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Abstract—Communication networks shared by many users are
a widespread challenge nowadays. In this paper we address
several aspects of this challenge simultaneously: learning un-
known stochastic network characteristics, sharing resources with
other users while keeping coordination overhead to a minimum.
The proposed solution combines Multi-Armed Bandit learning
with a lightweight signalling-based coordination scheme, and
ensures convergence to a stable allocation of resources. Our
work considers single-user level algorithms for two scenarios:
an unknown fixed number of users, and a dynamic number of
users. Analytic performance guarantees, proving convergence to
stable marriage configurations, are presented for both setups.
The algorithms are designed based on a system-wide perspective,
rather than focusing on single user welfare. Thus, maximal re-
source utilization is ensured. An extensive experimental analysis
covers convergence to a stable configuration as well as reward
maximization. Experiments are carried out over a wide range
of setups, demonstrating the advantages of our approach over
existing state-of-the-art methods.

I. INTRODUCTION

HE world of modern multi-user communication networks

poses many challenges that serve as an inspiration for our
work. We focus on distributed setups such as cognitive radio
networks (CRNs) that consist of several users accessing a set
of communication channels. The users’ goal is to make the
best possible use of network resources.

Achieving this goal is far from being simple in the setups
we examine: channel characteristics are usually stochastic and
initially unknown, and many users operate on an “ad hoc”
basis that prevents communication and coordination between
them. Moreover, the distributed nature of such networks pro-
hibits any form of central control.

Solutions to this problem must therefore consist of an effi-
cient user-level policy that incorporates learning and addresses
the issue of multiple independent users targeting the same
resources.

A. Cognitive radio networks

Cognitive radio networks, introduced in [/1]], are a conceptual
framework for modern communication networks that has gath-
ered considerable interest in recent years. The main idea this
framework proposes is that radios with enhanced capabilities
can utilize communication resources better than traditional
radios. The issue of resource utilization is of great interest due
to the shortage in available frequency ranges, combined with
poor utilization of those frequency ranges that are allocated.
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Radios with enhanced capabilities such as spectrum sens-
ing, memory and computational power can identify and use
“gaps” in transmissions of licensed traditional radios, thus
increasing utilization. From an algorithmic point of view,
this framework gives rise to several interesting questions due
to its dynamic, stochastic, distributed nature. Over the last
decade this challenging assortment of problems has gained
considerable attention from researchers and engineers [2], [3]].
Both theoretical and practical issues have been addressed,
along with the necessary increase of regulatory support [4]].

B. Multi-armed bandits

Multi-armed bandits (MABs) are a well-studied framework
from the world of machine learning. They model a sequential
decision making problem in which a user repeatedly chooses
one of K actions in order to maximize her acquired reward.
The characteristics of the actions (also known as arms) are
initially unknown, and learning to identify the best action
needs to be balanced with reward maximization, in what is
known as the exploration-exploitation dilemma. MABs have
attracted much interest due to the wide range of applications
they capture, combined with their relative simplicity, from
both algorithmic and analytic points of view. Several papers
propose solutions for the stochastic MAB problem [5]—-[7] in
which rewards are drawn from some distribution, and for its
adversarial counterpart [8]]. However, they all focus on single
users. The few papers dealing with multiple users usually
assume a setting with some form of collaboration [9]], [10].

C. The CRN-MAB framework

Using MABs to model CRNs was first suggested in [11]], in
a rather straightforward manner — the channels of a communi-
cation network simply correspond to the arms of a MAB. An
extension that also takes operational constraints into account
appears in [12].

The multi-user scenario of the CRN-MAB setup was first
introduced in [[13]] and further explored in [14]]. Both focused
mainly on a fixed, known number of users. An algorithm that
did not require any knowledge of the number of users and
supported user arrival and departure was proposed in [[15]],
and other approaches were introduced in [|16]], [[17].

However, this entire body of work assumes channel char-
acteristics to be identical for all users. In reality, this may
prove to be an unreasonable assumption. Users who are
geographically far apart may experience different disturbances,
leading to different channel reward distributions.



The work closest in spirit to ours is presented in [[18]], taking
multi-user MABs with different channel characteristics into ac-
count. However, the authors incorporate the Bertsekas auction
algorithm, that requires frequent information exchange, into
their solution. Such an approach requires users to have distinct
i.d’s and knowledge of the number of users. This rather
technical requirement hinders the ability of the algorithm to
deal with a variable number of users, in addition to the price
of communication itself. We compare our solution with this
approach in detail in Section An extension of this paper
appears in [19]].

D. Assignment problems

Another way to approach the problem of multiple users with
different rewards is through graph theory. In this setup users
correspond to agents and channels to tasks, with rewards being
the complementary of graph edge costs. The result is simply
an assignment problem, i.e., maximum weight matching in a
weighted bi-partite graph.

Several papers have tackled the assignment problem, but
to the best of our knowledge none of them have proposed
a solution that solves the multi-user CRN-MAB described
above.

The classical Hungarian method [20]] requires some form
of central control and assumes channel characteristics are
known. The Bertsekas auction algorithm [21] is suitable for a
distributed setting but requires direct, frequent communication
between agents. The well-known Gale-Shapley algorithm [22]
converges to a stable marriage configuration, but does not take
learning into account. In [23]], [24] the Gale-Shapley algorithm
was indeed applied to the CRN setup, without considering the
need to learn channel characteristics.

Another work on distributed stable marriage considers a
variant of the Gale-Shapley algorithm [25]. The paper itself
is rather unrelated to our problem, but the potential function
introduced by the authors was helpful in our analysis.

Another paper that aims at limiting information exchange
between users, but does not address learning, is [26]]. Finally,
the authors of [27] and [28|] derive lower bounds on the
information exchange required to solve assignment and stable
marriage problems.

E. Our contribution

The novelty in our work stems from the combination of
multiple users, different reward distributions, an unknown and
possibly dynamic number of users and minimal coordination
that does not require direct communication between users.

Allowing different reward distributions and limiting infor-
mation exchange are a challenging combination. As explained
in detail in Section [lI-C], reward maximization cannot be
guaranteed in this setting. Instead, we focus on convergence
to a stable configuration. Once users settle into a stable
configuration, they can focus on resource utilization. When the
transmitted content is in the form of streams (e.g., audio and
video), maintaining the same communication channel between
time slots is doubly important.

Our contribution consists of:

e A coordination scheme for minimizing collisions during
exploration and exploitation in multi-user communication
networks

o An algorithm that combines learning and coordination,
ensuring convergence to a stable configuration

o Theoretical guarantee of convergence in a flexbile sce-
nario that consists of an unknown number of users with
different reward distributions

« Extensive experiments demonstrating the algorithm’s per-
formance

The structure of this paper is as follows: Section [llf in-
troduces the model and assumptions, together with a basic
formulation. Section and Section [[V] describe the CSM-
MAB algorithm, for the scenario of a fixed number of users,
with its theoretical analysis. Section[V]and Section[VIhandle a
dynamic number of users. Extensive experiments complement
the theoretical analyses in Section and a discussion
follows in Section

II. MODEL AND FORMULATION

In this section we describe our model and the assumptions
we make in developing the algorithms and analyses, together
with a mathematical formulation of the concepts used through-
out the paper.

A. System

The communication system we are dealing with consists of
K channels. A single user transmitting in a certain channel
acquires a reward, corresponding to any chosen performance
measure in real-life systems: throughput, bit rate, etc. We
assume rewards are stochastic, bounded in the interval [0, 1].
As is customary in ad-hoc networks, there is no central control.

B. Users

Our users are a group of N independent agents. Each
agent observes only her own rewards, and gathers statistics
concerning her own actions. She does not know the number
of users sharing the network and in the dynamic setting she
may join or leave the network at random points in time. In
addition, users cannot exchange information directly.

We adopt a reward model that depends on both the identity
of the user and the index of the channel, in order to reflect
differences in the physical environment of users. Formally, a
user n sampling a channel k will receive a reward drawn i.i.d.
from a distribution with an expected value of i, 1.

The notion of shared resources is modeled by the users’
playing the same bandit. When two or more users transmit in
the same channel, they experience a collision. In this paper,
collisions result in reward loss for all colliding users for the
relevant time slot.

Throughout the paper the term configuration refers to a
mapping of users to channels.



C. Performance measures

In our work we adopt the point of view of a network
designer, whose goal is to maximize resource utilization. We
are therefore interested in system-wide performance measures,
rather than user level ones.

A common performance measure for the multi-user CRN-
MAB setup is the system-wide reward (see e.g., [14], [15],
[18]]). However, in the setup we are dealing with, in which
the reward distribution varies from user to user, achieving the
optimum in terms of system-wide reward requires frequent
information exchange between users. Let us assume channel
k is the optimal channel for two users, n; and no. However,
Hnyk >> fin, k and the next best channel for user ny yields
a reward very similar to f,, ;. As a result, in the optimal
configuration user m; must “win” the right to transmit in
channel k. In order for user ns to agree to step down, she
must receive explicit information from user n; regarding that
user’s reward in channel k. Incorporating learning into the
process results in evolving preferences, further increasing the
necessary information exchange.

We would like to avoid such heavy communication, for two
reasons. First, communication between users may increase a
network’s vulnerability to attacks. In addition, implementing
such protocols requires considerable resources, as we demon-
strate in our experiments in Section

Our solution adopts a different performance measure:
system-wide stability, in the Stable Marriage (SM) sense.

Definition I1: A Stable Marriage Configuration (SMC) is an
assignment of users to channels such that no two users would
be willing to swap channels, had they known the true values
of the expected rewards. Formally, for a pair of users n; and
no:

;=1 {Mnl,anl < an,anQ}
02 é ]l {NnQ,an2 S ,u'ng,anl } 9

where a,,, is the channel user ¢ is currently sampling.
In an SMC,

Cl . 02 =0 an,ng.

Focusing on this performance measure ensures efficient
use of system resources and does not require frequent or
excessively informative communication.

D. Limited coordination

The coordination protocol described in Section relies
on two very simple building blocks, that are in line with
common capabilities of CRNs. Users are allowed to transmit
in a single channel in each time slot, and observe the acquired
reward. In addition, they may sense all channels at once and
observe a vector of binary signals, where “1” corresponds to
a transmission in the channel and “0” corresponds to the lack
of a transmission. This capacity can be viewed as a form of
wideband spectrum sensing which is common in CRNs [29].
Algorithm 2] relies on a combination of sensing and transmis-
sion according to a carefully planned temporal structure, which
we call a super-frame (see Fig. [§). By following this protocol
users can coordinate without directly communicating.

\ Initialize
Y |
[

| Rank channels
1 Two time
slots

\ Choose initiator
End of super N |
frame? +

. Y Am | the
Coordinate swap +——— initiator?

N
Have | been
= approached?

!

Transmit and learn

Two time
slots

Fig. 1. Flow of CSM-MAB algorithm

E. Goal

Our goal in this paper is to design efficient algorithms for
the single user level, for both fixed and dynamic numbers of
users. Our solution will ensure convergence to an orthogonal
(i.e., no more than one user per channel) stable marriage
configuration in finite time, using only the limited form of
coordination made possible by the actions described in Section
II-D

III. CSM-MAB ALGORITHM

In this section we present the Coordinated Stable Marriage
for Multi-Armed Bandits (CSM-MAB) algorithm (Fig. [2).
This algorithm assumes a fixed, yet unknown, number of users.

A. Algorithm outline

Our algorithm combines a coordination protocol and a
learning process. It is a user-level algorithm for a fully
distributed system, designed in order to achieve stability and
orthogonality, as described in Section [[I-E]

After a short initialization phase, the algorithm follows the
flow described in Fig. At the beginning of each super-
frame users update their channel preferences and an initiator
is determined. During the rest of the super-frame, a channel
swap between users is coordinated. Users not participating in
the coordination process continue to transmit and learn during
these time slots. A detailed explanation of the coordination
protocol and frame structure appears in the next section.

The algorithm begins with a start-up phase, during which the
CFL algorithm introduced in [30] is applied. The apply_CFL
function yields an initial orthogonal configuration, so that each
user starts off in a different channel. After this phase, the
body of the algorithm is executed. Each time a super-frame
begins, all users execute the rank_channels routine, which
receives a user’s local knowledge as input, and outputs a list
of preferences over all channels (see Fig. [3). Users’ local
knowledge consists of the sum of rewards acquired so far from
each channel (r), along with the number of times each channel
has been sampled (s). The channels are ranked according to
the Upper Confidence Bound (UCB) index [5].

The next step is choosing an initiator for the super-frame,
according to the choose_initiator subroutine (Fig. ). All users



1: r=0,s=0, pref=0

2: apply_CFL

3: for all time slots ¢ do

4:  if Beginning of super-frame then
5: list, I < rank_channels(r,s)
6: choose_initiator(list)

7: pref < 1

8: else

9: if n is the initiator then

10: coordinate_swap(list,pref)
11: else if n was approached by initiator then
12: respond(I)

13: else

14: r,s < transmit_and_learn
15: end if

16:  end if
17: end for

Fig. 2. The CSM-MAB algorithm for user n

Input: rs
1: for ke {1,...,K} do
2: I, = ;f + %kgt
3: end for
4: list « sort_descend(I)
Output: list, I

Fig. 3. The rank_channels routine

who are not currently sampling the channel that maximizes
their UCB index, raise a flag with some constant probability
e. If exactly one user raises such a flag, then she is the
initiator for the super-frame. Otherwise, there is no initiator.
The value of the parameter € is chosen so that it maximizes
the probability that exactly one user raises a flag, assuming all
users would like to be initiators, as explained in further detail
in Section

Once the initiator has been selected, she iterates over her
list of preferences. In order to upgrade to a certain channel,
she transmits in it. The user currently occupying that channel
senses the transmission, and decides whether she accepts the
offer to swap. This decision is made based on the local
knowledge and preferences of the responder: if swapping will
improve upon her current choice of channel in terms of the
UCB index (or, at least, will not worsen her situation), then

Input: list
1. if list # ¢ then {User seeks to change channel}
2:  flagy, < rand(Bernoulli, ¢) {Raise flag w.p. €}

3. if (flag, = 1) A (flag; = 0 Vi # n) then

4 initiator = n {User n is initiator for this SF}
5. else if (flag; = 0 Vi) V (nnz (flag) > 1) then

6: initiator = 0 {No initiator for this SF}

7. end if

8: end if

Fig. 4. The choose_initiator routine

Input: list, pref

1. if pref > 0 Alist (pref) # L then {list not exhausted}

2:  transmit(list (pref))

3. response < sense(list (pref))

4:  if response = 1 then {Responder agreed or channel is
available}

a (t) < swap(a, (t),list (pref))

pref <0
else

pref < pref +1 {Move to next best channel}

9: end if
10: end if

Fig. 5. The coordinate_swap routine, performed by the initiator each mini-
frame

Input: I, dginitator
1: if approached by initiator then
22 ifl,, <1, then {Swapping improves upon current

initiator

choice}
3 response < 1
4:  else
5 response < 0
6: end if
7: end if

Output: response
Note: a,, is the current channel of user n

Fig. 6. The respond routine, performed by the user approached in a certain
mini-frame

she will accept. If the responder accepts, a swap takes places
and the initiator does not negotiate any more swaps during the
super-frame. Otherwise, the initiator updates her preference
pointer, and in the next time slot she will attempt to swap to
the next best option on her list of preferences. This process
repeats itself until the initiator manages to coordinate a swap
or she reaches the end of her preference list. The actions taken
by the initiator are described in coordinate_swap (Fig. [3)), and
the responder’s actions appear in respond (Fig. [6).

A user who is not the initiator and was not approached
during the current mini-frame (for a detailed explanation see
Section [[II-B)), uses the available time slot to transmit in her
current channel and acquire reward accordingly, thus collecting
a sample for her learning process. This step is carried out in
transmit_and_learn (Fig. [7).

There are two special cases worth pointing out. First, we
address the scenario that there is no initiator for the super
frame (either zero users raised a flag, or more than one did
so, see Fig. E]) Thanks to sensing, all users are aware of this,
and can take advantage of the entire super-frame to execute the
transmit_and_learn routine. While the users will not be able

1: 7 (t) < transmit (a,,)
2 Tq, & Ta, +7(1)
3: 8q, & Sq, +1

Fig. 7. The transmit_and_learn routine
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Fig. 9. Initialization mini-frame (choose_initiator routine)

to improve their choice of channels during this super-frame,
they will gather an increased number of learning samples and
acquire more reward than they would during super-frames with
an active initiator.

Our algorithm also addresses the scenario of swapping to an
available channel. In this case, the initiator need not transmit
and wait for a response, and she simply switches to the channel
once its turn on her preference list arrives.

B. Coordination protocol

We now turn to the technical description of the coordination
protocol that supports the CSM-MAB algorithm, based on
the transmission and sensing capabilities of users described
in Section

In order to implement our protocol, we assume a synchro-
nized, framed scheme. This assumption is fairly reasonable,
and can be based on universal clocks such as Unix time. Time
is divided into super-frames of 2K time slots each, with each
super-frame consisting of an initialization mini-frame of two
slots and 2 (K — 1) coordination frames of two slots, as shown
in Fig.

During the initialization mini-frame, described in Fig. O}
users transmit in their own channel and simultaneously sense
all channels (S1). This enables them to identify available chan-
nels, knowledge they will need if they become the initiator.
Next, if they would like to become the initiator they transmit
in their own channel and sense all channels. If they do not
need to initiate a swap, they simply sense all channels (Ss).
If there was a single transmitter in So, then she is the initiator
for the super-frame and all users know her current channel,
based on their sensing results. If no one transmitted during So
or more than one user transmitted, there is no initiator for the
super-frame. Once again, users are aware of the situation by
means of sensing, and they act accordingly (see Section
for details).

Once the identity of the initiator has been determined, she
manages the coordination process. In the worst case scenario,
when sampling the channel that has a minimal UCB index, a
user will have K —1 channels on her preference list, to which

Initiator Responder
S Transmit in ‘ Sense own
3 desired channel channel
Not approached
Approached
by initiator
Proceed to next Agree to swap?
best channel
ves|,
| Sense desired Transmit in -
SA | channel own channel Transmit & learn
Rejected | Accepted Swap
Fig. 10. Coordination ~ process: initiator-responder ~ dynamics

(coordinate_swap and respond routines)

she can upgrade. Therefore, the coordination process is made
up of K — 1 pairs of time slots, where each pair corresponds
to a single entry on the initiator’s preference list.

During the coordination process, the initiator iterates over
her preference list, starting with the index maximizing entry.
For each entry, she transmits in the desired channel, while all
other users sense for a signal in their respective channels (S3).
We refer to a user that senses a transmission in her channel as
the responder. If the responder agrees to swap, she transmits
in her own channel, which is simultaneously sensed by the
initiator (S4). A lack of transmission signals that the responder
has declined, and prompts the initiator to proceed to the next
entry on her list. Once the initiator succeeds in coordinating
a swap or has probed all channels better than her current one,
she will stop the coordination process. Once the super-frame
ends, the process will re-start with a new initiator.

Time slots S4 have a unique characteristic: they only require
the initiator to perform sensing, and she only focuses her
sensing on a single channel. Therefore, users who are not the
initiator nor the responder may use this time slot to transmit
in their current channel and collect reward, thus driving the
learning process.

A technical issue worth addressing is that we assume trans-
mission and sensing can be performed simultaneously. This
assumption is reasonable in modern communication systems,
in which users often have more than one antenna [31].

To summarize this section, we would like to point out that
the components of the CSM-MAB algorithm can be divided
into two groups: components devoted to the learning process
(rank_channels and transmit_and_learn) and components
contributing to the coordination of users in order to avoid
collisions and ensure convergence to a stable configuration
(choose_initiator, coordinate_swap and respond).

IV. ANALYSIS OF CSM-MAB

We now turn to a theoretical analysis of the CSM-MAB
algorithm. The result stated in Theorem [I| shows that our
algorithm meets the goals defined in Section [[I-E]

Theorem 1: Consider a system with K channels and N
users, with channel rewards characterized by the matrix pu.
Applying CSM-MAB (Fig. by all users will result in
convergence to an orthogonal SMC:



For all 6 > 0 there exists some finite 7" (§) such that for all
time slots ¢ > T, the probability of the system’s being in an
SMC is at least 1 — §, where

T(6)=0 <log (;) , N, K2> .

Achieving our goal consists of two aspects: orthogonality
and stability. We address these aspects separately.

A. Orthogonality

The issue of orthogonality is rather simple: users need to
reach a configuration in which there is at most one user
sampling each channel. We ensure this by first applying the
CFL algorithm of [30], in order to reach an orthogonal con-
figuration (initially overlooking learning and stability). Once
such a configuration has been reached, users only change their
choice of channels in a coordinated manner, thus preserving
orthogonality. We formalize this guarantee in the following
proposition.

Proposition 1: There exists a time £y > 0 so that the actions
of users applying CSM-MAB are orthogonal (i.e., there is at
most one user sampling each channel) for all ¢ > ¢, with a
probability of at least 1 — dy.

Proof: Based on Theorem 1 of [30]], the initial configu-
ration reached after running the CFL algorithm is orthogonal
with probability 1. The authors provide an upper bound on the
distribution of stopping times, 7:

P{r >k} =ae

where o and v are some positive constants. The expected

stopping time is therefore upper bounded by f"f;jw Setting
ty = 1222::’ the probability of not having reached an or-

thogonal configuration by time ¢ is at most §y = 6_2%.
Once the system reaches an orthogonal configuration, users
cannot switch channels without having coordinated the switch,
as defined in Section [ |

B. Stability and potential

In order to guarantee the second aspect, stability in the
stable marriage sense, we define a system potential function.
A single user’s potential is the number of channels she
would prefer over her current choice, had she known the
true reward distributions. Formally, the potential of some user
n € {l,...,N} at time ¢ is defined as follows:

K
¢n (t) £ Z 1 {,un,k > ,un,an(tfl)} ) (1)
k=1

where a,, (t — 1) is the action taken by user n in the previous
time step.

The system-wide potential is the sum of potentials over all
users:

N
OES A ©))

An illustration of the potential appears in Tables 1 and 2.

TABLE I
TABLE OF USERS’ CHANNEL RANKINGS (FIRST ROW REPRESENTS BEST
CHANNEL, LAST ROW REPRESENTS WORST). CELLS HIGHLIGHTED IN
YELLOW AND UNDERLINE REPRESENT USER’S CURRENT CHOICE.

Uy Us Us
1 1 2 4
2 2 1 1
3 4 3 2
a3 [ 43
TABLE II
USER POTENTIALS CORRESPONDING TO THE CONFIGURATION IN TABLE[D
¢1 | $2 | 93
3 1 0

In terms of potential, a configuration is an SMC if no
two users can swap channels and decrease their potential
by doing so. We note that a stable configuration does not
necessarily correspond to zero system-wide potential, since
not all users might be able to achieve zero potential simulta-
neously, depending on network parameters. Also, a system
may have several stable configurations, each characterized
by a different potential. Nevertheless, observing a system’s
potential does provide an indication regarding stability: once
a system reaches a stable configuration, its potential will no
longer change.

We would like to note that users’ decisions are guided by
UCB indices, while stability is examined with respect to true
reward distributions. As a result, users do not always update
their choice of channels in a way that matches the ground truth.
This may lead to occasional increases in system potential, due
to users’ exploration or inaccurate statistics. In our proof we
show that despite this, users ultimately converge to a stable
configuration.

We use the potential function to prove convergence to an
SMC, based on three observations:

1) The maximal potential of a system with N users and K
channels is ® = N (K — 1).

2) The potential @ (¢) is monotonously non-increasing with
high probability.

3) As long as a system is not in an SMC, changes in
potential are bound to happen within finite time.

The following lemmas formalize these observations, and are
used as building blocks in the proof of Theorem [I] The proofs
of the lemmas appear in Section [A]

Lemma 1: For all times ¢ for which ¢ > iﬁf Int, if a
change in potential occurs, it is a decrease, with probability
of at least 1 — 2t~ 4,

Let A, be a distribution dependent constant. In the appendix
we derive the following bound for the minimal time for which
the condition above holds:

32K \?
tmin = (A2> . (3)

min

Lemma 2: If ¢, (t) > 0 for some user n, then her proba-
bility of becoming the next initiator is at least ¢ (1 — €)™ '



Lemma 3: If the system is not in an SMC at some time
t > tmin, then the probability of a decrease in the potential
occurring in the next super-frame is at least 1 — §;, where

Si=1—-e(l—e)V Py

We now turn to the proof of our main result.

C. Proof of Theorem [I|
We model the convergence to an SMC using a Markov

chain. Let S; denote the state of the system at time ¢:

1 if in SMC,
Sy =
0 else.

The probability of not being in an SMC, T time slots after
some point in time ¢, is therefore denoted by
P{Sitr =0} =P[Siyr =0|S; = 0]P{S; =0}
+P[St+T = O|St = I]P{St = 1}
S ]P)[St+T == 0|St = 0]+P[St+T == 0|St = 1]

Py Py

“4)

Let us examine P, and P» separately.

1) Bounding P,: The probability of the event of moving
from an SMC to an unstable configuration is bounded by the
probability of a single increase in potential in the time interval
[t,t+T7:

Py <P{®ypp =P+ 1} <2t74

based on Lemma [I]
2) Bounding P;:

Plilf]P[St_‘_T:HSt:O]

A transition from an unstable configuration to an SMC can
occur if the difference between potential decreases and in-
creases is anywhere in the range [1,...,N (K —1)], de-
pending on the potential at time ¢ and on the potential of
the SMC reached. Therefore, we can bound the probability
P[Si+r = 1] S¢ = 0] by the worst case, where the difference
is maximal: N (K —1).

Denoting the number of increases in potential in the time
interval [t1,to] by I, 4.1

P[St+T = 1| St = O]
>P{Dyti1) — Ipper) > N (K —1)}
== IP {D[t,t+T] > N (K - 1) + I[t,t-i—T]}

o The statistics for both users are incorrect

Deriving an upper bound on the probability of an initiator
emerging, denoted by P:

-Pinitg
n=1
N-1
=€ (1—e)"
n=0
_1-(1-eF
I s
=1-(1-¢eV.

Based on the derivation leading to Lemma (1| the probability
that both users’ statistics are wrong is upper bounded by 2¢ .
Therefore, the probability of a single increase in potential

is bounded by 2t~* (1 —(1- e)N), and the probability of
i increases is no more than P; £ (2t_4)i <1 —(1- e)N)

We can now bound the probability of encountering potential
increases:

P{ljpesr) =0} =1 =P {Iy 1) >0}
=1- ZP{I[t7t+T] = Z}
=1
>1-Y P
1=1
9t—4 (1 (- e)N)

1 2t (1—(1—6)N)
21—4t*4(1—(1—e)N).

>1-—

In order to simplify the expression, and since the dependency
on ¢ here is rather weak, in the sequel we will use the bound

]P) {I[t,t+T] = 0} Z 1 - 4t_4. (6)

We now turn back to (5), and continue by bounding the
potential decrease term from below. Let us consider a Binomial
random process that lower bounds the process of potential
decreases. The success probability is (a lower bound on)
the probability of a potential decrease in a single super-
frame, and the number of experiments is the number of whole

= Z P[Dp,er7) > N (K — 1)+ i| Iy yo1) = i] P {I}s,417) =super-frames in the interval [t, ¢ + T7. Applying Hoeffding’s

=0

>P{Dy 1) >N (K —-1)+0}P{I, ry=0}. (5

We now bound the probability of zero potential in-
creases from below. In order to do so, we will need a
bound on the probability distribution of potential increases,
P {Ij++7) =i}. A single increase in potential occurs if two
conditions hold:

o An initiator emerges

inequality to a Binomial random variable X with success
probability p over n experiments yields an upper bound on
the probability of acquiring exactly or less than k£ successes:

_2<m>;k>2

P{X <k}<e

In our case, we use Lemma to determine that p =

T
Tsr

(1 —e)V "' —2t~*, the number of experiments is n = L

| I
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and k = N (K — 1). Therefore,
P {D[t,t+T] > N (K - 1)}
=1—P{Dp 41 < N (K —
T
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where we dropped the “floor” operator for the sake of clarity.
Returning to (3):
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where o =

T
3) Combining the bounds: >Backing up all the way to P,

and P, of @), we have that
P{Syyr =0} <e 2> 46t7*

We can now denote § = e 2 4 6t 4.
4) Deriving the explicit dependence of T on é: Since our
convergence guarantee holds for ¢t > %.,;,, we can substitute
1
§—6t_ 4
b
T—-—=c¢

tmin Wherever t appears:
min >
VT

:71
a=glog

§=e ™ +6t,5
Substituting the value of « and rearranging, we have (7). Let
us observe a simplified form of (7):
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Substituting Q@ = v/T into (§):
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where we took the positive solution because of the way @ is
defined. Back to the equation in terms of 7"
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Plugging in the values of a,b and ¢ and summarizing our
derivation, we have that for all § > 0, the system is guaranteed
to reach an SMC with a probability of at least 1 — ¢ within
T (6) time slots. The full expression for 7' (9) appears in (9).

Roughly,
1 2
T(0) =0 |log 5 SN, K=,

where the quadratic dependence on K stems from the fact
that Tsp 2K. The parameter § reflects a (small) failure
probability, as customary in PAC learning settings.

V. D-CSM-MAB ALGORITHM

In this section we introduce a variant of the CSM-MAB
algorithm suited for systems with a dynamic number of users.
Such a scenario is most common in communication networks
of independent users, and our architecture handles it with
minor additional effort. Departure of users can be handled
without any changes to the original algorithm, while their
arrival requires some adjustments, as described below.

In designing our algorithm we make a single assumption,
that is required for arriving users to join the system smoothly.

Assumption 1: During a single super-frame, the number of
arriving users is no more than 1.

As shown below, the length of a single super-frame is 2K + 1.
In practical systems this is a very short time interval, typically
less than a millisecond.
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Fig. 11. Frame structure for D-CSM-MAB, new slot (S,) in yellow

1: apply_CFL

2: for all time slots ¢ do

3:  if Beginning of super-frame then
4 rank_channels

5: newbie_joins

6 choose_initiator

7 else

8 if n is the initiator then

9: coordinate_swap
10: else if n was approached by initiator then
11: respond
12: else
13: transmit_and_learn
14: end if
15 end if
16: end for

Fig. 12. The D-CSM-MAB algorithm for user n

A. Algorithm outline

Supporting a dynamic number of users entails a small
change in the frame structure, shown in Fig. a single slot
per super-frame is added, as part of the initialization mini-
frame.

The D-CSM-MAB algorithm is presented in Fig. with
the modification highlighted in blue on line 5] The new-
bie_joins routine is executed only by the arriving user, and
is described in Fig. [I3]

B. Detailed flow

An arriving user faces the challenge of finding an initial
channel to transmit in, without colliding with existing users.
She does so by examining the sensing result of S; (see Section
[II-B), thus determining which channels are available. If all
channels are taken, she will wait for an entire super-frame

Input: available
1: if available # ¢ then {an available channels exists}
2:  channel < rand(Uniform,available)
3: end if

Fig. 13. The newbie_joins routine

before repeating the process, in the hope that one of the users
will have left by then.

If there is at least one available channel, the arriving user
will choose one uniformly at random. She will then signal
her choice by transmitting in that channel during time slot S,.
The rest of the users will sense the spectrum during this time
slot, thus becoming aware of the new user’s arrival and the
occupation of an additional channel.

Starting with the following super-frame, the user will ap-
ply the D-CSM-MAB algorithm as a “veteran”, employing
the initiator-responder mechanism in order to reach the best
possible channel.

VI. D-CSM-MAB ANALYSIS

Our analysis of the D-CSM-MAB algorithm considers ar-
rivals and departures separately, as they have quite an opposite
effect on the system.

A. Analysis of user arrival

Users’ arrivals result in an unstable configuration, since they
are interested in swapping channels until their learning process
converges. Our analysis quantifies this phenomenon.

Theorem 2: Let S be a system with K channels and N

users. If .S is in an SMC at some time ¢ and a new user joins
the system, the new system S’ will settle into an SMC within
no more than 7' (K, N,d) time slots with a probability of at
least 1 — 6.
The basic idea behind our result is that the arriving user will
join the system by occupying one of the K — N available
channels. She will then attempt to learn the statistics of all
the channels, resulting in her “hopping” between the K — N
channels that were available upon her arrival. Eventually, she
will converge to one of them and the system will be in an
SMC once again.

Proof: We would like to bound the probability that the
new system, S’ has not settled into an SMC by time 7. The
system’s return to an SMC is determined by the arriving user:
she needs to gather a sufficient number of samples from each
of the available K — N channels, before she can prefer one of
them. Only then can we consider her state a stable marriage,
and the entire system’s configuration an SMC.

Let us denote the series of points in time in which the
arriving user is chosen as initiator by {¢;},i = 1,..., I, where
L is the size of this set. The intervals between consecutive t;’s
are denoted by A; =t; —t;_1,7 = 1..L, where ty = t.

1) Proof outline: The arriving user might not reach a stable
state by time 7', for for two reasons: either she was not chosen
as initiator often enough, i.e. L. < K — N, or if she was chosen
often enough, the intervals A; were not distributed well. If
intervals are too long, they may prohibit a fair division of
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Fig. 14. Possible distributions of A; intervals

samples between the arms that need to be learned. For an
illustration of this concept see Fig. The top part of the
figure displays an unbalanced interval distribution: some of the
intervals are very short (/31), and one of the intervals is very
long (32). If 51 is small with respect to the minimal number
of samples required, then some of the K — N arms may not be
sampled sufficiently, resulting in an unstable state at time 7.
A more favourable distribution appears in the bottom figure,
assuming that K — N < 5. In short, we would like to ensure
that interval lengths are not too long with high probability.

We note that since the system is assumed to have been in
an SMC prior to time ¢, the other users will not be interested
in swapping channels with the arriving user, and so she needs
to be the initiator in order to move between channels.

2) Required samples: Based on the derivation in Section
[A-A] the minimal number of samples per channel required is
as stated in (I3):

8InT
Smin £ AT’ (10)

min

where Ay, is a constant that depends on the channels’ reward
distributions (and is not related to the A;’s defined above).

3) Intervals: Let us assume the worst case, in which all
intervals are of equal length, 3, where length is measured in
super-frames. For the sake of clarity, we omit ceiling and floor
operators, and assume all fraction results are rounded. The
number of intervals of length § in the period [t,t + T] is L =
%. Short intervals do not interfere with the learning process, so
the size of 3 should only be bounded from above. The numbers
of intervals dedicated to a single channel can differ by no more
than one, and so it is either A KT7 Ny of + 1. The
minimal number of intervals is therefore ﬁ, and since
each super-frame contributes 2K — 2 samples, the condition
for acquiring enough samples is

T
B(K—N)

T
—— (2K - 2) > mins
K-y =
or, re-written:
T 2K—-2 ,
< = Bmax- 11
(R S ()

The distribution of interval lengths is geometric, with a
bounded success probability p: € < p < ¢ (1 — €)™ . Based on
the cumulative density function of geometric random variables,
we have that for some &

P{A; <k}=1-(1-p)&+!
P{A; >k} =(1—-pit<1-eoFt.

Plugging in the condition of (TI)), we have that

T 2K -2
P Ai max =P Az
{ >B } { >5minKN}

T 2K—2+1

< (]_ — 6) Smin K—N

4) Putting it all together: We can now derive the relation-
ship between the error probability, J, and the length of the
interval, T

__T 2K-2 .4
1 Smin K—N
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Plugging in the value of sy, from (I0):

T 4 K-N In § .
In7T A2 K-1\In L
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Based on equation (5.2.4) of [32], we have that InT" < 2T,
and therefore a looser condition would be

2
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B. Analysis of user departure

Our analysis of convergence to an SMC after a user’s
departure focuses on the worst case scenario and follows the
proof of Theorem

Theorem 3: Let S be a system with K channels and N

users. If S is in an SMC at some time ¢ and one of the users
leaves the system, the new system S will settle into an SMC
within no more than T (NN, §) time slots with a probability of
at least 1 — 9.
The convergence of the system to a new SMC depends heavily
on its potential before the departure. The higher the system
potential, the longer it will take the system to converge. Our
proof therefore involves an upper bound on the potential of a
system in an SMC.

Lemma 4: Let S be a system with K channels and N users.
If S is in an SMC, then its system wide potential is no more
than @, £ %N (N -1).

The example in Table [[TI] and Table [[V]illustrates the claim
of Lemma f] The most difficult scenario for our problem
occurs when users’ preferences are all the same, as shown
in the example. In such a scenario, user dissatisfaction is
maximal, and the potential remains high even for stable
configurations.

Proof: The worst case scenario in terms of potential
of a stable configuration occurs when users’ rankings are
equal. Formally, let £, , be the rank of channel %k for user
n, meaning that, for example, k;, = arg max,, ¢, ;, is the best
channel for user n. The vector of all rankings of user n is
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TABLE III
TABLE OF USERS’ CHANNEL RANKINGS (FIRST ROW REPRESENTS BEST
CHANNEL, LAST ROW REPRESENTS WORST). CELLS HIGHLIGHTED IN
YELLOW AND UNDERLINE REPRESENT USER’S CURRENT CHOICE.

U | Uy | Us | Uy
1 1 1 1 1
2 2 2 2 2
313 | 3 | 3| 3
4 4 | 4 | 4 | &
TABLE IV
USER POTENTIALS CORRESPONDING TO THE CONFIGURATION IN TABLE
mm

¢1 | p2 | P3 | P4
0 1 2 3

ly, = (lna,...,0, k), and users’ rankings are equal when
by ="Cm,Vn,me{l,...,N}L
The potential of any stable configuration in this scenario is

N—-1

1
Brax =04+1+...+ N —1= Z(N—i):iN(N—l).

i=0

|

Plugging the upper bound on the potential into the proof of

Theorem [I] yields a bound on the convergence time to a new
SMC, presented in (T3).

VII. EXPERIMENTS

In order to demonstrate the performance of our algorithms,
we present simulation results of a multi-user communication
network. The network consists of N users and K channels,
where N and K are simulation parameters. The users follow
the algorithm introduced in Section [[II] and cannot commu-
nicate directly in any way. Upon transmitting in a certain
channel, users observe a signal that reflects the quality of
their transmission. In practical terms this can be the channel
throughput, an “ACK” binary signal or any other performance
criterion. The observed signal, modelled by the reward, drives
the learning process.

As explained in Section [[I-A] the reward acquired in a
transmission depends both on the transmitting user’s identity
and on the channel index. The reward a transmission yields
is therefore drawn from the reward distribution for the ap-
propriate (user,channel) pair. In our experiments we chose to
model “ACK” signals acquired by users. These signals are
widespread in pairwise communications, and are used by the
receiver to notify the transmitter of a successful transmission.
The reward distributions we use are therefore binary, with a
parameter (expected value) pi, ;. The values of the expected
rewards are drawn uniformly from the interval [0,1] at the
beginning of an experiment.

120 Empirically averaged policy changes - light scenario

80 q

601 q

Fig. 15. Policy switches - light scenario: K=10, N=7

50 Empirically averaged policy changes - loaded scenario

Fig. 16. Policy switches - loaded scenario: K=25, N=25

In this section we present several results, examining dif-
ferent aspects of system performance. First, we address the
number of times users change their policy, namely switch
channels. A low rate of policy changes attests to the sta-
bility of a configuration, and we would therefore like such
changes to become scarce over time. From a practical point
of view, modern communication involves transmission of long,
“heavy” multi-media data streams. Frequent interruptions are
detrimental to such communications, and we therefore prefer
long stretches of time between channel switches.

Fig. [13] and Fig. [T display the cumulative number of
channel switches per user over the course of an entire ex-
periment, that lasts 7" = 200, 000 time slots. The results are
averaged over 50 repetitions of the same setup. The light
scenario is composed of 7 users accessing 10 channels, while
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Fig. 17. Potential - light scenario: K=10, N=7

the loaded one includes 25 users and 25 channels. Several
interesting phenomena can be observed in these graphs. First,
convergence, in the form of few channel switches, is achieved
in both scenarios, as is evident from the plateau in the graphs.
In addition, convergence for the loaded scenario is delayed
when compared to the light one. This is due to two factors:
the increased number of channels that lengthens the learning
period, and the fact that the number of users is equal to the
number of channels, increasing the complexity of switching
channels. Finally, Fig. [I3 displays a interesting situation, in
which one of the users continues to switch channels long after
her fellow users have converged to a single channel. This is a
result of this user’s reward distribution: there are two channels
whose expected rewards for this user are very close. To be
more specific, user 2 has an expected reward of 0.9626 in
channel 7, and and expected reward of 0.9569 in channel 2.
The difference between these values drives the user’s learning
process; since they are very close (6 = 0.0057), the user will
need many samples to choose between the channels. This is a
result of the definition of the UCB index, used in Algorithm
EL In terms of the acquired reward, these switches do not
hurt performance, since the channels are very close. However,
this situation may be undesirable in terms of stability, and we
propose a solution for it in Section

Next, we present the potential of the system over time, as
defined in Section equations (1) and (2). This measure
also serves as evidence of the system’s convergence to a stable
configuration. As before, we examine scenarios with light and
heavy loads. The potential exhibits the decay we expected,
along with the previously observed difference between the
two scenarios. The shaded area around the plots represents
the variance over experiment repetitions, and is rather small.

Our next result examines the convergence to different stable
marriage configurations over time, comparing different real-
izations of a single setup. Each line in Fig. [T9] represents
a single repetition of an experiment with 15 users and 15
channels. The horizontal axis is the time axis, and the values
(colors) of the pixels correspond to the ratio between the actual
and optimal system-wide rewards. White pixels correspond

System potential over time - loaded scenario
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Fig. 18. Potential - loaded scenario: K=25, N=25

Convergence to SM - different realizations

Fig. 19. Stable configurations: K=15, N=15

to time slots during which the system was not in an SMC.
This figure shows several interesting phenomena. First, it is
quite obvious that the users spend most of their time in high-
reward configurations. Convergence to stable (and rewarding)
configurations is visible as well; white pixels become scarce
as time advances. Finally, the variability between different
realizations is demonstrated: for the specific setting of this
experiment, 519 different stable realizations exist. The CSM-
MAB algorithm doesn’t necessarily converge to the same one,
but it clearly favours those with high rewards (see colorbar).

The issue of the reward acquired by users is of great
interest in this setup. While our theoretical analysis focuses
on stability, we use simulations to complement it empirically
and examine the total reward over time. Since users’ prefer-
ences over channels are driven by the UCB index, based on
the channels’ rewards, we expect our algorithm to perform
reasonably despite not being reward optimal. We compare the
performance of our algorithm to that of the dUCB4 algorithm,
introduced in [18]]. As discussed in Section [I] this algorithm
converges to a reward optimal configuration by employing
excessive communication in the form of the Bertsekas auction
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Fig. 20. Cumulative reward for light load: K=10, N=7
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Fig. 21. Cumulative reward for heavy load: K=25, N=25

algorithm. Fig. 20| and Fig. 21| present simulation results for
light and heavy loads, respectively. Our algorithm (solid blue
line) compares well with the system-wide optimal reward
(dashed purple) and clearly outperforms both versions of the
dUCB4 algorithm (dashed red and dotted orange). The two
dUCB4 algorithms differ in the accuracy of the auctioning
routine. The “dUCB4” version uses 32 bits to encode variables,
while the “dUCB4Long” version uses 64 bits.

The plots clearly demonstrate what we perceive as the
biggest disadvantage of communication between users: its
cost. Users applying the CSM-MAB algorithm converge to
a “good” configuration in terms of reward much faster than
those applying the dUCB4 algorithm, since the latter spend
a considerable amount of time auctioning. They eventually
converge to an optimal configuration, but the time it will take
them to reach it may be prohibitively long from a practical
point of view. The difference becomes striking as the load
on the system increases. Despite running experiments for a
very long time, the dUCB4 algorithm did not converge to
a favourable configuration in terms of reward in the heavily
loaded scenario.

Cumulative reward over time - extended time horizon
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Fig. 22. Cumulative reward for K=15, N=15, extended time horizon

The authors of the dUCB4 algorithm suggest a similar
approach in [19]], which includes an exploration phase based
on round-robin sampling. Avoiding collisions during this phase
requires some form of external coordination (for example, a
control channel), which is more extensive than the one we
require in this work. Therefore we did not include it in our
experiments.

Let us examine the price of such communication using a
real world example: an average 802.11n WLAN network. We
assume the network has a frame size of 2000 bits and bit
rate of 25 megabits per second, and analyze a medium-load
scenario, with 15 users and 15 channels (see Fig. @) The
reward acquired by the light version of the dUCB4 algorithm
comes within one tenth of the optimum after roughly T' =
5-10° time slots. Translating this into time results in a start-
up phase of 40 seconds: % = 40sec. The length of
this initial phase doubles to well over one minute when 64
bit accuracy is used for the Bertsekas auction. While lighter
schemes than the 802.11 can be used, these numbers clearly
demonstrate the significant, sometimes impractical, overhead
brought on by communication.

Another important contribution of our paper is the D-
CSM-MAB algorithm (Section [V), that is suited for handling
a dynamic number of users. We present the results of an
experiment where users arrive and leave at different times.
The algorithm has no prior knowledge regarding the number
of users or when they are expected to arrive or leave. Fig.
[23] displays the empirical average over the cumulative number
of policy switches for a network with K = 10 channels and
a variable number of users. The plots are drawn starting with
each user’s arrival time and are cut off when the user leaves the
network. Two interesting phenomena can be observed: first,
the rate of policy switches decreases over time, indicating
convergence to a stable configuration, similarly to the static
scenario. Second, the rate of convergence varies between users,
and is also affected by changes in the number of users present.
For example, the departure of user 2 (red plot) triggers a
change in the actions of the remaining users 3, 4 and 5 (orange,
purple and green plots).
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Fig. 24. Potential for dynamic scenario

As mentioned above, the system-wide potential can also
be used to examine convergence and stability. Fig. 24] shows
the changes in potential over time, emphasizing the effect of
user arrivals and departures. The vertical lines in the figure
represent changes in the number of users: pink lines represent
arrivals, while red lines represent departures. Naturally, the
manifestation of changes in the number of users is a spike in
the system-wide potential: an arriving user has initial high
potential since she has yet to learn and choose the best
available channel, and a departing user frees a channel the
remaining users may have been waiting to sample. The D-
CSM-MAB algorithm handles these situations well, as is
obvious from the decay of the potential after every change
point.

Our final experiment concerns a fixed number of users
once again, and examines the performance of the CSM-MAB
algorithm (Section [MI) over a wide range of setups. The
plots in Fig. 23] shows three different network sizes (10,
15, and 25 channels) and several numbers of users, where
N € {3,...,K}. For each pair of K and N we drew 50
different realizations of reward distributions, and examined
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Fig. 25. Stable configuration reward vs. K and IV

the expected reward of the stable configuration the system
eventually reached. This value, normalized by the reward of
the system-wide optimum, is presented in the figure. For
example, with K = 25 channels and N = 5 users, the average
stable configuration reward is 99.7% of the optimal reward.
Naturally, the steady state reward decreases as the load (i.e.,
ratio of IV to K) increases, but even for N = K it stays rather
high - over 96%. The learning problem becomes harder with
the increase of K, also affecting the stable state reward.

VIII. DISCUSSION

Our work addresses the multi-user MAB problem, where
users’ reward distributions differ and the number of users is
unknown. In an effort to minimize communication between
users and still ensure convergence to a favourable config-
uration, we introduce the CSM-MAB algorithm. Our ap-
proach combines learning with a signalling-based coordination
scheme and is guaranteed to converge to an orthogonal stable
marriage configuration.

In this paper we present two algorithms. The CSM-MAB
algorithm deals with a fixed, yet unknown, number of users
in the the network, while its dynamic counterpart, the D-
CSM-MAB, handles a variable number of users. We include
a theoretical analysis of each of the algorithms, ensuring
convergence to an orthogonal SMC in finite time.

The extensive experimental section covers several aspects
such as stability, convergence, reward accumulation and com-
parison to the existing state of the art. We believe the results
of this section demonstrate the practicality of our solution.

We would like to devote a few words to the issue of
rogue users. Our analyses and guarantees depend on the
assumption that all users apply the CSM-MAB (or D-CSM-
MAB) algorithm. However, in real networks, non-compliant
agents may also be present. Such agents can be either oblivious
or adversarial, static or dynamic. Their effect on performance
largely depends on their transmission profile.

For example, an agent that transmits in a single fixed
channel and does not transmit during the “init” slots (see
Fig. [8] and Fig. [TT) will cause users to avoid that particular



channel, as its empirical average reward will be low due to
collisions. Assuming there are enough channels, users will
simply learn a configuration that does not involve it. However,
an agent that transmits during the “init” slots is likely to
impair the process of coordinating an initiator, thus preventing
users from swapping channels and moving towards a favorable
configuration. Assuming the “foreign” agent is not malicious,
she will have no reason to transmit in channels that are already
taken, as this will result in collisions for her as well. She can
attempt to drive a transmitting user from an occupied channel,
but this will take longer and longer periods of time as the
experiment advances, making such a strategy inefficient for
the “foreign” agent.

While this paper offers a detailed analysis of the problem
and the proposed solution, several additional directions are
of interest. First, a dynamic scenario in terms of network
resources can be explored. Varying channel characteristics
may be addressed by, for example, selecting channels based
on their performance in a finite window. Another direction
aims to improve performance by decreasing the amount of
time devoted to coordination as time advances, thus increasing
channel utilization. A time dependent scheme can also be of
use when dealing with instability caused by users switching
between similar channels (e.g., Fig. @ In this case, introduc-
ing switching costs between channels that increase with time
is an interesting solution.

APPENDIX A
PROOFS OF LEMMAS FROM SECTION [[V]

This appendix is devoted to the proofs of the lemmas cited
in Section

A. Proof of Lemma

We would like to show that for all values of ¢ for which
t > «alnt, the probability that the potential decreases every
time it changes is at least 1 — 4=, where o = i%K .

Given that a change in potential occurs at time ¢, it is
guaranteed to result in a potential decrease if it benefits both
users. This will happen if both users’ UCB indices, that
guide their decisions, are accurate with respect to the true
distribution.

Since we condition on a change in potential, denoting an
increase in potential by ®p,. and a decrease in potential by
Ppec, we have that

P{®pec} =1—P{Ppy}.

Let us upper bound P {®,.} . For a user n switching from
arm j to arm ¢ at time ¢, when i, ; < pin j,

IP){(I)Inc} = P{In,z (t) 2 In,j (t) N Hni < ,un,j}y

where I, ; (t) is user n’s UCB index of arm i at time ¢:

R 2Int
Ly (8) = fin o +4 | )
Sn,k

Following the proof of Theorem 1 of [3],

P {(Plnc}

=P {.anﬂ (t) +Ctsn, 2 fin,j (t) + Ctospy My < ,un,j}
<2,

provided that

8Int
5T"L,’L iy A,LQ’] (n)7
where s,, ; is the number of times user n sampled arm 7 up
till time ¢ and A,; ; (n) £ Pn,i — i If (I4) does not hold,
then the UCB index may “mislead” user n, causing her to
mistakenly favor arm i, despite its lower expected reward.
Switching from arm j to arm ¢ will result in an increase in
potential. However, once she acquires another sample of arm
1, its index will decrease. In the meantime, the index of arm
7 will increase due to the passing time, and the indices will
ultimately reflect the correct preference, resulting in a potential
decrease.
The extreme value for , i.e., the largest number of re-
quired samples, corresponds to the minimal value of A; ; (n).
Let us define:

(14)

A, = min ;— ;
nS i [tn,i = tn,j]
i#£]
Amin £ min An
ne{l,...,N}

Thus, when all arms have been sampled at least

A 8lnt
Smin = AQ

min
times, the probability of an increase in potential is very small.
In order to allow for the coordination protocol, users do not
gather informative samples in every time slot. Instead, they
gather at least K’ — 2 samples in each super frame, whose
length is Tsp =2+ 2 (K — 1) = 2K.
Therefore, taking into account the fact that the sampling
condition in (I3)) must apply for all arms, the condition on ¢
is

(15)

16K
A? Int.

min

T 16K
t> KKismin 0 Int > (16)

27 T (K ~2) AL,
For all times ¢ for which (T6) holds, if a change in potential
occurs, it is a decrease, with probability of at least 1 — 2t 4,

When we apply this lemma we will use a quantity ¢,i,, an
upper bound on the minimal ¢ for which (T6) holds. Using an

upper bound on the logarithmic function, introduced in [32],

lnargx— Vo > 1,
s

with s = %, we have that Int < 2+v/t. We use this bound

together with (T6):
16K
= A2

min

32K
A2

min

t Int > NG

Our upper bound is therefore
32K \°
tmin = AT .

Since this expression is finite, we may now use it in our proof.



B. Proof of Lemma
The probability of a specific user becoming the initiator
when there are ¢ interested users is

P (e, £) = P [specific initiator| £ interested]

—c(1—e" Y vre{,... N}

The probability is minimal when all N users would like to
become the initiator, yielding the bound € (1 — €)™ 7",

Choosing the value of €, the only parameter in our al-
gorithm, is of some interest. The optimal choice of ¢, that
maximizes the probability of a single initiator emerging when
there are N interested users, is € = % However, the total
number of users is assumed to be unknown at the user level,
and therefore a different value is chosen: € = % Choosing
a value smaller than N for the denominator prevents the
dependency of P, on ¢ from being monotonous, and so we
choose K, which is guaranteed to be no less than N.

C. Proof of Lemma [3]

A decrease in potential does not occur during a super-frame
if at least one of the following occurs:

¢ An initiator does not emerge
o An initiator does emerge, but the users’ statistics are
wrong and therefore a decrease in potential does not occur

Formally, denoting the number of decreases in potential in a
time interval by [t1,%5] by Dy, +,) and using the bounds of
Lemma [1] and Lemma

P {D[t,t+Tsp] = 0} <l—-€e(l- e)Nfl +2t74
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