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Abstract

Fragmentation of expensive resources, e.g., spectrum for wireless services, between providers
can introduce inefficiencies in resource utilisation and worsen overall system performance. In
such cases, resource pooling between independent service providers can be used to improve
performance. However, for providers to agree to pool their resources, the arrangement has
to be mutually beneficial. The traditional notion of resource pooling, which implies complete
sharing, need not have this property. For example, under full pooling, one of the providers
may be worse off and hence have no incentive to participate. In this paper, we propose partial
resource sharing models as a generalization of full pooling, which can be configured to be
beneficial to all participants.

We formally define and analyze two partial sharing models between two service providers,
each of which is an Erlang-B loss system with the blocking probabilities as the performance
measure. We show that there always exist partial sharing configurations that are beneficial to
both providers, irrespective of the load and the number of circuits of each of the providers. A
key result is that the Pareto frontier has at least one of the providers sharing all its resources
with the other. Furthermore, full pooling may not lie inside this Pareto set. The choice of
the sharing configurations within the Pareto set is formalized based on bargaining theory.
Finally, large system approximations of the blocking probabilities in the quality-efficiency-
driven regime are presented.

1 Introduction

High availability is an important requirement of many services like wireless communications, cloud
computing, hospitals, and fire fighting services. The resources required to provide these are ex-
pensive — think spectrum and base stations for wireless communication, servers and associated
infrastructure for cloud computing, medical equipment and doctors for hospitals, fire trucks and
trained personnel for fire fighting services. Service denial, which is the inability of the resources
to satisfactorily meet a fraction of the demand, is an important performance measure for these
services. When the demand is stochastic, the amount of resources required to provide a prescribed
grade of service may be such that the utilization is low, especially in smaller systems. This means
that small providers require more resources for a given service level. This in turn can make these
services expensive for small providers. However, large systems experience statistical multiplexing
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gains and hence achieve economies of scale. Thus resource sharing or resource pooling can be useful
when there are several independent entities providing similar services using similar resources.

Typically, resource pooling is assumed to involve the combining of the resources of all the
participating providers and treating the combined system as one unit. In this paper we propose
partial resource pooling as a generalization of the full pooling models. Specifically, we consider two
loss systems modeled as M/M/N/N queues that operate independently in that they manage their
own calls but they cooperate by pooling their servers partially as follows. When an overflow call
arrives at one of the systems, (i.e., the number of active calls of the provider is greater than the
number of servers it has), the other provider may loan one of its free servers in which case the call
will be admitted. The server is loaned for the duration of the call. The overflow call is lost if the
other provider chooses not to loan the server. The partial sharing model determines when such an
overflow call is admitted. At one extreme would be the no pooling case where all overflow calls are
lost and at the other extreme is the full pooling case where all overflow calls are admitted if there
is a free server.

As mentioned above, several resource pooling models are available in the literature with the key
feature being independent service systems, managed by independent decision makers, cooperating
fully, acting as a single entity, and sharing the costs and/or benefits suitably. In other words, it
is an all-or-nothing game with the parties either pooling their resources completely or staying out
of the coalition and operating on their own. These models typically use cooperative or coalitional
game theoretic ideas to determine the answers to the following questions. (1) Which entities will
form a cooperating unit? (2) How are the revenues and costs shared?

In [2,3] independent wireless network operators share base station infrastructure and spectrum
to efficiently serve their customers. Stable cost sharing arrangements between the network oper-
ators are explored in this setting. Note that the sharing model here involves complete pooling of
the spectrum and the base stations, as opposed to the opportunistic sharing of resources with sec-
ondary users in cognitive radio systems (e.g., [4, 5]). In the system studied in [6], the cooperating
entities choose the quantity of resources to provide a specified service grade and stable cost sharing
arrangements are determined.

Server pooling has also been studied in the context of reengineering of manufacturing lines
by modeling them as Jackson networks. Here several nodes (service stations) are combined into
one service station that is capable of providing the services of all the components, e.g., [7] and
references therein.

More abstract forms of resource pooling have also been considered in the queueing literature.
In [8], cooperating single server queues are combined into one single server queue whose service
rate is upper bounded by the sum of the capacities. The actual service rate is determined by a
cost structure and the service grade. In [9], cooperation among queues to optimally invest in a
common service capacity, or choose the optimal demand to serve as a common entity, is analyzed.

To motivate our break from the preceding literature, consider the following example of two
M/M/N/N loss systems, e.g., cellular service providers with a fixed number of channels. Provider
P1, with 85 channels and a load of 88 Erlangs, has a blocking probability of 0.1 and Provider
P2, with 59 channels and 70 Erlangs load, has a blocking probability of 0.2. If the two providers
are combined into one, the joint system would have a combined load of 158 Erlangs served by 144
channels with blocking probability of 0.11. Clearly cooperation is beneficial to P2, but unacceptable
to P1. And if blocking probability were the only performance measure, it is a case of “and never
the twain shall meet.” The partial pooling mechanisms that we develop in this paper allow both
the operators to improve their performance.

The rest of the paper is organized as follows. In the next section, we introduce the system model
and describe two partial sharing models: the bounded overflow sharing model and the probabilistic
sharing model. The blocking probabilities under these models and their monotonicity properties
are also derived. In Section 3, we characterize the Pareto frontier of the sharing configurations.
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The key result is that the Pareto frontier is non empty and is at the boundary of all possible
sharing configurations—one of the providers has to always yield its free servers to overflow calls of
the other. In Section 4, we characterize the economics of partial sharing by treating the sharing
that emerges as the solution of Nash bargaining, Kalai-Smorodinsky bargaining, egalitarian sharing
(both parties experience the same benefit) and utilitarian sharing (maximize the system benefit).
The utility sets over which these bargaining solutions will be computed for our model do not satisfy
the usual properties of convexity or comprehensiveness, making it less straightforward to guarantee
the uniqueness of the bargaining solution. Nevertheless, using monotonicity properties of the
blocking probabilities shown in Section 3, we are able to show uniqueness of the Kalai-Smorodinsky
and egalitarian solutions. Via numerical experiments, we demonstrate the contrasts between the
different bargaining solutions, and also the potential benefits of partial resource pooling for both
providers. In Section 5, we address the computational complexity of the blocking probabilities for
large loss systems [10]. We consider large system limits under the well known quality-efficiency-
driven (QED) regime. Our large system analysis provides computationally light, yet accurate
approximations of the blocking probabilities for realistic system settings. Finally, we conclude
with a discussion on alternate sharing models, connections to more familiar models from the
circuit multiplexing literature, alternate applications, and future work in Section 6.

2 Model and Preliminaries

In this section, we describe our system model, propose our mechanisms for partial resource pooling,
and state some preliminary results.

We begin by describing the baseline model with no resource pooling. We consider two service
providers, P1 and P2. Each provider is modeled as an M/M/N/N queue or an Erlang-B loss system.
Specifically, Pi has Ni servers/circuits. Calls arrive for service at Pi according to a Poisson process
of rate λi. When a call arrives, it begins service at a free server if one is available. If all servers
are busy, then the call is blocked. The holding times (a.k.a. service times) of calls at Pi are i.i.d.,
with Si denoting a generic call holding time. We assume that E [Si] =: 1

µi
<∞. Thus, the offered

load seen by Pi is given by ai := λi
µi
. With no resource pooling between the providers, it is well

known that the steady state call blocking probability for Pi is given by the Erlang-B formula:

E(Ni, ai) =
aNii
Ni!

 Ni∑
j=0

aji
j!

−1

.

It is also well known that the steady state call blocking probability is insensitive to the distribution
of the call holding times, i.e., it depends only on the average call holding time. Moreover, the
blocking probability depends on the workload only through the offered load ai.

Next, we describe the proposed partial resource pooling models.

2.1 Probabilistic sharing model

The probabilistic sharing model is parameterized by the tuple (x1, x2) ∈ [0, 1]2. Informally, under
this model, Pi accepts an overflow call from P−i with probability xi.

1

Formally, the probabilistic sharing model is defined as follows. Let ni denote the number of
active calls of Pi. When a call of P−i arrives,

• If n−i < N−i, and n1 + n2 < N1 +N2, the call is admitted

• If n−i ≥ N−i and n1 + n2 < N1 +N2, the call is admitted with probability xi

1When referring to the provider labeled i, we use −i to refer to the other provider.
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• If n1 + n2 = N1 +N2, the call is blocked

The vector x := (x1, x2) defines the (partial) sharing configuration. Note that xi captures the
extent to which Pi pools its resources with P−i. In particular, the configuration (0, 0) corresponds
to no pooling, and the configuration (1, 1) corresponds to complete pooling. Moreover, note that
the probabilistic sharing model does not keep track of whether an ongoing call of Pi is occupying a
server of Pi or P−i. This simplification, which makes the model analytically tractable, is identical
to the maximum packing or call repacking model of [11, 12] and has been used extensively in the
literature. One interpretation of this assumption is that once a Pi server becomes free, if there are
any ongoing Pi calls on P−i servers, one of those is instantaneously shifted to the free Pi server.

Next, we characterize the steady state blocking probabilities under this partial sharing model.
To do so, we define the following subsets of Z2

+.

M (p) := {(n1, n2) : n1 + n2 ≤ N1 +N2}
R(p) := {(n1, n2) : n1 + n2 = N1 +N2}

For i ∈ {1, 2},

D
(p)
i := {(n1, n2) : ni ≥ Ni, n1 + n2 < N1 +N2} .

Here M (p) refers to the set of feasible states, R(p) corresponds to the feasible states when all the

servers are busy, and D
(p)
i are the states in which calls of Pi are accepted with probability x−i.

Lemma 1. Under the probabilistic sharing model, the steady state blocking probability for Provider i
is given by

B
(p)
i (x1, x2) =

1

G

[ ∑
(n1,n2)∈R(p)

f1(n1)f2(n2)

+
∑

(n1,n2)∈D(p)
i

f1(n1)f2(n2)(1− x−i)
]
,

where

fi(n) =

{
ani /n! if n < Ni

ani x
n−Ni
−i /n! if Ni ≤ n ≤ N1 +N2

,

G =
∑

(n1,n2)∈M(p)

f1(n1)f2(n2).

A key takeaway from Lemma 1 is that under the probabilistic sharing model, the steady state
blocking probabilities remain insensitive to the distributions of the call holding times. Moreover,
the dependence of the incoming workload on each provider’s blocking probability is only through
the vector of offered loads (a1, a2). Finally, note that

B
(p)
i (0, 0) = E(Ni, ai),

B
(p)
1 (N1, N2) = B

(p)
2 (N1, N2) = E(N1 +N2, a1 + a2).

Proof. Assuming that the call holding times are exponentially distributed, the state (n1, n2) of the
system evolves as a continuous time Markov chain (CTMC) over M. It is easy to check that this
CTMC is time-reversible and its invariant distribution π has a product form:

π(n1, n2) =
f1(n1)f2(n2)

G.
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The steady state blocking probability is then obtained by invoking the PASTA property.
The insensitivity of the blocking probabilities to the call holding time distributions is a direct

consequence of the reversibility of the above CTMC [13].

2.2 Bounded overflow pooling model

The bounded overflow (BO) model is parameterized by the tuple (k1, k2), where ki ∈ [0, Ni].
Informally, under the BO model, Pi accepts up to ki overflow calls from the other provider P−i.
Thus, ki is indicative of the extent to which Pi shares its resources with P−i. We use randomization
to let ki take real values in [0, Ni]; specifically, Pi admits up to bkic overflow calls from P−i, and
admits a dkie-th overflow call with probability {ki} , where {ki} := ki−bkic denotes the fractional
part of ki.

Formally, the BO model is defined as follows. Recall that ni denotes the number of active calls
of Pi. When a call of P−i arrives,

• If n−i < N−i + bkic and n1 + n2 < N1 +N2, the call is admitted

• If n−i = N−i + bkic and n1 + n2 < N1 +N2, the call is admitted with probability {ki}

• Else, the call is blocked

We refer to the tuple (k1, k2) as the (partial) sharing configuration between P1 and P2. Under
the BO model, Pi can have at most Ni + dk−ie concurrent calls. Note that (0, 0) corresponds to
no resource pooling, and (N1, N2) corresponds to full pooling between the providers. Finally, we
note that the BO model also assumes call repacking [11,12].

Next, we characterize the blocking probability of each provider under the BO model. To express
the blocking probabilities, we define the following subsets of Z2

+.

M (bo) :=

{
(n1, n2) :

n1≤N1+dk2e
n2≤N2+dk1e
n1+n2≤N1+N2

}
R(bo) :=

{
(n1, n2) :

n1≤N1+dk2e
n2≤N2+dk1e
n1+n2=N1+N2

}
For i ∈ {1, 2},

C
(bo)
i := {(n1, n2) : ni = Ni + dk−ie , n−i < N−i − dk−ie} ,

D
(bo)
i := {(n1, n2) : ni = Ni + bk−ic , n−i < N−i − bk−ic} .

Here M (bo) refers to the set of feasible states, R(bo) corresponds to the feasible states when all the

servers are busy, C
(bo)
i is the set of feasible states for which arriving calls of Pi are blocked due to

the constraint on the number of overflow calls, and D
(bo)
i are the states for which calls of Pi are

accepted with probability {k−i}.
The following lemma characterizes the blocking probabilities of both providers under the BO

partial sharing model.

Lemma 2. Under the bounded overflow sharing model, the steady state blocking probability for
provider Pi is given by

B
(bo)
i (k1, k2) =

1

G

[ ∑
(n1,n2)∈R(bo)∪C(bo)

i

f1(n1)f2(n2)

+ 1[{k−i}6=0](1− {k−i})
∑

(n1,n2)∈D(bo)
i

f1(n1)f2(n2)

]
,
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where

fi(n) =

{
ani /n! if n ≤ Ni + bk−ic
{k−i} ani /n! if n = Ni + bk−ic+ 1,

G =
∑

(n1,n2)∈M(bo)

f1(n1)f2(n2).

As before, note that the steady state blocking probabilities are insensitive to the distributions
of the call holding times, and depend only on the vector of offered loads (a1, a2). Moreover,

B
(bo)
i (0, 0) = E(Ni, ai),

B
(bo)
1 (N1, N2) = B

(bo)
2 (N1, N2) = E(N1 +N2, a1 + a2).

The proof of Lemma 2, being similar to that of Lemma 1, is omitted.

2.3 Monotonicity properties of the blocking probabilities

We conclude this section by collecting some monotonicity properties of the blocking probabilities
under the above partial sharing models. These properties play a key role in our analysis of the
game theoretic aspects of partial sharing in Sections 3 and 4.

When stating results that apply to both sharing models, we refer to the steady state blocking
probability of Provider i as Bi(x1, x2), with the understanding that this represents

• B(p)
i (x1, x2) under the probabilistic sharing model,

• B(bo)
i (x1N1, x2N2) under the bounded overflow sharing model (i.e., xi = ki

Ni
).

Note that the overall steady state blocking probability of the system is given by

Bov(x1, x2) =
λ1

λ1 + λ2
B1(x1, x2) +

λ2

λ1 + λ2
B2(x1, x2).

Our monotonicity results are summarized in the following theorem.

Theorem 1. Under the probabilistic as well as the bounded overflow partial sharing models, the
steady state blocking probabilities satisfy the following properties, for i ∈ (1, 2).

1. Bi(x1, x2) is a strictly increasing function of xi.

2. B−i(x1, x2) is a strictly decreasing function of xi.

3. If µ1 = µ2, then Bov(x1, x2) is a strictly decreasing function of xi.

Theorem 1 highlights the impact of an increase in xi on the blocking probabilities of Pi and
P−i, as well as the overall blocking probability. In particular, an increase in xi (i.e., an increase
in the extent to which Pi shares its servers with P−i) decreases the fraction of blocked calls at
P−i, at the expense of increasing the fraction of blocked calls at Pi. Note that Statements 1 and 2
imply that (0, 0) is the unique Nash equilibrium between the providers, assuming that the utility
of each provider is a strictly decreasing function of its blocking probability. This means that a
non-cooperative interaction sans signalling would not yield a mutually beneficial partial sharing
configuration between the providers. In contrast, we show in Section 4 that a bargaining-based
interaction would indeed result in mutually beneficial partial sharing configurations.

Finally, Statement 3 of Theorem 1 highlights that so long as the mean call holding times are
matched across both providers, an increase in xi results in an overall reduction in the call drop
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probability of the system. This is because increasing xi provides additional opportunities for calls
to get admitted when there are free circuits. In particular, Statement 3 above implies that for
(x1, x2) /∈ {(0, 0), (1, 1)},

Bov(1, 1) < Bov(x1, x2) < Bov(0, 0),

implying that complete pooling minimizes the overall blocking probability of the system (when
µ1 = µ2).

Note that even through the statement of Theorem 1 applies compactly to both sharing models,
a separate proof is required for each model. We provide the proof of Theorem 1 for the bounded
overflow sharing model in Appendix A, and for the probabilistic sharing model in Appendix D.
It is important to point out that while the statement of Theorem 1 seems intuitive, the proof is
fairly non-trivial. In particular, our proof of Statement 3 for the bounded overflow model involves
a subtle sample path argument (see Appendix A).

3 Efficient Partial Sharing Configurations

We have seen that complete resource pooling between providers is not necessarily stable, in the
sense that it is not guaranteed to be beneficial to both providers. Having defined mechanisms for
partial resource sharing in Section 2, the natural questions that arise are:

1. Do there exist stable partial sharing configurations?

2. If so, can one characterize the Pareto frontier of the space of partial sharing configurations?

The goal of this section is to address the above questions.
First, we prove that under both the sharing mechanisms defined in Section 2, there exist stable

partial sharing configurations, i.e., there exist partial sharing configurations that result in a strictly
lower blocking probability for each provider, compared to the case of no pooling. Next, we focus on
characterizing the set of Pareto-efficient partial sharing configurations. Intuitively, this is the set of
‘efficient’ sharing configurations, over which it is not possible to lower the blocking probability for
any provider without increasing the blocking probability of the other. Our main result is that any
Pareto sharing configuration has at least one provider pooling all of its servers (i.e., xi = 1 for some
i).2 Intuitively, efficient partial sharing configurations involve the more congested provider pooling
all of its servers, enabling both providers to benefit from the resulting statistical economies of scale.
Finally, we provide an exact characterization of the set of Pareto efficient sharing configurations
(a.k.a. the Pareto frontier) under the probabilistic and bounded overflow partial sharing models.

We begin by defining ‘stable’ partial sharing configurations.

Definition 1. A sharing configuration (x1, x2) is QoS-stable if Bi(x1, x2) < E(Ni, ai) for i = 1, 2.

The following lemma guarantees the existence of QoS-stable sharing configurations.

Lemma 3. Under the probabilistic as well as the bounded overflow partial sharing models, the set
of QoS-stable partial sharing configurations is non-empty.

Lemma 3 essentially validates our partial sharing mechanisms. Specifically, it asserts that even
when the providers are highly asymmetric with respect to capacity and/or offered load, and even
when complete resource pooling is not beneficial to one of the providers, there exists a partial
sharing configuration that is beneficial to both providers. We omit the proof of Lemma 3 since it
is a direct consequence of Lemma 4 below.

Now that we are certain that mutually beneficial partial sharing configurations exist, we turn
to the characterization of the set of efficient configurations. We begin by defining Pareto-efficient
sharing configurations.

2Pi pooling all its servers means that it always yields a free server to an overflow call from P−i.
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Definition 2. A sharing configuration (x1, x2) is Pareto-efficient if

1. (x1, x2) is QoS-stable,

2. there does not exist a sharing configuration (x′1, x
′
2) such that Bi(x

′
1, x
′
2) ≤ Bi(x1, x2) for all

i ∈ {1, 2} and Bi(x
′
1, x
′
2) < Bi(x1, x2) for some i ∈ {1, 2}.

Condition (2) above is the standard definition of Pareto-efficiency—a configuration is Pareto-
efficient if it is not possible to enhance the utility of one party (the utility of a provider being a
strictly decreasing function of its blocking probability) without diminishing the utility of the other.
Since our interest is in capturing the set of configurations that the providers could potentially agree
upon, it is also natural to impose the requirement that each provider stands to benefit from the
partial sharing agreement; this is captured by Condition (1) in the definition.

Our main result is that at any Pareto-efficient sharing configuration, at least one provider pools
all of its servers.

Theorem 2. Under the probabilistic as well as the bounded overflow partial sharing models, the
set of Pareto-efficient sharing configurations is non-empty. Moreover, any Pareto-stable sharing
configuration (x1, x2) satisfies the property that xi = 1 for some i ∈ {1, 2}.

Intuitively, if the providers are symmetric, full pooling (xi = 1 for all i) is Pareto-efficient,
thanks to the statistical economies of scale in the pooled system. Theorem 2 highlights that
under general (possibly asymmetric) settings, where full pooling may not be QoS-stable, efficient
configurations still involve at least one provider pooling all its servers. Indeed, statistical economies
of scale lie at the heart of this result as well, as is highlighted by Lemma 4 stated below, which
forms the basis of the proof of Theorem 2.

In stating Lemma 4 and proving Theorem 2, we use the following notation: X := [0, 1]2, X o :=
[0, 1)2.

Lemma 4. Under the probabilistic as well as the bounded overflow partial sharing models, for any
(x1, x2) ∈ X o, there exists θ > 0 such that

∇Bi(x1, x2) · (1, θ) < 0 ∀i ∈ {1, 2}.

Lemma 4 implies that at any sharing configuration x ∈ X o, it is possible to strictly improve the
blocking probability of both providers by increasing both components of x (in the direction θ).3

We now use Lemma 4 to prove Theorem 2.

Proof of Theorem 2. We provide a unified proof of Theorem 2 for both partial sharing models.
Invoking Lemma 4 at the configuration (0, 0), we conclude that the set of QoS-stable configurations
is non-empty. For i ∈ {1, 2}, define

Bi(x1, x2) := max(0, E(Ni, ai)−Bi(x1, x2)).

Consider the following optimization:

max
x∈X
B1(x1, x2)B2(x1, x2).

Since this is the maximization of a continuous function over a compact domain, a maximizer
x∗ ∈ X exists. It is easy to see that x∗ is Pareto-efficient, implying that the set of Pareto-efficient
configurations is non-empty. Finally, Lemma 4 implies that no Pareto-stable configuration lies in
X o, implying that any Pareto-efficient configuration lies in X \ X o. This completes the proof.
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(a) Case 1: Both providers
strictly better off under full
pooling

(b) Case 2: Only Provider 1
strictly better off under full
pooling

(c) Case 3: Only Provider 2
strictly better off under full
pooling

Figure 1: The set P̂ of Pareto-efficient partial sharing configurations

It now remains to prove Lemma 4.

Proof of Lemma 4. We provide a unified proof of Lemma 4 for both partial sharing models.
∇B1(x1, x2) · (1, θ) < 0 is equivalent to

θ >

∂B1(x1,x2)
∂x1

−∂B1(x1,x2)
∂x2

=: θ.

Similarly, ∇B2(x1, x2) · (1, θ) < 0 is equivalent to

θ <
−∂B2(x1,x2)

∂x1

∂B2(x1,x2)
∂x2

=: θ̄.

We therefore have to prove that θ < θ̄, which is equivalent to

∂B1(x1, x2)

∂x1

∂B2(x1, x2)

∂x2

<

(
−∂B1(x1, x2)

∂x2

)(
−∂B2(x1, x2)

∂x1

)
. (1)

Since the blocking probabilities depend λi and µi only through ai, we consider two fictitious
providers P ′i (i ∈ {1, 2}) with µ′1 = µ′2 = 1 and λ′i = λi/µi such that B′i ≡ Bi. For the providers
P ′i , we invoke Theorem 1, to deduce that Bov(x1, x2) is a strictly decreasing function of x1 and x2.
This means

λ′1
∂B1(x1, x2)

∂x1
< −λ′2

∂B2(x1, x2)

∂x1
(2)

λ′2
∂B2(x1, x2)

∂x2
< −λ′1

∂B1(x1, x2)

∂x2
(3)

3It is not hard to see that the blocking probabilities under the probabilistic sharing model (characterized in
Lemma 1) are continuously differentiable over X . For the bounded overflow model, the blocking probabilities (char-
acterized in Lemma 2) are continuous over [0, N1]× [0, N2] and differentiable for k1, k2 /∈ Z+. If ki is an integer, then
the partial left and right derivatives with respect to ki exist. Thus, for the bounded overflow model, the gradients
in the statement of Lemma 4 are understood to be composed of the right derivative with respect to xi when xiNi

is an integer.
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Noting that terms on both sides of (2) and (3) are positive, we can multiply the two inequalities
to obtain (1).

It is important to note that even though Statement 3 of Theorem 1 assumes that µ1 = µ2, the
present proof does not.

While Theorem 2 states that the (non-empty) set of Pareto-efficient configurations lies on the
boundary of the space of partial sharing configurations (specifically, in the set X \ X o), it does
not provide a precise characterization of this set. Interestingly, such a precise characterization is
possible, which is the goal of the following lemma.

Lemma 5. Under the probabilistic as well as the bounded overflow partial sharing models, the set
P̂ of Pareto-efficient sharing configurations is characterized as follows.

1. If E(N1 + N2, a1 + a2) < E(Ni, ai) ∀ i, then there exist uniquely defined constants x̂1 and
x̂2, such that for i = 1, 2, x̂i ∈ (0, 1),

B1(1, x̂2) = E(N1, a1),

B2(x̂1, 1) = E(N2, a2).

In this case,
P̂ = {(x, 1) : x ∈ (x̂1, 1]} ∪ {(1, x) : x ∈ (x̂2, 1]}.

2. If E(N2, a2) ≤ E(N1 +N2, a1 + a2) < E(N1, a1), then there exist uniquely defined constants
x2 and x̄2 satisfying 0 < x2 < x̄2 ≤ 1 such that

B1(1, x2) = E(N1, a1),

B2(1, x̄2) = E(N2, a2).

In this case,
P̂ = {(1, x) : x ∈ (x2, x̄2)}.

3. If E(N1, a1) ≤ E(N1 +N2, a1 + a2) < E(N2, a2), then there exist uniquely defined constants
x1 and x̄1 satisfying 0 < x1 < x̄1 ≤ 1 such that

B2(x1, 1) = E(N2, a2),

B1(x̄1, 1) = E(N1, a1).

In this case,
P̂ = {(x, 1) : x ∈ (x1, x̄1)}.

Figure 1 provides a pictorial representation of the set of Pareto-efficient partial sharing config-
urations under the three cases considered in Lemma 5. Note that Case 1 corresponds to settings
where full pooling is beneficial to both providers. Cases 2 and 3 cover the more asymmetric set-
tings, where exactly one provider (the more congested one) stands to benefit from full pooling.
Lemma 5 states that in such cases, the more congested provider pools all of its servers under any
Pareto-efficient sharing configuration. Intuitively, this is because the asymmetry in the value of
servers pooled by each provider to the other. Indeed, servers pooled by the more congested provider
add less value, since those servers are available for overflow calls of the less congested provider less
often. As a result, mutually beneficial sharing configurations have the more congested provider
pool more servers than the less congested provider.

The proof of Lemma 5 is provided in Appendix B.
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4 Economics of Partial Sharing

The set P̂ of Pareto-efficient configurations characterized in Section 3 contains all possible sharing
configurations which are minimal for the partial order induced by the usual relation “≤” applied
component-wise on the vectors of possible blocking probabilities. In other words, for every QoS-
stable configuration outside of this set, there exists a configuration within P̂ that improves the
blocking probability of at least one provider without worsening the blocking probability for the
other. Unfortunately, the configurations within the Pareto set are not comparable under this
component-wise relation. If we take any two configurations inside this set, then a configuration
that is better for one of the providers will be worse for the other provider. Thus, rational providers
who want to minimize their blocking probability will agree that it is beneficial for both of them to
choose a configuration inside the Pareto set rather than one outside of this set, but will disagree
on the choice of the configuration within the Pareto set.

It is then the natural to ask: Which configuration within the Pareto set should the two providers
choose? Of course, in addition to the choices within the Pareto set, they could also choose not
to share. This question, in a more general setting, has been investigated inside the framework of
bargaining theory. In a typical two-player bargaining problem, two players have to agree upon one
option amongst several. If both agree upon the option, then each player gets a utility corresponding
to this option. On the other hand, if they fail to arrive at a consensus, then they get a utility
corresponding to that of a disagreement point. In our setting, the two players are the two providers
who have to choose between the various configurations. Of course, they could choose not to share
with the other, in which case the blocking probability for each will be that of the system with no
pooling, i.e., the disagreement point is just the configuration (0, 0).

Our aim in this section is to present some of the most common solution concepts from bargaining
theory and apply them to the partial resource sharing problem under consideration. We also present
results of numerical experiments for different realistic network settings, highlighting the potential
benefits of partial resource pooling in practice. Note that the discussion in this section applies to
both the partial pooling models defined in Section 2.

4.1 Bargaining solutions

The usual way to compute a solution of a bargaining problem is to first fix a set of axioms that
a solution must satisfy. Axioms that appear often (though not necessarily together) are Pareto
optimality (PO), Symmetry (SYM), Scale Invariance (SI), Independence of Irrelevant Alternatives
(IIA) and Monotonicity (MON).

In addition to the axioms, some solution concepts rely on the convexity of the space of feasible
utility pairs in order to guarantee uniqueness. In the present setting, the utility of a provider is
a strictly decreasing function of its blocking probability. Due to space constraints, we restrict our
attention to the linear case, i.e., the utility of Pi is taken to be −Bi, where Bi denotes its blocking
probability. Numerical experiments show that this utility space is not convex. The usual method
to overcome this drawback is to convexify the utility space by considering its convex hull. For
our problem, this could lead to a solution of the form (as an example): configuration (k1, k2) with
probability p and (k′1, k

′
2) with probability (1 − p). While on an abstract level, a solution in an

extended space is acceptable, in practice its implementation may not be straightforward. Should
the probability p be interpreted as a fraction of time during which (k1, k2) is implemented? If so,
at what time-scale should the changes in configuration occur?

Another method of getting around convexity is to modify the set of axioms and show that some
variation of the solutions concepts for the convex case satisfy them (see [14] and references therein).
These however require some other assumptions on the utility set such as comprehensiveness4 which

4Comprehensiveness says that for any vector in the utility set, all vectors that are weakly dominated by this
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is again difficult to verify in our setting.
We now apply four bargaining solutions from the literature to our partial pooling model. These

are the Nash, Kalai-Smorodinsky, egalitarian and utilitarian bargaining solutions. The main result
in this section shows the uniqueness of the Kalai-Smorodinsky and the egalitarian solutions without
calling upon the standard arguments of convexity or comprehensiveness. The proof is based upon
monotonicity properties highlighted in Section 2.

For the bargaining solutions in this section, we assume that the utility of each provider is the
negative of its blocking probability. In some situations, it may be more meaningful to take the
negative logarithm of the blocking probability as the utility of a provider. We give the logarithmic
variants of the Nash, Kalai-Smorodinsky, and the egalitarian solutions in Appendix E.

Nash bargaining solution

The first concept we present was proposed by Nash in the seminal paper [15].

Definition 3. A partial sharing configuration (x∗1, x
∗
2) is Nash bargaining solution (NBS), if the

partial sharing configuration satisfies the following condition: (x∗1, x
∗
2) =

arg max
x∈[0,1]2

[B1(0, 0)−B1(x1, x2)]+ [B2(0, 0)−B2(x1, x2)]+ .

Here [z]+ := max(z, 0) denotes the positive part of x. At the NBS, the players are maximizing
the product of the individual utilities relative to the disagreement point5. Clearly, any maximizer
would lie in the set of P̂. However, the drawback of the NBS for our problem is that the utility
space is not convex (observed in numerical experiments) which implies that the NBS may not be
unique.

Kalai-Smorodinsky bargaining solution

One of criticisms of the NBS is the axiom of IIA which may not hold in practice. In [16], Kalai
and Smorodinsky replaced IIA with MON and obtained the following solution concept.

Definition 4. A partial sharing configuration (x∗1, x
∗
2) is a Kalai-Smorodinsky bargaining solution

(KSBS), if (x∗1, x
∗
2) ∈ P̂ and satisfies

B1(0, 0)−B1(x1, x2)

B2(0, 0)−B2(x1, x2)
=

B1(0, 0)− min
y∈[0,1]2

B1(y1, y2)

B2(0, 0)− min
y∈[0,1]2

B2(y1, y2)
.

At a KSBS solution the ratio of relative utilities of the providers is equal to the ratio of their
maximal relative utilities. For our problem, the following results guarantees uniqueness of the
solution which could be make it potentially more attractive than the NBS.

Theorem 3. For the bounded overflow sharing model, the KSBS is unique.

Proof of Theorem 3. Define the following functions.

f(x1, x2) :=
B1(0, 0)−B1(x1, x2)

B2(0, 0)−B2(x1, x2)

KS :=

B1(0, 0)− min
y∈[0,1]2

B1(y1, y2)

B2(0, 0)− min
y∈[0,1]2

B2(y1, y2)

vector and that weakly dominate the disagreement point are also in the utility set.
5Here, relative means upon subtracting the utilities at the disagreement point.
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From the Statements 1 and 2 of Theorem 1, we get

min
y∈[0,1]2

B1(y1, y2) = B1(0, 1),

min
y∈[0,1]2

B2(y1, y2) = B2(1, 0).

i.e., each provider gets the maximum benefit when it pools none of its servers and the other provider
pools all of its servers.

It is easy to see that 0 < KS <∞. Consider the three cases for P̂ from Lemma 5.
Case 1: E(N1 +N2, a1 + a2) < E(Ni, ai) ∀ i
Sweeping the (topologically one-dimensional) Pareto-frontier clockwise from (x̂1, N2) to (N1, x̂2),
it is easy to see that f is strictly decreasing and continuous, with

lim
x1↓x̂1

f(x1, 1) =∞,

lim
x2↓x̂2

f(1, x2) = 0.

There is thus a unique point on the Pareto-frontier that satisfies the KSBS condition.
Case 2: E(N2, a2) ≤ E(N1 +N2, a1 + a2) < E(N1, a1)
As before, sweeping the Pareto-frontier clockwise from (1, x̄2) to (1, x2), it is easy to see that f is
strictly decreasing and continuous, with

lim
x2↑x̄2

f(1, x2) =∞,

lim
x2↓x2

f(1, x2) = 0.

There is thus a unique point on the Pareto-frontier that satisfies the KSBS condition.
Case 3: E(N1, a1) ≤ E(N1 +N2, a1 + a2) < E(N2, a2)
The argument here is analogous to that for the above cases.

Egalitarian solution

The next solution concept we present was also proposed by Kalai [17]. It satisfies PO, SYM, IIA,
and MON but violates SI. It captures the sharing configuration in which the gains relative to the
disagreement solution for both the providers is the same.

Definition 5. A partial sharing configuration (x∗1, x
∗
2) is an egalitarian solution (ES), if (x∗1, x

∗
2) ∈

P̂ and satisfies

B1(0, 0)−B1(x1, x2) = B2(0, 0)−B2(x1, x2).

Under an ES, the providers will see the same amount of improvement in their blocking prob-
abilities relative to the no-sharing option. The following result shows that the ES is unique. Its
proof follows similar lines as the proof of Theorem 3.

Lemma 6. For the bounded overflow sharing model, the ES is unique.

Proof of Lemma 6. The argument in the proof of Theorem 3 applies as is here, except that the
constant KS is replaced by 1.

An interesting property of the ES is that if the standalone blocking probabilities of the two
providers are identical, that the ES corresponds to complete pooling.

Lemma 7. If E(N1, a1) = E(N2, a2), then the ES lies at (1, 1).
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Proof of Lemma 7. We invoke the following well known property of the Erlang-B formula.

E(N1 +N2, a1 + a2) <
a1

a1 + a2
E(N1, a1) +

a2

a1 + a2
E(N2, a2).

If E(N1, a1) = E(N2, a2), it follows then that

E(N1 +N2, a1 + a2) < E(N1, a1) = E(N2, a2),

implying that the set P̂ of Pareto-efficient configurations includes (1, 1) (see Lemma 5).
Further, is E(N1, a1) = E(N2, a2), then the ES clearly satisfies B1(x1, x2) = B2(x1, x2). How-

ever, from the monotonicity properties of the blocking probabilities, (1, 1) is the only point in P̂
that satisfies this property.

Utilitarian solution

The last solution concept is that of utilitarian bargaining solution (see, e.g., [18]). It minimizes
the blocking probability of the customers as a whole without distinguishing them according the
provider to which they subscribe. It captures the greatest good to the system. The advantage is
that it is a concept that is easy for customers to identify with. On the other hand, the axioms
of SI and MON are violated. Nonetheless, the violation of SI does not seem to be problematic
when the utilities are blocking probabilities. Indeed, there is a unique natural scale on which the
blocking probability satisfies the axioms that define a probability measure.

Definition 6. A partial sharing configuration (x∗1, x
∗
2) is a utilitarian bargaining solution (US)

if it satisfies

arg min
k∈C(P̂)

λ1

λ1 + λ2
B1(x1x2) +

λ2

λ1 + λ2
B2(x1, x2).

Here, C(P̂) denotes the closure of P̂. We relax the above minimization to be over C(P̂) instead
of over the open set P̂ because in some cases, it turns out that the solution lies on the boundary.
Assuming that the average call holding time for both providers is identical, the utilitarian solution
is unique and can be characterized precisely.

Lemma 8. If µ1 = µ2, under the bounded overflow model, the US is characterized as follows.6

1. If E(N1 +N2, a1 + a2) < E(Ni, ai) ∀ i, then the US is (1, 1)

2. If E(N2, a2) ≤ E(N1 +N2, a1 + a2) < E(N1, a1), then the US is (1, x̄2)

3. If E(N1, a1) ≤ E(N1 +N2, a1 + a2) < E(N2, a2), then the US is (x̄1, 1)

We omit the proof of Lemma 8, since it is direct consequence of Statement 3 of Theorem 1.
Another quick observation is that when the standalone blocking probabilities are matched, the
utilitarian solution, like the egalitarian solution, corresponds to full pooling.

Corollary 1. If E(N1, a1) = E(N2, a2), then the US lies at (1, 1).

Proof of Corollary 1. As was argued in the proof of Lemma 7, if E(N1, a1) = E(N2, a2), then

E(N1 +N2, a1 + a2) < E(N1, a1) = E(N2, a2).

The statement of the corollary now follows from Lemma 8.

While the utilitarian solution is the most efficient, in that is minimizes the overall blocking
probability, it may not be fair. Indeed, under Cases 2 and 3 of Lemma 8 above, one of the
providers (the less congested provider) sees no reduction in its blocking probability relative to the
disagreement point.

6We use the notation from Lemma 5.
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4.2 Numerical examples

In this section, we present numerical results illustrating the various bargaining solutions under
realistic system settings. The goal of this section is two-fold: to demonstrate the benefits of partial
resource pooling to the two providers, and to illustrate differences between the different bargaining
solutions. Due to space constraints, we are only able to consider two network settings. Also,
restrict our attention in this section to the bounded overflow sharing model; we represent the
bargaining solution as (k∗1 , k

∗
2), where k∗i = Nix

∗
i .

Table 1: Different bargaining solutions for the case N1 = N2 = 100, the standalone blocking
probabilities of P1 and P2 being 6% and 1%, respectively. Mean call holding times are assumed to
be equal for both providers.

Bargaining k∗1 k∗2 B1 B2

solution
US 100 13.1 1. 73% 1%
KSBS 100 6 3.39% 0.63 %
NBS 100 5.5 3.6% 0.6 %
ES 100 1.35 5.36% 0.36%

First we consider a scenario where the two providers have the same number of servers, but
differ with respect to their standalone blocking probabilities. Specifically, we set N1 = N2 = 100,
with E(N1, a1) = 0.06 (6%), E(N1, a1) = 0.01 (1%), and µ1 = µ2 = 1. Clearly P1 is the more
congested provider. The different bargaining solutions for this scenario are summarized in Table 1.
As expected, the more congested provider P1 pools all its servers under all bargaining solutions.
Moreover, the ‘efficient’ utilitarian solution is the most beneficial for P1, while not providing any
benefit to P2. At the other extreme, ES is the most pessimal, since it enforces the same reduction
in blocking probability, even though the scope for reduction is much less for P2. KSBS and NBS
result in intermediate contributions by P2, and result in a substantial benefits for both P1 and P2;
indeed, these configurations result in a roughly 40% reduction in the blocking probability of each
provider.

Table 2: Different bargaining solutions for the case N1 = 200, N2 = 50, both providers having a
standalone blocking probability of 5%. Mean call holding times are assumed to be equal for both
providers.

Bargaining k∗1 k∗2 B1 B2

solution
US 200 50 3.33% 3.33%
ES 200 50 3.33% 3.33%
NBS 200 9.5 3.36% 3.19%
KSBS 200 8 3.56% 2.99%

Next, we consider a scenario where the two providers differ in size, but are matched with
respect to standalone blocking probability. Specifically, we set N1 = 200, N2 = 50, E(N1, a1) =
E(N2, a2) = 0.05, and µ1 = µ2 = 1. The results are summarized in Table 2. As expected, the US
as well as the ES correspond to complete pooling (see Lemma 7 and Corollary 1); this results in
both providers seeing a blocking probability of 3.33%. On the other hand, the NBS as well as the
KSBS, the smaller provider (P2) pools fewer servers. As a result, the smaller provider achieves an
even lower blocking probability under KSBS/NBS, at the expense of a higher blocking probability
for the larger provider (compared to the full pooling under US/ES). As before, it is important to
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note that partial resource pooling offers the possibility of substantially lower blocking probability
for both providers.

5 Large System Limits: Square root scaling

The computational complexity of the exact steady-state blocking probability increases as the num-
ber of circuits becomes large [10]. As a result, approximations can turn out to be helpful for their
tractability as well as their ability to provide insights into the complex dependencies between the
blocking probabilities and the system parameters. The goal of this section is to obtain large system
approximations for the blocking probabilities under the bounded overflow partial pooling model.7

Large system approximations have always been an integral part the literature on queueing
theory. Depending upon the parameters of systems, these limits can take different forms such as
mean-field [19], Quality and Efficiency Driven [20], or Non-degenerate Slowdown [21] limits.

5.1 QED scaling regime

For our resource sharing model with blocking, the most relevant limit is the quality-efficiency-
driven (QED) regime (a.k.a. “square-root staffing” regime, Halfin-Whitt regime). While it is now
commonly known under these names, it had already been investigated by Erlang himself8 and
Jagerman as well [23]. The traditional QED regime applies to system with a single provider, and
is defined as follows. Let N be the number of circuits with the provider and a be the offered load.

We say that f(t) ∼ g(t) as t→∞ if limt→∞
f(t)
g(t) = 1.

Lemma 9 ( [23]). Let a = N + β
√
N + o(

√
N). Then,

E(N, a) ∼ 1√
N

φ(β)

(1− Φ(β))
as N →∞.

Here, φ(·) and Φ(·) denote, respectively, the probability density function and the cumulative
distribution function, corresponding to the standard Gaussian distribution. Note that under the
QED regime, the margin between the offered load and the number of servers is of the order of
the square root of the number of servers. In many settings, the QED regime is known to be the
right balance between quality (i.e., QoS) and efficiency (i.e., server provisioning costs); see, for
example, [20, 24]. For the M/M/N/N loss system, Lemma 9 states that the steady state blocking
probability decays as Θ(1/

√
N) as N →∞.

We define the QED scaling regime for our model with two providers as follows. For fixed αi > 0
and βi ∈ R, let

Ni = αiN, (4)

ai = Ni + βi
√
Ni + o(

√
Ni). (5)

Here, N is the scaling parameter that is common to both providers. (4) states that the number
of servers of each provider grow proportionately with the scaling parameter. (5) states that the
offered load corresponding to each provider scales as per the QED (square-root staffing) rule.

Before deriving the blocking probabilities for the different partial sharing configurations, we
first look at two special cases for which these probabilities can be derived directly from Lemma 9.

7A parallel development for the probabilistic sharing model is possible, which we omit due to space constraints.
8See the paper ”On the rational determination of the number of circuits” in [22].
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With no resource pooling, both the providers are decoupled, and for large N , the steady state
blocking probability of Provider i can be computed using Lemma 9 to be

Bi ∼
1√
Ni

φ(βi)

(1− Φ(βi))
.

The second special case is that of full resource pooling. Here, the system acts as a single provider
with (N1 + N2) servers/circuits and offered load of (a1 + a2). By simple calculations we can see
the system under full pooling also satisfies the square root scaling set up. So, the steady state
blocking probability for both the providers is given as

Bfull ∼
1√

N(α1 + α2)

φ

(
β1
√
α1 + β2

√
α2√

α1 + α2

)
1− Φ

(
β1
√
α1 + β2

√
α2√

α1 + α2

) .
Now, we present the square-root scaling set up for partial sharing configurations. For γi ≥ 0,

we scale the sharing parameters as

ki = γi
√
Ni + o(

√
Ni). (6)

Note that the number of pooled servers for Pi is scaled in proportion to
√
Ni. It turns out that

for the system scaling defined by (4)–(5), this is the only meaningful manner of scaling the partial
sharing parameters. Indeed, if ki = o(

√
Ni), then the large system limits correspond to Pi pooling

no servers, and if ki = ω(
√
Ni), then the large system limits correspond to Pi pooling all its servers.

Intuitively, this is because on the diffusion scale defined by (4)–(5), the number of overflow calls
as well as the number of free servers of each provider evolve (in time) on the

√
N scale.

To summarize, the QED regime we consider is defined by (4)–(6). Our main result in this
section gives the relationship between the asymptotic blocking probability for each provider and
the various parameters of the system, namely, the sharing parameters (γ1, γ2), the square-root
staffing margins (β1, β2), and the relative sizes of the two providers (α1, α2).

5.2 Blocking probability asymptotics

Having defined our QED scaling regime, we now derive large system asymptotics of the blocking
probabilities. Our results are summarized in the following theorem.

Figure 2: Geometric interpretation of blocking probability asymptotics under QED

Theorem 4. Under the bounded overflow sharing model, for the scaling regime defined by (4)–(6),
the steady state blocking probability of Provider i for large N is given as

Bi(γ1, γ2) ∼ 1√
N

Ãi

G̃
,
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where

Ãi =
φ
(
γ−i
√

α−i
αi
− βi

)
√
αi

Φ (−γ−i − β−i)

+
1

√
α1α2

γ2
√
α2∫

−γ1
√
α1

φ

(
x
√
α1
− β1

)
φ

(
−x
√
α2
− β2

)
dx,

G̃ =Φ

(
γ1

√
α1

α2
− β2

)
Φ (−γ1 − β1)

+
1
√
α1

γ2
√
α1∫

−γ1
√
α2

φ

(
x
√
α1
− β1

)
Φ

(
−x
√
α2
− β2

)
dx.

Even though the expressions for Ãi and G in the statement of Theorem 4 look complicated,
they have a simple geometric interpretation. To see this, define the following sets in R2.

M̃ :=

{
(x1, x2) :

x1≤γ2
√
α2

x2≤γ1
√
α1

x1+x2≤0

}
,

R̃ :=

{
(x1, x2) :

x1≤γ2
√
α2

x2≤γ1
√
α1

x1+x2=0

}
,

C̃1 := {(x1, γ1
√
α1) : x1 ≤ −γ1

√
α1)} ,

C̃2 := {(γ2
√
α2, x2) : x2 ≤ −γ2

√
α2)} .

These sets are depicted in Figure 2. Note that M̃ is the shaded pentagonal region, and R̃, C̃1,
and C̃2, represent the diagonal, right, and upper boundaries of M̃, respectively. Now, define
independent Gaussian random variables Z1 and Z2, such that Zi has mean βi

√
αi, and variance

αi. Let fZi(·) denote the probability density function corresponding to Zi. With this notation, it
is not hard to show that

Ãi =

∫
R̃

fZ1(x1)fZ2(x2) +

∫
C̃i

fZ1(x1)fZ2(x2),

G̃ =

∫∫
M̃

fZ1(x1)fZ2(x2) (7)

This means that Ãi is the line integral of the joint density function of Z1 and Z2 over R̃∪ C̃i, and
G̃ is the integral of the same joint density function over the region M̃ (in other words, G̃ is the
probability that the random vector (Z1, Z2) takes a value in M̃).

Theorem 4 yields a computationally tractable approximation for the blocking probabilities
under the BO partial sharing model, which is asymptotically accurate under the QED regime. In
particular, note that the computational complexity of the approximation is invariant to the system
size, making it particularly attractive when the number of servers is large. In the remainder of
this section, we evaluate the accuracy of the large system approximation under realistic network
settings. The proof of Theorem 4 is presented in Appendix C.

5.3 Accuracy of large system approximation

We consider the case N1 = N2 = N, with the standalone blocking probabilities of Provider 1 and 2
being 0.05 and 0.01, respectively. We vary N and compute the error between the exact blocking
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(a) Ratio of exact and approxi-
mate for blocking probability of
Provider 1

(b) Ratio of exact and approxi-
mate for blocking probability of
Provider 2

(c) Pareto frontier computed
using exact and approximate
blocking probabilities

Figure 3: Numerical accuracy of large system approximation

probability and the large system approximation. In Figures 3a and 3b, we plot the minimum and
maximum of the ratio between the exact and the approximate blocking probability over the set of
all feasible partial sharing vectors (k1, k2). We note that the approximation becomes increasingly
accurate as the system size grows, the error being under 8% for N = 200. It is noteworthy that
we have not scaled the system under the QED regime in this example – we are simply fixing the
standalone blocking probabilities to realistic values, and growing the number of servers to moderate
levels. Despite this, our approximation, which was developed using the QED scaling regime, is
quite accurate.

For N = 200, we also plot the Pareto frontier, computed using the exact blocking probability
expression and the large system approximation; see Figure 3c. We note that the two sets are
quite close, suggesting that one could potentially use the large system approximation to determine
meaningful bargaining solutions.

6 Discussion

Figure 4: A circuit multiplexed network with three links (with capacities as marked) and two
routes (correponding to the two providers)

We conclude with a discussion on some analogies from circuit multiplexed networks and possible
generalizations.

Circuit Multiplexed Network Analogs

When the ki are integers, the bounded overflow model, the state space and the stationary distri-
bution will be the same as the circuit multiplexed network of with three links and two routes as
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shown in Fig. 4. With this representation the reduced load approximation method of, e.g., [25] may
also be used to calculate the blocking probabilities. However, it is not computationally simpler
than the exact formula of Lemma 2.

As was mentioned in Section 2, there is a superficial similarity between the BO model and trunk
reservation. Trunk reservation has been used in circuit multiplexed networks to give preference to
direct route calls over alternate route calls. This is done by reserving the ‘last k circuits’ for direct
route calls. This means that on a link with N circuits, alternate route calls are not admitted when
the number of idle circuits is less than or equal to k. Exact models for trunk reservation are hard to
analyze and asymptotic analyses, e.g., [26], are among analytical techniques that have been used
to model trunk reservation.

Future Work

Several extensions of partial pooling to models in extant literature are possible. Erlang-C or waiting
models is an obvious immediate model. Partial inventory pooling is another application that could
be explored. A third application would be in single server systems where the quality of service for
each customer is a decreasing function of the number of active calls like in discriminatory processor
sharing systems and CDMA systems. Here the providers would share a part of the servers’ capacity
and the sharing configuration could depend on the service degradation as a function of the number
of active calls and the server capacity. These are currently being explored.
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A Proof of Theorem 1 for the bounded overflow sharing
model

This section is devoted to the proof of Theorem 1 for the bounded overflow sharing model. The
following well known properties of the Erlang-B formula will be useful.

Lemma 10. E(N, a) is a strictly decreasing function of N. Moreover, E(N, a) > 1− N
a .
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We also state the following lemma which will be invoked repeatedly in the proof.

Lemma 11. Under the bounded overflow sharing model, if ki ∈ {1, 2, · · · , Ni} ∀i,

E(Ni + k−i, ai) < B
(bo)
i (k1, k2) < E(Ni − ki, ai) (i ∈ {1, 2}).

The proof is elementary and is omitted.

A.1 Proof of Statements 1 and 2

The steady state blocking probability of Provider 1 can be expressed as follows.

B
(bo)
1 (k1, k2) =

m1 + u1 {k1}+ v1 {k2}
d+ u {k1}+ v {k2}

Here,

m1 =

N1+bk2c∑
i=N1−bk1c

ai1
i!

a
(N1+N2−i)
2

(N1 +N2 − i)!
+

a
(N1+bk2c)
1

(N1 + bk2c)!

N2−bk2c−1∑
j=0

aj2
j!
,

u1 =
a

(N1−dk1e)
1

(N1 − dk1e)!
a

(N2+dk1e)
2

(N2 + dk1e)!
,

v1 =

(
1− N1 + dk2e

a1

)
a

(N1+dk2e)
1

(N1 + dk2e)!

N2−dk2e∑
j=0

aj2
j!
,

d =
∑

(i,j):
i≤N1+bk2c
j≤N2+bk1c
i+j≤N1+N2

ai1
i!

aj2
j!
,

u =
a

(N2+dk1e)
2

(N2 + dk1e)!

N1−dk1e∑
i=0

ai1
i!
, v =

a
(N1+dk2e)
1

(N1 + dk2e)!

N2−dk2e∑
j=0

aj2
j!
.

Since B
(bo)
1 (k1, k2) is continuous in its arguments, it suffices to show that for non-integer (k1, k2),

∂B
(bo)
1 (k1, k2)

∂k2
< 0,

∂B
(bo)
1 (k1, k2)

∂k1
> 0.

Accordingly, in the remainder of the proof, we make the assumption that {k1} , {k2} 6= 0.

We now prove that
∂B

(bo)
1 (k1,k2)
∂k2

< 0. An elementary calculation yields

∂B
(bo)
1 (k1, k2)

∂k2
=

(v1d− vm1) + (v1u− vu1) {k1}
(G′)2

It now suffices to show that each term in the numerator above is negative. To see that the first
term is negative, note that

v1d− vm1 = vd

(
v1

v
− m1

d

)
= vd

((
1− N1 + dk2e

a1

)
−B(bo)

1 (bk1c , bk2c)
)

< vd
(
E(N1 + dk2e , a1)−B(bo)

1 (bk1c , bk2c)
)
< 0.
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The first inequality above uses Lemma 10, and the second uses Lemma 11. To see that the second
term is negative, note that

v1u− u1v = vu

(
v1

v
− u1

u

)
= vu

((
1− N1 + dk2e

a1

)
− E(N1 − dk1e , a1)

)
< vu (E(N1 + dk2e , a1)− E(N1 − dk1e , a1)) < 0.

Both the above inequalities follow from Lemma 10. Therefore, we conclude that
∂B

(bo)
1 (k1,k2)
∂k2

< 0.

Next, we prove that
∂B

(bo)
1 (k1,k2)
∂k1

> 0. An elementary calculation yields

∂B
(bo)
1 (k1, k2)

∂k1
=

(u1d− um1) + (u1v − uv1) {k2}
(G′)2

It suffices to argue that each of the terms in the numerator above is positive. To see that the first
term is positive, note that

u1d− um1 = ud

(
u1

u
− m1

d

)
= ud

(
E(N1 − dk1e , a1)−B(bo)

1 (bk1c , bk2c)
)
> 0.

The inequality above follows from Lemma 11. Since we have already proved that (v1u− vu1) < 0,

it follows that the second term is also positive. This proves that
∂B

(bo)
1 (k1,k2)
∂k1

> 0.

A.2 Proof of Statement 3

It suffices to prove that B
(bo)
overall(k1, k2) is a strictly decreasing function of k1. We first prove the

monotonicity over integer-valued k1 (Lemma 12) and then show that the monotonicity also extends
to real-valued k1.

Lemma 12. If µ1 = µ2 = µ, then for k1 ∈ {0, 1, · · · , N1 − 1} and k2 ∈ [0, N2],

B
(bo)
overall(k1 + 1, k2) < B

(bo)
overall(k1, k2).

Proof of Lemma 12. The proof is based on a sample path approach. We assume that call holding
times for both providers are exponentially distributed with parameter µ (we are free to make this
assumption given that the blocking probabilities are insensitive to the call holding time distribu-
tions).

We consider two systems – an ‘old’ system (O) with sharing configuration (k1, k2) and a ‘new’
system (N) with perturbed sharing configuration (k1 + 1, k2). In what follows, we will couple the
arrival processes and service durations across these systems in such a way that N system will serve
at-least as many calls as the O system on any sample path.

At time zero, we start with both the N and the O system being empty. Let ni(t) denote the
number of Provider i calls in the O system at time t, and ñi(t) denote the the number of Provider i
calls in the N system at time t. The two systems see exactly the same call arrival process. Moreover,
calls that are admitted into both systems have the same holding time (this ensures that such calls
complete at the same time in both systems). Calls that are admitted into one of the systems but
not into the other are categorized as follows.
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• Type 1: A Provider 2 call that is admitted into the N system but not the O system.

• Type 2: A Provider 1 call that is admitted into the N system but not the O system.

• Type 3: A Provider 2 call that is admitted into the O system but not the N system.

• Type 4: A Provider 1 call that is admitted into the O system but not the N system.

Note that

• n1(t)− ñ1(t) = # of Type 4 calls (in O) at time t − # of Type 2 calls (in N) at time t

• ñ2(t)− n2(t) = # of Type 1 calls (in N) at time t − # of Type 3 calls (in O) at time t

We will now couple the service durations of Type j calls in such a way that at all times, the
states of the N and O systems satisfy one of the following three relations:

• R1: ni(t) = ñi(t) for i = 1, 2

• R2: n1(t) = ñ1(t), and n2(t) = ñ2(t)− 1

• R3: n1(t) = ñ1(t) + 1, and n2(t) = ñ2(t)− 1

Note that under all three relations,

ñ1(t) + ñ2(t) ≥ n1(t) + n2(t), (8)

with equality under R1 and R3, and a strict inequality under R2. Moreover,

n1(t) ≥ ñ1(t), ñ2(t) ≥ n2(t). (9)

The states satisfy R1 at time 0. Also, note that calls that get admitted into both systems do not
alter the relation between the states, at times of arrival or departure. So we only need to focus on
arrival/departure epochs of Type j calls, j ∈ {1, 2, 3, 4}. Our argument will proceed inductively in
time.
Type 1 arrival: Suppose that a Type 1 arrival (into N) occurs at time s. Since (8) holds at time
s−, we must have

n1(s−) + n2(s−) ≤ ñ1(s−) + ñ2(s−) < N1 +N2. (10)

This implies that at s−, the states satisfy R1 with n2(s−) = ñ2(s−) = N2 + k1. In this case, the
arrival would result in ñ2(s) = N2 + k1 + 1, implying the states would satisfy R2 at time s. The
holding time of the newly arrived call in N is taken to be an independent Exp(µ) random variable.
Type 2 arrival: Suppose that a Type 2 arrival (into N) occurs at time s. This implies (10) as
before. It then follows that n1(s−) ∈ {N1 + bk2c , N1 + dk2e}, and ñ1(s−) < n1(s−). This implies
that the states satisfy R3 at s−, and thus satisfy R2 at time s. In other words, at time s, we have

• # of Type 4 calls (in O) = # of Type 2 calls (in N)

• # of Type 1 calls (in N) = # of Type 3 calls (in O) + 1

Thus, each Type 4 call can be mapped to a unique Type 2 call, and each Type 3 call can be mapped
to a unique Type 1 call (one Type 1 call remains ‘unmapped’). Given the memorylessness of the
call holding times, we now re-sample the residual lives of all calls using independent Exp(µ) random
variables such that mapped call pairs have the same residual life. This ensures that mapped calls
(these belong to different systems) depart at the same time.
Type 3 arrival: Suppose that a Type-3 arrival (into O) occurs at time s. This implies that

n1(s−) + n2(s−) < ñ1(s−) + ñ2(s−) = N1 +N2,

which implies that the states satisfy R2 at s− and R1 at s. Thus, at time s, we have
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• # of Type 4 calls (in O) = # of Type 2 calls (in N)

• # of Type 1 calls (in N) = # of Type 3 calls (in O)

At this point, we map each Type 2 call to a unique Type 4 call, and each Type 3 call to a unique
Type 1 call. As before, we re-sample the residual service times of all calls such that mapped calls
have the same residual life.
Type 4 arrival: Suppose that a Type-4 arrival (into O) occurs at time s. This implies that

n1(s−) + n2(s−) < ñ1(s−) + ñ2(s−) = N1 +N2,

which implies that the states satisfy R2 at s− and R3 at s. Thus, at time s, we have

• # of Type 4 calls (in O) = # of Type 2 calls (in N) + 1

• # of Type 1 calls (in N) = # of Type 3 calls (in O) + 1

At this point, we map each Type 2 call to a unique Type 4 call, and each Type 3 call to a unique
Type 1 call. Finally, we map the remaining (yet unmapped) Type 4 call to the remaining (yet
unmapped) Type 1 call. As before, re-sample the residual life of all calls such that mapped calls
have the same residual life.
Departures: Based on the above coupling rules for residual lives of calls across O and N, we see
that four types of departures events are possible.

• Simultaneous departure of Type 2 call in N and Type 4 call in O: Clearly, the relationship
between the states in O and N remains unaltered.

• Simultaneous departure of Type 1 call in N and Type 3 call in O: Clearly, the relationship
between the states in O and N remains unaltered.

• Departure of an unmapped Type 1 call out of N: This can only happen if the states satisfy
R2 just prior to the departure. The states then satisfy R1 post-departure.

• Simultaneous departure of a Type 1 call out of N and a Type 4 call out of O: This can only
happen if the states satisfy R3 just prior to the departure. Clearly, the states will satisfy R1
post-departure.

This completes the argument that the states of the systems O and N remain related via R1,
R2, or R3 at all times.

Note that any Type 3/4 departure out of the O system is always synchronized with a Type
1/2 departure out of the N system. This means that at all times, the cumulative departures out
of the N system exceed the cumulative departures out of the O system. Moreover, since there is
a positive rate associated with ‘solo’ Type 1 departures out the N system, the statement of the
lemma follows.

We are now ready to complete the proof of Statement 3. Given Lemma 12, it suffices to

show that for k1 ∈ {0, 1, · · · , N1 − 1} and k2 ∈ [0, N2], B
(bo)
overall(k, k2) is strictly decreasing over

k ∈ [k1, k1 + 1]. From our gradient calculations, it is not hard to see that k ∈ [k1, k1 + 1],

∂B
(bo)
overall(k, k2)

∂k
=

N(k2)

(G′(k, k2))2
.

Note that the numerator does not depend on k. It thus suffices to prove that N(k2) < 0.
From Lemma 12, invoking the mean value theorem, it follows that there exists k′ ∈ (k1, k1 + 1)

such that N(k2)
(G′(k′,k2))2 < 0, which implies that N(k2) < 0. This completes the proof of Statement 3.
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B Proof of Lemma 5

We define a sharing configuration k = (k1, k2) to be efficient if there does not exist a sharing
configuration k′ such that Bi(k

′) ≤ Bi(k) for all i, and Bi(k
′) < Bi(k) for some i. Let P denote

the set of efficient configurations. Under this notation, the set P̂ of Pareto-efficient configurations
is given by

P̂ = P ∩Q,

where Q denotes the set of QoS-stable configurations.
The first step of the proof is to show that

P = X \ X o.

Note that Lemma 4 implies that there are no efficient sharing configurations in X o. Thus, it only
remains to show that any k̂ ∈ X \ X o is efficient. For the purpose of obtaining a contradiction,

suppose that k̂ ∈ X \ X o is not efficient. Then there exists k̄ ∈ X such that Bi(k̄) ≤ Bi(k̂) for
all i. From the monotonicity of the blocking probabilities along X \ X o (Statements 1 and 2 of
Theorem 1), it follows that k̄ /∈ X \ X o, which implies that k̄ ∈ X o. Now, define for i ∈ {1, 2},

gi(k1, k2) := max(0, Bi(k̄1, k̄2)−Bi(k1, k2)).

Consider the following optimization:

max
k∈X

g1(k1, k2)g2(k1, k2).

Since this is the maximization of a continuous function over a compact domain, a maximizer k∗ ∈ X
exists. Moreover, the optimum value is strictly positive (follows from Lemma 4), k∗ ∈ X \ X o,
and Bi(k

∗) < Bi(k̄) for all i. Thus, we have k̂, k∗ ∈ X \ X o such that Bi(k
∗) < Bi(k̂) for all i.

However, this contradicts the strict monotonicity of the blocking probabilities over X \ X o. Thus,

we conclude that k̂ is efficient.
Having proved that P = X \X o, characterizing P̂ boils down to identifying the subset of QoS-

stable sharing configurations in P. For this, consider the three cases in the statement of the lemma
separately. We give the proof for Case 1 here; the proofs for Cases 2 and 3 are on similar lines and
are omitted.
Case 1: E(N1 +N2, a1 + a2) < E(Ni, ai) ∀ i
We have

B1(1, 1) < E(N1, a1) < B1(1, 0).

Thus, there a unique k̂2 ∈ (0, 1) such that B1(1, k̂2) = E(N1, a1). It is easy to see that the set
of sharing configurations in P where Provider 1 strictly improves upon its standalone blocking
probability is given by

{(y, 1) : y ∈ [0, 1]} ∪ {(1, y) : y ∈ (k̂2, 1]}.

Similarly,
B2, (1, 1) < E(N2, a2) < B2(0, 1).

Thus, there is a unique k̂1 ∈ (0, 1) satisfying B2(k̂1, 1) = E(N2, a2). As before, the set of sharing
configurations in P where Provider 2 strictly improves upon its standalone blocking probability is
given by

{(y, 1) : y ∈ (k̂1, 1]} ∪ {(1, y) : y ∈ [0, 1]}.

Thus, the subset of QoS-stable sharing configurations in P is the intersection of the above sets.
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C Proof of Theorem 4

We now give the proof of Theorem 4. The key tools in the proof are the central limit theorem
and Stirling’s approximation. Since the techniques are somewhat standard, and given the space
constraints, the proof presentation is terse. The following lemma will be used in the proof.

Lemma 13. For X ∼ Poisson(a) and β ∈ R, if N, a → ∞ such that limN→∞(1 − a
N )
√
N = β,

then limN→∞
√
NP (X = N) = φ(β).

Lemma 13 follows from an application of Stirling’s approximation; see [20] for a proof.

Proof of Theorem 4. First, we note that for the large system asymptotics, we can ignore the frac-
tional part of ki, and pretend that ki are integers. Indeed, given our monotonicity results for the
blocking probabilities, it is sufficient to prove the statement of the theorem for integral ki that
satisfy (6).

Our starting point is the expression for the blocking probability in Lemma 2, which we shall
rewrite as

Bi(k1, k2) =
Ai
G

=
e−(a1+a2)Ai
e−(a1+a2)G

,

where G is as defined in Lemma 2 and Ai is the numerator in the expression for Bi in Lemma 2.
We shall show that

lim
N→∞

e−(a1+a2)G = G̃,

and

e−(a1+a2)Ai ∼
1√
N
Ãi.

For this, we define two independent Poisson random variables:

Xi ∼ Poisson(ai) , i = 1, 2

with ai as in (5).
First, we shall prove the limit for G. From Lemma 2,

G =
∑

(n1,n2)∈M

e−(a1+a2) a
n1
1

n1!

an2
2

n2!
= P ((X1, X2) ∈M)

= P (X1 ≤ N1 + k2, X2 ≤ N2 + k1, X1 +X2 ≤ N1 +N2) . (11)

Now, given the QED scaling under consideration,

X1 ≤ N1 + k2 ⇐⇒ X1 ≤ a1 − β1
√
a1 + γ2

√
α2

α1

√
a1 + o(

√
a1)

⇐⇒ X1 − a1√
a1

≤ −β1 + γ2

√
α2

α1
+
o(
√
a1)

√
a1

.

Similarly,

X2 ≤ N2 + k1 ⇐⇒
X2 − a2√

a2
≤ −β2 + γ1

√
α1

α2
+
o(
√
a2)

√
a2

.
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Finally,

X1 +X2 ≤ N1 +N2 ⇐⇒√
a1

a1 + a2

X1 − a1√
a1

+

√
a2

a1 + a2

X2 − a2√
a2

≤ −
β1
√
a1 + β2

√
a2√

a1 + a2

Now, taking limits as N →∞ in (11) and noting that X1−a1√
a1

and X2−a2√
a2

converge in distribution

to independent standard Gaussians by the central limit theorem, we get

lim
N→∞

G = P

(
Z1 ≤ −β1 + γ2

√
α2

α1
, Z2 ≤ −β2 + γ1

√
α1

α2
,

√
α1Z1 +

√
α2Z2 ≤ −β1

√
α1 − β2

√
α2

)
,

where Z1 and Z2 are iid standard Gaussian random variables. It now easy to see that the above
equation is equivalent to (7).

We now prove the limit of Ai. In terms of X1 and X2, it is easy to see that

Ai = P (Xi = Ni + k−i)P (X−i < N−i − k−i)
+ P (X1 +X2 = N1 +N2, N1 − k1 ≤ X1 ≤ N1 + k2)

=: T1 + T2.

We first evaluate the limit of T1. The limit of the second factor of T1 follows from the central limit
theorem. The asymptotic behavior of the first factor in T1 can be deduced by invoking Lemma 13,
whereby we get

lim
N→∞

√
NT1 =

φ
(
−βi + γ−i

√
α−i
αi

)
√
αi

Φ (−β−i − γ−i) .

Finally, we tackle T2.

T2 =

k2∑
n=−k1

e−(a1+a2) aN1+n
1

(N1 + n)!

aN2−n
2

(N2 − n)!

=

γ2
√
α2

√
N∑

n=−γ1
√
α1

√
N

e−(a1+a2) aN1+n
1

(N1 + n)!

aN2−n
2

(N2 − n)!
.

Again, using Stirling’s approximation and rescaling the space by 1/
√
N ,

T2 ∼
1

2π
√
N1N2

γ1
√
α1∑

x=γ2
√
α2

x←x+1/
√
N

e−
1

2α1
(x−√α1β1)2e−

1
2α2

(−x−√α2β2)2 .

The sum on the right-hand side is a Riemann sum which when rescaled with 1/
√
N converges to

the integral

γ2
√
α2∫

−γ1
√
α1

φ

(
x
√
α1
− β1

)
φ

(
− x
√
α2
− β2

)
dx,

and the claimed result follows.
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D Proof of Theorem 1 for the probabilistic sharing model

This section is devoted to the proof of Theorem 1 for the probabilistic sharing model.

D.1 Proof of Statements 1 and 2

We begin by rewriting the expression for the steady state blocking probability of Provider 1 (given
in Lemma 1) as follows.

B
(p)
1 (x1, x2) =

m1 +
∑N1

i=1 u1,i x
i
1 +

∑N2

j=1 v1,j x
j
2

d+
∑N1

i=1 ui x
i
1 +

∑N2

j=1 vj x
j
2

Here,

m1 =
aN1

1

N1!

( N2∑
j=0

aj2
j!

)
, u1,i =

a
(N1−i)
1

(N1 − i)!
a

(N2+i)
2

(N2 + i)!
,

v1,j =

(
1− N1 + j

a1

)
a

(N1+j)
1

(N1 + j)!

(N2−j∑
i=0

ai2
i!

)
,

d =
( N1∑
i=0

ai1
i!

)( N2∑
j=0

aj2
j!

)
,

ui =
a

(N2+i)
2

(N2 + i)!

(N1−i∑
j=0

aj1
j!

)
, vj =

a
(N1+j)
1

(N1 + j)!

(N2−j∑
i=0

ai2
i!

)
.

To prove that B
(p)
1 (x1, x2) is a strictly decreasing function of x2, it suffices to show that

∂B
(p)
1 (x1,x2)
∂x2

< 0. An elementary calculation shows that

∂B
(p)
1 (x1, x2)

∂x2
=

1

G2

( N2∑
j=1

jxj−1
2 [v1,jd− vjm1]

+

N2∑
j=1

N1∑
i=1

jxj−1
2 xi1[v1,jui − vju1,i]

+

N2∑
j=1

N2∑
i=1

jxi+j−1
2 [v1,jvi − vjv1,i]

)
.

We now argue that each of the three terms in the above expression is negative. To see that the
first term is negative, note that for any j,

v1,j

vj
− m1

d
=

(
1− N1 + j

a1

)
− E(N1, a1)

< E(N1 + j, a1)− E(N1, a1) < 0.

The inequalities above follow from Lemma 10. To prove that the second term is negative, note
that for any (i, j),

v1,j

vj
− u1,i

ui
=

(
1− N1 + j

a1

)
− E(N1 − i, a1)

< E(N1 + j, a1)− E(N1 − i, a1) < 0.
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Again, the inequalities above follow from Lemma 10. To prove that the third term is negative, it
suffices to show that for i 6= j,

j[v1,jvi − vjv1,i] + i[v1,ivj − viv1,j ]

(j − i)[v1,jvi − vjv1,i] < 0.

Indeed,

(j − i)
[
v1,j

vj
− v1,i

vi

]
= (j − i)

[(
1− N1 + j

a1

)
−
(

1− N1 + i

a1

)]
=
−(j − i)2

a1
< 0.

This proves that B
(p)
1 (x1, x2) is strictly decreasing function of x2.

To prove that B
(p)
1 (x1, x2) is strictly increasing function in x1, we now show that

∂B
(p)
1 (x1,x2)
∂x1

>
0. An elementary calculation yields

∂B
(p)
1 (x1, x2)

∂x1
=

1

G2

( N1∑
i=1

ixi−1
1 [u1,id− uim1]

+

N1∑
i=1

N2∑
j=1

ixi−1
1 xj2[u1,ivj − uiv1,j ]

+

N1∑
i=1

N1∑
j=1

ixi+j−1
1 [u1,iuj − uiu1,j ]

)
.

As before, we argue that each of the terms in the above expression is positive. To see that the first
term is positive, note that for any i,

u1,i

ui
− m1

d
= E(N1 − i, a1)− E(N1, a1) > 0.

We have already proved that for any (i, j), v1,jui−vju1,i < 0. It then follows that the second term
is positive. Finally, to see that the third term is positive, note that for any i 6= j,

i[u1,iuj − uiu1,j ] + j[u1,jui − uju1,i]

= (i− j)[u1,iuj − uiu1,j ]

= (i− j)ujui
(
u1,i

ui
− u1,j

uj

)
= (i− j)ujui(E(N1 − i, a1)− E(N1 − j, a1)) > 0.

This proves that B
(p)
1 (x1, x2) is strictly increasing function in x1.

D.2 Proof of Statement 3

We shall prove that the overall blocking probability is decreasing in the share of each provider.
For this, let us generalise the sharing model by assuming that when there are ni ongoing calls of
type i, an incoming call of type i is accepted with probability x−i(ni). In the original model,

x−i(ni) =

{
1 ni < Ni;

x−i ni ≥ Ni,
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in states where n1 + n2 < N1 +N2.
Let

σ(n) =

n1−1∏
i=0

a1x2(i)

i+ 1

n2−1∏
j=0

a2x1(j)

j + 1
,

and

N = {n : n1 + n2 < N1 +N2},
N ◦ = {n : n1 + n2 ≤ N1 +N2}.

Then, the joint stationary probability is

π(m) =
σ(m)∑

n∈N◦ σ(n)
,

Instead of looking at the blocking probability, we shall look at the probability of accepting a call,
which is 1−Bov. From its definition,

1−Bov =
1

a1 + a2

∑
m∈N (a1x2(n1) + a2x1(n2))σ(m)∑

m∈N◦ σ(m)
(12)

=
1

a1 + a2

∑
m∈N (m1 + 1)σ(m + e1) + (m2 + 1)σ(m + e2)∑

m∈N◦ σ(m)
(13)

=
1

a1 + a2

∑
m∈N◦(m1 +m2)σ(m)∑

m∈N◦ σ(m)
(14)

=:
1

a1 + a2

A

D
. (15)

The local balance equation, aix−i(mi)σ(m) = (mi+1)σ(m+ei), was used to go from (12) to (13).
We shall now prove a more general result from which the monotonicity of the blocking proba-

bility in the original model shall follow.

Theorem 5. For 0 ≤ l < N1 +N2,

∂Bov
∂xi(l)

< 0, i = 1, 2.

Proof. For a given state l of type 1, we shall vary the probability x2(l) while keeping the other
probabilities fixed, and show that 1 − Bov is increasing in x2(l). This will show that Bov is
decreasing x2 in the original model. A symmetrical argument will hold for x1 as well, which will
then complete the proof.

From (15),

(a1 + a2)
∂(1−Bov)

∂x
=
DA′ −D′A

D2
.

We shall show that DA′ −D′A > 0. We have

DA′ = x−1

( ∑
m∈N◦

σ(m)

) ∑
m1>l,m∈N◦

(m1 +m2)σ(m)

 . (16)

Similarly,

D′A = x−1

 ∑
m1>l,m∈N◦

σ(m)

( ∑
m∈N◦

(m1 +m2)σ(m)

)
. (17)
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Thus, for x > 0,
DA′

D′A
=

E(M1 +M2|M1 > l)

E(M1 +M2)
, (18)

where Mi is the number of calls of Pi in stationarity. It is thus sufficient to show that the RHS of
the above equation is larger than 1. Let

γ(l) := E(M1 +M2|M1 ≥ l),

so that
DA′

D′A
=
γ(l + 1)

γ(0)
. (19)

We shall show that γ(l) is increasing in l. This is a reasonable assertion because γ(0) = E(M1+M2)
and γ(N1 +N2) = N1 +N2 ≥ E(M1 +M2).

Let N = N1 +N2. Rewrite γ(l) as follows:

γ(l) =
∑
z

zP(M1 +M2 = z|M1 ≥ l) (20)

=

∑N
z=l z

∑z
m=0 σ(z −m,m)∑N

z=l

∑z
m=0 σ(z −m,m)

. (21)

Let c =
(∑N

z=l

∑z
m=0 σ(z −m,m)

)(∑N
z=l+1

∑z
m=0 σ(z −m,m)

)
. We have

c · (γ(l + 1) − γ(l)) =

(
N∑

z=l+1

z

z∑
m=0

σ(z −m,m)

)(
N∑
z=l

z∑
m=0

σ(z −m,m)

)

−

(
N∑
z=l

z

z∑
m=0

σ(z −m,m)

)(
N∑

z=l+1

z∑
m=0

σ(z −m,m)

)
(22)

=

(
N∑

z=l+1

z

z∑
m=0

σ(z −m,m)

)(
l∑

m=0

σ(l −m,m) +

N∑
z=l+1

z∑
m=0

σ(z −m,m)

)

−

(
l

l∑
m=0

σ(l −m,m) +

N∑
z=l+1

z

z∑
m=0

σ(z −m,m)

)(
N∑

z=l+1

z∑
m=0

σ(z −m,m)

)
(23)

=

(
N∑

z=l+1

z
z∑

m=0

σ(z −m,m)

)(
l∑

m=0

σ(l −m,m)

)

−

(
l

l∑
m=0

σ(l −m,m)

)(
N∑

z=l+1

z∑
m=0

σ(z −m,m)

)
(24)

>

(
N∑

z=l+1

z∑
m=0

σ(z −m,m)

)(
l∑

m=0

σ(l −m,m)

)
(25)

≥ 0. (26)

That is, γ(l) is increasing in l.

E Bargaining solutions for logarithmic utilities

In this section, we give the definitions and related results for NBS, KSBS and ES for utilities that
are a logarithmic function of the blocking probability.
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We do not have a specific result for the logarithmic NBS but we give its definition for the sake
of completion.

Definition 7. A partial sharing configuration (k∗1 , k
∗
2) is Logarithmic Nash bargaining solution

(LOGNBS), if the partial sharing configuration satisfies the following condition,

(k∗1 , k
∗
2) = arg max

ki∈[0,1]

log

(
B1(0, 0)

B1(k1, k2)

)
log

(
B2(0, 0)

B2(k1, k2)

)
.

Similar to NBS, the utility space is not convex. So, LOGNBS may not be unique.
For the logarithmic variants of KSBS and ES the results proved for the linear variants carry

over.

Definition 8. A partial sharing configuration (k∗1 , k
∗
2) is Logarithmic Kalai-Smorodinsky bargain-

ing solution (LOGKSBS), if the partial sharing configuration satisfies the following conditions,

log
(

B1(0,0)
B1(k1,k2)

)
log
(

B2(0,0)
B2(k1,k2)

) =

log(B1(0, 0))− min
xi∈[0,1]

log(B1(k1, k2))

log(B2(0, 0))− min
ki∈[0,1]

log(B2(k1, k2))

Bi(k1, k2) < Bi(0, 0) ∀ i

Lemma 14. For the bounded overflow sharing model, the LOGKSBS is unique.

Definition 9. A partial sharing configuration (k∗1 , k
∗
2) is Logarithmic egalitarian solution (LO-

GES), if the partial sharing configuration in Pareto set satisfies the following conditions,

log(B1(0, 0))− log(B1(k1, k2)) = log(B2(0, 0))− log(B2(k1, k2))

Logarithmic egalitarian solution captures the sharing configuration in which both the providers
will have the ratio of their blocking probabilities to standalone blocking probabilities to be same.

Lemma 15. For the probabilistic sharing model as well as the bounded overflow sharing model,
the LOGES is unique.

Corollary 2. For uniform standalone blocking probabilities of providers, the LOGES lies at
(N1, N2).

Proofs of Lemma 14 and 15 use similar arguments to those in the proof of Theorem 3.
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