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Abstract—We consider the transmission of packets across a
lossy end-to-end network path so as to achieve low in-order
delivery delay. This can be formulated as a decision problem,
namely deciding whether the next packet to send should be an
information packet or a coded packet. Importantly, this decision
is made based on delayed feedback from the receiver. While an
exact solution to this decision problem is challenging, we exploit
ideas from queueing theory to derive scheduling policies based
on prediction of a receiver queue length that, while suboptimal,
can be efficiently implemented and offer substantially better
performance than state of the art approaches. We obtain a
number of useful analytic bounds that help characterise design
trade-offs and our analysis highlights that the use of prediction
plays a key role in achieving good performance in the presence
of significant feedback delay. Our approach readily generalises
to networks of paths and we illustrate this by application to
multipath transport scheduler design.

I. INTRODUCTION

In this paper we revisit the transmission of packets across

a lossy end-to-end network path so as to achieve low in-

order delivery delay. Consideration of end-to-end packet trans-

mission is motivated by improving operation at the transport

layer and with this in mind we also assume the availability of

feedback from client to server. This feedback is delayed by

the path propagation delay and, in contrast to the link layer,

this feedback delay may be substantial. For example, on a

50Mbps path with 25ms RTT there are around 100 packets

in flight and so the server only learns of the fate of a packet

after a further 100 packets have been sent. In other words,

the server has to make predictive decisions about what to

transmit in those 100 packets, in particular whether they are

information or redundant/coded packets. Information theory

tells us that we do not need to make use of feedback in order

to be capacity achieving in a packet erasure channel. However,

it also tells us that feedback can be used to reduce in-order

delivery delay, possibly very considerably [1]. More generally,

there is a trade-off between rate and delay, and feedback can

be used to modify this trade-off, and it is this which is of

interest.

While much attention in 5G has been focused on the

physical and link layers, it is increasingly being realised that a

wider redesign of network protocols is also needed in order to

meet 5G requirements. Transport protocols are of particular

relevance for end-to-end performance, including end-to-end

latency. For example, ETSI have recently set up a working

group to study next generation protocols for 5G [2]. The

requirement for major upgrades to current transport protocols

is also reflected in initiatives such as Google QUIC [3] and the

Open Fast Path Alliance [4] as well as by recent work such

as [5]. In part, this reflects the fact that low delay is already

coming to the fore in network services. For example, Amazon

estimates that a 100ms increase in delay reduces its revenue by

1% [6], Google measured a 0.74% drop in web searches when

delay was artificially increased by 400ms [7] while Bing saw a

1.2% reduction in per-user revenue when the service delay was

increased by 500ms [8]. But the requirement for low latency

also reflects the needs of next generation applications, such as

augmented reality and the tactile Internet.

As we will describe in more detail shortly, by use of

modern low-delay streaming code constructions, the task at the

transport layer can be formulated as one of deciding whether

the next packet to send should be an information packet

or a coded packet, with this decision being made based on

stale/delayed feedback from the receiver. The use of feedback

in ARQ has of course been well studied, but primarily in

the case of instantaneous feedback i.e. where there is no

delay in the server receiving the feedback. When feedback is

delayed the problem becomes significantly more challenging,

and has received almost no attention in the literature (notable

exceptions include [9], [10], [11]). While the decision task

can be formulated as a dynamic programming problem, the

complexity grows combinatorially with the delay1 and so

quickly becomes unmanageable for even quite small delays.

1In the presence of feedback delay d the state space of the dynamic
programme corresponds to the possible outcomes of the d packets in flight
(for which no feedback is yet available), the number of which grows
combinatorially with d.
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In particular, such solutions are unsuited to the real-time

decision-making required within next generation networks.

In this paper we take a different approach and make use of

a helpful connection between coding and queuing theory. We

use this connection to derive scheduling policies based on the

prediction of the receiver queue length that, while suboptimal,

can be efficiently implemented and offer substantially better

performance than state of the art solutions. This approach

also allows us to obtain a number of useful analytic bounds

that help characterise design trade-offs. Our analysis highlights

that the use of prediction plays a key role in achieving good

performance in the presence of significant feedback delay, and

that it is prediction errors that drive the rate-delay trade-off. To

the best of our knowledge this work is the first to make use of

prediction with delayed feedback. Although our main focus is

on single paths, our approach readily generalises to networks

of paths and we illustrate this by application to multipath

transport scheduler design.

II. RELATED WORK

The literature contains several different proposals for coding

schemes that make use of feedback. For instance, Sundarajan

et al. introduce in [12] a new linear coding scheme that

includes feedback. They exploit it so that the encoder learns

the packets that have been “seen” by the receivers, thus

speeding the decoding process. A similar approach, consid-

ering wireless multicast communications, is described in [13],

which proposes a joint coding/feedback scheme, scalable with

respect to the number of receivers. The authors of [14] propose

an extension of LT and Raptor Codes that adds information

feedback, with the objective of reducing the coding overhead.

Hagedorn et al. present in [15] a generalized LT coding

scheme that relies on feedback information. Other interesting

approaches include Hybrid ARQ [16], which combines a

forward error correction scheme with automatic repeat-request.

A recent work that promotes the use of Hybrid ARQ for low

latency and ultra reliable applications is, for example, that

from Cabrera et al [17].

However, most of the existing literature does not consider

the impact of feedback delay. Under circumstance with no

delayed feedback, it is well known that ARQ is optimal both

in terms of capacity and delay [9]. However, when feedback is

delayed the situation changes fundamentally, and the end-to-

end delay with ARQ can greatly increase. The use of coding

schemes can reduce this end-to-end delay, even when the

feedback delay is not small [9]. The importance of considering

feedback is also considered by [10], where the authors studied

how the performance of block-coding varies with and without

feedback, especially when considering the impact of delayed

feedback.

The analysis of coding schemes with delayed feedback

remains largely open. In [11] the authors study the through-

put and end-to-end delay of a variable-length block coding

scheme, focusing on regimes where the feedback delay was

shorter than the minimum block size. In addition, the authors

focus on saturated network conditions, where the sender has

an unlimited number of packets waiting to be sent.

u1 u2 uk c1 cn−k

(a) Systematic Block Code

u1 u2 c1 u3 u4 c2 uk cn−k

(b) Low Delay Code

Fig. 1: Example of two codes with different throughput-

delay characteristics. Shaded squares indicated coded packets,

unshaded indicate information packets.

III. PRELIMINARIES

A. Low Delay Streaming Codes

We model an end-to-end network path as a packet erasure

channel (packets carry a unique sequence number and a

checksum thus losses can be detected). Most previous works

on packet erasure channels have been based on use of block

codes, whereby the sequence of information packets to be

transmitted is partitioned into blocks of size k and n − k
coded packets are appended to these to create a block of size n
information plus coded packets, which implies a code with rate

k/n, see Fig. 1a. As already noted, the requirement for low

latency in next generation networks has led to renewed interest

in whether alternative code constructions can yield a more

favourable trade-off between throughput and in-order delivery

delay. To see that this may indeed be the case let us consider,

for example, a rate k
n systematic block code and suppose that

the code is an ideal one in the sense that receipt of any k of

the n packets allows all of the k information packets to be

reconstructed. Furthermore, assume that the first information

packet is lost. All remaining information packets have to be

buffered until the first coded packet is received. At this point,

the first information packet can be reconstructed and all of the

information packets can be delivered in-order. The in-order

delivery delay is therefore proportional to k. Alternatively,

suppose that the n−k coded packets are distributed uniformly

among the information packets, rather than all being placed

after the k information packets, see Fig. 1b. To keep the

code causal, suppose that each coded packet only protects the

preceding information packets in the block2. Assume again

that the first information packet is lost. This loss can now be

recovered on receipt of the first coded packet resulting in a

delay that is now proportional to k
n−k (i.e, this is much lower

than k when n is large).

With the aim of obtaining an improved trade-off between

rate and delay, [1] recently proposed an alternative code

construction for packet erasure channels, referred to as a

streaming code (a form of convolutional code). The code

is constructed by interleaving information packets uj , j =
1, 2, . . . with coded packets ci, i = 1, 2, . . .. One coded

packet is inserted after every l − 1 information packets and

transmitted over the network path, resulting in a code of rate

2Thus, coded packet c1 protects information packets u1 and u2, coded
packet c2 protects u1, u2, u3 and u4, and so on. Note that the resulting code
construction is not the same as using a short classical block code with k = 2

and n = 3 as then c2 would only protect u3 and u4.
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Fig. 2: Illustrating the low delay streaming code setup.

Sequence {uj} of information packets is interleaved with

sequence {ci} of coded packets (indicated as shaded) and

transmitted. Slots correspond to a single packet transmission

and are indexed 1, 2, . . ..
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Fig. 3: Example generator matrix for the low delay code with

sliding window showing the coefficients used to produce each

packet. In this example, we assume that the transmitter has

obtained knowledge from the receiver by time 10 indicating

that it has successfully received/decoded packets u1 and u2

allowing it to adjust the left-hand edge of the coding window

to exclude them from packet c2. Image adapted from [1].

l−1
l . Fig. 2 illustrates this code construction. Coded packet ci

can only recover an erasure of packets already transmitted and

it is generated by taking random linear combinations of the

previously transmitted information packets within the coding

window {uL, . . . , u(l−1)i}, where L represents the first packet

protected, the coding window could be reduced by setting L
as the last packet acknowledged by the receiver. With the left-

hand edge of the coding windows equals to 1 (L = 1) a coded

packet is generated by:

ci = fi(u1, u2, . . . , u(l−1)i) :=

(l−1)i
∑

j=1

wijuj (1)

where each information packet uj is treated as a vector in

FQ and each coefficient wij ∈ FQ is chosen randomly from

an i.i.d. uniform distribution, with F an appropriate choice of

finite field, for instance GF (28).
Note that in practice the left-hand edge L of the coding

window can made be larger than 1. In particular, suppose that

the receiver has received or decoded all information packets

up to and including packet uj . Feedback can be used to com-

municate this to the transmitter allowing it to use L = j + 1
for all subsequent coded packets. The generator matrix shown

in Fig. 3 illustrates this sliding window approach, where the

columns indicate the information packets that need to be sent

and the rows indicate the composition of the packet transmitted

at any given time.

The receiver decodes on-the-fly once enough pack-

ets/degrees of freedom have been received. In more detail, the

receiver maintains a generator matrix Gt at time t, which is

similar to that shown in Fig. 3 except that it is composed only

of the coefficients obtained from received packets. If Gt is

full rank, Gaussian elimination is used to recover from any

packet erasures that may have occurred during transit. We

will make the standing assumption that the field size Q is

sufficiently large that with probability approaching one each

coded packet helps the receiver recover from one information

packet erasure i.e. each coded packet row added to generator

matrix Gt increases the rank of Gt by one.

In summary, this streaming code construction generates

coded packets that are (i) individually streamed between

information packets (rather than being transmitted in groups

of size n− k packets) and (ii) each coded packet protects all

preceding information packets (rather than just the information

packets within its block). See [1] for a detailed analysis of the

throughput and delay performance of this code, but for a given

code rate it is easy to see that this code construction tends

to decrease the overall in-order delivery delay at the receiver

compared to a block code, as illustrated in the example above.

B. Decision Problem

Our interest in the above streaming code construction

is twofold. Firstly, for a given coding rate under a wide

range of conditions it offers lower in-order deliver delay

compared to standard block codes [1]. Thus it provides a

useful starting point for developing methods for low delay

transmission across lossy network paths. Secondly, it lends

itself to being embedded within a clean decision problem.

Namely, one where rather than transmitting coded packets

periodically according to a predetermined schedule, at each

transmission opportunity the transmitter dynamically decides

whether to send an information packet or a coded packet based

on feedback from the receiver3.

Formally, assume a time-slotted system where each slot cor-

responds to transmission of a packet. We have an arrival pro-

cess consisting of a sequence of information packets {Ak, k =
1, 2, . . .}, where Ak ∈ {0, 1} is the number of new informa-

tion packets in slot k, and define ā := limk→∞
1
k

∑k
i=1 Ai as

the average arrival rate. These information packets are buffered

at the transmitter and then sent across a lossy path to a receiver.

The queue occupancy Qt
k at the transmitter4 in slot k behaves

according to:

Qt
k+1 = [Qt

k +Ak − Sk]
+ (2)

3Use of block codes leads to a significantly more complex decision problem.
To see this observe that losing more than n−k packets within a block requires
transmission of additional coded packets from that block in order to avoid a
decoding failure. These are then received interleaved with later blocks. Thus
we lose the renewal structure of open-loop block code constructions and the
decision-maker needs to (i) keep track of multiple generations of interleaved
blocks, each perhaps of a different size, and (ii) decide from which block to
send a coded packet as well as deciding whether to send an information or
coded packet.

4Note that packets dequeued from Qt are held in an encoding buffer at the
transmitter until the receiver has signalled that they have been successfully
received and so the left-hand edge L in (1) can be updated, see earlier
discussion.
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Tx Rx

Feedback delay d

a p

Fig. 4: Schematic of the decision problem setup. Packets arrive

at Tx with mean rate ā, are transmitted from Tx to Rx and

may be erased with probability p. Rx informs Tx of its state

via feedback, which is delayed by d slots.

where Sk ∈ {0, 1} is the number of information packets trans-

mitted in slot k and Qt
1 = 0. We let s̄ := limk→∞

1
k

∑k
i=1 Si

denote the average transmit rate.

Define a random variable Xk, which takes value 1 when

a packet transmitted in slot k is erased and 0 otherwise. We

will assume the sequence of random variables {Xk} is i.i.d.

Xk ∼ X with Prob (X = 1) = p, and that when p = 0 then

Xk = 0 for all k (so as k → ∞ the occurrence of a non-zero

but finite number of losses is excluded).

Received packets are buffered at the receiver until they can

be delivered in-order to an application i.e. when an informa-

tion packet is erased then subsequently arriving information

packets are buffered until the lost packet can be recovered.

A coded packet sent in slot k is built as the random linear

combination of all information packets sent before slot k. In

each slot k the receiver also sends feedback to the transmitter,

informing of the packets already received as of slot k. This

feedback arrives at the transmitter after delay d, in slot k+d. It

is assumed, for simplicity, that none of these feedback packets

are lost.

Fig. 4 illustrates this problem setup. In each slot k the

transmitter has the choice of (i) doing nothing, (ii) sending the

information packet at the head of the transmitter queue, or (iii)

sending a coded packet. Our task is to solve the transmitter

decision problem while satisfying a number of constraints:

both the transmitter and receiver queues are stabilized, the link

capacity is respected, and the buffering delay at the receiver

is kept small.

IV. LOW DELAY SCHEDULING POLICIES

A. Introduction

When the feedback delay is zero then the decision problem

in Fig. 4 is akin to ARQ, which of course has been well studied

and for which fairly complete results are known. However,

situations where the feedback delay is non-zero have received

far less attention in the literature. In part this is because

most work has focussed on the link layer where feedback

delays are low, plus it is well known that open-loop block

codes (which do not use feedback) are capacity achieving.

And in part this is because of the complexity of the decision

problem with delayed feedback, which grows combinatorially

with the feedback delay. As already noted, next generation

transport protocols seek to achieve low delay transmission

over end-to-end paths. This means that they are required to

operate with significant delays before feedback is received.

This, together with our observation in Section III-B that the

low delay streaming code construction in Section III-A lends

itself to the use of feedback to make more refined decisions

as to when to send coded packets, motivates revisiting the

analysis and design of schedulers using delayed feedback.

A basic difficulty is that the complexity of deciding on

an optimal packet schedule grows exponentially with the

feedback delay. This means that optimal decision-making

quickly becomes unmanageable for real-time operation. Ad

hoc heuristic approaches are of course possible, but they

typically remain difficult to analyze and come with few

performance guarantees. To make progress we make use of

the observation that the decoding process at the receiver can

be modelled using a queueing approach. Namely, information

packets arriving at the receiver are delivered in-order to an

application until an information packet is lost, at which point

subsequent information packets are buffered until the lost

packet can be recovered. Each arriving coded packet can

repair the loss of any one preceding information packet, with

decoding taking place once the number of received coded

packets matches the number of erased information packets.

We thus define a virtual queue at the receiver, with occupancy

Qr
k, which behaves according to:

Qr
k+1 = [Qr

k + Sk ·Xk − Ck(1−Xk)]
+ (3)

where Xk = 1 when packet k is erased (lost) and 0 otherwise,

Sk = 1 when an information packet is sent in slot k, Ck = 1
if a coded packet is sent, while Ck = Sk = 0 when no

transmission is made. The queue occupancy Qr
k increases

whenever an information packet is deleted and decreases if a

coded packet is successfully received. Decoding events occur

at slots k where Qr
k = 0. While low queue occupancy is, by

itself, no guarantee of low decoding delay, in practice it tends

to encourage frequent emptying of the virtual queue and so

short decoding delay.

Intuitively, the length of this virtual queue is correlated with

the in-order delivery delay at the receiver – as Qr
k grows the

number of information packets buffered at the receiver will

also tend to grow. The relationship is not one to one, and we

explore it further in the next section, but as we will see it is

sufficient to form the basis of simple yet effective scheduling

policies. Importantly, by taking this approach we are able to

obtain bounds on delay and rate which can be used for analysis

and design.

B. Relating Delay and Queue Occupancy

We proceed by considering in more detail the relationship

between end-to-end in-order delivery delay, the transmitter

queue occupancy Qt
k and the receiver virtual queue occupancy

Qr
k. First, observe that the end-to-end delay can be divided

into: (i) the time between being enqueued at the sender and

being first transmitted, Dqt, and (ii) the time between being

first transmitted and when the packet is successfully delivered

to the application layer, Dqr. We expect that Dqt is related to

Qt
k and Dqr with Qr

k, and indeed this can be seen in Fig. 5.

This figure plots the average of the delays, after repeating
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Fig. 5: Impact of queue lengths Qt
k and Qr

k on the average

delay at the transmitter, Dqt, and the receiver, Dqr. In this

experiment, erasure rate is p = 0.2, arrival rate is a = 0.7.

the experiment 100 times, Dqt and Dqr per packet Vs. the

queue occupancies Qt
k and Qr

k over a path with erasure rate

p = 0.2 and with coded packets sent periodically every

p/(1 − p) information packets. Also indicated is the 95%

confidence interval. The strong correlation between delay and

queue occupancy is clearly evident. Further, it can be seen

that the impact of the receiver queue occupancy Dqr on delay

is much larger than that of the transmitter queue Dqt. This

is perhaps to be expected, since a loss causes all subsequent

information packets to be delayed at the receiver until the loss

is repaired and decoding takes place (Qr
k becomes zero), hence

amplifying the effect of a non-zero queue occupancy Qr
k on

delay. Although the data in Fig. 5 is for a particular choice of

loss and arrival rate it is representative of the behaviour seen

for other choices.

C. Transmission Policies

Based on the insight provided by the above analysis we

consider the following class of transmission policies:

Ck ∈ arg min
C∈{0,1}

F (Qr
k−d, Q̂

r
k, Q

t
k)C (4)

Q̂r
k = θ̂(Qr

k−d) (5)

Sk = min{Qt
k +Ak, 1− Ck} (6)

where function F (·) is a design parameter, which we will

discuss in more detail shortly. Observe that selection of Ck

uses only information available at the sender at time k. Since

Sk = min{Qt
k + Ak, 1 − Ck}, an information packet is

transmitted when (i) 1 − Ck = 1, and (ii) the transmission

queue contains a packet to be sent. Furthermore, Qr
k−d is only

available at the sender after feedback delay d. We will focus

on the estimator

Q̂r
k = θ̂(Qr

k−d) = Qr
k−d +

k−1
∑

j=k−d

(Sjp− Cj(1− p)) (7)

which simplifies to θ̂(Qr
k−d) = Qr

k when the feedback delay

d = 0. This estimator makes a d-step ahead prediction of

the value of Qr
k based on Qr

k−d and the average path loss

p. We will consider the impact of the accuracy of estimator

predictions in more detail shortly. Other choices of estimator
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(a) Packet delay vs. ǫ (d = 0)
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(b) Packet delay vs. feedback delay d (ā = 0.8)

Fig. 6: Comparison of packet delay vs. arrival rate ǫ = 1−p−ā
and feedback delay d for ARQ F (Qr

k−d, Q̂
r
k, Q

t
k) = −Qr

k−d

system and F (Qr
k−d, Q̂

r
k, Q

t
k) = ρQt

k −Qr
k−d. Loss rate p =

0.1, Qr
k−d = Qr

k

are of course possible, but (7) has the virtues of simplicity and

tractability.

This class of transmission policies includes ARQ and open-

loop FEC as special cases. Namely, when F (Qr
k−d, Q̂

r
k, Q

t
k) =

−Q̂r
k and d = 0, then Ck = 1 when Qr

k > 0 i.e. a coded packet

is sent whenever the receiver reassembly queue is non-empty.

Since for code construction considered this coded packet will

actually be an information packet, we have ARQ. Similarly,

selecting F (Qr
k−d, Q̂

r
k, Q

t
k) = −(Q̂r

k−Qr
k−d) then as d → ∞

we recover the open-loop FEC in [1], whereby a coded packet

is sent every p/(1−p) information packets. To see this, observe

that Ck = 1 when Q̂r
k − Qr

k−d = p(
∑k−1

j=k−d(Sj − Cj(1 −
p)/p) > 0.

Recall from Section IV-B that the delay is much more

strongly affected by the receiver queue occupancy Qr than by

the transmitter queue occupancy Qt. With this in mind, Fig. 6

compares the end-to-end system delay for different trans-

mission policies. First, we take ARQ as a baseline scheme,

comparing it with F (Qr
k−d, Q̂

r
k, Q

t
k) = ρ ·Qt

k − Q̂r
k, where ρ

is a configuration parameter that modulates the weight given

to the transmission queue length. As can be seen, the more

weight that is given to Qt (higher ρ), the longer the end-to-

end system delay. This suggests that we should favour policies

P such that:

Ck ∈ arg min
C∈{0,1}

(−Q̂r
k + γ)C (8)

Q̂r
k = θ̂(Qr

k−d) (9)

Sk = min{Qt
k +Ak, 1− Ck} (10)
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where γ ≥ 0 is a design parameter. Observe that this class

of policies corresponds to a threshold rule, namely Ck = 1
when Q̂r

k − γ > 0 and Ck = 0 otherwise. As noted above,

when d = 0 and γ = 1 this transmission policy reduces to

ARQ, while when d → ∞ then it reduces to open-loop FEC.

That is, in these two boundary cases this transmission policy

reverts to the state of the art.

D. Estimator Accuracy

Before proceeding to analyse transmission policy P we first

derive some bounds on the accuracy of estimator (7) that will

prove useful later.

The following lemma is a restatement of [18, Proposition

3.1.2],

Lemma 1 (Queue Continuity). Consider queue updates

qk+1 = [qk + ωk]
+ and q̃k+1 = [q̃k + ω̃k]

+ where q1 =
q̃1 ≥ 0 and ωk, ω̃k ∈ R are the queue increments. Suppose

|
∑k

i=1 ωi − ω̃i| ≤ δ/2 for all k and some δ ≥ 0. Then

|qk − q̃k| ≤ δ, k = 1, 2, . . . .

Applying Lemma 1 to Qr
k and Q̂r

k then ωk = SkXk −

Ck(1 −Xk), ω̃k = Skp − Ck(1 − p) and
∑k

i=1(ωi − ω̃i) =
∑k−1

j=k−d(Sj + Cj)(Xj − p). Since Xj ∈ {0, 1} and 0 ≤
Sj + Cj ≤ 1 then

−dp ≤

k
∑

i=1

(ωi − ω̃i) =≤ d(1− p) (11)

Hence,

|Qr
k − Q̂r

k| ≤ δ = 2dmax{p, 1− p} (12)

We can obtain sharper bounds on
∑k−1

j=k−d(Xj −p) by taking

more advantage of the fact that Xj is a random variable. For

example, when losses are i.i.d then the {Xj} are also i.i.d. and

we can use Hoeffding’s inequality [19] applied to Bernoulli

random variables to obtain

Prob
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≥ ǫdp



 ≤ 2e−2ǫ2d (13)

where ǫ > 0. It follows immediately that Prob(|Qr
k − Q̂r

k| ≥

δ) ≤ 2e−2(δ/2dp)2d and so

|Qr
k − Q̂r

k| ≤ δ = 2p

√

d

2
log

(

2

1− q

)

(14)

with probability at least q. The bound (14) is generally

substantially sharper than bound (12), as can be seen in Fig.

7.

E. Bounding Virtual Receiver Queue

Armed with these bounds on estimator accuracy we are now

in a position to bound the receiver queue occupancy (recall that

we have already seen that the end-to-end delay mostly depends

on the receiver queue occupancy). The following establishes

that for the class of policies P with estimator (7) we can upper

bound the queue length by γ + δ + 1,

20 40 60 80 100
0

50

100

d (# slots)

Q
u
eu

e
si

ze
(#

p
k
ts

)

Experimental

Worst case bound

Hoeffdings bound

Fig. 7: Comparing the bounds on |Qr
k − Q̂r

k| obtaining using

worst-case analysis (12) and using Hoeffding’s inequality (14)

(with q = 0.9). Loss rate p = 0.6.

Theorem 1. Consider transmission policy P using estimator

(7). Suppose estimate Q̂r
k satisfies Qr

k−Q̂r
k ≤ δ, k = 1, 2, . . . .

When 0 < p < 1 then Qr
k converges almost surely to the

interval 0 ≤ Qr
k ≤ γ + δ + 1 as k → ∞.

Proof. Since Q̂r
k = Qr

k−d +
∑k−1

j=k−d(Sjp− Cj(1− p)) then

Q̂r
k+1 =Q̂r

k + (Qr
k−d+1 −Qr

k−d)

+ (Sk − Sk−d)p− (Ck − Ck−d)(1− p) (15)

Now Qr
k−d+1 − Qr

k−d = [Qr
k−d + Sk−dXk−d − Ck−d(1 −

Xk−d)]
+ − Qr

k−d = Sk−dXk−d − Ck−d(1 − Xk−d) when

Qr
k−d ≥ 1. Hence,

Q̂r
k+1 =Q̂r

k + (Xk−d − p)(Sk−d + Ck−d)

+ Skp− Ck(1 − p) (16)

when Qr
k−d ≥ 1. Conversely, when Qr

k−d < 1 then Qr
k−d = 0

since it is non-negative and integer valued. Hence, Qr
k−d+1 −

Qr
k−d = [Sk−dXk−d −Ck−d(1−Xk−d)]

+ = Sk−dXk−d and

Q̂r
k+1 =Q̂r

k + (Xk−d − p)(Sk−d + Ck−d)

+ Skp− Ck(1− p) + Ck−d(1−Xk−d) (17)

We proceed by considering the following two cases.

Case (i): −γ + Q̂r
k ≥ 1. Since −γ + Q̂r

k > 0 then Ck =
1, Sk = 0. When Qr

k−d ≥ 1 then (16) applies and since −γ+

Q̂r
k ≥ 1 then −γ + Q̂r

k+1 = −γ + Q̂r
k + ∆1

k with ∆1
k :=

(Xk−d − p)(Sk−d + Ck−d) − (1 − p) ≤ 0. Similarly, when

Qr
k−d < 1 then −γ + Q̂r

k+1 = −γ + Q̂r
k + ∆2

k with ∆2
k :=

(Xk−d−p)(Sk−d+Ck−d)− (1−p)+Ck−d(1−Xk−d)) ≤ 0.

Therefore,

−γ + Q̂r
k+1 ≤ −γ + Q̂r

k (18)

Observe that ∆1
k is strictly less than zero when Xk−d = 0 and

∆2
k is strictly less than zero when Xk−d = 0 and Ck−d = 0.

By assumption 0 < p = Prob(Xk = 1) < 1 and Xk−d, ∀k
are independent of Q̂r

k. Hence if −γ + Q̂r
k ≥ 1 persists then,

with probability one, a slot will occur where Xk−d = 0 and

so ∆1
k < 0. Further, when −γ + Q̂r

k ≥ 1 and Qr
k−d < 1

then
∑k−1

j=k−d(p − Cj) =
∑k−1

j=k−d(Ŝjp − Cj(1 − p)) ≥
∑k−1

j=k−d(Sjp − Cj(1 − p)) > 1 + γ. Since p < 1 and
∑k−1

j=k−d(p − Cj) > 0 it follows that Cj = 0 for at least

⌈d(1 − p)⌉ of the slots in the sum. Therefore, regardless of
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(Sk−d + Ck−d), with positive probability over any d slots a

slot will occur where Xk−d = 0, Ck−d = 0 and ∆2
k < 0.

Case (ii) −γ + Q̂r
k ≤ 1. We now have two subcases to

consider:

(a) When 0 ≤ −γ + Q̂r
k ≤ 1, then Ck = 1 and Sk = 0. By

update (16) Q̂r
k+1 = Q̂r

k+(Xk−d−p)(Sk−d+Ck−d)−

(1−p) ≤ Q̂r
k−1+p and by update (17) Q̂r

k+1 = Q̂r
k+

(Xk−d−p)(Sk−d+Ck−d)−(1−p)+Ck−d(1−Xk−d) ≤
Q̂r

k. Hence, Q̂r
k+1 ≤ Q̂r

k and, therefore, −γ+ Q̂r
k+1 ≤ 1

(b) When −γ + Q̂r
k ≤ 0 then Sk ∈ 0, 1 and Ck = 0. By

update (16) Q̂r
k+1 = Q̂r

k+(Xk−d−p)(Sk−d+Ck−d)+

pSk ≤ Q̂r
k+p and by update (17) Q̂r

k+1 = Q̂r
k+(Xk−d−

p)(Sk−d +Ck−d) + pSk +Ck−d(1−Xk−d) ≤ Q̂r
k + 1.

Therefore, −γ + Q̂r
k+1 ≤ 1

We have that −γ + Q̂r
k+1 never increases and strictly

decreases with positive probability when −γ + Q̂r
k > 1. And

when −γ + Q̂r
k ≤ 1 then −γ + Q̂r

k+1 never goes above 1.

Hence, we can conclude that Q̂r
k converges almost surely

and that it is indeed upper bounded by −γ + Q̂r
k+1 ≤ 1

i.e. Q̂r
k+1 ≤ γ + 1. Since Qr

k − Q̂r
k ≤ δ it follows that

Qr
k ≤ Q̂r

k+ δ ≤ γ+1+ δ, and the stated interval now follows

from the fact that Qr
k ≥ 0.

Importantly, observe that the bound in Theorem 1 is in

terms of the instantaneous queue length Qr
k and applies to

every sample path. It is therefore much stronger than a bound

on the average queue length. One immediate consequence of

this, for example, is that the requirement that the estimator

is accurate in the sense that Qr
k − Q̂r

k ≤ δ can be relaxed

to one that this only holds with a given probability q. The

bound in the Theorem 1 then applies to those sample paths

for which the estimator is sufficiently accurate i.e. also applies

with probability q. For example, using this observation we can

immediately use the Hoeffding’s bound on estimator accuracy

(14) to select a value for δ.

From Theorem 1 it can be seen that the maximum queue

length Qr
k, and so delay, tends to increase with design param-

eter γ. Hence, to minimise delay we should choose parameter

γ small. This is also confirmed by simulation, e.g. see Figure

8 which plots delay vs traffic load for various values of γ.

Bound (14) tells us that the maximum queue length also tends

to increase with the feedback delay d and with loss rate p,

although no more than linearly in both.

F. Impact of Imperfect Prediction: Rate Sub-Optimality

Transmission policies P use estimator θ̂(·) to make a d-step

ahead prediction of Qr
k. As discussed in more detail later, use

of prediction lowers delay. However, inevitably, this estimator

will make mistakes when predicting Qr
k due to the uncertainty

in the fate of the packets “in flight”, i.e. those transmitted but

not yet acknowledged. When Q̂r
k ≥ γ and Qr

k = 0 then the

scheduler will send extra coded packets that are not useful

(since Qr
k = 0 there are no outstanding losses at the receiver).

Prediction errors therefore translate into a loss in capacity,

since these extra coded packets replace information packets

that would have otherwise have been sent.
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Fig. 8: Delay vs traffic load ā for various values of γ (feedback

delay d = 100, packet loss rate 0.2 so the maximum feasible

traffic load is 0.8).

1) Capacity Achieving Transmission Policies: We begin

introducing the following technical Lemma,

Lemma 2. Suppose E[Sk|Q̂
r
k] ≥ ǫ > 0 when Q̂r

k ≤ γ. Then

γ − (1− p) ≤ E[Q̂r
k+1] ≤ γ + p.

Proof. Recall (16),

Q̂r
k+1 =Q̂r

k + (Xk−d − p)(Sk−d + Ck−d)

+ Skp− Ck(1 − p) (19)

when Qr
k−d ≥ 1 and (17),

Q̂r
k+1 =Q̂r

k + (Xk−d − p)(Sk−d + Ck−d)

+ Skp− Ck(1− p) + Ck−d(1−Xk−d) (20)

when Qr
k−d < 1. Since Ck−d(1−Xk−d) ≥ 0 it follows that:

Q̂r
k+1 ≥Q̂r

k + (Xk−d − p)(Sk−d + Ck−d)

+ Skp− Ck(1 − p) (21)

for all values of Qr
k−d and taking expectations with respect to

the packet arrival and loss processes,

E[Q̂r
k+1|Q̂

r
k] ≥ Q̂r

k + E[Sk|Q̂
r
k]p− E[Ck|Q̂

r
k](1− p) (22)

where we have used the fact that Xk−d is independent of Sk−d

and Ck−d. We proceed by considering the following two cases.

Case (i): −γ + Q̂r
k ≤ 0. Then Ck = 0, and Sk ∈ 0, 1:

−γ + E[Q̂r
k+1|Q̂

r
k] ≥ −γ + Q̂r

k + E[Sk|Q̂
r
k]p (23)

Since E[Sk|Q̂
r
k] ≥ ǫ > 0, then it follows that −γ +

E[Q̂r
k+1|Q̂

r
k] is strictly increasing and −γ + Q̂r

k ≤

E[Sk|Q̂
r
k]p ≤ p.

Case (ii):−γ + Q̂r
k > 0. Then Ck = 1, Sk = 0, and:

−γ + E[Q̂r
k+1|Q̂

r
k] ≥ −γ + Q̂r

k − (1 − p) (24)

and −γ + E[Q̂r
k+1|Q̂

r
k] is strictly decreasing and −γ +

E[Q̂r
k+1|Q̂

r
k] > −(1− p).

Hence, when −γ + E[Q̂r
k+1|Q̂

r
k] is outside the interval

[−(1 − p), p] then is is strictly attracted to this interval, and

once it is within it, it stays there. The latter holds regardless

of the values of Q̂r
k and so we have that −(1 − p) ≤

−γ + E[Q̂r
k+1] ≤ p as claimed.

The following theorem bounds the capacity loss induced by

prediction errors:
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Theorem 2. Suppose estimate Q̂r
k satisfies |Q̂r

k − Qr
k| ≤ δ

for some δ ≥ 0 and E[Sk|Q̂
r
k] ≥ ǫ > 0 when Q̂r

k ≤ γ. Then

E[ŝk] ≥ (1−p)−(12 +δ+(1+δ)(1−p))/γas k → ∞, where

ŝk := 1
k

∑k
i=1 Ŝi and Sk ≤ Ŝk = 1− Ck.

Proof. We have that

(Qr
k+1)

2 = ([Qr
k + Sk − (1−Xk)]

+)2 (25)

≤ ([Qr
k + Ŝk − (1−Xk)]

+)2 (26)

≤ (Qr
k + Ŝk − (1−Xk))

2 (27)

= (Qr
k)

2 + 2(Ŝk − (1−Xk))Q
r
k

+ (Ŝk − (1−Xk))
2 (28)

Applying this recursively we have, (Qr
k+1)

2 ≤ (Qr
1)

2 +

2
∑k

i=1(Ŝi − (1−Xi))Q
r
i +

∑k
i=1(Ŝi − (1−Xi))

2. That is,

1

k

k
∑

i=1

(Ŝi − (1−Xi))Q
r
i ≥ −η −

1

2
(29)

since 0 ≤ (Ŝi− (1−Xi))
2 ≤ 1, where η := 1

2k (Q
r
1)

2. Adding

and subtracting γ( 1k
∑k

i=1 Ŝi − (1− p)) to the LHS yields:

1

k

k
∑

i=1

((−γ +Qr
i )Ŝi − (1−Xi)(Q

r
i − γ))

+ γ(ŝk − (1 − xk)) ≥ −η −
1

2
(30)

where xk := 1
k

∑k
i=1 Xi.

The scheduler selects Ŝi ∈ argminS∈{0,1}(−γ + Q̂r
i )S.

When Q̂r
i ≥ γ then Ŝi = 0 and otherwise Ŝi = 1. Hence,

(−γ + Q̂r
i )Ŝi ≤ 0 for all i = 1, 2, . . . and so 1

k

∑k
i=1(−γ +

Q̂r
i )Si ≤ 0. Since |Q̂r

k − Qr
k| ≤ δ and Ŝi ∈ {0, 1} then

− 1
k

∑k
i=1(−γ +Qr

i )Ŝi ≥ −δ. Combining this with (30) and

taking expectation over the loss and arrival processes yields

γ(E[ŝi]− (1− p) ≥
1

k

k
∑

i=1

(1− p)(E[Qr
i ]− γ)− η −

1

2
− δ

(31)

where we have used the fact that Xi is independent of Qr
i .

By Lemma 2 and the fact that |Q̂r
k − Qr

k| ≤ δ we have that

E[Qr
i ]− γ ≥ −1− δ. Combining this with (31) yields

γ(E[si]− (1− p)) ≥ −(1 + δ)(1 − p)− η − δ −
1

2
(32)

and the claimed result now follows by rearranging and using

the fact that η → 0 as k → ∞.

Theorem 2 says that as parameter γ → ∞ the transmission

slots E[Ŝk] available for sending information packets tends

to the path capacity 1 − p. That is, the transmission policy

is capacity achieving as γ → ∞. The requirement that

E[Sk|Q̂
r
k] ≥ ǫ > 0 when Q̂r

k ≤ γ excludes transient arrival

processes (for instance when packets arrive for a period of time

and then no further arrivals happen) and is satisfied when, for

example, the packet arrival process is ergodic and independent

of the receiver queue.

2) Estimating Rate Sub-Optimality For Small γ: Lemma 2

tells us that for γ large enough our scheduler is achieving, even

where the feedback delay, d, is greater than zero. However,

this is not as comforting as it might seem at first sight since

Theorem 1 also tells us that large γ can lead to a large

receiver queue and so large decoding delays. By taking a

different analysis approach, however, we can obtain fairly good

estimates of the capacity loss induced by prediction errors

when γ is small. These estimates indicate that the capacity

loss is moderate.

Recall that under transmission policy P , when Q̂r
k > γ

then a coded packet is transmitted. However, if Qr
k = 0 then

this coded packet is not useful, since there is no outstanding

receiver queue i.e. no outstanding packet loss that bound

benefit from the coded packet. Defining random variable Rk

which takes value 1 when Q̂r
k > γ and Qr

k = 0 and 0 otherwise

then r̄ = 1
K limK→∞

∑K
k=1 Rk is the transmission rate for

redundant coded packets. We would like to estimate r̄.

To proceed we make the following simplifying assumptions:

(i) feedback is only received every d slots, (ii) either an

information packet or a coded packet is transmitted in every

slot, (iii) γ = 0, and (iv) Qr
k = 0 for k = id+1, i = 0, 1, . . . .

The assumptions mean that we have less knowledge of the

decoder status and so expect the number of redundant packets

transmitted to be larger i.e. we expect our estimate of r to be

larger than the true value. Also, assumption (iv) implies that

after d slots we

By assumption (i), at slots k = id + 1, i = 0, 1, . . . we

perform update

Q̂r
k−d = Qr

k−d +

k−1
∑

j=k−d

(Sjp− Cj(1− p)) (33)

(a)
= Qr

k−d + dp−
k−1
∑

j=k−d

Cj ≤ Qr
k−d + dp (34)

where in step (a) we have used assumption (ii) that Sj +
Cj = 1. By assumptions (iii) and (iv), over the next d slots

{k + 1, . . . , k + d} then at most ⌈dp⌉ coded packets will be

sent (fewer packets may be sent depending on the sample path

Sj , Cj , j ∈ {k − d, . . . , k} and when the threshold γ > 0).

Letting Uk =
∑k−1

j=k−d SjXj denote the number of erased in-

formation packets then the number of redundant coded packets

transmitted over slots {k + 1, . . . , k + d} is upper bounded

by max{0, ⌈dp⌉ − Uk}. Letting ak =
∑k−1

j=k−d Sj denote the

number of information packets sent over slots {k− d, . . . , k}
then Uk is distributed as Prob(Uk = u) = B (dak, p, u), where

B is the Binomial distribution. Approximating dak by ⌊dā⌋
then an estimate of the number of redundant coded packets

transmitted over interval {k + 1, . . . , k + d}, normalised by

the interval duration d, is

r̂ =

⌈dp⌉
∑

u=0

⌈dp⌉ − u

d
B (⌊d · ā⌋, p, u) (35)

Despite the assumptions made in deriving (35), empirical

tests indicate that the estimator is nevertheless quite accurate.

For example, Fig. 9 compares estimate r̂ with the measured
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Fig. 9: Rate of transmitting dummy packets, simulation results

and analytic estimate.

average number of redundant packets transmitted r̄ as the

feedback delay and loss rate p is varied. It can be seen that

r̂ is essentially an upper bound on r̄, and while it becomes

less accurate as the loss rate p increases it stays reasonably

close to the true value. Observe also that in Fig 9c the mean

rate a = 0.6 of packet arrivals is significantly less than the

path capacity 1 − p = 0.9 and so assumption (ii) (persistent

queue backlog at the transmitter) is violated, nevertheless the

estimate r̂ remains accurate.

These results in Fig. 9 indicate that the capacity loss due to

the transmission of redundant packets generally stays below

5%. However, observe also that when the delay d is less than

the reciprocal of the loss rate 1/p then no redundant packets

are sent i.e. r̄ = 0. This behaviour is accurately captured by

r̂ (since ⌈dp⌉ = 1 when d < 1/p in (35)). Hence, on links

with lower loss larger feedback delays can be tolerated without

incurring redundant packet transmissions e.g. for p = 0.01 (a

typical path loss rate in the Internet) feedback delays of up to

100 slots yield r̄ = 0.
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Fig. 10: End-to-end delay vs feedback delay (d) for ARQ and

various coding approaches. Configuration parameters are a =
0.7, p = 0.2, k = 50 and γ = 1, block size 50. The data is

for 104 slots repeated 100 times and the figure also shows the

95% confidence intervals.

G. Performance Evaluation

We conclude this section by comparing the performance

of the transmission policies introduced here with state-of-the-

art alternatives, namely (i) ARQ, (ii) random linear block

codes and (iii) the low delay code construction from [1].

Note that the latter two are open-loop approaches, i.e. do not

make use of feedback to trigger transmission of extra packets.

Fig. 10 plots the measured end-to-end delay Vs. the feedback

delay for these schemes. As expected, for the block code and

low delay coding schemes the end-to-end delay is constant,

and does not vary with the feedback delay, also the end-to-

end delay with the low delay code construction is around

half of that for the block code (which is consistent with the

results reported in [1]). It can be seen that with ARQ the

end-to-end delay increases linearly with the feedback delay

d, and for delays greater than 40 slots the end-to-end delay

with ARQ is larger than with any of the other approaches.

However, for lower feedback delays the end-to-end delay with

ARQ is lower than for the two open-loop coding schemes.

The class of transmission policies introduced here provides a

balance between ARQ and the low delay code construction.

Namely, when the feedback delay is low its end-to-end delay

performance is similar to that of ARQ (which is known to

be delay optimal when the feedback delay is zero) and as

the feedback delay becomes large its end-to-end performance

is similar to that of the low delay code construction. For

intermediate values of feedback delay, the proposed class of

transmission policies offers lower end-to-end delay than any

of the competing approaches.

As noted above, the use of prediction introduces a trade-

off between delay and rate, since prediction errors lead

to transmission of redundant coded packets. In comparison

ARQ, which is purely reactive and involves no prediction,

is capacity achieving but at the cost of increased end-to-end

delay compared to when prediction is used (see Fig. 10). The

trade-off between delay and rate seems like a fundamental

one since predictions allow lower delay to be achieved, but

prediction errors are inevitable when losses are stochastic.

Fig. 11 explores this trade-off in more detail. For a fixed packet

loss rate p this figure plots the achieved transmission rate s̄ of

information packets as the arrival rate ā approaches capacity,
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Fig. 11: Achieved transmission rate s̄ of information packets

as the arrival rate approaches capacity, ā = 1 − p − ǫ.
Configuration parameters are, p = 0.2, k = 50, d = 100,

γ = 1, block size 50. The data is for 104 slots repeated 100
times and the figure also shows the 95% confidence intervals

namely ā = 1 − p − ǫ where ǫ is indicated on the x-axis

of the plot. It can be seen that when ǫ ≫ 0, the achieved

transmission rate equals the arrival rate for all four schemes.

However, as the arrival rate approaches capacity (ǫ → 0) the

achieved transmission rate falls below the arrival rate for all

schemes apart from ARQ. Since we use a fixed block size, the

block code is not capacity achieving and this behaviour is to

be expected. Similarly, the low delay code construction incurs

an overhead at the end of a connection. Interestingly, observe

that the achieved transmission rate with the transmission policy

introduced here is higher than either of these schemes, that is

the loss in capacity due to redundant coded transmissions is

lower.

V. GENERALISING TO NETWORKS OF FLOWS

In this section we first make the observation that the

policy P introduced in Section IV-C can also be seen as an

approximate dual-subgradient update for an associated convex

optimisation problem. This connection allows us to exploit

convex optimisation results to extend policy P to networks

with multiple flows sharing multiple lossy paths. We illustrate

this using a simple multipath example.

A. Relating Policy P with Convex Optimization

Assuming, for simplicity, that the arrival queue Qt is

persistently backlogged, then transmission policy P is,

Ck ∈ arg min
C∈{0,1}

(−Q̂r
k + γ)C (36)

Qr
k+1 = [Qr

k + Sk ·Xk − Ck(1−Xk)]
+ (37)

Q̂r
k = Qr

k−d +

k−1
∑

j=k−d

(Sjp− Cj(1− p)) (38)

Sk = 1− Ck (39)

This is a natural threshold-based policy, namely a coded packet

is sent whenever the virtual receiver queue is larger than γ,

combined with use of predictor Q̂r
k to mitigate the impact of

the feedback delay d.

Now, consider the convex optimisation problem C,

min
s∈[0,1]

−s (40)

s ≤ 1− p (41)

where it will be helpful to think of s as the average trans-

mission rate of information packets. Letting c = 1− s (which

can be thought of as the average transmission rate of coded

packets) the constraint s ≤ 1−p ensures that sp ≤ c(1−p), so

enough coded packets are sent to recover from packet losses.

This optimisation has the trivial solution s = 1−p, but this is

not where our interest lies. Rather, we focus on the relationship

between this optimisation and policy P .

Optimisation C is convex and, provided 0 ≤ p < 1,

then the interior of the feasible set is non-empty, i.e. the

Slater condition is satisfied and so strong duality holds. The

Lagrangian is L(s, λ) := −s+λ(s− (1−p)) and the standard

dual subgradient update for solving the optimisation is:

sk ∈ arg min
s∈[0,1]

L(s, λk)
(a)
= arg min

s∈{0,1}
(−1 + λk)s (42)

λk+1 = [λk +
1

γ
(sk − (1− p))]+ (43)

where step size 1/γ > 0 and equality (a) follows by dropping

the terms in L(s, λ) that do not depend on s (and so do

not affect the s that minimises L(s, λ)), and noting that the

solution must lie at an extreme point, i.e. 0 or 1.

Defining qk = γλk, then this dual subgradient update can

be rewritten equivalently as:

ck ∈ arg min
c∈{0,1}

(−qk + γ)c (44)

qk+1 = [qk + skp− ck(1− p)]+ (45)

sk = 1− ck (46)

The similarity of this update with transmission policy P is

immediately apparent, including the fact that sk and ck are

{0, 1} valued. However, it can be seen that there are also

some important differences: (i) the average loss rate p is used,

rather than the loss rate process {Xk}; (ii) scaled multiplier qk
is a real-valued quantity, whereas packet queue Qk is integer

valued; (iii) feedback delay d is ignored. Nevertheless, despite

these differences, recent results on approximate convex opti-

misation in [20] can be used to establish a strong connection

between the update generated by policy P and the optimal

solution to problem C.

Letting ǫk = (Q̂r
k − Qr

k)/γ and δk = (Sk · Xk − Ck(1 −
Xk))−(Skp−Ck(1−p)) = Xk−p, we can write transmission

policy P equivalently as:

Ck ∈ arg min
C∈{0,1}

(−Q̂r
k + γ)C (47)

Qr
k+1 = [Qr

k + Skp− Ck(1− p) + δk] (48)

Q̂r
k = Qr

k + γǫk (49)

Sk = 1− Ck (50)

We now recall the following, which corresponds to [20,

Theorem 1],
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Theorem 3. Consider the convex optimisation:

minx∈X f(x) s.t. g(x) + δ ≤ 0, j = 1, . . . ,m where

f : X → R, g : X → Rm are convex functions, X is a

bounded convex subset of Rn and δ ∈ Rm. Let dual function

h(λ, δ) := infx∈X f(x) + λT (g(x) + δ) and consider the

update

λk+1 = [λk + α∂h(µk, δk)]
+ (51)

where µk = λk + ǫk with λ1 ∈ Rm
+ and {ǫk} a sequence

of points from Rm such that µk � 0 for all k. Suppose the

Slater condition is satisfied and that δk is an ergodic stochastic

process with expected value δ and E(‖δk−δ‖22) = σ2
δ for some

finite σ2
δ . Further, suppose that 1

k

∑k
i=1 ‖ǫi‖2 ≤ ǫ for all k and

some ǫ ≥ 0. Then,

(i) lim
k→∞

|E(f(x̄k)− f⋆(δ))| ≤
αM

2
+ 2ǫσg

(ii) lim
k→∞

E (g(x̄k) + δ) � 0

(iii) E

(

1

k

k
∑

i=1

λi

)

≺ ∞ k = 1, 2, . . .

where x̄k = 1
k

∑k
i=1 xi and M = σ2

g + σ2
δ .

Applying this to optimisation C and identifying (47)-(50)

as the perturbed update (51), we obtain the following:

Lemma 3. Suppose loss process {Xk} is ergodic. Then, under

policy P , we have limk→∞ |E[S̄k]− (1 − p)| ≤ 1+2d
γ , where

S̄k := 1
k

∑k
i=1 Si, and E

(

1
k

∑k
i=1 Q

r
i

)

< ∞ for all k.

Proof. To apply Theorem 3 we need to show for ǫk = (Q̂r
k −

Qr
k)/γ and δk = Xk−p that: (i) 1k

∑k
i=1 ‖ǫi‖2 ≤ ǫ; and (ii) δk

has finite variance σ2
δ ≤ 1. Observing that γ|Q̂r

k −Qr
k| ≤ γd,

then (i) follows immediately with ǫ = d/γ. Since Xk ∈ {0, 1}
then |δk| ≤ 1 and it follows immediately that δk has finite

variance σ2
δ ≤ 1.

Observe that the bound on E[S̄k] in Lemma 3 is not

particularly useful when γ is small, nor the bound on

E
(

1
k

∑k
i=1 Q

r
i

)

. We nonetheless previously showed that

much tighter bounds can be derived for policy P . On the other

hand, the approach used to derive Lemma 3 is indeed rather

interesting, because it can be used to show that transmission

policy P can be embedded as a building block within solution

updates for general convex optimisation problems, and not

only will behave sensibly, but can be analysed via Theorem

3 and related results from the area of approximate convex

optimisation. We illustrate this in more detail in the next

section using multipath communications as an illustrative

example.

B. Example: Multipath Transmission

Consider the following lossy network multi-commodity flow

setup, which is a variant of the setup in [21]. Let G = (V,E)
denote a graph with vertices V and edges E ⊂ V × V .

Time is slotted, edges have unit capacity and pe denotes the

packet loss rate on edge e, with losses being i.i.d. across

slots. The network carries a set F ⊂ V × V of flows,

with flow f = (s, d) ∈ F having source/transmitter s and

destination/receiver d. Each source s has a single destination5

d, but multiple paths may be used to transmit packets from

each source to the corresponding destination.

Let Pf ⊂ 2E denote the set of usable paths between source

s and destination d. In general Pf will be a subset of all

possible paths from s to d, determined by delay requirements,

routing protocols etc. We assume paths in Pf have no loops

and that the time taken to send a packet from source s to

destination d is the same6 for all paths in Pf . Let gi,e denote

the number of hops along path i between the source and edge

e, with gi,e = ∞ for edges not on path i. Associate with path

i ∈ Pf the vector af,i ∈ R
|E|
+ with element corresponding to

edge e equal to 1/Πe′∈E:gi,e′<gi,e(1−pe′) when e lies on path

i and otherwise set equal to 0. The elements of af,i capture the

accumulated packet loss along path i. Let rf,i ∈ R+ denote

the rate at which packets are sent by flow f along path i ∈

Pf . Gathering the vectors ae into matrix A ∈ R
|E|×n
+ where

n :=
∑

f∈F |Pf | is the number of network paths and rates

rf,i into vector r ∈ R
n
+ then for feasibility the flow rates must

satisfy network capacity constraint

Ar ≤ 1 (52)

where 1 ∈ R
|E| denotes the vector with all elements 1 and the

inequality being interpreted element-wise.

Now consider the optimisation

min
r∈R

n
+
:Ar≤1

−
∑

f∈F

sf (53)

s.t. sf ≤
∑

i∈Pf

(1− pi)rf,i (54)

where pi := 1−Pre∈i(1−pe) is the aggregate loss rate along

path i. Think of sf as the aggregate rate at which flow f
sends information packets. Letting sf,i denote the fraction of

information packets sent by flow f along path i then sf =
∑

i∈Pf
sf,i and cf,i = rf,i − sf,i is the rate at which coded

packets are sent along path i. Constraint (54) ensures that

∑

i∈Pf

pisf,i ≤
∑

i∈Pf

(1− pi)cf,i (55)

i.e. enough coded packets are sent to recover from packet

losses.

The Lagrangian is L(s, r, λ) = −
∑

f∈F sf +
∑

f∈F λf (sf −
∑

i∈Pf
(1 − pi)rf,i), and the Frank-Wolfe

variant of the dual subgradient update is:

5It may be possible to generalise this unicast setup to multicast, but we
leave this as future work.

6The assumption that the delay on each path is the same can be readily
relaxed. In the analysis it is used to allow transmission events (e.g. Sk in
the notation of the earlier part of this paper) to be referred to the receiver,
which effectively lumps the forward and reverse path delays into the feedback
delay. When there are multiple paths with differing but known delays then
this can still be achieved by using an earliest-deadline first policy to select
which packet to send on a path when a transmission is made.
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rk+1 ∈ arg min
r∈R

n
+
:Ar≤1

∑

f∈F

∑

i∈Pf

(−Qf,k(1− pi))rf,i (56)

sf,k+1 ∈ arg min
0≤s≤

∑
i∈Pf

rf,i
(−1/α+Qf,k)s (57)

Qf,k+1 = [Qf,k + sf,k −
∑

i∈Pf

(1− pi)rf,i]
+ (58)

where Qf,k = λf,k/α and α > 0 is a design parameter. Since

sf,k+1 is the solution of a linear programme its value lies

at an extreme point and so the updates can be equivalently

replaced by sf,k+1 ∈ argmins∈{0,
∑

i∈Pf
rf,i}(−1/α+Qf,k)s.

Similarly, since rk+1 is the solution of a linear programme is

an extreme point of set {r ∈ R
n
+ : Ar ≤ 1}. When A is

unimodular then the extreme points (and so rk+1) are integer-

valued. More generally, we can always use randomised time-

sharing to select a vector Rk+1 with {0, 1} valued elements

such that E[Rk+1] = rk+1.

Replacing Qf,k with virtual receiver queue Qr
f,k yields the

update:

rk+1 ∈ arg min
r∈R

n
+
:Ar≤1

∑

f∈F

∑

i∈Pf

(−Qf,k(1− pi))rf,i (59)

Select Rk+1 ∈ {0, 1}|E| s.t. E[Rk+1] = rk+1 (60)

Ŝf,k+1 ∈ arg min
S∈{0,Rf,k}

(−1/α+Qr
f,k)S (61)

Qr
f,k+1 = [Qr

f,k + Ŝf,k −
∑

i∈Pf

(1−Xi,k)Rf,i]
+

= [Qr
f,k +

∑

i∈Pf

Ŝf,i,kXi,k −
∑

i∈Pf

(1−Xi,k)Cf,i,k]
+ (62)

where Ŝf =
∑

i∈Pf
Ŝf,i, Cf,i = Rf,i − Ŝf,i and {Xi,k}

are i.i.d random variables with E[Xi,k] = pi and with Xi,j

taking value 1 when a packet is erased on path i in slot k
and 0 otherwise. By Theorem 3 this update converges to a

ball around the solution of optimisation (53)-(54), with the

size of the ball decreasing as scaling/step-size parameter α is

decreased.

We can map this update onto the following physical setup.

Ŝf,k is the number of information packets from flow f to be

transmitted in slot k. Note that Ŝf,k+1 might take a value

greater than 1, if multiple link transmit slots are available

to flow f . Selecting Rf,i,k = 1 corresponds to allocating

transmission slot k on link i to a packet from flow f . When

Ŝf,k = 0 (there is not an information packet to be sent) a

coded packet is transmitted, Cf,i,k = 1). The occupancy of

Virtual receiver queue Qr
f,k+1 increases when an information

packet is lost, and decreases upon receiving a coded packet.

Ŝf,k+1 is selected according to a threshold rule, namely non-

zero when Qr
f,k < 1/α and a transmission slot is available (i.e.

when
∑

i∈Pf
Rf,i > 0). When there is feedback delay we can

replace Qr
f,k in this threshold rule with prediction Q̂r

f,k.

We illustrate the application of this update to the simple

multipath topology shown in Fig. 12 which has three paths

between source s and destination d. These paths are shared by

three flows. In this case update (59)-(60) simplifies to element

d

s

Path
1

Path 2

Path 3

Fig. 12: Example multipath topology with three paths shared

by three flows, each flow having the same source and desti-

nation.
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(b) Aggregated System performance

Fig. 13: Performance of multipath system, with 3 information

flows over 3 different paths. Feedback delay d = 10. The

results are averaged after running the experiment during 105

slots and the figure also shows the 95% confidence intervals

f of Ri,k+1 taking value 1 (corresponding to transmitting a

packet from flow f on link i in slot k+ 1) when the receiver

backlog Qr
f,k(1 − pi) for flow f is the largest one amongst

the three flows.

Fig. 13 shows the performance obtained as we vary the

packet loss rate from 0.0 to 0.4 over the first path, and we

keep the other two with a fixed erasure probability of 0.1. Note

that flows sharing the same path see the same loss probability.

Fig. 13a shows the individual rates for each flow and it can

be seen, the available capacity is equally shared between the

flows. Fig. 13b shows the aggregate rate, which is obtained by

summing the individual flow throughputs. It can be seen that

the rate of the proposed multipath scheduler almost reaches

the system capacity.

We now compare the application end-to-end delay of our

proposed scheme, with that exhibited by a legacy solution

(ARQ scheme) when the feedback delay increases. The ob-
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Fig. 14: Application (e2e) delay Vs. feedback delay (Df ) for

an ARQ scheme and our proposal. Configuration parameters

are arrival rate a = 0.7, loss rate p = 0.2 for all paths and

α = 1. The results are averaged after running the experiment

during 105 slots and the figure also shows the 95% confidence

intervals

tained results are shown in Fig. 14. In this case, we exploit

the prediction of the queue at each flow: Q̂r
k,f = Qr

k−d,f +
∑k−1

j=k−d (
∑n

i=1 (Sk,f,ipf,i − Ck,f,i(1− pf,i))), as was done

for the single link scenario. We still use three links and three

different paths (m = n = 3), but now fix the packet loss rate to

be 0.2 over all paths (recall that all flows are equally affected

by such erasures). We also assume an arrival rate of a = 3
4 ,

again for the three flows. The traditional ARQ scheme assumes

that the scheduler uses a Round-Robin approach to distribute

flow transmissions across the paths. It can be seen that the

behaviour is much the same as that observed over a single

path and, in particular, that as the feedback delay increases,

the proposed scheme clearly outperforms ARQ, yielding much

lower delays.

VI. CONCLUSIONS

In this paper we have proposed a joint coding/scheduling

scheme to be used over packet erasure paths. We have posed

an optimization problem, which is solved by means of discrete

decisions, and the source node can decide: to send a native

packet, to transmit a coded packet, or to do nothing. We have

shown that this discrete decision method yields an optimum

behavior, ensuring in addition system stability. We have as-

sessed the validity of the model, by means of an extensive

simulation-based analysis, in which we have considered the

impact of having delayed feedback.

Knowing the status of the decoder after some delay has

been usually overlooked when studying the performance of

coding solutions. For ideal feedback channels it is well known

that ARQ yields the best performance. However, under re-

alistic situations, the obtained results have shown that the

joint coder/scheduler clearly outperforms legacy solutions. The

proposed approach shows the same throughput as the one seen

for the ARQ case, while it does not increase the end-to-end

delay.

We have also proposed some practical bounds for the

corresponding queue lengths, which were afterwards used to

analyze the overhead caused by the transmission of unneeded

(dummy) packets. The simulation results show that they are

indeed rather tight, and that the proposed predictor for the

queue occupancy behaves quite accurately. Hence, they can

be exploited to take better coding/scheduling decisions in

different setups. Last, we have also studied the proposed model

over a multi-path communication scenario, where it again

outperforms a legacy solution based on ARQ.
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