4 shows
the three transitions represented as segments terminating at the
transitions’ endpoints, and the corresponding changed sets (IP
addresses are represented as numbers).

Phase 2 – Construction of candidate events: in this phase,
the algorithm tracks the evolution of empathy relationships
between sd-pairs involved in transitions. As detailed in Fig. 5,
the algorithm linearly sweeps on time instants corresponding

5

Fig. 4: Sample outputs of the various phases of our algorithm
run on the measurements related to event shown in Figure 3.

Input: a set T of transitions
Output: a set CEvents of candidate events, namely tuples (t1, t2, S,A)

indicating time intervals [t1, t2] in which all the sd-pairs in S are pre-
empathic or post-empathic with each other and all the corresponding
transitions τi have extended address A in their changed set ∆(τi).

1: Let tA be a mapping from each extended address A to a timestamp,
initially set to −∞.

2: Let SA be a mapping from each extended address A to a set of sd-pairs,
initially empty.
. For eachA, variables tA and SA correspond to queues of length three.

Each assignment to tA or SA enqueue a new value discarding the
oldest one. We denote the two old values in a queue by prev(·) and
pprev(·), with pprev(·) being the oldest (if unset, these functions
return ∅ for SA and −∞ for tA).

. The algorithm sweeps through transitions endpoints keeping the
following invariants: (1) each SA is the union of sd-pairs of transitions
τi active right after the current endpoint t, such that A ∈ ∆(τi) and
(2) each tA is the last timestamp when SA changed.

3: CEvents = ∅
4: for t endpoint of transitions in T , in time order do
5: for τ transition in T ending at t do
6: for A extended address in ∆(τ) do
7: Remove the sd-pair of τ from SA
8: tA = t
9: if |pprev(SA)| ≤ |prev(SA)| then

10: Add (prev(tA), tA, prev(SA),A) to CEvents
11: end if
12: end for
13: end for
14: for τ transition in T starting at t do
15: for A extended address in ∆(τ) do
16: Add the sd-pair of τ to SA
17: tA = t
18: end for
19: end for
20: end for
21: return CEvents

Fig. 5: Inference algorithm, Phase 2.

to transition endpoints and, for every instant t (line 4) and
every transition that ends or starts at t (lines 5 and 14), for
each extended address A (lines 6 and 15), updates a set SA of
sd-pairs i corresponding to active transitions that are empathic
with each other because they haveA in their changed set ∆(τi)
(lines 7 and 16). Sets SA, as well as the time instants tA at
which they are updated, are kept in special variables which
allow access to the last 3 assigned values. Access to the values
assigned before the current one is denoted by prev(·) and
pprev(·). When the size of each SA reaches a local maximum

at time t (line 9), the algorithm reports a candidate event. This
corresponds to seeking for the time instant at which the highest
number of sd-pairs have seen IP address A (dis)appear in their
traceroute paths. The interval [prev(tA), tA] of validity of the
local maximum (line 10) turns out to be a narrow time window
within which a physical event occurred (see Theorem 1). The
middle part of Fig. 4 shows a sample output of this phase,
where each segment represents a candidate event: for each
extended address appearing in the changed sets of τa, τb, and
τc, the corresponding sets of sd-pairs S1pre , S2post , and S3post

that involved that address are constructed and updated. In
particular, set S1pre reaches its maximum size at time t3, when
extended address 1pre is in the changed set of τa, τb, and τc,
namely IP address 1 has disappeared for sd-pairs a, b, and c.
The reported candidate event ends at t4, when the size of S1pre

is again reduced: it is therefore (t3, t4, {a, b, c}, 1pre). Similar
considerations apply for the construction of the other two
candidate events (t3, t5, {a, b}, 2post) and (t2, t4, {b, c}, 3post).

Phase 3 – Event inference: in this phase, detailed in Fig. 6,
candidate events are sieved to build a set of inferred events,
each consisting of a time window, a scope, a set of involved
IP addresses (which contains the hub of the corresponding
physical event), and a type (up/down/unknown). As a first
clean-up step, all candidate events whose set of sd-pairs is
properly contained in the set of sd-pairs of another candidate
event that overlaps in time are discarded (lines 2-6). In this
way, only events with maximal impact are reported. After-
wards, the algorithm considers groups CEvents(S, t1, t2) of
candidate events spanning the same time interval [t1, t2] and
having S as set of sd-pairs (line 7), and constructs an inferred
event for every set S. The inferred event has the following
structure (lines 9-13): the time interval is [t1, t2]; the scope is
S; the involved IP addresses are the union of the addresses of
candidate events in CEvents(S, t1, t2); and the type is inferred
based on the labels of the extended addresses of candidate
events in CEvents(S, t1, t2) (lines 11-13). A sample result of
the application of this phase is in the lower part of Fig. 4:
candidate events (t3, t5, {a, b}, 2post) and (t2, t4, {b, c}, 3post)
(segments in the second and third row of phase 2, respectively)
are discarded because their sets of sd-pairs are contained in the
one of the overlapping candidate event (t3, t4, {a, b, c}, 1pre).
At this point, there is only one set of sd-pairs left, {a, b, c}: the
only candidate event having such set is reported as an event,
which affected IP address 1 (that is also the hub of the event)
and whose type is down because of the label of 1pre.

Our algorithm is correct and complete, as stated by the
following theorems that link the inference results with physical
events (defined in Section III). The theorems are proven
under the hypothesis (non-concurrency) that each transition
is induced by one physical event and that distinct transitions
induced by distinct physical events do not overlap in time (this
hypothesis is discussed in Section V.4). We also recall that
in our model we assume that each transition always involves
at least one edge of the physical event that caused it (see
Section III).

Theorem 1 (Correctness): Each event inferred by the infer-
ence algorithm corresponds to a physical event whose hub is
in the set of involved addresses reported in the inferred event

6

Input: a set CEvents of candidate events produced in phase 2 (see Fig. 5)
Output: a set Events of tuples (t1, t2, S,Π, type), each representing an

inferred event occurred between t1 and t2, whose scope is S, which
involved the IP addresses in Π, and whose type is type .

1: Events = ∅
2: for every pair e = (t1, t2, S,A), ẽ = (t̃1, t̃2, S̃, Ã) in CEvents do
3: if e and ẽ overlap in time and S̃ ⊂ S then
4: remove ẽ from CEvents
5: end if
6: end for
7: Group candidate events (t1, t2, S,A) in CEvents by S, t1, and t2.
8: for every computed group CEvents(S, t1, t2) do
9: eaddr =

⋃
(t1,t2,S,A)∈CEvents(S)A

10: Π = eaddr (without labels)
11: type = unknown
12: type = down if all addresses in eaddr are tagged as pre
13: type = up if all addresses in eaddr are tagged as post
14: add (t1, t2, S,Π, type) to Events
15: end for
16: return Events

Fig. 6: Inference algorithm, Phase 3.

and the instant when the physical event occurred is within the
reported interval.

Proof: Let (t1, t2, S,Π, type) be an inferred event. Con-
sider π in Π. By construction, π has (dis)appeared during
[t1, t2] in all transitions τi for every i ∈ S. Since, all τi overlap
in time they necessarily are caused by the same physical event
(non-concurrency). This physical event must have occurred in
the active interval of each transition, by definition of transition.
The intersection of the active intervals of all transitions is the
reported interval [t1, t2] by construction. Since, each transition
τi always involves at least one edge of the physical event that
caused it, ∆(τi) contains the hub h of the physical event. Since
Π = ∩i∆(τi), then h ∈ Π.

Theorem 2 (Completeness): For every visible physical event,
an inferred event is reported by the algorithm whose set of
involved addresses contains the hub of the physical event and
the instant when the physical event occurred is within the
reported interval.

Proof: Suppose a physical event E↓ with hub h occurs
at time t̄. Since the physical event is visible, there exists
at least one sd-pair that changed its traceroute after t̄. The
scope S(E↓) is the set of such sd-pairs. For each i ∈ S(E↓),
Phase 1 of the algorithm constructs transitions τi whose
intervals contain t̄. All τi intersect at a common interval [t1, t2]
comprising t̄ and have hpre ∈ ∆(τi). The set Shpre becomes
equal to S(E↓) between t1 and t2 in phase 2 of the algorithm.
Since the physical event is unique (non-concurrency) and we
cannot have transitions without a physical event, the candidate
event e = (t1, t2, S(E↓), hpre) has the largest possible set of
sd-pairs. Therefore e is not filtered out by Phase 3 and an event
(t1, t2, S(E↓),Π, type) with h ∈ Π is reported. Analogous
arguments can be applied to the cases of E↑ and E↑↓.

The computational complexity of our inference algorithm is
O(|T |+|CEevents|2·I), where T is the set of transitions and I
is the maximum impact. In fact, Phase 1 takes O(|T |). Phase 2
also takes O(|T |), since each transition is processed only twice
and the size of the changed set of every transition is bounded

by the maximum length of the traceroute paths (the fraction
of traceroutes with more than 30 hops is negligible [34]).

Phase 3 takes O(|CEvents|2 · I) because of the overlap
check at lines 2-6 (the following event construction can be
performed efficiently by scanning candidate events).

V. APPLICABILITY CONSIDERATIONS

In this section, we discuss several aspects concerning the
application of our approach to real-world traceroute data.

1) Time synchronization: In our description, we assume that
the internal clocks of each probe is properly synchronized.
This is usually performed by NTP, whose precision is in the
order of a few milliseconds [35], while traceroutes are per-
formed on a timescale of minutes (or seconds when performed
at high rates). In our opinion, this is not a relevant issue.

2) Probing frequency: The probing frequency should be
properly dimensioned. It affects the extent T of the time
interval of the inferred events and in certain cases the ability
to detect physical events. The extent T can be regarded as the
tolerance with which the algorithm positions events in time.
Note that, T depends not only on the probing frequency, but
also on the number of transitions induced by that event (i.e. its
impact), which in turn depends on the topological position of
the physical event with respect to sources and destinations of
measurements. If probes perform measurements at frequency
f with random independent phase, the expected value of T
is 1/(f · |S|), where |S| is the impact of the event, since
frequencies sum up. Regarding the ability to detect physical
events, consider a pair of consecutive opposite physical events
(e.g., shutdown and boot of a router) e1 and e2 occurring at
times t1 and t2 respectively, with ∆t = t2− t1. The network
state before t1 and after t2 is the same. Let us suppose that
the positions of sources and destinations are so that the set S
of sd-pairs that can see e1 and e2 is non-empty. We denote by
f the probing frequency. We have two transitions for each sd-
pair in S if ∆t > 1/f , otherwise there are chances to “miss”
the event depending on the probing phase. Namely, each sd-
pair detects the pair of events with probability f∆t. In this
case, if measurements in S have random independent phase,
the expected impact of the inferred event is |S|f∆t.

3) Aliasing: A single network device equipped with multi-
ple network interfaces (e.g., a router) may reply with different
IP addresses to different traceroutes, a phenomenon known as
aliasing [36]. In this case, distinct sd-pairs may recognize one
router as several ones. As a consequence, detection of some
empathies may fail, causing our algorithm to infer multiple
small events rather than a single larger one, in the worst case.
For example, consider the case in which our algorithm, in
the absence of aliasing, would detect a routing event with
exactly one involved router r. Now suppose that r is affected
by aliasing and replies with two distinct IP addresses, rA and
rB , to distinct set of sd-pairs A and B. Our algorithm would
infer two routing events pinpointing both rA and rB impacting
A and B, respectively. This might cause one or both the
inferred events to have impact below the threshold introduced
in Section V.9 and hence pass undetected. Aliasing that affects
routers not involved in the event do not affect the inference

7

capability of our approach, even if those routers appear in
changed sets of some transitions. Further, the adoption of
databases created by means of IP-alias resolution techniques
may be considered (see for example [37]).

4) Simultaneous (concurrent) events: Consider two physi-
cal events e1 and e2. Each of these is associated with a set of
transitions. Due to the fact that traceroute sampling period is
of the order of minutes, even non-strictly simultaneous events
can result in possibly a part of their transitions to overlap in
time. This occurs independently from the (un)synchronization
of sampling across different sd-pairs. Suppose that e1 and e2
are close enough, both in topology and in time. In this case,
“secondary” extended addresses that are present in changed
sets of transitions for both events might get a cumulative effect
and turn out to be erroneously recognized as associated with
a non-existent third event.

The probability of observing such a situation in real data
is hard to estimate, since it depends on the topology of
the network, the positions of sources and destinations of
traceroutes, and the probability distribution of the physical
events in the network and over time. While the topic deserves
a deeper analysis, we can make some simple preliminary
considerations on a couple of extreme cases. If physical
events are independent and their frequency is much lower
than the measurement frequency, it is unlikely to have time-
overlapping transitions for distinct events. In cases where two
physical events are induced by a single root-cause that is
physically/logically close to the involved appliances, there is
a non-negligible probability to pinpoint wrong addresses that
however tend to be close to the appliances that caused the
route change.

5) Non-instantaneous routing dissemination: It is well
known that certain routing events take some time to propagate.
Link state routing protocols, like OSPF, are quite fast, with
propagation delays well below the sampling granularity we
are considering. On the other hand, BGP advertisements might
be delayed by the MRAI timer, which is set to 30 seconds
according to the BGP standard. Hence, when BGP is involved,
at a certain time some routers may see (and propagate) a
stale version of the routing. In this case, it might occur that
not all transitions that are caused by a certain routing event
overlap on a common interval. In this situation, our algorithm
infers multiple events, usually with largely overlapping scopes.
This phenomenon is particularly evident in our induced event
experiment (see Section VI.1), where we manually analyzed
the recorded traceroutes to understand the source of the
multiplicity of dots for each event that can be seen in Figure 7.

We note that this problem could be mitigated by a higher
probing frequency, but this approach reduces the time-accuracy
of the inference for all events. In practice, a possible approach
is to merge events with same involved addresses that are close
in time and have similar scopes (see also Section VI.4).

6) Load balancers: One aspect that may indeed taint the
output of our algorithm is that the vast majority of Internet
paths traverse load balancers [38]. They are the cause of a high
number of apparent routing changes which may be improperly
reported as physical events. Compensating this issue requires
knowledge of the load balancers, which is realistic for an

Internet Service Provider that wants to apply our methodol-
ogy, and can otherwise be constructed by applying discovery
techniques such as Paris Traceroute [39]. Unfortunately, this
technique was not yet available in the measurement platforms
we considered, at the time of the experiments described in
Section VI. For our experiments, we preprocessed traceroutes
by using a simple heuristic that cleaned up most of the noise
introduced by load balancers: we analyzed all the input tracer-
outes in their time order and, for each destination, we tracked
the evolution over time of the routing (actually their next
hop for that destination) of every node along the traceroute
paths. Nodes with unstable routing, i.e., that change routing
over X% of the samples, are considered to be load balancers
and their next hops are replaced by a single arbitrarily chosen
representative IP address. Choosing a threshold X that catches
most of the load balancers, while keeping real physical events
intact, is a hard task. For this reason, this technique should
be regarded as an ad-hoc one, and techniques like those
described in [39] should be preferred when available. For the
experiments discussed in Section VI, we empirically chose to
consider load balancers nodes that change their next hop in
more than 20% of the samples, which reduces the number of
transitions by 57%, 78%, and 66% in Experiments 1, 2 and 3
respectively.

7) Traceroutes with cycles and private addresses: Real
traceroutes may show “anomalies” like cycles or private ad-
dresses. While it is possible to provide correct configurations
that show these behavior, in our experiments, we observed only
a very limited number of them and we completely discarded
these kind of traceroutes. However, other approaches might be
adopted, for example, preserving the part of a traceroute that
does not contain such anomalies but can still provide valuable
information about routing changes.

8) Probe positions and event impact: The capability of in-
ferring a certain routing event from traceroutes depends on the
coverage of the part of the network where the event occurred,
by traceroutes given as input to our algorithm. This strongly
depends on the choice of the positions of the probes and of
traceroute targets. The problem of minimizing the number
of probes while keeping a given event detection capability
was studied in [40], [41]. The problem was proven to be
NP-hard and heuristic approaches were proposed. Assuming
that the main use of our methodology is within an ISP, to
obtain a positioning that provides meaningful results in terms
of detected events and reported impact value, probes should
be positioned to mimic user positioning and they have to
target commonly accessed services. In this way, the more
critical parts of the network (e.g., the backbone) tend to be
traversed by a much larger number of traceroutes with respect
to marginal regions and weighted according to their relevance
for typical use. This implies that the impact of the inferred
events is roughly proportional to the quantity of relevant
routing paths (that connect users with services) that the real
routing event has changed. The more probe-positioning and
traceroute-targeting represent users and their way of using
the network, the more the impact of the inferred events will
be significant. Note that this approach is independent from
the real network topology and the current routing, which can

8

change or be unknown. A more formal analysis of the relation
between probe positioning and validity of impacts of inferred
events is left as future work.

9) Impact threshold (noise filtering): As we will see in
Section VI, our algorithm usually detects a large number
of events. The vast majority of them have very low impact
and are not interesting, while some are clearly outstanding
in term of impact and might deserve the attention of an
operator. Our guess is that noise occurs in the periphery of
the network, which is less covered by the traceroutes. This
interpretation was confirmed by looking at samples we get
from Experiment 2 of Section VI: the changes in low impact
events turned out to be almost always close to the beginning
of the traceroutes, that is, close to the probes, which we
know are located in the periphery of the network, for that
experiment. One might regard this large number of low-impact
events as physiological and hence as noise to be ignored. We
now describe a possible approach to fix a threshold to help an
operator to focus only on significant inferences, which is also
the one adopted in Section VI. We assume noise events and
interesting events coming from two distinct random processes.
Namely, (i) the noise process has high average occurrence
frequency and the distribution of its impact I is greater than
zero for 0 < I ≤ Imax and zero elsewhere, and (ii) the
interesting events process has very low average occurrence
frequency but impact higher than Imax. Ideally, we would like
to fix the threshold right above Imax. In practice, to fix the
threshold, we analyze the density distribution of impact values.
In a stationary network, the density related with the noise
should be stable over time, hence the following procedure
can be performed once or with large periodicity, e.g., once
a week. First, we compute the density of impact values for
a set of inferred events of interest. Then we analyze this
density ascending, starting from impact 1. We look for the first
value for which the impact density reaches zero. We set the
threshold to that value of impact. The intuition that motivates
this approach is that during a period of time in which only
noise is present, the density estimates the distribution of the
values of the impact of noise-related physical events. Hence,
we set the threshold where the probability of having a certain
value of impact suddenly drop. In production, this approach
may lead to false positives due to statistical fluctuations not
occurred in the data used for deciding the threshold. Our
approach can be improved for example by multiplying the
threshold for a constant factor slightly larger than one. Also,
in a setting in which the threshold is periodically recomputed,
the applied threshold might be the result of a low pass filter
of the sequence of the thresholds computed with our simple
approach, to smooth statistical fluctuations. In principle, a
theoretical model predicting the distribution of impact of
noise-related events may help the operator to fix this threshold
in a more informed way. However, this model should take
into account many aspects, comprising network topology,
sources and destinations of the measurements, reboots, faults,
congestion, etc. The development of such a model is left as a
future work.

VI. EXPERIMENTAL RESULTS

To evaluate the applicability of our methodology, we ex-
ecuted our algorithm on several sets of traceroute paths
collected by currently active measurement platforms with the
intent to assess the effectiveness of our approach. We discuss
it in Section VI.5. All events we considered occurred in the
Internet. We first considered a sequence of routing changes that
was purposely injected in the network with a known schedule
(using them as ground truth). We then used our algorithm to
detect spontaneous events. Among the many we detected, we
provide a detailed analysis of two of them for which we had a
solid ground truth. One is related to a big European operator
and one to an important European Internet eXchange Point
(IXP). Measurements used in all the following experiments
are produced by probes that were independently deployed.
Configuration of the measurements (including probing fre-
quency) was not tailored for the use of our methodology or
to discover these specific events. For Experiments 2 and 3,
the configuration was not performed by us. For Experiment 1,
measurements were programmed by us in the past, before the
work of this paper started, for a completely different purpose
without considering the methodology under evaluation. The
software we used is avaliable on the web along with scripts to
download and start computations for Experiments 1 and 31.

1) First Experiment (Induced Events): For this experiment,
we re-used measurements performed in the context of an
investigation about the efficacy of IXPs [42]. In that context,
we partnered with an Italian ISP that has BGP peerings with
three main upstream providers and with a number of ASes at
three IXPs, i.e. MIX, NaMeX (the main IXPs in Italy), and
AMS-IX. The three IXPs had no connections relevant for our
experiment2. An IP subnet reserved for the experiment was
announced via BGP to different subsets of peers, according to
the schedule in Table I. During the experiment, 89 RIPE Atlas
probes located in Italy were instructed to perform traceroutes
every 10 minutes (between 2014-05-02 13:00 UTC and 2014-
05-03 15:00 UTC) targeting a host inside the reserved subnet.
After applying the load balancers cleanup heuristic described
in Section IV, we fed our algorithm with the collected tracer-
outes.

The produced output, which took only a few seconds
to compute, is plotted in Figure 7: each inferred event
(t1, t2, S,Π, type) is represented by a point whose coordinates
are the center of interval [t1, t2] (X axis) and the event’s
impact |S| (Y axis), and whose color identifies a specific
set Π of involved IP addresses. We computed an impact
threshold according to the procedure described in Section V.
The histogram analyzed by the procedure is shown in Figure 8
and the threshold turns out to be 11. Out of all the inferred
events, 23 exceeded this impact threshold, which is also
highlighted with a dashed horizontal line in Figure 7. The
threshold clearly separates outstanding events from noise. It
is evident that these 23 events tend to concentrate (red boxes)
around the time instants of BGP announcements (vertical gray

1https://github.com/empadig/empadig
2NaMeX and AMS-IX were connected by a link. However, that link was

not used by any means in our specific setting.

9

TABLE I: Schedule of BGP announcements for the controlled
experiment in Section VI.

Time Upstreams MIX NaMeX AMS-IX
May 02, before 14:22 X X X X

#1 May 02, 14:22 X
#2 May 02, 18:22 X X
#3 May 02, 22:22 X
#4 May 03, 02:22 X
#5 May 03, 06:22 X
#6 May 03, 10:22 X X X X

 0

 10

 20

 30

 40

 50

 60

 70

May 02
15:00

May 02
20:00

May 03
01:00

May 03
06:00

May 03
11:00

Im
p
a
ct

 (
#

 o
f

sd
-p

a
ir

s)

#1 #2 #3 #4 #5 #6

Fig. 7: Impacts of the events inferred for the first experiment
(induced events).

lines numbered according to the rows of Table I), and indeed
the center of the time interval of each event falls within
seconds from the corresponding announcement. In addition,
the maximum extension of each interval [t1, t2] was 2 minutes,
confirming that our methodology can detect an event very
quickly after the instant in which it actually happened. Set
Π consisted of a single IP address for 87% of the events and
of at most 4 IP addresses for 2 events, demonstrating a high
precision in pointing out possible event causes. In all cases,
reported addresses were clearly associated with our partner
ISP, its upstream providers or its IXPs (we performed this
check using registries). Further, their positions in traceroutes
were consistent with the fact that a change occurred at the
border of the ISP, that is where BGP reconfiguration was
performed.

For at least one announcement change (#3) the detection
was optimal, namely we inferred a single event where all the
29 involved sd-pairs switched from MIX to NaMeX. Multiple
events were instead inferred in other cases, probably due to
interference between routing changes occurring close in time
to each other or to non-instantaneous routing propagation.

Note that, announcement change #6 is a very extreme case.
In our model, it corresponds to three concurrent physical up
events in which routes all cease to pass through the same
router located at AMS-IX. Our algorithm wrongly infers only
one down event with the address of that router.

2) Second Experiment (Spontaneous Event at a large ISP):
For the second experiment, we considered traceroute paths
collected approximately every 8 hours by 3320 probes dis-
tributed within the network of a European operator, called

100 101

Impact (# of sd-pairs)

10 1

100

101

102

Qu
an

tit
y

of
 e

ve
nt

s

threshold = 11

Impact histogram for experiment 1

Fig. 8: Histogram of the impacts for the first experiment in
doubly logarithmic scale. The value of the threshold, computed
as described in Section V.9, is highlighted by an arrow.

100 101 102

Impact (# of sd-pairs)

10 1

100

101

102
Qu

an
tit

y
of

 e
ve

nt
s

threshold = 21

Impact histogram for experiment 2

Fig. 9: Histogram of the impacts for the second experiment
in doubly logarithmic scale. The computed threshold is high-
lighted by an arrow.

 0

 100

 200

 300

 400

 500

 600

Day
D-2

Day
D-1

Day
D

Day
D+1

Day
D+2

Day
D+3

Day
D+4

Im
p
a
ct

 (
#

 o
f

sd
-p

a
ir

s)

Fig. 10: Impacts of the events inferred for the second experi-
ment (spontaneous events).

10

EOp in the following for privacy reasons. Traceroutes were
performed towards destinations located both inside and outside
EOp’s network. In a private communication EOp informed us
about a “routing failure” in one of its ASes occurred on day D,
therefore we focused on traceroutes collected in a 9-days time
window comprising this day. We applied our load balancers
heuristic on a slightly richer data set consisting of almost
260.000 traceroutes collected over 15 days. Our algorithm then
took about 3 minutes to completely process the cleaned set
of traceroutes, computing almost 60.000 transitions in phase
1. We separately ascertained that the load balancers heuristic
reduced the number of transitions by about a factor of 3 and
the number of inferred events by about a factor of 20.

Any operator is primarily interested in the events occurring
in its network. Hence, we filtered out inferred events that did
not involve (in Π) any IP addresses within EOp’s network.
The result is shown in Figure 10.

We computed an impact threshold adopting the procedure
described in Section V. The histogram analyzed by the pro-
cedure is shown in Figure 9 and the threshold turns out to
be 22. Figure 10 shows that events exceeding this threshold
are mainly concentrated within a time window whose center
falls within 24 hours from Day D, and are followed by some
less impactful events occurring up to 2 days later (red box in
the figure), totaling 199 events involving 838 unique sd-pairs.
Our algorithm also singled out their candidate causes pretty
accurately, given that the union of all sets Π consisted of only
7 IP addresses. Considering the frequency of traceroutes, these
events were also quite precisely located in time: the length of
their time intervals ranged from about 10 hours to as low as
1 second (due to traceroutes not being synchronized), with a
standard deviation of 30 minutes.

As it can be seen from the figure, reported events are rather
fragmented despite affecting the same set of IP addresses
(points with the same colors in the figure): this is due to
the fact that routing propagation delays caused many non-
overlapping transitions to be constructed in phase 1. Interest-
ingly, the two events with impact higher than 550 (indicated
by an arrow in the figure) were of type down and up,
indicating that all the traceroute paths of the involved sd-
pairs switched to alternate routes sharing some common IP
addresses (all within EOp’s network). Events whose time
window is centered between D+1 and D+2 are likely due to
configuration changes undertaken to restore a working routing.

EOp provided us with information about the evolution of
an “average download speed” metric over time in the form
of a graphical chart, with one sample per our. Even if they
do not specify how they measured them, they declared those
measurements were taken during the incident and subsequent
recovery actions. We manually scaled and aligned the chart
of our inferred events against the chart provided by EOp and
visually observed that all major down events we detected were
close, with tolerance of ±1 hour, to visible speed drops and
the up events to the restoration of the normal speed. We also
asked operators of EOp to say if the set of 7 ip addresses that
our algorithm inferred as involved in the event were correct.
They replied they were.

 0

 20

 40

 60

 80

 100

 120

 140

May 12
16:00

May 13
00:00

May 13
08:00

May 13
16:00

May 14
00:00

May 14
08:00

Im
p
a
ct

 (
#

 o
f

sd
-p

a
ir

s)

Fig. 11: Impacts of the events inferred for the third experiment
(spontaneous events).

3) Third Experiment (Spontaneous Event at an IXP): For
the third experiment, we considered traceroute paths collected
during a significant misbehavior that occurred at AMS-IX,
on May 13th 2015 at around 10:00 UTC. The outage was
observed by RIPE Atlas probes [43] and was reported on many
Network Operator Groups (NOGs). According to an atnog.at
e-mail by the NOC manager of AMS-IX [44], a hardware
loop on an access switch was mistakenly introduced during
maintenance. The problem caused most of the traffic passing
through the IXP to be re-routed elsewhere.

For this experiment, we consider traceroutes performed by
RIPE Atlas probes toward anchors, namely default targets
for built-in measurements. Every probe regularly runs built-
in measurements against a selected set of anchors. For this
case study, we analyzed the traceroutes performed by 1.424
probes distributed all over the world towards 6 anchors located
in Amsterdam. We analyzed the traceroutes towards these
anchors in the 48 hours comprising the event. Each probe
runs a traceroute every 15 minutes towards a subset of the 6
anchors. On average, every anchor is targeted by 400 probes.

Fig. 11 shows the result of the experiment. The total number
of traceroutes is 413.925. Our algorithm took 1 minute and
38 seconds to completely process the input paths, extracting
44.583 transitions. In this case, the threshold computation is
based on a period not comprising the event (from 10:00 to
23:59 of May 12th), whose histogram is shown in Figure 12.

Outstanding events are mainly concentrated around two
instants: 08:00 UTC and 10:00 UTC. Our algorithm singled
out causes pretty accurately. In fact, we manually analyzed
the 13 most relevant causes in the peak around 10:00 UTC
and discovered that each of them contains a single IP address
which either belongs to AMS-IX or to members of AMS-IX,
which is coherent with our ground truth. Concerning the peak
around 08:00 UTC, unfortunately, we do not have a ground
truth. However, analyzing the inferred events, we found that
they are all related to traceroutes towards the same anchor
within one of the AMS-IX members. All inferred events show
routes leaving AMS-IX and starting to pass through upstream
providers. We guess that a member of AMS-IX lost connection
to the IXP, maybe due to a hardware failure, and this may have

11

0 10 20 30 40 50 60
Scope size/impact (# of sd-pairs)

100

101

102

103

of

 c
ad

id
at

e/
in

fe
rre

d
ev

en
ts

EXPERIMENT 1
cadidate ev. scope size
inferred events impact

0 100 200 300 400 500
Scope size/impact (# of sd-pairs)

100

101

102

103

of

 c
ad

id
at

e/
in

fe
rre

d
ev

en
ts

EXPERIMENT 2
cadidate ev. scope size
inferred events impact

0 20 40 60 80 100 120 140
Scope size/impact (# of sd-pairs)

100

101

102

103

104

of

 c
ad

id
at

e/
in

fe
rre

d
ev

en
ts

EXPERIMENT 3
cadidate ev. scope size
inferred events impact

Fig. 13: Densities of the scope size of inferred and candidate events for all three experiments (y-axis log scale).

0 50 100 150 200 250
Separation (in secs)

100

101

102

of

 c
ad

id
at

e
ev

en
ts

EXPERIMENT 1

0 50 100 150 200 250 300
Separation (in secs)

103

of

 c
ad

id
at

e
ev

en
ts

EXPERIMENT 2

0 50 100 150 200 250 300
Separation (in secs)

102

103

of

 c
ad

id
at

e
ev

en
ts

EXPERIMENT 3

Fig. 14: Density of separation between candidate events with the same extended addresses (y-axis log scale).

100 101

Impact (# of sd-pairs)

10 1

100

101

102

103

Qu
an

tit
y

of
 e

ve
nt

s

threshold = 20

Impact histogram for experiment 3

Fig. 12: Histogram of the impacts for the third experiment
in doubly logarithmic scale. The computed threshold is high-
lighted by an arrow.

required the maintenance action occurred at 10:00 UTC.
4) Further Analyses: Now, we further investigate certain

details of the behaviour of our approach.
We measured how often an address, appearing in δpre of a

transition τ ending at tτ , appears in any traceroute collected
in the time interval [tτ , tτ + 1/f], where f is the probing
frequency. In Experiments 1 and 3, this occurs about half of
the times. In Experiment 2, this occurs in about 98% of the
cases. These results show that considering only one transition
is not very informative and our approach, which considers

many transitions together, provides a clear added value.
Figure 13 shows three charts produced as follows. We

recorded all candidate events (CE) with their scope size, i.e.,
the number of associated sd-pairs. For each experiment, the
density of the scope size of CEs is plotted together with the
density of the scope size of inferred events, i.e. their impact.
Charts clearly show that Phase 3 of our algorithm does have a
role, since not all CEs are promoted to inferred events. This is
less evident for Experiment 3. We suspect that this is caused by
the fact that the outage analyzed in that experiment occurred
in The Netherlands, where most of the probes were located,
reducing the diversity of the routing paths recorded. In fact,
high path diversity gives rise to a large number of CEs with
small scope size, while low path diversity tends to create CEs
with scope size close to that of the final inferred event.

As described in Section V.5, our approach may produce
multiple events when routing propagation suffers some delay
due to the fact that multiple skewed similar CEs may be
produced. We analysed the separation between CEs defined
as the distance in time between the start time of a CE and the
end time of the last CE with the same extended address. We
recorded all the separations according to the above definition.
The density of these values, for separations that are less than 5
minutes, are plotted in Figure 14. These charts show that CEs
with small separation are present but their amount strongly
decay with the increase of separation. This suggests that the
practical clean up approach described at the end of Section V.5,
based on the closeness in time of inferred events, is viable.
According to it, given a certain separation value θ to use as
threshold, all events whose separation values appear in the
charts at the left of θ should be subject to clean up.

12

5) Discussion: From our experiments, we can observe that
the precision in time of the inferred events is quite high.
Further, the reported addresses were always coherent with the
ground truth we have. Our approach for noise filtering (Sec-
tion V.9) turned out to be quite effective in our experiments
and may be considered for practical adoption. We observed
the effect of routing propagation delay leading to duplicated
inferred events. In Section V.5, we propose to filter out
duplicates on the basis of similarity of the events and closeness
in time. In Section VI.4, we performed a first validation of
this approach showing that the vast majority of pairs of events
reporting the same addresses are very often close in time. We
also investigated if all the steps of the proposed approach are
really needed in practice. In Section VI.4, we deeply analyze
the data showing that considering only each transaction or
considering only each candidate event lead to poor results in
a large number of cases.

One may ask if our approach can be adapted to support the
timely detection of physical events, quickly after their occur-
rence. We notice how it is not strictly needed for our approach
to know all the transitions in advance. In fact, transitions could
be acquired incrementally and, correspondingly, an operator
may see the impact of an event to rise over time. The more
transitions are acquired the more the reported impact is close
to the real one. With this approach, a higher threshold results in
postponing when the inferred event is reported. On the other
hand, the slope with which the impact of an inferred event
increases can be used to estimate its final impact value to
anticipate when it is reported.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a model and a methodology to identify
and analyze network events based on the notion of empathic
traceroute measurements. We have translated our theoreti-
cal approach into an algorithm and applied it to real-world
data, proving its effectiveness. We think that the availability
of this methodology may encourage operators in adopting
probe-based traceroute measurements for monitoring and trou-
bleshooting their networks.

Our main future directions of investigation are targeted to
obtain (1) an on-line distributed version that is able to scale
to an arbitrarily large number of measurements and to timely
reports inferred events, (2) a variation of our approach to
be applied to the publicly available BGP routing data, (3) a
variation of our approach that allows a user to distinguish
infrastructure-related problems from other kinds of problems
(e.g., congestion-related ones), and (4) an assessment of the
added value of correlating network events with other log
sources in a production environment.

REFERENCES

[1] M. Di Bartolomeo, V. Di Donato, M. Pizzonia, C. Squarcella, and M. Ri-
mondini, “Discovering high-impact routing events using traceroutes,” in
2015 IEEE Symposium on Computers and Communication (ISCC), July
2015, pp. 295–300.

[2] V. Bajpai and J. Schönwälder, “A survey on internet performance mea-
surement platforms and related standardization efforts,” IEEE Commu-
nications Surveys Tutorials, vol. 17, no. 3, pp. 1313–1341, thirdquarter
2015.

[3] M. Bagnulo, P. Eardley, T. Burbridge, B. Trammell, and R. Winter,
“Standardizing large-scale measurement platforms,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 2, pp. 58–63, 2013.

[4] M. Linsner, P. Eardley, T. Burbridge, and F. Sorensen, “Large-Scale
Broadband Measurement Use Cases,” RFC 7536 (Informational),
Internet Engineering Task Force, May 2015. [Online]. Available:
http://www.ietf.org/rfc/rfc7536.txt

[5] L. Fang, A. Atlas, F. Chiussi, K. Kompella, and G. Swallow, “Ldp failure
detection and recovery,” IEEE Communications magazine, vol. 42,
no. 10, pp. 117–123, 2004.

[6] N. Duffield, “Network tomography of binary network performance
characteristics,” IEEE Transactions on Information Theory, vol. 52,
no. 12, pp. 5373–5388, 2006.

[7] “SamKnows,” 2017. [Online]. Available: https://www.samknows.com
[8] “RIPE Atlas,” 2017. [Online]. Available: http://atlas.ripe.net
[9] “PlanetLab,” 2017. [Online]. Available: www.planet-lab.org

[10] “Ark,” 2017. [Online]. Available: http://www.caida.org/projects/ark
[11] M. Bagnulo, P. Eardley, T. Burbridge, and J. Schönwälder, “Information

model for large-scale measurement platforms (LMAPs),” Internet
Requests for Comments, RFC Editor, RFC 8193, Aug 2017. [Online].
Available: http://www.rfc-editor.org/rfc/rfc8193.txt

[12] J. Schönwälder and V. Bajpai, “A YANG data model for
LMAP measurement agents,” Internet Requests for Comments,
RFC Editor, RFC 8194, Aug 2017. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc8194.txt

[13] E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy,
D. Wetherall, and T. E. Anderson, “Studying black holes in the Internet
with Hubble.” in Proc. NSDI, 2008.

[14] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang, “Planetseer:
Internet path failure monitoring and characterization in wide-area
services,” in Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, ser. OSDI’04.
Berkeley, CA, USA: USENIX Association, 2004, pp. 12–12. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251254.1251266

[15] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius,
N. Feamster, H. V. Madhyastha, T. Anderson, and A. Krishnamurthy,
“Lifeguard: Practical repair of persistent route failures,” ACM SIG-
COMM Comput. Commun. Review, vol. 42, no. 4, pp. 395–406, 2012.

[16] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot, “Netdiagnoser:
Troubleshooting network unreachabilities using end-to-end probes and
routing data,” in Proc. CoNEXT, 2007.

[17] M. Caesar, L. Subramanian, and R. H. Katz, “Towards localizing root
causes of bgp dynamics,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/CSD-03-1292, 2003. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2003/6364.html

[18] “Routing information service (RIS),” RIPE-NCC. [Online]. Available:
http://ris.ripe.net

[19] “Routeviews,” University of Oregon. [Online]. Available:
http://www.routeviews.org/

[20] D.-F. Chang, R. Govindan, and J. Heidemann, “The temporal and topo-
logical characteristics of bgp path changes,” in 11th IEEE International
Conference on Network Protocols, 2003. Proceedings., Nov 2003, pp.
190–199.

[21] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
“Locating Internet routing instabilities,” ACM SIGCOMM Computer
Communication Review, vol. 34, no. 4, pp. 205–218, Aug. 2004.

[22] R. Teixeira and J. Rexford, “A measurement framework for pin-
pointing routing changes,” in Proceedings of the ACM SIGCOMM
Workshop on Network Troubleshooting: Research, Theory and
Operations Practice Meet Malfunctioning Reality, ser. NetT ’04.
New York, NY, USA: ACM, 2004, pp. 313–318. [Online]. Available:
http://doi.acm.org/10.1145/1016687.1016704

[23] U. Javed, I. Cunha, D. Choffnes, E. Katz-Bassett, T. Anderson, and
A. Krishnamurthy, “Poiroot: Investigating the root cause of interdomain
path changes,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 183–194, Aug. 2013.

[24] B. Al-Musawi, P. Branch, and G. Armitage, “Bgp anomaly detection
techniques: A survey,” IEEE Communications Surveys Tutorials, vol. 19,
no. 1, pp. 377–396, Firstquarter 2017.

[25] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “Ip fault
localization via risk modeling,” in Proceedings of the 2nd conference on
Symposium on Networked Systems Design & Implementation-Volume 2.
USENIX Association, 2005, pp. 57–70.

[26] ——, “Detection and localization of network black holes,” in
Proceedings of the IEEE INFOCOM 2007 - 26th IEEE International
Conference on Computer Communications. Washington, DC, USA:

13

IEEE Computer Society, 2007, pp. 2180–2188. [Online]. Available:
http://dx.doi.org/10.1109/INFCOM.2007.252

[27] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via
inference of multi-level dependencies,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 13–24, Aug. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1282427.1282383

[28] R. N. Mysore, R. Mahajan, A. Vahdat, and G. Varghese,
“Gestalt: Fast, unified fault localization for networked systems,”
in Proceedings of the 2014 USENIX Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 255–268. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2643634.2643662

[29] R. R. Kompella, J. Yates, A. G. Greenberg, and A. C. Snoeren,
“Detection and localization of network black holes.” in INFOCOM ’07.

[30] Í. Cunha, R. Teixeira, N. Feamster, and C. Diot, “Measurement methods
for fast and accurate blackhole identification with binary tomography,”
in Proc. IMC, 2009.

[31] Y. Huang, N. Feamster, and R. Teixeira, “Practical issues with using
network tomography for fault diagnosis,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 5, pp. 53–58, 2008.

[32] L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe, “Node
failure localization via network tomography,” in Proc. IMC, 2014.

[33] N. Brownlee, “On searching for patterns in traceroute responses,” in
Passive and Active Measurement: 15th International Conference, PAM
2014, Los Angeles, CA, USA, March 10-11, 2014, Proceedings, 2014,
pp. 67–76.

[34] M. Candela, M. Di Bartolomeo, G. Di Battista, and C. Squarcella,
“Radian: Visual exploration of traceroutes,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 7, pp. 2194–2208,
Jul 2018.

[35] C. D. Murta, P. R. Torres Jr, and P. Mohapatra, “Qrpp1-4: Characterizing
quality of time and topology in a time synchronization network,” in
Global Telecommunications Conference, 2006. GLOBECOM’06. IEEE.
IEEE, 2006, pp. 1–5.

[36] P. Marchetta, V. Persico, and A. Pescapè, “Pythia: yet another active
probing technique for alias resolution.” in Proc. CoNEXT, 2013.

[37] K. Keys, Y. Hyun, M. Luckie, and K. Claffy, “Internet-scale ipv4
alias resolution with MIDAR,” IEEE/ACM Transactions on Networking
(TON), vol. 21, no. 2, pp. 383–399, 2013.

[38] B. Augustin, T. Friedman, and R. Teixeira, “Measuring load-balanced
paths in the Internet,” in Proc. IMC, 2007.

[39] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies with
paris traceroute,” in Proc. IMC, 2006.

[40] H. X. Nguyen and P. Thiran, “Active measurement for multiple link
failures diagnosis in ip networks,” in International Workshop on Passive
and Active Network Measurement. Springer, 2004, pp. 185–194.

[41] C. Chaudet, E. Fleury, I. G. Lassous, H. Rivano, and M.-
E. Voge, “Optimal positioning of active and passive monitoring
devices,” in Proceedings of the 2005 ACM Conference on Emerging
Network Experiment and Technology, ser. CoNEXT ’05. New
York, NY, USA: ACM, 2005, pp. 71–82. [Online]. Available:
http://doi.acm.org/10.1145/1095921.1095932

[42] M. Di Bartolomeo, G. Di Battista, R. di Lallo, and C. Squarcella, “Is
it really worth to peer at ixps? a comparative study,” in Computers and
Communication (ISCC), 2015 IEEE Symposium on. IEEE, 2015, pp.
421–426.

[43] R. Kisteleki, “The AMS-IX outage as seen with RIPE atlas,”
https://labs.ripe.net/Members/kistel/the-ams-ix-outage-as-seen-with-
ripe-atlas, 2015.

[44] K. Koutalis, “Outage post-mortem: 13 May 2015, 100GE loop
on AMS-IX ISP Peering LAN,” https://atnog.at/pipermail/atnog/2015-
May/000039.html, 2015.

Marco Di Bartolomeo has a Ph.D. in Computer
Science and Engineering from Roma Tre University,
Italy, where he worked in the Graph Drawing and
Network Visualization group. His research interests
include graph drawing, network visualization, graph
algorithms, and temporal data visualization. Since
2016 he has worked as a software engineer at
Google, Inc.

Valentino Di Donato has a Ph.D. in Computer
Science and Engineering from Roma Tre University,
Italy, where he worked in the Computer Networks
and Data Visualization group. His research interests
include network data analysis, graph algorithms, and
data visualization. Since 2017 he has worked as a
Data Visualization Expert at CGnal, Ltd.

Maurizio Pizzonia is Assistant Professor at Roma
Tre University. His research interests are about al-
gorithms and software systems for Internet anal-
ysis, data and cloud security, blockchain, and in-
formation visualization. He had management roles
in international research projects about networking
and security. In 2011, he founded a company about
cloud storage integrity. The most successful and
lasting projects he initiated are BGPlay, a tool to
visually explore open inter-domain routing data also
adopted by RIPE NCC, and Netkit, a teaching tool

for realistic emulation of computer networks.

Massimo Rimondini got his PhD in Computer
Science and Automation in 2007 at the Roma Tre
University. His thesis, entitled “Interdomain Routing
Policies in the Internet: Inference and Analysis”,
marked the start of 9 years of research in the
field of Internet routing, especially focused on the
control plane comprising modeling and improving
the behavior of routing protocols, analyzing their
performance and inferring routing events and their
causes. His contributions appeared in top-ranked
international journals published by IEEE and ACM

and were presented at several international conferences. In 2016 he moved to
an Internet Service Provider company, where he currently leads the Network
Design & Engineering group and is in charge of expanding the backbone and
handling relationships with other service providers.

Claudio Squarcella has a Ph.D. in Computer Sci-
ence and Engineering from Roma Tre University,
Italy, where he worked in the Graph Drawing and
Network Visualization group. His research interests
include network visualization, graph drawing, and
network data analysis. He worked as a software
engineer at ThousandEyes, Inc., and since 2016 he
has been at Sysdig.

