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Abstract—Due to the emergence of new network applications,
current IP lookup engines must support high-bandwidth, low
lookup latency and the ongoing growth of IPv6 networks.
However, existing solutions are not designed to address jointly
those three requirements. This paper introduces SHIP, an IPv6
lookup algorithm that exploits prefix characteristics to build
a two-level data structure designed to meet future application
requirements. Using both prefix length distribution and prefix
density, SHIP first clusters prefixes into groups sharing similar
characteristics, then it builds a hybrid trie-tree for each prefix
group. The compact and scalable data structure built can be
stored in on-chip low-latency memories, and allows the traversal
process to be parallelized and pipelined at each level in order to
support high packet bandwidth.

Evaluated on real and synthetic prefix tables holding up to
580 k IPv6 prefixes, SHIP has a logarithmic scaling factor in
terms of the number of memory accesses, and a linear memory
consumption scaling. Using the largest synthetic prefix table,
simulations show that compared to other well-known approaches,
SHIP uses at least 44% less memory per prefix, while reducing
the memory latency by 61%.

Index Terms—Algorithm, Routing, IPv6 Lookup, Networking.

I. INTRODUCTION

GLOBAL IP traffic carried by networks is continuously
growing, as around a zettabyte total traffic is expected

for the whole of 2016, and it is envisioned to increase threefold
between 2015 and 2019 [1]. To handle this increasing Internet
traffic, network link working groups have ratified the 100-
gigabit Ethernet standard (IEEE P802.3ba), and are studying
the 400-gigabit Ethernet standard (IEEE P802.3bs). As a
result, network nodes have to process packets at those line
rates which puts pressure on IP address lookup engines used
in the routing process. Indeed, less than 6 ns is available to
determine the IP address lookup result for an IPv6 packet [2].

The IP lookup task consists of identifying the next hop
information (NHI) to which a packet should be forwarded. The
lookup process starts by extracting the destination IP field from
the packet header, and then matching it against a list of entries
stored in a lookup table, called the forwarding information
base (FIB). Each entry in the lookup table represents a network
defined by its prefix address. While a lookup key may match
multiple entries in the FIB, only the longest prefix and its NHI
are returned for result as IP lookup is based on the Longest
Prefix Match (LPM) [3].

IP lookup algorithms and architectures that have been
tailored for IPv4 technology are not performing well with
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IPv6 [2], [4], due to the fourfold increase in the number of
bits in IPv6 addresses over IPv4. Thus, dedicated IPv6 lookup
methods are needed to support upcoming IPv6 traffic.

IP lookup engines must be optimized for high bandwidth,
low latency, and scalability for two reasons. First, due to
the convergence of wired and mobile networks, many future
applications that require a high bandwidth and a low latency,
such as virtual reality, remote object manipulation, eHealth,
autonomous driving, and the Internet of Things, will be carried
on both wired and mobile networks [5]. Second, the number
of IPv6 networks is expected to grow, and so is the size of the
IPv6 routing tables, as IPv6 technology is still being deployed
in production networks [6], [7]. However, current solutions
presented in the literature are not jointly addressing these three
performance requirements.

In this paper, we introduce SHIP: a Scalable and High
Performance IPv6 lookup algorithm designed to meet current
and future performance requirements. SHIP is built around the
analysis of prefix characteristics. Two main contributions are
presented: 1) two-level prefix grouping, that clusters prefixes
in groups sharing common properties, based on the prefix
length distribution and the prefix density, 2) a hybrid trie-tree
tailored to handle prefix distribution variations. SHIP builds
a compact and scalable data structure that is suitable for on-
chip low-latency memories, and allows the traversal process
to be parallelized and pipelined at each level in order to
support high packet bandwidth. SHIP stores 580 k prefixes
and the associated NHI using less than 5.9 MB of memory,
with a linear memory consumption scaling. SHIP achieves
logarithmic latency scaling and requires in the worst case
10 memory accesses per lookup. For both metrics, SHIP
outperforms known methods by over 44% for the memory
footprint, and by over 61% for the memory latency.

The remainder of this paper is organized as follows. Sec-
tion II introduces common approaches used for IP lookup
and Section III gives an overview of SHIP. Then, two-level
prefix grouping is presented in Section IV, while the proposed
hybrid trie-tree is covered in Section V. Section VI introduces
the method and metrics used for performance evaluation and
Section VII presents the simulation results. Section VIII shows
that SHIP fulfills the properties for hardware implementability,
and compares SHIP performance with other methods. Lastly,
we conclude the work by summarizing our main results in
Section IX.

II. RELATED WORK

Many data structures have been proposed for the LPM
operation applied to IP addresses. We can classify them in
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four main types: hash tables, Bloom filters, tries and trees.
Those data structures are encoding prefixes that are loosely
structured. First, not only prefix length distribution is highly
nonuniform, but it also varies with the prefix table used.
Second, for any given prefix length, prefix density ranges
from sparse to very dense. Thus, each of the four main data
structures type comes with a different tradeoff between time
and storage complexity.

Interest for IP lookup with hash table is twofold. First, a
hash function aims at distributing uniformly a large number
of entries over a number of bins, independently of the structure
of the data stored. Second, a hash table provides O(1) lookup
time and O(N) space complexity. However, a pure hash based
LPM solution can require up to one hash table per IP prefix
length. An alternative to reduce the number of hash tables is to
use prefix expansion [8], but it increases memory consumption.
Two main types of hash functions can be selected to build
a hash table: perfect or non-perfect hash functions. A Hash
table built with a perfect hash functions offers a fixed time
complexity that is independent from the prefixes used as no
collision is generated. Nevertheless, a perfect hash function
cannot handle dynamic prefix tables, making it unattractive for
a pure hash based LPM solution. On the other hand, a non-
perfect hash function leads to collisions and cannot provide a
fixed time complexity. Extra-matching sequences are required
with collisions that drastically decrease performance [9], [10].
In addition, not only the number of collisions is determined
after the creation of the hash table but it also depends on
the prefix distribution characteristics. In order to reduce the
number of collisions independently of the characteristics of
the prefix table used, a method has been proposed that exploits
multiple hash tables [8], [9]. This method divides the prefix
table into groups of prefixes, and selects a hash function
such that it minimizes the number of collisions within each
prefix group [8], [9]. Still, the hash function selection for each
prefix group requires to probe all the hash functions, making
it unattractive for dynamic prefix tables. Finally, no scaling
evaluation has been completed in recent publications [8],
[11] making it unclear whether the proposed hash-based data
structures can address forthcoming challenges.

Low-memory footprint hashing schemes known as Bloom
filters have also been covered in the literature [10], [12].
Bloom filters are used to select a subgroup of prefixes that may
match the input IP address. However, Bloom filters suffer from
two drawbacks. First, by design, this data structure generates
false positives independent of the configuration parameters
used. Thus, a Bloom filter can improve the average lookup
time, but it can also lead to poor performance in the worst
case, as many sub-groups need to be matched. Second, the
selection of a hash function that minimizes the number of
false positives is highly dependent of the prefix distribution
characteristics used. Hence, its complexity is similar to that
of of a hash function that minimizes the number of collisions
in a regular hash table.

Tree solutions based on binary search trees (BST) or gen-
eralized B-trees have also been explored in [2], [4]. Such data
structures are tailored to store loosely structured data such
as prefixes, as their time complexity is independent from the

prefix distribution characteristics. Indeed, BST and 2-3 Trees
have a time complexity of respectively log2(N) and log3(N),
with N being the number of entries [2]. Nevertheless, such
data structure provides a solution at the cost of a large memory
consumption. Indeed, each node stores a full-size prefix,
leading to memory waste. Hence, their memory footprint
makes them unsuitable for the very large prefix tables that
are anticipated in future networks.

At the other end of the tree spectrum, decision-trees (D-
Trees) have been proposed in [13], [14] for the field of
packet classification. D-Trees were found to offer a good
tradeoff between memory footprint and the number of memory
accesses. However, no work has been conducted yet on using
this data structure for IPv6 lookup.

The trie data structure, also known as radix tree, has
regained interest with tree bitmap [15]. Indeed, a k-bit trie
requires k/W memory accesses, but has very poor memory
efficiency when built with unevenly distributed prefixes. A
tree bitmap improves the memory efficiency over a multi-bit
trie, independently of the prefix distribution characteristics,
by using a bitmap to encode each level of a multi-bit trie.
However, tree bitmaps cannot be used with large strides, as
the node size grows exponentially with the stride size, leading
to multiple wide memory accesses to read a single node.
An improved tree bitmap, the PC-trie, is proposed for the
FlashTrie architecture [11]. A PC-Trie reduces the size of
bitmap nodes using a multi-level leaf pushing method. This
data structure is used jointly with a pre-processing hashing
stage to reduce the total number of memory accesses. Nev-
ertheless, the main shortcoming of the Flashtrie architecture
lies in its pre-processing hashing module. First, similar to
other hashing solutions, its performance highly depends on
the distribution characteristics of the prefixes used. Second,
the hashing module does not scale well with the number of
prefixes used.

At the other end of the spectrum of algorithmic solutions,
TCAMs have been proposed as a pure hardware solution,
achieving O(1) lookup time by matching the input key
simultaneously against all prefixes, independently of their
distribution characteristics. However, these solutions use a very
large amount of hardware resources, leading to large power
consumption and high cost, and making them unattractive for
routers holding a large number of prefixes [11], [16].

Recently, information-theoretic and compressed data struc-
tures have been applied to IP lookup, yielding very compact
data structures, that can handle a very large number of pre-
fixes [17]. Even though this work is limited to IPv4 addresses,
it is an important shift in terms of concepts. However, the
hardware implementation of the architecture achieves 7 million
lookups per second. In order to support a 100-Gbps bandwidth,
this would require many lookup engines, leading to a memory
consumption that is similar or higher than previous trie or tree
algorithms [2], [8], [9], [11].

In summary, the existing data structures are not exploiting
the full potential of the prefix distribution characteristics. In
addition, none of the existing data structures were shown to
optimize jointly the time complexity, the storage complexity,
and the scalability.
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III. SHIP OVERVIEW

SHIP consists of two procedures: the first one is used to
build a two-level data structure, and the second one is used to
traverse the two-level data structure. The procedure to build
the data structure is called two-level prefix grouping, while
the traversal procedure is called the lookup algorithm.

Two-level prefix grouping clusters prefixes upon their char-
acteristics to build an efficient two-level data structure, pre-
sented in Fig 1. At the first level, SHIP leverages the low
density of the IPv6 prefix MSBs to divide prefixes into M
address block bins (ABBs). A pointer to each ABB is stored
in an N-entry hash table. At the second level, SHIP uses the
uneven prefix length distribution to sort prefixes held in each
ABB into K Prefix Length Sorted (PLS) groups. For each
non-empty K·M PLS groups, SHIP further exploits the prefix
length distribution and the prefix density variation to encode
prefixes into a hybrid trie-tree (HTT).

The lookup algorithm, which identifies the NHI associated
to the longest prefix matched, is presented in Fig 1. First, the
MSBs of the destination IP address are hashed to select an
ABB pointer stored in an N entry hash table. The selected
ABB pointer in this figure is held in the n-th entry of the
hash table, represented with a dashed rectangle. This pointer
identifies bin m, represented with a dashed rectangle. Second,
the HTTs associated to each PLS group of the m-th bin,
are traversed in parallel, using portions of the destination IP
address. Each HTT can output a NHI, if a match occurs with
its associated portion of the destination IP address. Thus, up
to K HHT results can occur, and a priority resolution module
is used to select the NHI associated to the longest prefix.

Priority	Resolution

Destination IP	address

HTT Bin	1

Bin	m

Bin	M

HTT HTT

HTT HTT HTT

HTT HTT HTT

PLS
Group	1

PLS
Group	2

PLS
Group	K

NHI

HTT	TraversalABB Pointer	Selection

1

N

n

Hash	
function

Fig. 1. SHIP two-level data structure organization and its lookup process
with M address block bins and K prefix length sorting groups.

In the following section, we present the two-level prefix
grouping procedure.

IV. TWO-LEVEL PREFIX GROUPING

This section introduces two-level prefix grouping, that clus-
ters and sort prefixes into groups, and then builds the two-level

data structure. First, prefixes are binned and the first level of
the two-level data structure is built with the address block
binning method. Second, inside each bin, prefixes are sorted
into groups, and then the HTTs are built with the prefix length
sorting method.

A. Address block binning

The proposed address block binning method exploits both
the structure of IP addresses and the low density of the IPv6
prefix MSBs to cluster the prefixes into bins, and then build
the hash table used at the first level of SHIP data structure.

IPv6 addresses are structured into IP address blocks, man-
aged by the Internet Assigned Numbers Authority (IANA) that
assigns blocks of IPv6 addresses ranging in size from /16 to
/23, that are then further divided into smaller address blocks.
However, the prefix density on the first 23 bits is low, and
the prefix distribution is sparse [18]. Therefore, the address
block binning method bins prefixes based on their first 23
bits. Before prefixes are clustered, all prefixes with a prefix
length that is less than /23 are converted into /23. The pseudo-
code used for this binning method is presented in Algorithm 1.
For each prefix held in the prefix table, this method checks
whether a bin already exists for the first 23 bits. If none exists,
a new bin is created, and the prefix is added to the new bin.
Otherwise, the prefix is simply added to the existing bin. This
method only keeps track of the M created bins. The prefixes
held in each bin are further grouped by the prefix length sorting
method that is presented next.

Address block binning utilizes a perfect hash function [19]
to store a pointer to each valid bin. Let N be the size of the
hash table used. The first 23 MSBs of the IP address represents
the key of the perfect hash table. A perfect hashing function
is chosen for three reasons. First, the number of valid keys on
the first 23 bits is relatively small compared to the number of
bits used, making hashing attractive. Second, a perfect hashing
function is favoured when the data hashed is static, which is
the case here, for the first 23 bits only, because it represents
blocks of addresses allocated to regional internet registries
that are unlikely to be updated on a short time scale. Finally,
no resolution module is required because no collisions are
generated.

The lookup procedure is presented in Algorithm 2. It uses
the 23 MSBs of the destination IP address as a key for the
hash table and returns a pointer to an address block bin. If no
valid pointer exists in the hash table for the key, then a null
pointer is returned.

The perfect hash table created with the address block
binning method is an efficient data structure to perform a
lookup on the first 23 MSBs of the IP address. However,
within the ABBs the prefix length distribution can be highly
uneven, which degrades the performance of the hybrid trie-
trees at the second level. Therefore, the prefix length sorting
method, described next, is proposed to address that problem.

B. Prefix length sorting

Prefix length sorting (PLS) aims at reducing the impact of
the uneven prefix length distribution on the number of overlaps
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Algorithm 1 Building the Address Block binning data struc-
ture
Input: Prefix table
Output: Address Block binning data structure

1: for each prefix held in the prefix table do
2: Extract its 23 MSBs
3: if no bin already exists for the extracted bits then
4: Create a bin that is associated to the value of the

extracted bits
5: Add the current prefix to the bin
6: else
7: Select the bin that is associated to the value of the

extracted bits
8: Add the current prefix to the selected bin
9: end if

10: end for
11: Build a hash table that stores a pointer to each address

block bin, with the 23 MSBs of each created bin as a key.
Empty entries are holding invalid pointers.

12: return the hash table

Algorithm 2 Lookup in the Address Block binning data
structure
Input: Address Block binning hash table, destination IP

Address
Output: Pointer to an address block bin

1: Extract the 23 MSBs of the destination IP address
2: Hash the extracted 23 MSBs
3: if the hash table entry pointed by the hashed key holds a

valid pointer then
4: return pointer to the address block bin
5: else
6: return null pointer
7: end if

between prefixes held in each address block bin. By reducing
the number of prefix overlaps, the performance of the HTTs is
improved, as it will be shown later. The PLS method sorts the
prefixes held in each address block bin by their length, into
K PLS groups that cover disjoints prefix length ranges. Each
range consists of contiguous prefix lengths that are associated
to a large number of prefixes with respect to the prefix table
size. For each PLS group, a hybrid trie-tree is built.

The number of PLS groups, K, is chosen to maximize
the HTT’s performance. As will be shown experimentally in
section VII, beyond a threshold value, increasing the value
of K does not further improve performance. The prefix length
range selection is based on the prefix length distribution and it
is guided by two principles. First, to minimize prefix overlap,
when a prefix length covers a large percentage of the total
number of prefixes, this prefix length must be used as an upper
bound of the considered group. Second, prefix lengths included
in a group are selected such that group sizes are as balanced
as possible.

To illustrate those two principles, an analysis of prefix
length distribution using a real prefix table is presented in
Fig. 2. The prefix table extracted from [7] holds approximately
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Fig. 2. The uneven prefix length distribution of real a prefix table used by
the PLS method to create 3 PLS groups.

25 k prefixes. The first 23 prefix lengths are omitted in Fig. 2,
as the address block binning method already bins prefixes on
their 23 MSBs. It can be observed in Fig. 2 that the prefix
lengths with the largest cardinality are /32 and /48 for this
example. Applying the two principles of prefix length sorting
to this example, the first group covers prefix lengths from /24
to /32, and the second group covers the second peak, from
/33 to /48. Finally, all remaining prefix lengths, from /49 to
/64 are left in the third prefix length sorting group.

For each of the K PLS group created, an HTT is built.
Thus, the lookup step associated to the prefix length sorting
method consists of traversing the K HTTs held in the selected
address block bin.

To summarize, the created PLS groups cover disjoint prefix
length ranges by construction. Therefore, the PLS method
directly reduces prefix overlaps in each address block bin that
increases the performance of HTT. However, within each PLS
group, the prefix density variation remains uneven. Hence,
a hybrid-trie tree is proposed that exploits the local prefix
characteristics to build an efficient data structure.

V. HYBRID TRIE-TREE DATA STRUCTURE

The hybrid trie-tree proposed in this work is designed to
leverage the prefix density variation. This hybrid data structure
uses a density-adaptive trie, and a reduced D-Tree leaf when
the number of prefixes covered by a density-adaptive trie node
is below a fixed threshold value. A description of the two data
structures is first presented, then the procedure to build the
hybrid trie-tree is formulated, and finally the lookup procedure
is introduced.

A. Density-Adaptive Trie

The proposed density-adaptive trie is a data structure that is
built upon the prefix density distribution. A density-adaptive
trie combines a trie data structure with the Selective Node
Merge (SNM) method.

While a trie or multi-bit trie creates equi-sized regions
whose size is independent of the prefix density distribution,
the proposed SNM method adapts the size of the equi-sized
regions to the prefix density. Low-density equi-sized regions
created with a trie data structure are merged into variable
region sizes by the SNM method. Two equi-sized regions
are merged if the total number of prefixes after merging is
equal to the largest number of prefixes held by the two equi-
sized regions, or if it is less than a fixed threshold value. The
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Fig. 3. Impact of Selective Node Merge on the replication factor for the first
level of a trie data structure.

SNM method merges equi-sized regions both from the low
indices to the highest ones and from the high indices to the
lowest ones. For both directions, the SNM method first selects
the lowest and highest index equi-sized regions, respectively.
Second, it evaluates if each selected region can be merged
with its next contiguous equi-sized region. The two steps are
repeated until the selected region can no longer be merged with
its next contiguous equi-sized region. Else, the two previous
steps are repeated from the last equi-sized region that was
left un-merged. The SNM method has two constraints with
respect to the number of merged regions. First, each merged
region covers a number of equi-sized regions that is restricted
to powers of two, as the space covered by the merged region is
described with the prefix notation. Second, the total number of
merged regions is bounded by the size of a node header field
of the adaptive trie. By merging equi-sized regions together,
the SNM method reduces the number of regions that are stored
in the data structure. As a result, the SNM method improves
the memory efficiency of the data structure.

The benefit of the SNM method on the memory efficiency
is presented in Fig. 3a for the first level of a multi-bit trie.
As a reference, the first level of a multi-bit trie without the
SNM method is also presented in Fig. 3b. In both figures, IP
addresses are defined on 3 bits for the following prefix set
P1 = 110/3, P2 = 111/3 and P3 = 0/0. In both figures,
the region is initially partitioned into four equi-sized regions,
each corresponding to a different bit combination, called 0
to 3. In Fig. 3a, the SNM method merges the two leftmost
equi-sized regions 0 and 1, separated by a dashed line, as
they fulfill the constraints of SNM. In Fig. 3a, not only the
SNM method reduces the number of nodes held in memory
by 25% compared to the multi-bit trie presented in Fig. 3b but
also prefix P3 is replicated twice, that is a 33% reduction of
the prefix replication factor. As a result, the SNM method
increases the memory efficiency of the multi-bit trie data
structures.

The regions that are traversed by the SNM method (merged
or not) are stored in a SNM field of the adaptive-trie node
header. The SNM field is divided into a LtoH and HtoL array.
The LtoH and HtoL arrays hold the indices of the regions
traversed respectively from low to high index values, and high
to low index values. For each region traversed by the SNM

method, merged or equi-sized, one index is stored either in the
LtoH or the HtoL array. Indeed, as a merged region holds
two or more multiple contiguous equi-sized regions, a merged
region can be described with the indices of the first and the
last equi-sized region it holds. In addition, the SNM method
traverses the equi-sized regions contiguously. Therefore, the
index of the last equi-sized region held in a merged region can
be determined implicitly using the index of the next region
traversed by the SNM method. The index value of a non-
merged region is sufficient to fully describe it.

B. Reduced D-Tree leaf

A reduced D-Tree leaf is built when the number of prefixes
held in a region of the density-adaptive trie is below a fixed
threshold value b. The proposed leaf is based on a D-tree
leaf [13], [14] that is extended with the Leaf Size Reduction
technique (LSR).

A D-Tree leaf is a bucket that stores the prefixes and
their associated NHI held in a given region. A D-Tree leaf
has a memory complexity and time complexity of O(n) for
n prefixes stored. A D-Tree leaf is used for the regions at
the bottom of the density-adaptive trie because of its higher
memory efficiency in those regions. Indeed, we observed that
most of the bottom level regions of an density-adaptive trie
hold highly unevenly distributed prefixes. Moreover, a D-
Tree leaf has better memory efficiency with highly unevenly
distributed prefixes over a density-adaptive trie. Whereas a
density-adaptive trie can create prefix replication, which re-
duces the memory efficiency, no prefix replication is created
with a D-Tree leaf. However, the D-Tree leaf comes at the cost
of higher time complexity compared to a density-adaptive trie.

As a consequence, the LSR technique is introduced to
reduce the time complexity of a D-Tree leaf by reducing
the amount of information stored in a D-Tree leaf. In fact,
a D-Tree leaf stores entirely each prefix even the bits that
have already been matched by the density-adaptive trie before
reaching the leaf. On the other hand, the LSR technique
stores in the reduced D-Tree leaf only the prefix bits that are
left unmatched. To specify the number of bits that are left
unmatched, a new LSR leaf header field is added, coded on
6 bits. The LSR technique reduces the amount of information
that is stored in each reduced D-Tree leaf. As a result, not only
does the reduced D-Tree leaf requires fewer memory accesses
but it also has a better memory efficiency over a D-Tree leaf.

C. HTT build procedure

The hybrid trie-tree build procedure is presented in Algo-
rithm 3, starting with the root region that holds all the prefixes
(line 1). If the number of prefixes stored in the root region
is below a fixed threshold b, then a reduced D-Tree leaf is
built (line 2− 3). Else, the algorithm iteratively partitions this
region into equi-sized regions (lines 4−10). The SNM method
is then applied on the equi-sized regions (line 11). Next, for
each region, if the number of prefixes is below the threshold
value (line 12), a reduced D-Tree leaf is built (line 13), else a
density-adaptive trie node is built (line 14−16) and the region
is again partitioned.
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Algorithm 3 Hybrid Trie-Tree build procedure
Input: Prefix Table, stack Q
Output: Hybrid Trie-Tree

1: Create a root region covering all prefixes
2: if the number of prefixes held in that region is below the

threshold value b then
3: Create a reduced D-Tree leaf for those prefixes
4: else
5: Push the root region onto Q
6: end if
7: while Q is not empty do
8: Remove the top node in Q and use it as the reference

region
9: Compute the number of partitions in the reference

region
10: Partition the reference region according to the previous

step
11: Apply the SNM method on the partitioned reference

regions
12: for each partitioned reference region do
13: if it holds a number of prefixes that is below the

threshold value then
14: Create a reduced D-Tree leaf for those prefixes
15: else
16: Build an adaptive-density trie node for those

prefixes
17: Push this region onto Q
18: end if
19: end for
20: end while
21: return the Hybrid Trie-Tree

The number of partitions in a region (line 9 of Algorithm 3)
is computed by a greedy heuristic proposed in [13]. The
heuristic uses the prefix distribution to adapt the number of
partitions, as expressed in Algorithm 4. An objective function,
the Space Measurement (Sm) is evaluated at each iteration
(lines 4 and 5) and compared to a threshold value, the Space
Measurement Factor (Smpf) evaluated in the first step (line
1). The number of partitions increases by a factor of two
at each iteration (line 3), until the value of the objective
function Sm (line 4) becomes greater than the threshold value
(line 5). The objective function estimates the memory usage
efficiency with the prefix replication factor by summing the
number of prefixes held in each j equi-sized region created∑Np

j=0 NumPrefixes(equi−sizedregionj) (line 4). The prefix
replication factor is impacted by the prefix distribution. If
prefixes are evenly distributed, the replication factor remains
very low until the equi-sized regions become smaller than the
average prefix size. Then, the prefix replication factor increases
exponentially. Thus, to avoid over-partitioning a region if the
replication factor remains low for many iterations, the number
of partitions Np and the result of the previous iterations
Sm(Np−1) are used as a penalty term that is added to the
objective function (line 4). On the other hand, if prefixes are
unevenly distributed, the prefix replication factor increases
linearly until the largest prefixes in the region partitioned

become slightly smaller compared to an equi-sized region.
Passed this point, an exponential growth of the replication
factor is observed. The heuristic creates fine-grained partition
size in a dense region, and coarse-grained partition size in a
sparse region.

Algorithm 4 Heuristic used to compute the number of parti-
tions in a region
Input: Region to be cut
Output: Number of partitions (Np)

1: Np = 1;Smpf = NumPrefixes · 8;Sm(Np) = 0;
2: do
3: Np = Np · 2;
4: Sm(Np) =

∑Np

j=0 NumPrefixes(equi −
sizedregionj) +Np + Sm(Np−1);

5: while Sm(Np) ≤ Smpf
6: return Np

The number of partitions in a region is a power of two. Thus,
the base-2 logarithm of the number of partitions represents the
number of bits from the IP address used to select the equi-
sized region covering this IP address.

D. HTT lookup procedure

The hybrid trie-tree lookup algorithm starts with a traversal
of the density-adaptive trie until a reduced D-Tree leaf is
reached. Next, the reduced D-Tree leaf is traversed to identify
the matching prefix and its NHI.

The traversal of the density-adaptive trie consists in com-
puting the memory address of the child node that matches
the destination IP address, calculated with Algorithm 5. This
algorithm uses as input parameters the memory base address,
the destination-IP bit-sequence, the LtoH and the HtoL arrays
that are extracted from the node header. The SNM method
can merge multiple equi-sized nodes into a single node in
memory, and thus the destination-IP bit-sequences cannot
be used directly as an index to the child node. Therefore,
Algorithm 5 computes for each destination-IP bit-sequence the
number of equi-sized nodes that are skipped in memory based
on the characteristics of the merged regions described in the
LtoH and the HtoL arrays. The value of the destination-IP
bit-sequence can point to a region that is either included 1) in
a merged region described in the LtoH array (line 1), or 2)
in a merged region described in the HtoL array (line 4), or
3) in a equi-sized region that has not been traversed by the
SNM method (line 7).

The following notation is introduced: L represents the size
of the HtoL and LtoH arrays, LtoH[i] and HtoL[i] are
respectively the i − th entry of the LtoH and the HtoL
arrays. In the first case, each entry of the LtoH array is
traversed to find the closest LtoH[i] that is less than or
equal to the destination-IP bit-sequence (line 1). The index
of the matched child node is equal to indexLtoH (line 2),
where indexLtoH is the index of the LtoH array that fulfills
this condition. In the second case, each entry of the HtoL
array is similarly traversed to find the closest HtoL[i] that
is greater than or equal to the destination-IP bit-sequence
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(line 4). The indexHtoL in the LtoH array that fulfills this
condition is combined with the characteristics of the LtoH
and HtoL arrays to compute the index of the selected child
node (line 5). In the third case, the algorithm evaluates only the
number of equi-sized nodes that are skipped in memory based
on the characteristics of the LtoH array and the destination
IP address bit sequence of the matched child node (line 7).
Finally, the index that is added to the base address points in
memory to the matched child node.

Algorithm 5 Memory address of the matched child node using
SNM method
Input: Children base address, destination IP address bit

sequence, LtoH and HtoL arrays
Output: Child node address

. Index included in a region using SNM method
1: if destination IP address bit sequence ≤ LtoH[L−1] then

. In LtoH array
2: Index = IndexLtoH

3: else
4: if destination IP address bit sequence ≥ HtoL[0] then

. In HtoL array
5: Index = indexHtoL +HtoL[0] − LtoH[L − 1] +

L− 1
6: else . destination IP address bit sequence included

in an equi-sized region that has not been traversed by the
SNM method

7: Index = destination IP address bit sequence
−LtoH[L− 1] + L− 1

8: end if
9: end if

10: return Child node address = base address + Index

Algorithm 5 is illustrated with Figures 4 in which L = 3
and the destination IP address bit sequence is arbitrarily set to
10. Based on Fig. 4, the destination IP address bit sequence
10 matches the equi-sized region with the index 10 before
the SNM method is applied. However, after the SNM method
is applied, the destination IP address bit sequence matches a
merged node with the index 9. Based on the SNM header,
the destination IP address bit sequence 10 is greater than both
LtoH[L−1] = 3 and HtoL[0] = 9. Thus, we must identify the
number of equi-sized nodes that are skipped in memory with
the LtoH and HtoL arrays. Because LtoH[L − 1] = 3, two
equi-sized nodes have been merged. As one node is skipped
in memory, any child index greater than 3 is stored at offset
index−1 in memory. Moreover, the destination IP address bit
sequence is greater than HtoL[0] = 9. However, HtoL[1] =
10, meaning that indices 9 and 10 are not merged, and no
entry is skipped in memory for the first two regions held in
the HtoL array. As a consequence, only one node is skipped
in memory, and thus the child node index is 10− 1 = 9.

The density-adaptive trie is traversed until a reduced D-Tree
leaf is reached. The lookup procedure of a reduced D-Tree leaf
is presented in Algorithm 6. The leaf header is first parsed,
and then prefixes are read (lines 1 to 2). Next, all prefixes are
matched against the destination IP address, and their prefix
length is recorded if matches are positive (lines 3 to 6). When

0
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Fig. 4. SNM method applied to a region that holds 11 nodes after merging,
and its associated SNM field

Algorithm 6 Lookup in the Reduced D-tree leaf
Input: Reduced D-Tree leaf, destination IP Address
Output: LPM and its NHI

1: Parse the leaf header
2: Read the prefixes held in the leaf
3: for each prefix held in the leaf do
4: Match the destination IP address against the selected

prefix
5: if Positive Match then
6: Record the prefix length of the matched prefix
7: end if
8: end for
9: Identify the longest prefix match amongst all positive

matches
10: return the longest prefix match and its NHI

all the prefixes are matched, only the longest prefix match is
returned with its NHI (lines 7− 8).

VI. PERFORMANCE MEASUREMENT METHODOLOGY

This section describes the methodology used to evaluate
SHIP performance using both real and synthetic prefix tables.
Eleven real prefix tables were extracted using the RIS remote
route collectors [7], and each one holds approximately 25 k
prefixes. Each scenario, noted rrc followed by a two-digit
number, characterizes the location in the network of the remote
route collector used. For prefix tables holding up to 580 k
entries, synthetic prefixes were generated with a method that
uses IPv4 prefixes to generate IPv6 prefixes, in a one-to-one-
mapping [20]. The IPv4 prefixes used were also extracted
from [7]. Using the IPv6 prefix table holding 580 k prefixes,
four smaller prefix tables were created, with a similar prefix
length distribution, holding respectively 290 k, 116 k, 58 k
and 29 k prefixes.
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The performance of SHIP was evaluated using two metrics:
the number of memory accesses to traverse its data struc-
ture and its memory consumption. For the two metrics, the
performance is reported separately for the hash table used
by the address block binning method, and the HTTs built
by the prefix length sorting method. SHIP performance is
characterized using 1 to 6 groups for two-level prefix grouping,
and as a reference the performance of a single HTT without
grouping is also presented.The number of groups is limited to
six, as we have observed with simulations that increasing it
further does not improve the performance.

For the evaluation of the number of memory accesses, it is
assumed that the selected hybrid trie-trees within an address
block bin are traversed in parallel, using dedicated traversal
engines. Therefore, the reported number of memory accesses
is the largest number of memory accesses of all the hybrid
trie-trees amongst all address block bins. It is also assumed
that the memory bus width is equal to a node size, in order to
transfer one node per memory clock cycle.

The memory consumption is evaluated as the sum of all
nodes held in the hybrid trie-tree for the prefix length sorting
method, and of the size of the perfect hash table used for
the address block binning method. In order to evaluate the
data structure overhead, this metric is given in bytes per byte
of prefix. This metric is evaluated as the size of the data
structure divided by the size of the prefixes held in the prefix
table. The format and size of a non-terminal node and a leaf
header used in a hybrid trie-tree are detailed respectively in
Table I and in Table II. The node type field, coded with 1 bit,
specifies whether the node is a leaf or a non-terminal node.
The following fields are used only for non-terminal nodes. Up
to 10 bits can be matched at each node, corresponding to a
node header field coded with 4 bits. The fourth field is used
for SNM, to store the index value of the traversed regions.
Each index is restricted to 10 bits, while the HtoL and LtoH
arrays each store up to 5 indices. The third field, coded in 16
bits, stores the base address of the first child node associated
with its parent’s node.

TABLE I
NON-TERMINAL NODE HEADER FIELD SIZES IN BITS

Header Field Size
Node type 1

Number of cuts 4

Pointer to child node 16

Size of selective node merge array 5 · 10 + 5 · 10

The leaf node format is presented in Table II. A leaf can be
split over multiple nodes to store all its prefixes. Therefore,
two bits are used in the leaf header to specify whether the
current leaf node is a terminal leaf or not. The next field gives
the number of prefixes stored in the leaf. It is coded with 4 bits
because in this work, the largest number of prefixes held in a
leaf is set to 12 for each hybrid trie-tree. The LSR field stores
the number of bits that need to be matched, using 6 bits. If a
leaf is split over multiple nodes, a pointer coded with 16 bits
points at the remaining nodes that are part of the leaf. Inside a
leaf, prefixes are stored alongside their prefix length and with

their NHI. The prefix length is coded with the number of bits
specified by the LSR field while the NHI is coded with 8 bits.

TABLE II
LEAF HEADER FIELD SIZES IN BITS

Header Field Size

Node type 2

Number of prefixes stored 4

LSR field 6

Pointer to remaining leaf entries 16

Prefix and NHI Value specified in the LSR field + 8

VII. RESULTS

SHIP performance is first evaluated using real prefixes, and
then with synthetic prefixes, for both the number of memory
accesses and the memory consumption.

A. Real Prefixes

The performance analysis is first made for the perfect
hash table used by the address block binning method. In
Table III, the memory consumption and the number of memory
accesses for the hash table are shown. The ABB method
uses between 19 kB and 24 kB, that is between 0.7 and 0.9
bytes per prefix byte for the real prefix tables evaluated. The
memory consumption is similar across all the scenarios tested
as prefixes share most of the 23 MSBs. On the other hand, the
number of memory accesses is by construction independent of
the number of prefixes used, and constant to 2.

TABLE III
MEMORY CONSUMPTION OF THE ADDRESS BLOCK BINNING METHOD FOR

REAL PREFIX TABLES

Scenario Hashing Table size (kB) Memory Accesses
rrc00 20 2

rrc01 19 2

rrc04 24 2

rrc05 19 2

rrc06 19 2

rrc07 20 2

rrc10 21 2

rrc11 20 2

rrc12 20 2

rrc13 22 2

rrc14 21 2

In Figures 5a and 5b, the performance of the HTTs is
evaluated respectively on the memory consumption and the
number of memory accesses. In both figures, 1 to 6 groups
are used for two-level prefix grouping. As a reference, the
performance of the HTT without grouping is also presented.

In Fig. 5a, the memory consumption of the HTTs ranges
from 1.36 to 1.60 bytes per prefix byte for all scenarios, while
it ranges between 1.22 up to 3.15 bytes per byte of prefix
for a single HTT. Thus, using two-level prefix grouping, the
overhead of the HTTs ranges from 0.36 to 0.6 byte per byte
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Fig. 5. Real prefix tables: impact of the number of groups on the memory
consumption (a) and the number of memory accesses (b) of the HTTs.

of prefix. However, a single HTT leads to an overhead of
0.85 on average, and up to 3.15 bytes per byte of prefix for
scenario rrc13. Thus, two-level grouping reduces the memory
consumption and smooths its variability, but it also reduces
the hybrid trie-tree overhead.

Fig. 5a shows that increasing the number K of groups up to
three reduces the memory consumption. However, using more
groups does not improve the memory consumption, and even
worsens it. Indeed, it was observed experimentally that when
increasing the value of K most groups hold very few prefixes,
leading to a hybrid trie-tree holding a single leaf with part of
the allocated node memory left unused. Thus, using too many
groups increases memory consumption.

It can be observed in Fig. 5b that the number of memory
accesses to traverse the HTTs ranges from 6 to 9 with two-
level prefix grouping, whereas it varies between 9 and 18
with a single HTT. So, two-level prefix grouping smooths the
number of memory accesses variability, but it also reduces on
average the number of memory accesses approximatively by
a factor 2.

However, increasing the number K of groups used by two-
level prefix grouping, from 1 to 6, yields little gain on the
number of memory accesses, as seen in Fig. 5b. Indeed, for
most scenarios, one memory access is saved, and up to two
memory accesses are saved in two scenarios, by increasing the
number K of groups from 1 to 6. Indeed, for each scenario,
the performance is limited by a prefix length that cannot be
divided in smaller sets by increasing the number of groups.
Still, using two or more groups, in the worst case, 8 memory
accesses are required for all scenarios. The performance is
similar across all scenarios evaluated, as few variations exist
between the prefix groups created using two-level grouping
for those scenarios.

B. Synthetic Prefixes

The complexity of the perfect hash table used for the address
block binning method is presented in Table IV with synthetic
prefix tables. It requires on average 2.7 bytes per prefix byte
for the 5 scenarios tested, holding from 29 k up to 580 k
prefixes. The perfect hash table used shows linear memory
consumption scaling. For the number of memory accesses, its
value is independent of the prefix table, and is equal to 2.

TABLE IV
COST OF BINNING ON THE FIRST 23 BITS FOR SYNTHETIC PREFIX TABLES

Prefix Table Size Hashing Table size (kB) Memory Accesses
580 k 1282 2

290 k 642 2

110 k 322 2

50 k 162 2

29 k 82 2

The performance of the HTTs with synthetic prefixes is
evaluated for the number of memory accesses, the memory
consumption, and the memory consumption scaling, respec-
tively in Fig. 6a, 6b, and 6c. For each of the three figures,
1 to 6 groups are used for two-level prefix grouping. The
performance of the HTT without grouping is also presented
in the three figures, and is used as a reference.

Two behaviors can be observed for the memory consump-
tion in Fig. 6b. First, for prefix tables with 290 k prefixes
and more, it can be seen that two-level prefix grouping used
with 2 groups slightly decreases the memory consumption
over a single HTT. Using this method with two groups, the
HTTs consumes between 1.18 and 1.09 byte per byte of
prefix, whereas the memory consumption for a single HTT
lies between 1.18 and 1.20 byte per byte of prefix. However,
increasing the number of groups to more than two does not
improve memory efficiency, as it was observed that most
prefix length sorting groups hold very few prefixes, leading to
hybrid trie-tree holding a single leaf, with part of the allocated
node memory that is left unused. Even though the memory
consumption reduction brought by two-level prefix grouping
over a single HTT is small for large synthetic prefix tables,
it will be shown in this paper that the memory consumption
remains lower when compared to other solutions. Moreover,
it will be demonstrated that two-level prefix grouping reduces
the number of memory accesses to traverse the HTT with the
worst case performance over a single HTT, for all synthetic
prefix table sizes. Second, for smaller prefix tables with up to
116 k prefixes, a lower memory consumption is achieved using
only a single HTT for two reasons. First, the synthetic prefixes
used have fewer overlaps and are more distributed than real
prefixes for small to medium size prefix tables, making two-
level prefix grouping less advantageous in terms of memory
consumption. Indeed, a larger number M of address block bins
has been observed compared to real prefix tables with respect
to the number of prefixes held the prefix tables, for small and
medium prefix tables. Thus, on average, each bin holds fewer
prefixes compared to real prefix tables. As a consequence, we
observe that the average and maximum number of prefixes



10

held in each PLS group is smaller for prefix tables holding up
to 116 k prefixes. It then leads to hybrid trie-trees where the
allocated leaf memory is less utilized, achieving lower memory
efficiency and lower memory consumption.
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Fig. 6. Synthetic prefix tables: impact of the number of groups on the number
of memory accesses (a), the memory consumption (b) and scaling (c) of the
HTTs.

In order to observe the memory consumption scaling of the
HTTs, Fig. 6c shows the total size of the HTTs using synthetic
prefix tables, two-level prefix grouping, and a number K of
groups that ranges from 1 to 6. The memory consumption of
the HTTs with and without two-level prefix grouping grows
exponentially for prefix tables larger than 116 k. However,
because the abscissa uses a logarithmic scale, the memory
consumption scaling of the proposed HTT is linear with and
without two-level prefix grouping. In addition, the memory
consumption of the HTTs is 4, 753 kB for the largest scenario
with 580 k prefixes, two-level prefix grouping, and K = 2.

Next, we analyze in Fig. 6a the number of memory ac-
cesses required to traverse the HTT leading to the worst-case
performance, for synthetic prefix tables, with two-level prefix
grouping using 1 to 6 groups. It can be observed that two-
level prefix grouping reduces the number of memory accesses

over a single HTT, for all the number of groups and all prefix
table sizes. The impact of two-level prefix grouping is more
pronounced when using two groups or more, as the number
of memory accesses is reduced by 40% over a single HTT.
Using more than 3 groups does not further reduce the number
of memory accesses as the group leading to the worst-case
scenario cannot be reduced in size by increasing the number of
groups. Finally, it can be observed in Fig. 6a that the increase
in the number of memory accesses for a search is at most
logarithmic with the number of prefixes, since each curve is
approximately linear and the x-axis is logarithmic.

The performance analysis presented for synthetic prefixes
has shown that two-level prefix grouping improves the per-
formance over a single HTT for the two metrics evaluated.
Although the performance improvement of the memory con-
sumption is limited to large prefix tables, using few groups,
the number of memory accesses is reduced for all prefix table
sizes and for all numbers of groups. In addition, it has been
observed experimentally that the HTTs used with two-level
prefix grouping have a linear memory consumption scaling,
and a logarithmic scaling for the number of memory accesses.
The hash table used in the address block binning method has
shown to offer a linear memory consumption scaling and a
fixed number of memory accesses. Thus, SHIP has a linear
memory consumption scaling, and a logarithm scaling for the
number of memory accesses.

VIII. DISCUSSION

This section first demonstrates that SHIP is optimized for a
fast hardware implementation. Then, the performance of SHIP
is compared with previously reported results.

A. SHIP hardware implementability

We demonstrate that SHIP is optimized for a fast hardware
implementation, as it complies with the following two proper-
ties; 1) pipeline-able and parallelizable processing to maximize
the number of packets forwarded per second, 2) use of a data
structure that can fit within on-chip memory to minimize the
total memory latency.

A data structure traversal can be pipelined if it can be
decomposed into a fixed number of stages, and for each stage
both the information read from memory and the processing
are fixed. First, the HTT traversal can be decomposed into
a pipeline, where each pipeline stage is associated to a HTT
level. Indeed, the next node to be traversed in the HTT depends
only on the current node selected and the value of the packet
header. Second, for each pipeline stage of the HTT both the
information read from memory and the processing are fixed.
Indeed, the information is stored in memory using a fixed
node size for both the adaptive-density trie and the reduced
D-Tree leaf. In addition, the processing of a node is constant
for each data structure and depends only on its type, as
presented in Section V-D. As a result, the HTT traversal is
pipeline-able. Moreover, the HTTs within the K PLS groups
are independent, thus their traversal is by nature parallelizable.
As a consequence, by combining a parallel traversal of the
HTTs with a pipelined traversal of each HTT, property 1 is
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fulfilled. The hash table data structure used for the address
block binning technique has been implemented in hardware in
previous work [4], and thus it already complies with property
1.

For the second property, SHIP uses 5.9 MB of memory for
580 k prefixes, with two-level prefix grouping, and K = 2 .
Therefore, SHIP data structure can fit within on-chip memory
of the current generation of FPGAs and ASICs [21]–[23].
Hence, SHIP fulfills property 2. As both the hash table used by
two-level prefix grouping, and the hybrid trie-tree comply with
properties 1 and 2 required for a fast hardware implementation,
SHIP is optimized for a fast hardware implementation.

B. Comparison with previously reported results

Table V compares the performance of SHIP and previous
work in terms of memory consumption and worst case memory
latency. If available, the time and space complexity are also
shown. In order to use a common metric between all reported
results, the memory consumption is expressed in bytes per
prefix, obtained by dividing the size of the data structure by
the number of prefixes used. The memory latency is based
on the worst-case number of memory accesses to traverse a
data structure. For the following comparison, it is assumed that
on-chip SRAM memory running at 322 MHz [2] is used, and
off-chip DDR3-1600 memory running at 200 MHz is used.

Using both synthetic and real benchmarks, SHIP requires
in the worst case 10 memory accesses, and consumes 5.9 MB
of memory for the largest prefix table, with 2 groups for two-
level prefix grouping. Hence, the memory latency to complete
a lookup with on-chip memory is equal to 10 · 3.1 = 31 ns.

FlashTrie has a high memory consumption, as reported in
Table V. The results presented were reevaluated using the
node size equation presented in [9] due to incoherence with
equations shown in [11]. This algorithm leads to a memory
consumption per prefix that is around 11× higher than the
SHIP method, as multiple copies of the data structure have
to be spread over DDR3 DRAM banks. In terms of latency,
in the worst case, two on-chip memory accesses are required,
followed by three DDR3 memory bursts. However, DRAM
memory access comes at a high cost in terms of latency for
the FlashTrie method. First, independently of the algorithm, a
delay is incurred to send the address off-chip to be read by the
DDR3 memory controller. Second, the latency to complete a
burst access for a given bank, added to the maximum number
of bank-activate commands that can be issued in a given period
of time, limits the memory latency to 80 ns and reduces
the maximum lookup frequency to 84 MHz. Thus, FlashTrie
memory latency is 2.5× higher than SHIP.

The FlashLook [8] architecture uses multiple copies of
data structures in order to sustain a bandwidth of 100 Gbps,
leading to a very large memory consumption compared to
SHIP. Moreover, the memory consumption of this architecture
is highly sensitive to the prefix distribution used. For the
memory latency, in the worst case, when a collision is detected,
two on-chip memory accesses are required, followed by three
memory bursts pipelined in a single off-chip DRAM, leading
to a total latency of 80 ns. The observed latency of SHIP is

61% smaller. Finally, no scaling study is presented, making it
difficult to appreciate the performance of FlashLook for future
applications.

The method proposed in [2] uses a tree-based solution that
requires 19 bytes per prefix, which is 78% larger than the
proposed SHIP algorithm. Regarding the memory accesses, in
the worst case, using a prefix table holding 580 k prefixes,
22 memory accesses are required, which is more than twice
the number of memory accesses required by SHIP. In terms
of latency, their implementation leads to a total latency of
90 ns for a prefix table holding 580 k prefixes, that is 2.9×
higher than the proposed SHIP solution. Nevertheless, similar
to SHIP, this solution has a logarithmic scaling factor in terms
of memory accesses, and scales linearly in terms of memory
consumption.

Finally, Tong et al. [4] present the CLIPS architecture [24]
extended to IPv6. Their method uses 27.6 bytes per prefix,
which is about 2.5× larger than SHIP. The data structure is
stored in both on-chip and off-chip memory, but the number of
memory accesses per module is not presented by the authors,
making it impossible to give an estimate of the memory
latency. Finally, the scalability of this architecture has not been
discussed by the authors.

These results show that SHIP reduces the memory con-
sumption over other solutions and decreases the total memory
latency to perform a lookup. It also offers a logarithmic scaling
factor for the number of memory accesses, and it has a linear
memory consumption scaling.

IX. CONCLUSION

In this paper, SHIP, a scalable and high performance IPv6
lookup algorithm, has been proposed to address current and
future application performance requirements. SHIP exploits
prefix characteristics to create a shallow and compact data
structure. First, two-level prefix grouping leverages the prefix
length distribution and prefix density to cluster prefixes into
groups that share common characteristics. Then, for each pre-
fix group, a hybrid trie-tree is built. The proposed hybrid trie-
tree is tailored to handle local prefix density variations using
a density-adaptive trie and a reduced D-Tree leaf structure.

Evaluated with real and synthetic prefix tables holding up
to 580 k IPv6 prefixes, SHIP builds a compact data structure
that can fit within current on-chip memory, with very low
memory lookup latency. Even for the largest prefix table,
the memory consumption per prefix is 10.64 bytes, with a
maximum number of 10 on-chip memory accesses. Moreover,
SHIP provides a logarithmic scaling factor in terms of the
number of memory accesses and a linear memory consumption
scaling. Compared to other approaches, SHIP uses at least 44%
less memory per prefix, while reducing the memory latency
by 61%.
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TABLE V
COMPARISON RESULTS

Method Memory Consumption Latency (ns) Complexity
(in bytes per prefix) Memory Consumption Memory latency

Tree-based [2] 19.0 90 O(N) O(log2(N)) ≤ Latency ≤ 2 ·O(log3(N))

CLIPS [4] 27.6 N/A N/A N/A

FlashTrie [11] 124.2 80 N/A N/A

FlashLook [8] 1010.0 90 N/A N/A

SHIP 10.64 31 O(N) O(log(N))
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