
1

Randomized Work Stealing versus Sharing in
Large-scale Systems with Non-exponential Job Sizes

B. Van Houdt
Dept. Mathematics and Computer Science

University of Antwerp, Belgium

Abstract—Work sharing and work stealing are two scheduling
paradigms to redistribute work when performing distributed
computations. In work sharing, processors attempt to migrate
pending jobs to other processors in the hope of reducing
response times. In work stealing, on the other hand, underutilized
processors attempt to steal jobs from other processors. Both
paradigms generate a certain communication overhead and the
question addressed in this paper is which of the two reduces the
response time the most given that they use the same amount of
communication overhead.

Prior work presented explicit bounds, for large scale systems,
on when randomized work sharing outperforms randomized
work stealing in case of Poisson arrivals and exponential job
sizes and indicated that work sharing is best when the load is
below φ− 1 ≈ 0.6180, with φ being the golden ratio.

In this paper we revisit this problem and study the impact of
the job size distribution using a mean field model. We present
an efficient method to determine the boundary between the
regions where sharing or stealing is best for a given job size
distribution, as well as bounds that apply to any (phase-type)
job size distribution. The main insight is that work stealing
benefits significantly from having more variable job sizes and
work sharing may become inferior to work stealing for loads as
small as 1/2 + ε for any ε > 0.

I. INTRODUCTION

Work sharing and stealing are two fundamental scheduling
paradigms to redistribute work in a distributed computing
environment. The idea of work stealing is that any processor
that becomes idle may attempt to steal a job from another
processor with pending jobs. Work sharing on the other hand
implies that processors with pending jobs attempt to pass
some of these jobs to idle processors. For instance, schedulers
part of the Cilk programming language (developed at MIT in
the 1990s), the Java fork/join framework and the .NET Task
Parallel Library implement work stealing.

A particular class of work stealing and sharing strategies
that has received considerable attention are the so-called
randomized work stealing/sharing strategies [3], [4], [7], [19],
[18], [10], [16]. Under such a strategy a processor that intends
to initiate a job transfer (either using stealing or sharing)
probes another processor at random to see whether a job can
be transferred. Clearly, the more probes a processor uses, the
more likely it becomes that a job can be transferred (between
an idle processor and a processor with pending jobs), which
in turn reduces the mean response time.

The main objective of this paper is to study whether work
stealing or sharing achieves the lowest mean response time
in a large homogeneous system provided that both paradigms

use the same average number of probe messages per time unit,
called the probe rate. For Poisson arrivals and exponential job
durations (with mean 1) the following result was proven in
[16] using mean field models. As the system size tends to
infinity and given that both paradigms use the same overall
probe rate roverall, sharing outperforms stealing if and only if

λ <

√
(roverall + 1)(roverall + 5)− (roverall + 1)

2
, (1)

in terms of the mean response time (as well as in the decay rate
of the queue length distribution). As roverall approaches zero,
the right-hand side decreases to φ−1, where φ = (1 +

√
5)/2

is the golden ratio, which indicates that work sharing prevails
for any roverall when λ < (−1 +

√
5)/2 ≈ 0.6180. In this

paper we revisit this problem, but relax the assumption on
exponential job sizes (by considering phase-type distributions).

Work stealing and sharing is mostly used in practice in the
context of dynamic multithreading where ongoing jobs spawn
new jobs that are stored locally (and may be subsequently
stolen or shared). They can however also be used in a context
where all the jobs enter the system via one or multiple
dispatchers to complement classic load balancing strategies
such as the Join-the-Shortest-Queue among d random choices
(JSQd) [26], [20], [5], [27] or Join-the-Idle-Queue (JIQ) [13],
[23]. The setting considered in this paper then corresponds
to assuming new incoming jobs are assigned among the
processors in the system in a random manner. Future work
in this direction may exist in studying how these paradigms
perform when combined with a more advanced load balancing
algorithm such as JSQd or JIQ. The model considered in
this paper may also be applicable to a setting where a job
is initially assigned to a specific server for reasons such as
data locality and can subsequently be migrated in case the
server is currently overloaded.

The modeling approach used in this paper exists in defining
a mean field model, that is validated using simulation, and
studying the unique fixed point of this model to identify the
region (in terms of λ and roverall) where work stealing/sharing
is best for non-exponential job sizes. We further indicate that
by relying on the results in [25] one can formally prove that the
fixed point of the mean field model corresponds to the limit of
the stationary distributions of the finite systems provided that
we truncate the queues and limit ourselves to hyperexponential
job size distributions (see Section V for a brief discussion).

Below we highlight some of the main contributions. Con-
tributions 2) to 6) are valid in the limit as the number of
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servers tends to infinity under the assumption that the unique
fixed point of the mean field model is indeed the limit of the
stationary distributions of the finite systems (as suggested by
simulation, see Section V).

1) We present a mean field model for work stealing/sharing
and prove that this model has a unique fixed point that
can be computed easily using matrix analytic methods.

2) We devise a simple test to determine whether work steal-
ing or sharing is best for a given job size distribution,
arrival and probe rate.

3) We prove that there exists a λ∗ ∈ [1/2, 1) (that depends
on the job size distribution and probe rate) and an
r∗overall ∈ (0, λ2/(1− λ)] (that depends on the job size
distribution and arrival rate λ) such that stealing is best if
and only if the arrival rate exceeds λ∗ and work sharing
is best if and only if the probe rate exceeds r∗overall.

4) We identify a region (in terms of the arrival and probe
rate) where sharing is best and present a conjecture for
the region where stealing is best for any phase-type job
size distribution.

5) We show that work stealing benefits from having more
variable job sizes and for highly variable job size
distributions (and probe rates below 1/2) stealing can
outperform work sharing as soon as the arrival rate
exceeds 1/2.

6) We derive explicit bounds for the case where the probe
rate tends to zero.

The main insight is that when stealing and sharing use the
same number of probes per time unit, stealing benefits more
from having more variable job sizes. The intuition behind
this result goes as follows: as the response time of a job
reduces when a job is transferred to another server, transferring
more jobs should result in a larger reduction of the mean
response time. If the overall probe rate is fixed, the number
of successful transfers is determined by the probability that
a probe is successful. Under work sharing all probes have a
probability of 1 − λ of being successful, irrespective of the
job size distribution. Under work stealing this probability is
determined by the probability to have pending jobs. This latter
probability is expected to increase as the job sizes becomes
more variable. So under sharing more job size variability has
no impact on the number of successful probes per time unit,
while under stealing more variability yields more successes.

The remainder of this paper is organized as follows. In
Section II we describe the system and work stealing/sharing
strategies under consideration. The mean field model is in-
troduced in Section III and a method to compute its unique
fixed point is presented in Section IV. The mean field model
is validated using simulation in Section V. In Section VI
we indicate how to determine whether stealing or sharing is
best for a given job size distribution, while numerical results
can be found in Section VII. Bounds on the region where
stealing/sharing is best for any (phase-type) distribution are
derived in Section VIII. Finally, explicit results for these
bounds for sufficiently small probe rates are established in
Section IX and conclusions are drawn in Section X.

II. SYSTEM DESCRIPTION AND STRATEGIES

The system analyzed in this paper has the following char-
acteristics:

1) The system consists of N homogeneous servers that
process incoming jobs in FCFS order and each server
has an infinite buffer to store jobs.

2) Each server is subject to its own local Poisson arrival
process with rate λ.

3) The time required to transfer probe messages and jobs
between different servers can be neglected in compar-
ison with the processing time, i.e., the probe and job
transfers are assumed to be instantaneous.

This setting is similar to the one considered in [7], [19],
[18], [10], [16], the main difference is that the job sizes are
not assumed to be exponential. Instead we assume the job
sizes follow a continuous time phase-type distribution with
mean 1 characterized by the n × n subgenerator1 matrix S
and initial vector α = (α1, . . . , αn). Its cumulative distribution
function (cdf) H and probability density function (pdf) h is
given by H(y) = 1−αeSy1 and h(y) = αeSyµ, respectively,
where 1 is a vector of ones and µ = −S1. Note that αi
is the probability that a job starts service in phase i, entry
(i, j) of S, for i 6= j, contains the rate at which the job in
service changes its service phase from i to j and µi is the
rate at which a job in phase i completes service. For example
whenever S is a diagonal matrix, the phase type distribution
is a hyperexponential distribution.

We note that any general distribution on [0,∞) can be
approximated arbitrary closely with a phase-type distributions
[24] and various fitting tools to do so are available online,
e.g., [22], [1]. In addition, we believe that many of the
stealing/sharing bounds presented in this paper are valid for
any job size distributions. In fact, some of the arguments
(based on coupling) presented in the paper are not limited
to phase-type distributions.

We consider the following work sharing and stealing mech-
anisms, called the push and pull strategy in [16]:

1) Sharing: Whenever a server has ` ≥ 2 jobs in its queue,
meaning `− 1 jobs are waiting to be served, the server
generates probe messages at rate r. Thus, as long as the
number of jobs in the queue remains above 1, probes
are sent according to a Poisson process with rate r.
Whenever the queue length ` drops to 1, this process is
interrupted and remains interrupted as long as the queue
length is below 2. The server that is probed is selected
at random and is only allowed to accept a job if it is
idle.

2) Stealing: Whenever a server has ` = 0 jobs in its queue,
meaning the server is idle, it generates probe messages
at rate r. Thus, as long as the server remains idle, probes
are sent according to a Poisson process with rate r. This
process is interrupted whenever the server becomes busy.
The probed server is also selected at random and a probe
is successful if there are jobs waiting to be served. Thus,
a job in service is never stolen by another server.

1S is a subgenerator matrix if its diagonal entries are negative, its off-
diagonal entries are non-negative and its row sums are negative.
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The overall probe rate roverall therefore equals r times the
probability that a server holds two or more jobs for work
sharing and r times the probability that a server is idle for
work stealing.

The work stealing and sharing strategies considered in [7],
[18], [17] operate as follows. The work stealing strategy tries
to attract a job whenever the server becomes idle, while the
work sharing strategy tries to get rid of arriving jobs if the
server is busy upon their arrival. Further, instead of sending
a single probe, both strategies repeatedly send probes until
either one gets a positive reply or a predefined maximum of
Lp probes is reached. The overall probe rate roverall of these
more traditional strategies clearly depends on Lp and the load
λ, which makes it hard to compare these strategies in a fair
manner. In [16] it was shown that under exponential job sizes,
the fixed points of the mean field models of these traditional
strategies and the above strategies that make use of the probe
rate r coincide if r is set such that the overall probe rate
roverall of these more traditional strategies is matched. As such
the traditional strategies do not offer a performance benefit
compared to the ones considered in this paper when the system
becomes large and job sizes are exponential.

In the next section we introduce a single mean field model
that is intended to capture the behavior of the system as N
tends to infinity for sharing and stealing. A single mean field
model can be used as for both strategies the rate at which
jobs are transferred between servers is given by Nr times
the fraction of idle servers times the fraction of servers with
pending jobs. However, as the probability that a server is idle
does in general not match the probability that it has pending
jobs, the overall probe rate roverall typically differs when both
strategies rely on the same r. Hence, as in [16] which was
limited to exponential job sizes, we aim at comparing these
strategies when the rates r are set such that the overall probe
rate roverall matches some predefined probe rate. We do not
consider hybrid strategies where servers probe at some rate r1
when being idle and at some rate r2 when they have pending
jobs.

III. MEAN FIELD MODEL

For ` > 0, denote f`,j(t) as the fraction of queues with
length ` at time t, the server of which is in phase j. Let f0(t)
be the fraction of idle queues at time t. Let 1[A] be equal to
one if A is true and to zero otherwise. We propose to use the
following ODE model:

d

dt
f`,j(t) = λf`−1,j(t)1[` > 1]− λf`,j(t) + λf0(t)αj1[` = 1]

+

∑
j′

µj′f`+1,j′(t)

αj − f`,j(t)µj +
∑
j′ 6=j

f`,j′(t)sj′,j

− f`,j(t)
∑
j′ 6=j

sj,j′ + f0(t)r(f`+1,j(t)− 1[` > 1]f`,j(t))

+ 1[` = 1]rf0(t)

1− f0(t)−
∑
j′

f1,j′(t)

αj ,

for ` ≥ 1 and

d

dt
f0(t) = −λf0(t) +

∑
j′

µj′f1,j′(t)

− rf0(t)

1− f0(t)−
∑
j′

f1,j′(t)

 .

The first three terms for the drift of f`,j(t) correspond to
arrivals, the next two to service completions, the two sums
to phase changes and the latter two terms are caused by
job transfers. There are two ways to think about the terms
regarding the job transfers. If we consider work stealing rf0(t)
is the rate at which idle servers attempt to steal work. With
probability f`+1,j(t) they probe a server in phase j with length
`+ 1 and thus create an additional server with ` jobs in phase
j. With probability f`,j(t) a probe steals a job from a server
with length ` in phase j, lowering the number of servers of
this type, unless ` = 1, in which case there is no steal. The
last term corresponds to the increase in servers with one job
in phase j, such a server is created if a server with two or
more jobs is probed and the initial phase of service equals j.
Alternatively we could think in terms of the sharing strategy,
rf`+1,j(t) is now the rate at which servers with `+ 1 jobs in
phase j are trying to transfer one of their pending jobs and
f0(t) is the probability that such a server succeeds. The other
two terms can be interpreted in the same way. For the drift of
f0(t) the first term is due to arrivals, the second due to service
completions and the last one is due to job transfers.

We can write these equations in matrix form as follows. Let
~f`(t) = (f`,1(t), . . . , f`,n(t)), then as µj = −

∑
j′ sj,j′ the

above set of ODEs can be expressed as

d

dt
~f`(t) = λ~f`−1(t)1[` > 1]− λ~f`(t) + λf0(t)α1[` = 1]

+ ~f`+1(t)µα+ f0(t)r(~f`+1(t)− 1[` > 1]~f`(t))

+ ~f`(t)S + 1[` = 1]rf0(t)
(

1− f0(t)− ~f1(t)1
)
α,

(2)

for ` ≥ 1 and

d

dt
f0(t) = −λf0(t) + ~f1(t)µ− rf0(t)

(
1− f0(t)− ~f1(t)1

)
.

(3)

In the next section we show this set of ODEs has a unique
fixed point ζ (with ζ0+

∑
`≥1

~ζ`1 = 1) that can be expressed as
the invariant distribution of an M/PH/1 queueing system with
negative customers. The next proposition is used to establish
this result. Let β be the unique stochastic vector2 such that
β(S + µα) = 0. Entry i of the vector β is the probability
that the server is in phase i if we observe a busy server at a
random point in time. As the mean service time is assumed
to be 1, we have βµ = 1.

Proposition 1. For any fixed point ζ = (ζ0, ~ζ1, ~ζ2, . . .) with
ζ0+

∑
`≥1

~ζ`1 = 1 of the set of ODEs (2-3), we have ζ0 = 1−λ
and

∑
`≥1

~ζ` = λβ.

2Note that S+µα is the rate matrix of an n state continuous time Markov
chain and β is its unique steady state vector.
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Proof. By noting that

∑
`≥1

d

dt
~f`(t) +

d

dt
f0(t)α =

∑
`≥1

~f`(t)

 (S + µα),

we find that
(∑

`≥1
~ζ`

)
(µα + S) = 0. Therefore

∑
`≥1

~ζ`
is proportional to β, the unique stochastic vector such that
β(µα+ S) = 0. Furthermore,∑

`≥1

`
d

dt
~f`(t) = λ

∑
`≥1

~f`(t) + λf0(t)α+
∑
`≥1

` ~f`+1(t)µα

+
∑
`≥1

` ~f`(t)S − rf0(t)
∑
`≥2

~f`(t)

+ rf0(t)
(

1− f0(t)− ~f1(t)
)
α,

where∑
`≥1

` ~f`+1(t)µα+
∑
`≥1

` ~f`(t)S = ~f1(t)S

+
∑
`≥2

` ~f`(t)(S + µα)−
∑
`≥2

~f`(t)µα.

As α1 = 1, f0(t) +
∑
`≥1

~f`(t)1 = 1 and (S + µα)1 = 0, we
find ∑

`≥1

`
d

dt
~f`(t)1 = λ−

∑
`≥1

~f`(t)µ.

This implies that
(∑

`≥1
~ζ`

)
µ = λ, which yields(∑

`≥1
~ζ`

)
= βλ as βµ = 1.

IV. M/PH/1 QUEUE WITH NEGATIVE CUSTOMERS

We now introduce an M/PH/1 queueing system with nega-
tive customers and show that its steady state distribution cor-
responds to the unique fixed point of the set of ODEs given by
(2-3). The queueing system has the following characteristics:

1) Arrivals occur according to a Poisson process with rate
λ when the server is busy and at rate λ0 when the server
is idle.

2) There is a single server, infinite waiting room and service
times follow a phase-type distribution (α, S) with mean
1. Customers are served in FCFS order.

3) Negative arrivals occur at rate (1−λ)r when the queue
length exceeds one and reduce the queue length by one
(by removing a customer from the back of the queue).

4) The arrival rate λ0 is such that the probability of having
an idle queue is 1 − λ and thus depends on λ, r and
(α, S) only.

We start by defining a continuous time Markov chain
(Xt(r), Yt(r))t≥0 where Xt(r) denotes the number of jobs
in the queue at time t and Yt(r) ∈ 1, . . . , n is the server
phase at time t provided that Xt(r) > 0. Define

A−1(r) = µα+ (1− λ)rI,

A0(r) = S − (λ+ (1− λ)r)I,

A1 = λI.

Using these matrices we define the rate matrix Q(r) of the
Markov chain (Xt(r), Yt(r))t≥0 as

Q(r) =


−λ0(r) λ0(r)α
µ S − λI A1

A−1(r) A0(r) A1

. . . . . . . . .

 . (4)

Note the matrix Q(r) is fully determined by λ, r, α and S,
except for the rate λ0(r) to exit level 0. We define λ0(r)
further on.

Let π0(r) = limt→∞ P [Xt(r) = 0], π`,j(r) =
limt→∞ P [Xt(r) = `, Yt(r) = j] for ` > 0 and π`(r) =
(π`,1(r), . . . , π`,n(r)). Finally, set πk+(r) =

∑
`≥k π`(r). Due

to the Quasi-Birth-Death (QBD) structure [21] we have

π1(r) = π0(r)R1(r),

π`(r) = π1(r)R(r)`−1,

for ` > 1, where the n × n matrix R(r) is the smallest
nonnegative solution to

A1 +R(r)A0(r) +R(r)2A−1(r) = 0

and

λ0(r)α+R1(r)(S − λI) +R1(r)R(r)A−1(r) = 0. (5)

As A1G(r) = R(r)A−1(r) (see [21]), where G(r) is the
smallest nonnegative solution to A−1(r) + A0(r)G(r) +
A1G(r)2 = 0, we find

R1(r) = −λ0(r)α(S + λ(G(r)− I))−1. (6)

The matrix G(r) is a stochastic matrix whenever the Markov
chain characterized by Q(r) is positive recurrent (which
clearly holds for any r ≥ 0 if λ < 1) [21]. Therefore the
matrix G(r)− I is a generator matrix, S + λ(G(r)− I) is a
subgenerator matrix and the latter is therefore invertible. Note
that R(r) and G(r) are independent of λ0(r).

If we observe the Markov chain only when Xt(r) > 0 and
only focus on Yt(r), we find that it evolves according to the
generator matrix A−1(r) +A0(r) +A1 = S+µα. Hence, the
vector β represents the stationary distribution of the service
phase given that the server is busy. As such we find∑

`>0

π`(r) = (1− π0(r))β. (7)

a) Defining λ0(r): To define λ0(r) we demand that
π0(r) = 1−λ and that π0(r)+

∑
`≥1 π`(r)1 = 1. This implies

1 = π0(r) +
∑
`≥1

π`(r)1 = (1− λ)(1 +R1(r)(I −R(r))−11).

Equation (6) yields

λ0(r) =
λ

(1− λ)α(λ(I −G(r))− S)−1(I −R(r))−11
. (8)

As λ, r, α and S fully determine the matrices R(r) and G(r),
they also fully determine λ0(r) using the above equation.

Although we have a definition for λ0(r), we now derive a
second equivalent expression. To do so, note that the rate at



5

which the level (being Xt(r)) of the QBD goes up should be
matched by the rate that the level goes down. Hence, we have

π0(r)λ0(r)+(1−π0(r))λ =
∑
`>0

π`(r)µ+
∑
`>1

π`(r)1(1−λ)r.

If we demand that π0(r) = (1 − λ), (7) and the equality
βµ = 1 implies

(1− λ)λ0(r) + λ2 = λ+ π2+(r)1(1− λ)r,

which simplifies to

λ0(r) = λ+ rπ2+(r)1. (9)

Using (6) and the equality π2+(r)1 = λ−π1(r)1, this provides
us with the following equivalent definition for λ0(r)

λ0(r) =
λ(1 + r)

1 + (1− λ)rα(λ(I −G(r))− S)−11
. (10)

b) Steady state probabilities: Using (8) we see that the
steady state probabilities π`(r) can be expressed as

π`(r) = λ
α(λ(I −G(r))− S)−1R(r)`−1

α(λ(I −G(r))− S)−1(I −R(r))−11
, (11)

and π0(r) = 1− λ.

Theorem 1. The steady state probability vector given by (11)
is the unique fixed point ζ of the set of ODEs given by (2-3)
with ζ0 +

∑
`≥1

~ζ`1 = 1.

Proof. We show that any fixed point ζ = (ζ0, ~ζ1, ~ζ2, . . .) of
(2-3) satisfies ζQ(r) = 0. The result then follows from the
uniqueness of the stationary distribution of the Markov chain.

Due to Proposition 1 we have ζ0 = 1− λ and it suffices to
show that (~ζ1, ~ζ2, . . .) is an invariant vector of

Qbusy(r) =


S − λI + µα A1

A−1(r) A0(r)
. . .

. . . . . .

 , (12)

being the rate matrix of the chain censored on the states where
the server is busy.

Due to Proposition 1, Equation (2) with ` > 1, is equivalent
to

0 = λ~ζ`−1 + ~ζ`(S−λI − (1−λ)rI) + ~ζ`+1(µα+ (1−λ)rI),

which means 0 = ~ζ`−1A1 +~ζ`A0(r)+~ζ`+1A−1(r). Similarly,
Equation (2) with ` = 1 and Equation (3) can be written as

0 = ζ0(λ+ r(1− ζ0 − ~ζ11))α+ ~ζ1(S − λI) + ~ζ2A−1(r),

0 = −ζ0(λ+ r(1− ζ0 − ~ζ11)) + ~ζ1µ.

When combined this yields ~ζ1(S−λI+µα)+~ζ2A−1(r) = 0.
This is the first balance equation of (~ζ1, ~ζ2, . . .)Qbusy(r) =
0.

A. Special cases
In general there does not appear to exist an explicit formula

for π`(r) as G(r) and R(r) are the solutions to quadratic
matrix equations. Note that these matrices and thus π`(r) can
be computed in a fraction of a second using matrix analytic
methods (see [2]). In this subsection we consider two special
cases for which we can obtain an explicit result for G(r).

a) Exponential job durations: In case of exponential job
lengths with mean 1, we clearly have G(r) = 1. Therefore
R(r) = λ/(1 + (1− λ)r) as λG(r) = R(r)A−1(r) and π`(r)
simplifies to

π`(r) = λ

(
λ

1 + (1− λ)r

)`−1/(
1− λ

1 + (1− λ)r

)−1
,

hence
∑
`≥i π`(r) = λi/(1+(1−λ)r)i−1, which is the unique

fixed point of the set of ODEs for the exponential job durations
derived in [16].

b) Hyperexponential job durations: In case of hyper-
exponential job sizes with 2 phases, that is, when S =
diag(−µ1,−µ2) and α = (p, 1− p), we can write G(r) as

G(r) =

[
1− g1,2(r) g1,2(r)
g2,1(r) 1− g2,1(r)

]
,

and show that g2,1(r) is a root of the perturbed polynomial

ax3 + (b+ (µ2 − µ1)(1− λ)r)x2 + (c− pµ2(1− λ)r)x+ d,

with

a = λ(µ2 − µ1),

b = λ(µ1 − µ2)p− (µ1 − µ2)µ2 − λµ2,

c = (µ1 − µ2)µ2p+ λµ2p− µ2
2p,

d = µ2
2p

2,

where p is a root of ax3 + bx2 + cx + d. The probability
g1,2(r) is also a root of a degree 3 polynomial where the
coefficients are the same as for g2,1(r) if we replace p by
1− p and exchange µ1 and µ2. Thus, it is possible to express
the entries of G(r) explicitly in terms of µ1, µ2, p and λ, but
the expressions look very involved.

V. MODEL VALIDATION

In this section we validate the ODE model by considering
both distributions with a squared coefficient of variation (SCV)
smaller and larger than one. For the case with SCV > 1, we
make use of the class of hyperexponential distributions with
2 phases with parameters (α1, µ1, µ2). This means that with
probability αi a job is a type-i job and has an exponential
duration with mean 1/µi, for i = 1, 2 (where α2 = 1 − α1).
Apart from matching the mean (to 1) and the SCV we match
the fraction f of the workload that is contributed by the type-1
jobs (i.e., f = α1/µ1). In case µ1 � µ2 this can be interpreted
as stating that a fraction f of the workload is contributed by
the short jobs. The mean (being 1), SCV and fraction f can
be matched as follows:

µ1 =
SCV + (4f − 1) +

√
(SCV − 1)(SCV − 1 + 8ff̄)

2f(SCV + 1)
,

(13)

µ2 =
SCV + (4f̄ − 1)−

√
(SCV − 1)(SCV − 1 + 8ff̄)

2f̄(SCV + 1)
,

(14)

with f̄ = 1 − f and α1 = µ1f . Table II lists the parameter
settings for the distributions considered in the plots. For the
case with SCV ≤ 1, we consider the class of hypoexponential
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λ SCV r ODE simul ± conf rel. error
1/2 1/5 1/5 1.5276 1.5279±0.0021 0.0002

1 1.3644 1.3640±0.0021 0.0003
5 1.1514 1.1516±0.0018 0.0002

1/2 5 1/5 3.2285 3.2312±0.0078 0.0008
1 1.8847 1.8844±0.0036 0.0002
5 1.1795 1.1782±0.0022 0.0011

1/2 25 1/5 9.9397 9.9612±0.0438 0.0022
1 2.8406 2.8487±0.0159 0.0028
5 1.1855 1.1854±0.0028 0.0001

3/4 1/5 1/5 2.5451 2.5461±0.0022 0.0004
1 2.0148 2.0163±0.0026 0.0007
5 1.4142 1.4137±0.0015 0.0004

3/4 5 1/5 8.1885 8.1850±0.0263 0.0004
1 4.6246 4.6311±0.0127 0.0014
5 1.6517 1.6594±0.0028 0.0047

3/4 25 1/5 31.5323 31.6262±0.2779 0.0030
1 14.7129 14.7340±0.0944 0.0014
5 1.8058 1.8283±0.0091 0.0123

7/8 1/5 1/5 4.5552 4.5487±0.0121 0.0014
1 3.2503 3.2483±0.0058 0.0006
5 1.8774 1.8788±0.0024 0.0007

7/8 5 1/5 18.1843 18.2002±0.1004 0.0004
1 10.5504 10.5452±0.0694 0.0005
5 3.1684 3.1927±0.0132 0.0076

7/8 25 1/5 74.8468 74.0279±0.8398 0.0111
1 40.5751 40.5135±0.4818 0.0015
5 6.9646 7.1031±0.0787 0.0195

Table I: Mean job response time: ODE model versus simula-
tion for N = 1000 servers.

distributions (i.e., distributions that are the sum of k ≥ 1
independent exponential random variables) and limit ourselves
for the most part to Erlang distributions.

In Table I we validate the ODE model by comparing
the mean response time obtained from the unique invariant
distribution of the M/PH/1 queue with negative arrivals with
simulation experiments for N = 1000 servers. The simulation
started from an empty system and the system was simulated
up to time t = 5000 (for SCV = 1/5 and 5) or t = 25000
(for SCV = 25) with a warm-up period of 33%. The 95%
confidence intervals were computed based on 20 runs. We
observe that the relative error of the mean field model tends
to increase with λ and the SCV, but remains below 2% for
the 27 (arbitrary) cases considered and is even below 0.1% in
quite a few cases.

Let π(N)
` (r) be the steady state probability that an arbitrary

server contains exactly ` jobs in a system consisting of N
servers with probe rate r. We believe that the probabilities
π
(N)
` (r) converge to π`(r)1 (defined by (11)) as N tends to

infinity. This result was established in [16] for exponential
job sizes. A formal proof of this statement for phase-type dis-
tributed job sizes can be obtained by checking the conditions
of Theorem 3.2 of [9]. While some of these conditions are
not hard to verify, it is unclear at this stage how to prove that
conditions (A2) and (A3) hold. The following less general
result follows from [25]:

Theorem 2. If we truncate all queues to length B and assume
the job sizes are hyperexponential, then π

(N,B)
` (r), which is

the steady state probability that an arbitrary server has ` jobs
in a system consisting of N servers with queues of length B
and probe rate r, converges to π(B)

` (r)1, which is the steady

state probability of the finite state QBD obtained by truncating
Q(r) such that Xt(r) ≤ B.

Proof. By means of Corollary 1 and the discussion in Section
7.2 of [25], one can show that the sum

∑B
`=k π

(N,B)
` (r)

converges to
∑B
`=k π

(B)
` (r)1 for any k = 1, . . . , B.

Thus convergence of the stationary regime of the sequence
of Markov chains holds if we truncate the queues and limit
ourselves to hyperexponential job sizes. Truncating the queues
mainly avoids a number of technical issues (discussed in [25]
after Corollary 1) and is a common practice in proving mean
field convergence, e.g., [11], [8]. From a practical point of
view, there is also no difference between having a huge finite
buffer or an infinite buffer (as long as the infinite system is
stable). Relaxing the job size distribution to any phase-type
distribution appears far less obvious. Although Corollary 1
in [25] allows us to consider a slightly broader class of jobs
sizes than hyperexponential sizes, it is not possible to prove
convergence in the same manner for any phase-type job size
distribution.

VI. STEALING VERSUS SHARING

Our main objective is to compare the performance, i.e.,
mean response time of a job, under stealing and sharing when
the rate r is set such that a predefined overall probe rate
roverall is matched by both strategies. Note that when both
strategies rely on the same r value, we obtain the same queue
length distribution and therefore the same mean response time.

For stealing it is clear that roverall = r(1 − λ) as the idle
servers probe at rate r. Hence, there is a unique rsteal that
matches the predefined roverall, that is, rsteal = roverall/(1−
λ). For work sharing the queues with pending jobs send probes
at rate r, meaning roverall = rπ2+(r)1 holds. Proposition
3 (illustrated in Figure 1 and proven further on) implies
that roverall = rπ2+(r)1 has a unique solution rshare for
roverall ∈ [0, λ2/(1−λ)). For roverall ≥ λ2/(1−λ), we have
rπ2+(r)1 ≤ roverall for any r ≥ 0 and the rate r can thus be
chosen arbitrarily large without exceeding roverall.

In order to prove Proposition 3, we first show that the mean
response time decreases as the probe rate r increases (via
Little’s law), as expected.

Proposition 2. The vector πk+(r), for k ≥ 2, is decreasing
in r and so is the mean queue length.

Proof. Consider the Markov chain (X̂t(r), Ŷt(r))t≥0 defined
by censoring the chain (Xt(r), Yt(r))t≥0 on the states (`, j)
with ` > 0 (i.e., when the queue is busy). Denote π̂`(r) as
its steady state probabilities. Clearly, π`(r) = λπ̂`(r) and
it suffices to show that

∑
`≥k π̂`(r) decreases in r. Assume

r1 < r2 and couple the Markov chains (X̂t(r1), Ŷt(r1))t≥0
and (X̂t(r2), Ŷt(r2))t≥0 as follows. As both servers are busy at
all times we can couple the service such that Ŷt(r1) = Ŷt(r2)
and the service completions in both chains occur at the same
time. Similarly we can couple the rate λ arrivals such that
they occur simultaneously. Whenever X̂t(r2), X̂t(r1) > 1 and
X̂t(r2) decreases by one due to a job transfer (which happens
at rate (1−λ)r2), we decrease X̂t(r1) with probability r1/r2.
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Figure 1: Overall probe rate roverall as a function of probe
rate r for work sharing.

If X̂t(r2) = 1 and X̂t(r1) > 1, we decrease X̂t(r1) > 1 by
one at rate (1 − λ)r1 due to the job transfers. Therefore at
any time t we have Ŷt(r1) = Ŷt(r2) and X̂t(r1) ≥ X̂t(r2)
as required. The result for the mean queue length follows
immediately as

∑
`≥1 `π`(r)1 =

∑
k≥1 πk+(r)1.

Proposition 3. rπ2+(r)1 increases as a function of r and its
limit as r tends to infinity is λ2/(1− λ).

Proof. Let r1 < r2 and consider the same coupled processes
(X̂t(r1), Ŷt(r1))t≥0 and (X̂t(r2), Ŷt(r2))t≥0 defined in the
proof of Proposition 2. Let Ẑt(ri) be the number of jobs
transferred by process (X̂t(ri), Ŷt(ri))t≥0 up to time t, for
i = 1, 2. We now claim that Ẑt(r2) ≥ Ẑt(r1) to prove the first
part of the proposition (as the stationary probe rate is equal to
the stationary job transfer rate divided by 1− λ). We do this
by arguing that Ẑt(r2) + X̂t(r2) ≥ Ẑt(r1) + X̂t(r1), which
suffices as X̂t(r1) ≥ X̂t(r2). Whenever X̂t(r2) > 1 the sum
Ẑt(ri) + X̂t(ri), for i = 1, 2, increases (arrival) or decreases
(job completion) in the same manner for both processes (when
a job transfer takes place the sum remains the same). If
X̂t(r1) > 1 and X̂t(r2) = 1, the sum Ẑt(r1) + X̂t(r1) again
evolves as Ẑt(r2)+X̂t(r2), except that at service completions
Ẑt(r1)+X̂t(r1) decreases by one contrary to Ẑt(r2)+X̂t(r2)
(which remains fixed as X̂t(r2) cannot decrease).

We now consider the limit of rπ2+(r)1 as r tends to
infinity. Assume (X0(r), Y0(r)) = (n + 1, i) and let Tn =
inft{Xt(r) = n}, for n > 1, then entry (i, j) of the matrix
G(r) represents the probability that YTn

(r) = j [12]. There-
fore the limit as r tends to infinity of G(r) is the identity ma-
trix. Further as stated before, λG(r) = R(r)((1−λ)rI+µα).
As R(r) ≥ 0, we have limr→∞R(r) = 0, limr→∞ rR(r) =
λI/(1 − λ) and limr→∞ r

∑
`≥1R(r)` = λI/(1 − λ).

Hence, limr→∞ rπ2+(r)1 = limr→∞ π1(r)r
∑
`≥1R(r)`1 =

λ2/(1− λ) as limr→∞ π1(r)1 = λ.

We can avoid computing the matching r for work sharing
when determining whether stealing or sharing performs best

given the parameters roverall, λ, α and S using the next
theorem.

Theorem 3. Given (α, S), λ and roverall > 0, work sharing
achieves a lower mean response time than stealing if and only
if

1− λ > λ− π1(roverall/(1− λ))1 = π2+(roverall/(1− λ))1.
(15)

Proof. The probe rate r that matches roverall for stealing is
rsteal = roverall/(1− λ). If work sharing uses the same r its
overall probe rate, denoted as roverall,share, would be

rstealπ2+(rsteal)1 =
roverall
1− λ

π2+(roverall/(1− λ))1.

If and only if roverall,share < roverall, work sharing is using
fewer probe messages and due to Proposition 3 the unique
solution rshare to the equation roverall = rπ2+(r)1 is larger
than rsteal. If rshare > rsteal, then Proposition 2 implies that
the mean queue length and thus the mean response time of
work sharing is less than the mean response time of work
stealing.

In other words given roverall, λ, α and S, we can determine
whether stealing or sharing performs best (in terms of the mean
response time) by solving a single QBD-type Markov chain,
which can be done numerically in a fraction of a second.

The result of Theorem 3 can also be intuitively understood
using the following argument. Provided that both strategies
are using the same overall probe rate roverall, the lowest
mean response time is achieved by the strategy for which a
probe message has the highest probability of resulting in a job
transfer. For work sharing this probability is equal to 1−λ, the
probability that a server is idle, while for work stealing it is
given by the probability π2+(roverall/(1−λ))1 that there are
two or more jobs in a server (which depends on the arrival rate,
the job size distribution and the overall prove rate roverall).

In the remainder of this section we establish two results:
1) Given (α, S) and λ there exists a r∗overall such that work

sharing is best if and only if roverall > r∗overall.
2) Given (α, S) and roverall there exists a λ∗ such that

work sharing is best if and only if λ < λ∗.
Moreover r∗overall and λ∗ can be easily computed using (15)
in combination with a simple bisection algorithm.

a) Remark: By noting that

π1(roverall/(1− λ)) = λ

(
1− λ

1 + roverall

)
,

in case of exponential job sizes, one finds that (15) simplifies
to (1).

Corollary 1. Given (α, S) and λ > 0, there exists an
r∗overall ∈ [0, λ2/(1 − λ)) such that work sharing achieves
a lower mean response time than stealing if and only if
roverall > r∗overall.

Proof. Due to Proposition 2 we have that π2+(r)1 is decreas-
ing in r. If 1 − λ > π2+(0)1, (15) implies that r∗overall = 0.
Otherwise there exists a unique r > 0 such that 1 − λ =
π2+(r)1, as π2+(r)1 tends to zero as r tends to infinity.



8

SCV f p1 1/µ1 1/µ2
1 1/2 0.5000 1 1
5 1/2 0.9082 0.5505 5.4495
25 1/2 0.9804 0.5100 25.4900
10 1/10 0.8524 0.1173 6.0981

100 1/100 0.9806 0.0102 51.0100
1000 1/1000 0.9980 0.0010 501.0010

Table II: Parameter settings of the hyperexponential job size
distribution for various SCV and f values.

Finally, when roverall ≥ λ2/(1− λ) work sharing can pick r
arbitrarily large without exceeding roverall, meaning the mean
response time can be made arbitrarily close to one.

Proposition 4. The scalar πk+(roverall/(1− λ))1, for k ≥ 1
and roverall fixed, is increasing in λ.

Proof. We make use of the following result [6, Theorem 1].
Consider two stable discrete time Markov chains {X̃(1)

n } and
{X̃(2)

n } on the state space S = {0, 1, 2, . . .} with steady state
probabilities π

(1)
i and π

(2)
i for i ∈ S. Assume {X̃(2)

n } is
obtained from {X̃(1)

n } by replacing some transitions from state
i to state j, by a transition from state i to j′ with j ≤ j′, then∑
`≥k π

(1)
` ≤

∑
`≥k π

(2)
` for any k.

Let {X(1)
t } be the QBD Markov chain with arrival rate λ(1)

and probe rate r(1) = roverall/(1 − λ(1)) and {X(2)
t } be the

QBD Markov chain with arrival rate λ(2) > λ(1) and probe rate
r(2) = roverall/(1−λ(2)). Denote their steady state probability
vectors as π(1)

` (r(1)) and π(2)
` (r(2)), respectively. Note that for

i = 1, 2 we have A(i)
1 = λ(i)I , A(i)

0 = S − (λ(i) + roverall)I ,
A

(i)
−1 = µα+ roverallI .
Let {X̂(i)

t } be the continuous time QBD Markov chain
obtained from {X(i)

t } by censoring out the idle periods and
let {X̃(i)

n } be the discrete time Markov chain obtained from
{X̂(i)

t } by uniformization. Denote their respective steady state
probabilities as π̂(i)

` (r(i)) and π̃(i)
` (r(i)). Due to [6, Theorem

1] we now have
∑
`≥k π̃

(1)
` (r(1)) ≤

∑
`≥k π̃

(2)
` (r(2)) for any

k ≥ 1. Further, π(i)
` (r(i)) = λ(i)π̂

(i)
` (r(i)) = λ(i)π̃

(i)
` (r(i)) for

` ≥ 1 by construction (as the rate of exiting level 0 is exactly
such that λ(i) is the probability that the server is busy).
This yields

∑
`≥k π

(1)
` (r(1)) =

∑
`≥k λ

(1)π̃
(1)
` (r(1)) <∑

`≥k λ
(2)π̃

(1)
` (r(1)) ≤

∑
`≥k λ

(2)π̃
(2)
` (r(2)) =∑

`≥k π
(2)
` (r(2)) for k ≥ 1 as required.

Theorem 4. Given (α, S) and roverall > 0, there exists a
λ∗ ∈ (0, 1) such that work sharing is best if and only if λ <
λ∗.

Proof. By Proposition 4 the scalar π2+(roverall/(1 − λ))1
increases in λ, hence there exists a unique solution in (0, 1)
such that 1− λ = π2+(roverall/(1− λ))1, which implies the
result due to (15).

VII. NUMERICAL RESULTS

In Figure 2 we present the boundary between the regions
where work stealing and sharing result in the lowest mean
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Figure 2: Region for which stealing/sharing achieves the
lowest mean response time.

response time for 5 different job size distributions (2 hyper-
exponential, the exponential and 2 Erlang distributions). This
figure illustrates that the region where stealing is best grows as
the SCV of the job size distribution increases. Thus, stealing
benefits from having more variable job sizes. This can be
understood as follows. When job sizes become more variable,
the probability of having two or more jobs in a queue tends to
increase. When roverall is fixed both work sharing and stealing
use the same number of probes per time unit. However, for
work sharing probes are successful with probability 1 − λ,
irrespective of the job size variability. For stealing the success
probability equals the probability of find two or more jobs and
thus increases with the job size variability. In short, for roverall
fixed, as the job sizes become more variable, the number of
job exchanges increases for work stealing, while it remains the
same for work sharing. Therefore, the region where stealing
is superior grows as the job size distribution becomes more
variable.

Figure 3 illustrates that the boundary between stealing and
sharing is not fully determined by the first two moments of the
job size distribution. This is not unexpected as the probability
to have two or more jobs in an M/PH/1 queue (with or without
negative arrivals) also depends on the higher moments for the
job sizes. We do note that the regions where work sharing is
best for the 5 distributions with SCV equal to 10 are smaller
compared to exponential job sizes.

These figures trigger a number of questions:

1) Can we identify a region where stealing/sharing is the
best for any (phase-type) job size distribution? In other
words, how far to the right/left can the stealing/sharing
boundary move?

2) Given some information on the job size distribution, e.g.,
if the job size distribution has an increasing/decreasing
hazard rate, can we identify a more narrow region that
contains the stealing/sharing boundary?

3) Is it possible to explicitly characterize the boundary in
some cases, e.g., as roverall tends to zero?
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In the next section we focus on the first two questions, while
the third question is considered Section IX.

VIII. BOUNDS

Although we can easily compute the boundary between the
regions on a (λ, roverall) plot where stealing/sharing prevails
for a specific phase-type distribution (α, S), we now aim at
establishing simple bounds on these regions that are valid for
any phase-type distribution.

A. General bounds

We start with a tight general work sharing bound:

Corollary 2 (General Work Sharing Bound). When the job
sizes follow a phase-type distribution (α, S) (with mean 1),
work sharing achieves a lower mean response time than
stealing if

λ <
max(1,

√
roverall(roverall + 4)− roverall)

2
. (16)

Proof. The 1/2 bound is immediate from Theorem 3 as
π1(r)1 > 0 for any r ≥ 0. The (

√
roverall(roverall + 4) −

roverall)/2 bound follows from the fact that work sharing
has a mean response time arbitrarily close to 1 when roverall
exceeds λ2/(1 − λ) as r can be set arbitrarily large without
exceeding roverall.

In Figure 4 we numerically illustrate that the bound in (16)
is tight. More specifically, this bound is approached when a
large majority of the jobs is very short (that is, p1 ≈ 1 and
1/µ1 ≈ 0) and the remaining fraction of the jobs contributes
nearly the entire workload (i.e., f ≈ 0).

Note that (16) is identical to the exponential bound given
by (1) if we replace roverall by roverall + 1.

For the general work stealing bound we have the following
conjecture. The idea behind this conjecture is that we believe
that the probability to have two or more jobs is minimized
over all job size distributions with mean 1 by the deterministic
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Figure 4: Numerical illustration of the tightness of the general
work sharing bound.

distribution in an M/G/1 queue with negative customers. While
this may appear as a rather intuitive result, we did not manage
to come up with a formal proof thus far. The difficulty is due
to the fact that the negative arrivals remove customers from
the back of the queue.

Conjecture 1 (General Work Stealing Bound). When the
job sizes follow a phase-type distribution (α, S) (with mean
1), stealing achieves a lower mean response time than work
sharing if λ > ν(roverall), where ν(roverall) is the unique
solution on (0, 1) of

1− λ = π
(det)
2+ (roverall/(1− λ)), (17)

where π(det)
2+ (r) is the probability that the queue length exceeds

one in the M/PH/1 queue with negative arrivals characterized
by (4) when the phase-type job sizes are replaced by deter-
ministic job sizes.

We note that the probability π(det)
2+ (r) is not easy to compute

due to the negative arrivals.
Proving the above conjecture can be shown to be equivalent

to proving the following statement: Consider an M/M/1 queue
with negative arrivals where the arrival rate λ < 1, the service
rate roverall ≥ 0 and the negative arrivals are generated by an
independent renewal process with a mean inter-renewal time
equal to one, then the probability of having an empty queue
is maximized over all renewal processes by the deterministic
renewal process.

B. Monotone hazard rate bounds

Given a continuous distribution with cdf H and pdf h, the
hazard rate z(t) is defined as h(t)/(1−H(t)), which in case of
a phase-type distribution (α, S) means z(t) = αeStµ/αeSt1.
For distributions with a monotone hazard rate we conjecture
the following:

Conjecture 2 (DHR/IHR bounds). The exponential bound
specified by (1) corresponds to a sharing (stealing) bound
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for any phase-type job size distribution with a decreasing
(increasing) hazard rate.

In other words the boundary between stealing and sharing
region for a job size distribution with a decreasing (increasing)
hazard rate is located between the exponential boundary and
the general stealing (sharing) boundary as illustrated in Figure
5.

At this stage we do not have a proof for Conjecture 1
and 2. In the next section we show that these conjectures are
valid when the probe rate tends to zero. In the remainder of
this section we establish weaker bounds for job sizes with
increasing/decreasing hazard rates.

Proposition 5 (DHR Stealing Bound, IHR sharing Bound).
Let Y be the minimum of the phase-type job size distribution
and an exponential random variable with parameter roverall,
that is, E[Y ] = −α(S − roverallI)−11. Define

L(x) =

√
1 + 4x− 1

2x
. (18)

When the job size has a decreasing hazard rate (DHR),
stealing achieves a lower mean response time than sharing
if λ > L(E[Y ]). When the job size has a increasing hazard
rate (IHR), sharing achieves a lower mean response time than
stealing if λ < L(E[Y ]).

Proof. Consider the queueing system corresponding to the
Markov chain with rate matrix Q(roverall/(1 − λ)), see (4).
Note that in this queueing system the job transfers are also
regarded as job completions and consecutive service times are
therefore correlated. Let X be the queue length and Ri, for
i > 0, be the amount of time that a job spends waiting at the
head of the waiting room provided that the job arrived when
the queue length equaled i. Assume we collect reward at rate
1 when the queue length exceeds 1, thus the average rate at
which we collect reward is P [X ≥ 2]. This average reward
should be equal to the rate of customer arrivals that generate
reward times the average reward that each such customer
delivers, thus

P [X ≥ 2] = λ
∑
i≥1

P [X = i]E[Ri],

as the arrival rate is λ (unless the queue is idle). In general
the difficulty lies in bounding E[Ri]. However, for decreasing
hazard rate job sizes3 the expected time that a job stays at
the head of the waiting room is lower bounded by assuming
that the job in service just started service (and was not caused
by a transfer). This implies that E[Ri] ≥ E[Y ], where Y is
defined as the minimum of the phase-type job length and an
exponential random variable with parameter roverall. Hence,

P [X ≥ 2] ≥ λE[Y ]P [X ≥ 1] = λ2E[Y ].

The result now follows from (15), which implies that stealing
is best if 1− λ < λ2E[Y ].

The argument for the increasing hazard rate case is identical,
except that E[Ri] is now upper bounded by E[Y ]. Therefore
sharing is best if 1− λ > λ2E[Y ]

Note that when the job sizes are hyperexponential, so is Y
and E[Y ] =

∑k
i=1

pi
µi+roverall

. The above bounds are tight in
case of exponential job sizes only as illustrated in Figure 6.

Corollary 3 (General IHR Sharing bound). For phase-type
job sizes with increasing hazard rate work sharing achieves a
lower mean response time than stealing if

λ < L((1− e−roverall)/roverall),

where L(x) is defined by (18).

Proof. As L(x) is decreasing in x on [0, 1], the result is
immediate from Proposition 5 provided that E[Y ] ≤ (1 −
e−roverall)/roverall. Let F (x) be the CDF of the (phase-type)
job size distribution X , then

E[Y ] =

∫ ∞
x=0

(1− F (x))e−roverallxdx

=
1

roverall
(1− E[e−roverallX ]).

3If X is DHR/IHR, then so is min(X,Y ) if Y is exponential, as
zmin(X,Y )(t) = zX(t) + zY (t).
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By Jensen’s inequality E[e−roverallX ] ≥ e−roverallE[X] with
E[X] = 1, which yields the required upper bound on E[Y ].

We cannot obtain a meaningful general DHR stealing bound
in the same manner as E[Y ] can be made arbitrarily small,
which yields a stealing bound λ > 1 (as L(x) approaches 1
as x tends to zero).

IX. SMALL PROBE RATES

In this section we characterize the boundary between the
stealing and sharing region for roverall sufficiently small. In
order to do so we first show that the steady state vector π`(r)
is continuous in r on [0,∞), meaning we can study π`(r) for
r small by looking at the limit with r = 0.

In order to establish the continuity we recall the following
result:

Proposition 6 (due to Corollary 3.9.1 of [21]). Let D1 be
a matrix with negative diagonal elements, non-negative off-
diagonal elements and assume D−11 exists. Let D2 be a non-
negative matrix such that (D1 + D2)1 = 0. Let R be a non-
negative matrix with spectral radius 0 < sp(R) < 1, then

I ⊗D1 +RT ⊗D2

is non-singular, where ⊗ denotes the Kronecker product and
RT the transposed matrix of R.

Theorem 5. The vector π`(r), for ` ≥ 1, is continuous in r
on [0,∞).

Proof. We show that the matrix R(r) is continuous on [0,∞),
from which the continuity of R1(r) and π`(r) follow. Consider
the map f from Rm2+1 to Rm2

that maps (X, r), where X is
a square matrix of size m, to A1+XA0(r)+X2A−1(r). Note
that (R(r), r) is mapped to zero by f . Let Jf be the Jacobian
of f such that Jf (X, r) = [Y (X, r)|Z(X, r)] where Y (X, r)
is a square matrix of size m2 with entry ((i, j), (i′, j′)) equal
to the partial derivative ∂(A1 +XA0(r)+X2A−1)i,j/∂xi′,j′ .
It is easy to verify that

Y (X, r) = (I ⊗ (A0(r) +XA−1(r))T ) + (X ⊗A−1(r)T ).

As (R(r), r) is a zero of f , the implicit function theorem states
that there exists an open set U containing r such that there
exists a unique continuously differentiable function g from U
to Rm2

such that f(g(r′), r′) = 0 for any r′ ∈ U provided that
Y (R(r), r) is non-singular. Now, as R(r)A−1(r) = λG(r)
(see Section IV), we have

Y (R(r), r) =

(I ⊗ (A0(r) +R(r)A−1(r))T ) + (R(r)⊗A−1(r)T ) =

(I ⊗ (A0(r) + λG(r))T ) + (R(r)⊗A−1(r)T ),

where R(r) is a non-negative matrix with spectral radius
sp(R(r)) ∈ (0, 1), A0(r)+λG(r) = (S−(1−λ)rI+λ(G(r)−
I)) has negative diagonal elements, non-negative off-diagonal
elements and is invertible (as it is a subgenerator matrix),
while A−1(r) = µα+ (1−λ)rI is a non-negative matrix and
(A0(r)+λG(r)+A−1(r))1 = (µα+S)1+λ(G(r)−I)1 = 0

as G(r)1 = 1 and µα + S is a generator matrix. The non-
singularity of Y (R(r), r) therefore follows from Proposition
6.

The following basic result on the M/G/1 queue is used in
combination with the continuity and Theorem 3 to describe
the stealing/sharing boundary for roverall sufficiently small:

Proposition 7. The probability π1− that the queue length is
at most one in an M/G/1 queue with arrival rate λ and mean
service time 1 is given by (1 − λ)/g(λ), where g(s) is the
Laplace transform of the service time. Further π1− ≤ (1 −
λ)eλ (with equality for deterministic service).

Proof. Let π(z) be the generating function of the queue length
distribution of an M/G/1 queue with mean service time 1. The
Pollaczek-Khinchin formula states that

π(z) =
(1− z)(1− λ)g(λ(1− z))

g(λ(1− z))− z
.

The first result can be obtained by evaluating the derivative
of π(z) in z = 0. The inequality e−λ ≤ g(λ) follows from
Jensen’s inequality (as it implies that eE[X] ≤ E[eX ] for any
random variable X).

We can now show that Conjectures 1 and 2 hold for r
tending to zero.

Proposition 8. For r tending to zero stealing is best if λ >
ν ≈ 0.6589, where ν is the unique solution of λ/(1−λ) = eλ

in (0, 1).

Proof. Proposition 7 implies that as r tends to zero, π2+(r)
is lower bounded by 1 − (1 − λ)eλ. The unique solution of
(15) is therefore smaller than the unique solution ν to 1−λ =
1− (1− λ)eλ.

Proposition 9. For r tending to zero and a phase-type job size
distribution with decreasing (increasing) hazard rate, stealing
(sharing) is best if λ > φ − 1 (λ < φ − 1), where φ is the
golden ratio.

Proof. The result is immediate from Proposition 5 as E[Y ]
tends to 1 as roverall tends to zero.

We end this section by characterizing the limit of the
stealing/sharing boundary when r tends to zero for Erlang,
hypoexponential and hyperexponential distributions.

Proposition 10. For r tending to zero and Erlang-k job sizes
with mean one, sharing is best if and only if λ < λ∗k, where
λ∗k is the unique solution of λ/(1−λ) = (1 +λ/k)k in (0, 1).
Further, the sequence (λ∗k)k increases to the unique solution
ν ≈ 0.6589 of λ/(1− λ) = eλ.

Proof. As the Laplace transform of the Erlang-k distribution
with mean 1 is given by (k/(k + λ))k = (1 + λ/k)−k,
Proposition 7 and the continuity imply that

lim
r→0

(1− π2+(r)1) = (1− λ)

(
1 +

λ

k

)k
.
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As such (15) indicates that sharing is best, for r tending to
zero, if and only if

λ

1− λ
<

(
1 +

λ

k

)k
.

Hence λ∗k is the unique solution in (0, 1) of λ/(1 − λ) =
(1 + λ/k)k. Further, d

dk (1 + λ/k)k > 0 for λ ∈ (0, 1) and
limk→∞(1 + λ/k)k = eλ.

Proposition 11. For r tending to zero and hypoexponential
job sizes with k phases and mean one, sharing is best if and
only if λ < λ∗, where λ∗ is the unique positive solution of
λ/(1 − λ) =

∏k
i=1(1 + λ/µi) in (0, 1). Further, φ − 1 ≤

λ∗ ≤ λ∗k, where φ is the golden ratio and λ∗k is defined in
Proposition 10.

Proof. The first part of proof is identical to Proposition 10
except that

1/g(λ) =

k∏
i=1

(
1 +

λ

µi

)
.

The second part follows by showing that (1+λ) ≤
∏k
i=1(1+

λ/µi) ≤
(
1 + λ

k

)k
for any µi ≥ 0 such that

∑k
i=1 1/µi = 1.

The first inequality is immediate. By defining xi = λ/µi + 1,
the second inequality follows from the fact that

∏k
i=1 xi with∑k

i=1 xi = λ + k is maximized by setting xi = (λ + k)/k
(i.e., µi = k).

Proposition 12. For r tending to zero and hyperexponential
job sizes with k phases and mean one, sharing is best if and
only if λ < λ∗, where λ∗ is the unique solution of 1/λ =
1 +

∑k
i=1 piµi/(λ + µi) on (0, 1). Further λ∗ ≤ φ − 1 with

φ the golden ratio.

Proof. As g(λ) =
∑k
i=1 piµi/(λ+µi), Proposition 7 and the

continuity imply

lim
r→0

(1− π2+(r)1) =
1− λ∑k

i=1 piµi/(λ+ µi)
.

Thus, for r tending to zero, sharing is best if and only if

λ

1− λ
<

(
k∑
i=1

piµi/(λ+ µi)

)−1
.

To establish the upper bound on λ∗ we need to show that the
right hand side is bounded by (1 + λ). Using the finite form
of Jensen’s inequality with φ(x) = 1/x, we get

φ(

k∑
i=1

piµi/(λ+ µi)) ≤
k∑
i=1

piφ(µi/(λ+ µi))

= λ

k∑
i=1

pi/µi +

k∑
i=1

pi = λ+ 1,

as the mean job length equals one.

X. CONCLUSIONS AND FUTURE WORK

We introduced a mean field model for work sharing and
work stealing with phase-type distributed job sizes and indi-
cated how to determine whether sharing or stealing is best for
a given arrival rate, overall probe rate and job size distribution.
Bounds that apply to any phase-type job size distribution on
the region where sharing/stealing is best were also discussed.
The main insight is that work stealing benefits considerably
as the job sizes become more variable and may be superior
to work sharing for loads only marginally exceeding 1/2 for
some workloads.

The work sharing strategy considered in this paper is such
that a server sends probe messages at a fixed rate r whenever
it has pending jobs. One could also consider more advanced
schemes where probing only starts if the number of pending
jobs exceeds some threshold or, more generally, where the
probe rate depends on the queue length. Similarly one can
also consider using a second (smaller) threshold and allowing
servers with fewer jobs to accept job transfers. Such strategies
were considered in [15],[14] in case of exponential jobs sizes.
We expect that the approach presented in this paper is also
applicable to analyze such strategies with non-exponential job
sizes.

Future work may exist in showing that the unique fixed
point of the mean field model corresponds to the limit of the
finite dimensional stationary distributions as well as proving
the conjectured general work sharing bound. Other extensions
might exist in studying these (or other) work sharing and
stealing strategies in combination with load balancing schemes
such as Join-the-Shortest-Queue among d randomly selected
servers or Join-the-Idle-Queue.
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