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Abstract—Cardinality estimation algorithms receive a stream
of elements, with possible repetitions, and return the number of
distinct elements in the stream. Such algorithms seek to minimize
the required memory and CPU resource consumption at the price
of inaccuracy in their output. In computer networks, cardinality
estimation algorithms are mainly used for counting the number of
distinct flows, and they are divided into two categories: sketching
algorithms and sampling algorithms. Sketching algorithms re-
quire the processing of all packets, and they are therefore usually
implemented by dedicated hardware. Sampling algorithms do
not require processing of all packets, but they are known for
their inaccuracy. In this work we identify one of the major
drawbacks of sampling-based cardinality estimation algorithms:
their inability to adapt to changes in flow size distribution. To
address this problem, we propose a new sampling-based adaptive
cardinality estimation framework, which uses online machine
learning. We evaluate our framework using real traffic traces, and
show significantly better accuracy compared to the best known
sampling-based algorithms, for the same fraction of processed
packets.

I. INTRODUCTION

Network measurement plays an important role in the evo-
lution of large scale networks. Traffic statistics, such as
top-K [24] and heavy hitters [3], are important for crucial
network management applications. Cardinality estimation is
the problem of estimating the number of distinct elements in
a data stream with repeated elements. In the field of network
measurement, this problem is mainly related to counting the
number of unique flows in an IP packet stream, where each
flow consists of many packets that have a unique 5-tuple:
source IP, destination IP, source port, destination port and
Protocol. Finding the number of distinct flows is important
for tracking the load imposed on a web server, detecting a
potential Distributed Denial of Service (DDoS) attack, and
discovering other network anomalies.

Cardinality estimation algorithms are roughly divided into
two categories: sampling algorithms and sketching algorithms.
Sampling algorithms process only a subset of the stream,
and use statistical analysis for estimating the cardinality of
the entire stream. Such algorithms are very efficient in terms
of their processing time and memory consumption. However,
they have a relatively high error rate [6], especially when the
stream has a skewed (power-law) distribution [10].

Sketching algorithms (HLL [14], HLL++ [21]) are known to
offer the best performance in terms of statistical accuracy and
memory storage. However, their main disadvantage is that they
must process all the packets in the data stream. For this reason
they are very often implemented using dedicated hardware.

Software network devices are gaining popularity due to the
rise of two new network architecture concepts: Software De-
fined Networking (SDN) and Network Function Virtualization
(NFV). The transition from executing cardinality estimation
algorithms by dedicated hardware to executing them by a
general purpose CPU introduces new challenges. Even with a
very small number of operations per packet, processing every
stream packet by a general purpose CPU is inefficient and
in many cases even impossible [1], [2]. Because it is usually
impossible to process all the packets, sketching cannot be used.
In such cases we must resort to sampling-based solutions.

Many sampling cardinality estimation algorithms were
developed for database query optimization. Since database
records can represent any type of data, these algorithms make
no prior assumption on the underlying data distribution. How-
ever, when network traffic is considered, information about
flow size distribution can be used to improve the estimation
precision. For example, the traffic generated by a DNS server
usually includes many short flows, while the traffic generated
by a video server has a small number of much longer flows. If
the two servers produce the same amount of data, we expect
the cardinality of the former type of traffic (DNS) to be greater
than that of the latter (video). A problem with this approach
is that the distribution of traffic flows is likely to change;
e.g., due to dynamic server provisioning in the case of virtual
environments, or due to a Network/Transport layer attack. We
believe that dynamic adaptation of the cardinality estimation
algorithms to changes in the flow size distribution can intro-
duce significant improvement in their accuracy, and propose
to use machine learning (ML) to obtain such adaptivity.

In this paper we propose a novel sampling-based adaptive
cardinality estimation framework, which incorporates online
ML algorithms to adapt to changes in flow size distribution.
We describe the framework and its parameters, and then
discuss the selection of an online ML algorithm and its
features. We evaluate our framework using real traffic traces
and show its accuracy improvement over the best known
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sampling algorithms.
The rest of the paper is organized as follows. Section

II discusses related work. Section III describes the basic
concepts of sampling-based cardinality estimation and online
learning. Section IV presents the proposed framework for
adaptive sampling cardinality estimation. Section V presents
an extensive evaluation of our framework and compares it
with the best-known sampling-based cardinality estimation
algorithms. Section VI concludes the paper.

II. RELATED WORK

Many works address the cardinality estimation problem and
propose efficient algorithms to solve it. A detailed survey of
the problem and its various solutions is presented in [16].

In this section we first discuss sampling-based solutions and
cardinality estimation algorithms whose estimation process is
adaptive. Then, we discuss works that analyze the efficiency
and accuracy of software-based sketches. Many of the works
we discuss here refer to the more general problem of estimat-
ing the flow size distribution, namely, the number of flows
that contain a specific number of packets. This problem can
be easily reduced to cardinality estimation.

In [19], Hass et al. present a family of cardinality estimators
based on the generalized jackknife technique. They present
an “unsmoothed first-order jackknife estimator” (UJ1) and its
“smoothed” version (SJ1). They also present an “unsmoothed
second-order jackknife estimator” (UJ2) and its “smoothed”
and “stabilized” versions (SJ2 and UJ2A).

In [6], Charikar et al. present a lower bound on the error
of sampling-based estimators. This lower bound implies that
one should process almost the entire stream in order to
guarantee good estimation error over all possible inputs. Then,
they present Guaranteed Error Estimator (GEE) and Adaptive
Estimator (AE). GEE has an optimal error, which matches their
proved bound. AE is a refinement of GEE, which adapts to the
input distributions and obtains reduced error over low-skewed
data.

Recent work by Deolalikar et al. [10] conducts an extensive
comparison of 11 sampling-based cardinality estimators and
tests their accuracy over power-law distributed data with
different skew parameters. GEE, AE and UJ2A [19] are found
to be the most accurate estimators over a variety of data
distributions. We shall refer to these three algorithms in the
evaluation of our framework (Section V).

In [12], Duffield et al. take advantage of the SYN flag in the
TCP header to obtain additional information about flow size
distribution. This method requires that most of the packets
in the stream be TCP. This requirement is not trivial in real
traffic, due to the increasing popularity of the new UDP-based
transport layer protocols [20]. Our framework can also use the
number of SYN packets to improve the estimation accuracy,
but it does not rely only on protocol specific information.

In [7], a novel hybrid approach is presented. It combines
Good-Turing frequency estimation [15], a sampling-based
solution, and the HyperLogLog algorithm [14]. This solution
benefits from the computational efficiency of sampling and

from the memory efficiency of sketching, but its accuracy is
bound to that of sampling-based algorithms.

Alipourfard et al. [1] show that in a software switch
(OVS [26]), calculating stream statistics using a simple hash
table achieves better throughput and latency. They claim that
the main reason is the trade-off between memory and CPU
consumption imposed by sketching algorithms. Maintaining
a sketch usually requires high CPU consumption, mainly for
hashing each packet multiple times. However, modern servers
have significantly improved cache size and efficiency. Hence,
they do not really benefit from the reduced memory usage.
CPU consumption is observed in their later work [2] as the
new bottleneck resource.

III. PRELIMINARIES

As indicated in the previous sections, a software device
should not use sketching. On the other hand, sampling-based
algorithms are known to have relatively low accuracy. To
address this trafe-off, the framework proposed in this paper
combines sampling with online machine learning (ML). We
start with a short discussion of each of these concepts.

A. Estimating Stream Cardinality from a Sample

Before we discuss the details of estimating stream cardi-
nality from a sample, we formally define the problem. Our
notations are summarized in Table I. Let S be a stream of
N packets belonging to a certain number of flows. Each flow
typically contains many packets, and D denotes the number
of unique flows in S. Consider a sample s of n packets, taken
randomly from S, and let q = n

N be the sampling rate. Let d
represent the number of unique elements in s. Sampling based
cardinality estimation is the process of providing an estimate
D̂ of D given only s and q.

A typical workflow of a sampling cardinality estimation
algorithm over network traffic is as follows. The entire traffic
stream S is divided into batches [S1, S2, ..., Si, ...], and each
batch Si is analyzed separately. A sample si of ni packets
is collected from Si according to a specific sampling rate q,
using some sampling method. While several sampling methods
have been proposed in the past [13], in this paper we consider
random sampling, where all packets are sampled with the same
probability. After a sample of packets is collected from the
batch, various statistical properties are calculated from it, and
an estimation of the flow cardinality is produced.

Symbol Meaning
Si a batch of packets (part of the stream)
Ni size of Si (number of packets in Si)
Di cardinality of Si (number of flows in Si)
si a sample of packets taken from Si

ni size of si (number of packets in si)
qi sampling rate qi = ni/Ni

di cardinality of si (number of flows in si)
D̂i estimation of Di

fj
i number of flows that appear exactly j times

in si (have exactly j packets in si)

TABLE I: Notations
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A commonly used statistical property is f ji , namely, the
number of flows that appear exactly j times in si. A special
case is f0i , which represents the number of flows that appear
in Si but not in si. Since Di = di+ f

0
i , estimating Di can be

reduced to estimating f0i , i.e. the number of “hidden” flows.
Various works discuss the relation between f0i and f ji values.
For example, the Good-Turing frequency estimation technique
[17] claims that f1

i

n is a consistent estimator of f0i .

B. Online Machine Learning

Describing the details of ML is beyond the scope of this
work. We therefore describe only the standard ML procedures
we use. We use Scikit-Learn’s abstraction of ML algorithms
[25] throughout the paper. According to this abstraction, a
supervised ML algorithm includes two basic operations:

• fit(training examples, labels) – The fit operation re-
ceives a set of training examples and their matching la-
bels, and returns a “trained ML model”, which is capable
of delivering predictions from unlabeled examples. Each
example consists of a set of features, where every feature
is a property of the data that contributes to the estimation.
For example, to train a ML model to predict housing
prices, the features could be the size of the house, the
number of rooms and the neighborhood. The label is the
desired output value, i.e., the actual price of each house.
For clarification, we use the term “ML model” to describe
an instance of an ML algorithm after it is provided with
training data.

• predict(example) – After an ML model is trained using
the fit() operation, the predict operation is used to obtain
an estimated value given only a set of features. In
our housing prices example, predict() is provided with
information about a specific house: its size, number of
rooms and neighborhood, and returns its price estimation.

A typical ML algorithm usually receives the entire set
of training examples in advance. However, processing the
entire training dataset at once is not feasible when analyzing
large data streams that cannot entirely fit into the memory,
or when the training examples are only gradually available.
To address this problem, online ML algorithms have been
developed. Such algorithms use the following partial fit()
operation, instead of fit():

• partial fit(training example, label) – This operation
is similar to fit(), except that it trains the model over a
single or a small number of labeled training examples.
While fit() is executed only once, at the beginning of the
model’s lifespan, partial fit() can be invoked many times.

In contrast to fit(), partial fit() allows the model to adapt
over time. For example, in the context of housing prices,
very often there are not enough examples of houses and
their true market price. With partial fit(), each sold house
can be added to the model as a new example. If during the
model’s lifespan there is a trend to prefer houses in different
neighborhoods, such a trend is likely to be reflected by the new
training examples, and the model is likely to be more accurate

compared to a model that receives all its training examples in
advance.

IV. THE PROPOSED FRAMEWORK FOR SAMPLING-BASED
ADAPTIVE CARDINALITY ESTIMATION

A. Framework Description

Our sampling-based adaptive cardinality estimation frame-
work uses a novel approach: combining sampling and online
learning. Figure 1 describes the processing of a packet stream
in detail. The stream is divided into batches of packets. Each
batch is sampled, and selected features are extracted from
the samples. The features are then passed to the predict()
operation of the online ML algorithm, which returns an
estimation of the batch’s cardinality (Figure 1(a)).

Once every training rate batches, the entire batch is sent
for training (Figure 1(b)). In the training phase, partial fit()
is provided with the batch’s set of features and its cardinality.
The exact cardinality of a batch can be calculated using a
simple hash table. Since the focus of this work is on the
framework itself, we intentionally do not specify which online
ML algorithm is used. As shown in Section IV-C, different
algorithms may be suitable for different framework use cases.
Procedure 1 presents the pseudo code for processing a single
batch as described above.

Procedure 1 Processing of a Batch

1: batch counter ← 0
2: ml model.init()
3: function PROCESS BATCH(batch)
4: sample← sample(batch, sampling rate)
5: features← extract features(sample)
6: if is training batch(batch counter, training rate)

then . executed concurrently
7: label← calculate label(batch)
8: ml model.partial fit(features, label)
9: end if

10: batch counter ← batch counter + 1
11: return ml model.predict(features)
12: end function

In steps 1 and 2, the batch counter and the online ML
model are initiated. In steps 4 and 5, each batch is sampled
and selected features are extracted from it. In step 6, batches
are selected for training according to the chosen training rate
hyperparameter. In step 7, the true cardinality of training
batches is calculated. In step 8, the training batch’s feature
set and true cardinality are input to the model’s partial fit
operation. Finally, in step 11 an estimation of the batch’s
cardinality is returned. Since the training operations (steps 6–
9) are resource and time consuming, they can be executed in
the background without delaying the estimation.

B. Feature Selection

Choosing the right set of features is crucial to the accuracy
of an ML algorithm. A good feature should be both infor-
mative and independent: an informative feature shows high
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Fig. 1: The proposed adaptive cardinality estimation framework

correlation to the target value, while an independent feature
shows low correlation to the other features.

The first “suspects” for such features are the f ji values,
which are also used by statistical sampling-based algorithms.
Recall that for a given batch Si, f

j
i is the number of flows that

are represented by exactly j packets in si. Figure 2 shows the
relationship between f1i , f2i , f3i and the cardinality of Si (Di).
This graph is obtained using 300 batches, each of 100,000
packets, taken from CAIDA-2016 traffic trace1. Batches are
sampled with q = 0.1. We can see a strong linear correlation
between f1i and the cardinality. We can also learn that the
correlation becomes weaker as j increases.

When we test the correlation between f1i and the cardinality
for other traces, we see that the linear correlation is usually
conserved, but the slope and intercept vary, since they depend
on the flow size distribution. For example, Figure 3(a) shows
batch cardinality over time for the DARPA-DDoS trace [9].
This trace contains background traffic and a SYN flood DDoS
attack on one target host. Each batch contains traffic collected
during one second, and the average batch size is 11,228
packets. Batch no. 219 is removed from the trace since it shows
abnormal behavior, which is irrelevant for the purpose of this
example. We sample this trace with q = 0.1.

We can clearly divide the attack into 6 different stages,
each beginning in one of the following time steps: t =
0, 113, 163, 194, 223, 236. Figure 3(b) shows the cardinality
of the batch as a function of f1, and Figure 4 describes the
slope, intercept and Pearson correlation coefficient obtained
by running a linear regression on each interval separately.

The Pearson correlation coefficient is a number between -
1 and 1 that indicates the extent to which two variables are
linearly related, where -1 indicates a perfect negative linear
relation, 0 indicates no linear relation and 1 indicates a perfect
positive linear relation. The Pearson correlation coefficient
values in Figure 4 indicate a strong linear relation between f1i
and cardinality in most stages. The slope and intercept values
indicate significant differences in the linear relation of different
stages. We expect our online ML algorithm to identify these
changes and to adjust its cardinality estimation accordingly.

1Section V contains a detailed description of the CAIDA-2016 trace.

While f ji , and in particular f1i , seem promising as features
from which to learn about the cardinality, we can extract even
more valuable information from a sample of IP packets. For
example, sending a large amount of data usually involves long
flows of relatively big packets. In the presence of such flows
we expect the cardinality of the stream to decrease. Hence,
we expect to find a negative correlation between the sample’s
average packet length and the stream’s cardinality.

Moreover, when most of the traffic is TCP, we expect to
find a correlation between the number of SYN packets in the
sample and the stream cardinality, because each SYN packet
usually represents a single TCP connection. Figure 5(a) shows
the correlation between the average length of a packet in the
sample (avg pkt len) and the batch cardinality, and Figure
5(b) shows the correlation between the number of SYN packets
in the sample (syn count) and the batch cardinality. Both
figures are from the CAIDA-2016 trace with q = 0.1.

In our study we choose f1i , f2i , f3i , avg pkt len and
syn count as possible features, since they demonstrate good
correlation to D and they can be extracted from the sample.
However, any such property can be added as a feature to our
framework.

C. Choosing an Online ML Algorithm

Since all the features we consider seem to present linear
correlation with D, our first choice is a linear algorithm. Linear
algorithms operate on assumption that the target value D is
a linear combination of the features. Let ~x be the vector of
features and ~w be a vector of linear coefficients, also known as
the weights vector. In each estimation phase, the predict(~x)
operation returns D̂ = ~w · ~x. In each training phase, the
partial fit(~x,D) operation updates ~w according an update
rule that aims to minimize a predefined notion of estimation
error. This notion of prediction error is commonly called the
loss function. The way the update rule and loss function
are defined determines different properties of the online ML
algorithm, such as:

• Aggressiveness – The intensity of updates in response to
loss.
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Fig. 3: The value of f1i at different stages of the attack for DARPA-DDoS (q = 0.1)

Interval Slope Intercept Pearson Coefficient

(0, 112) 2.49 144.17 0.68
(113, 163) 7.57 261.5 0.91
(164, 193) 1.84 1,928.54 0.67
(194, 222) 2.98 1,431.4 0.87
(223, 236) 2.99 149.88 0.54
(237, 298) 1.21 895.08 0.43

Fig. 4: Linear regression parameters of the different stages of
the attack for DARPA-DDoS (q = 0.1)

• Forgetting Rate – The effect of new training batches on
the learning, compared to the effect of previous training
batches.

• Outlier Sensitivity – How the algorithm responds to
training batches that introduce extreme loss.

As shown in Figure 3(b), the linear relation between a single
feature and flow cardinality may frequently change. These
changes may be attributed, for example, to different stages
of a DDoS attack. Thus, the chosen algorithm must be able
to react rapidly to such changes. In Section V we compare 3
popular linear regression ML algorithms: Stochastic Gradient
Descent (SGD) [22], Recursive Least Squares (RLS) [18] and

Passive Aggressive (PA) [8].
We describe PA and RLS since we found them to be the best

performing algorithms in our experiments. We also include
SGD because it is the foundation for a wide family of online
ML algorithms. We experimented with more advanced SGD
based algorithms (RMSProp [27], ADAgrad [11] and ADAM
[23]), but they are excluded from this work since they did not
show significant improvement over the basic version (SGD).

D. Rate Parameters

Obtaining timely and accurate estimation using low rate
sampling is not trivial. Our framework has several rate pa-
rameters, which together have a crucial impact on the trade-off
between accuracy and computational cost. Table II summarizes
these parameters.

The traffic stream can be divided into batches using two
different approaches. In the first approach, batch size is fixed,
and a prediction phase starts after batch size packets are
processed. This approach is used when the estimation is
not time critical, and does not have to be provided during
fixed time intervals. In the second approach, estimation rate
is fixed, and a prediction phase is invoked exactly every
1/estimation rate seconds. This approach is used when the
time between consecutive estimations must be fixed.
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Fig. 5: The CAIDA-2016 trace with specific features (q = 0.1)

Notation Description
packet rate incoming packet rate
batch size size of each processed batch

sampling rate fraction of packets sampled from each batch
estimation rate number of cardinality estimations

executed per second
training rate number of batches between subsequent

training phases
sample size the size of a single sample
update rate number of training phases per second

effective sampling rate the total fraction of packets being processed,
including training phase

TABLE II: Main Parameters of the Proposed Framework

When batch size is fixed, estimation rate is determined
by the packet rate/batch size ratio. In this case, when
packet rate decreases, estimation rate decreases as well.
Eventually, if packet rate is too low, we might end up with an
estimation rate that is not sufficiently high for our measure-
ment application. For example, if the measurement application
is DDoS detection, a measurement provided every 300 seconds
might not be sufficiently frequent.

In addition, estimation rate has an impact on the frame-
work’s update rate since update rate is determined by
estimation rate · training rate. When estimation rate is too
low, the model may react too slowly to changes in the flow
size distribution.

When estimation rate is fixed, batch size is determined
by the packet rate/estimation rate ratio. In this case, when
packet rate decreases, batch size and sample size decrease
as well, and we might end up with a statistically insufficient
sample size.

V. PERFORMANCE ANALYSIS

We evaluated our new framework using 4 different traffic
traces. In this section we report our findings for all these
traces. We compare the framework’s accuracy to that of
statistical sampling-based algorithms, and analyze the effect of
the various online ML algorithms and framework parameters

on the accuracy. We also discuss the trade-offs imposed by
the various framework parameters.

A. Accuracy Metrics

We use the following metrics in our evaluation:
• Root Mean Squared Error (RMSE), defined as√

1
n

∑n
i=1

(
Di − D̂i

)2
. RMSE indicates the average

prediction error in units of number of flows. Since the
errors are squared before they are averaged, RMSE
gives a higher weight to large errors, and penalizes high
variance in the error distribution.

• Mean Absolute error (MAE), defined as 1
n

∑n
i=1 |Di −

D̂i|. MAE also indicates the average prediction error in
units of number of flows. As opposed to RMSE, it takes
only the average error into account and is not affected by
the error variance.

• Mean Absolute Percentage Error (MAPE), defined as
100
n

∑n
i=1

∣∣∣Di−D̂i

Di

∣∣∣. MAPE indicates the average error
percentage. It is biased towards underestimations, since
for such estimations the percentage error cannot exceed
100%, while for overestimations there is no upper limit.
We use MAPE since it allows us to compare the accuracy
over different traces and batch sizes even when batches
have significant differences in their cardinality.

• Max Absolute Error (MAXAE), defined as max(|Di −
D̂i|). It indicates the maximum estimation error, and
allows us to analyze the error in extreme cases.

B. Effective Sampling Rate

Both the proposed framework and statistical sampling-
based algorithms use f ji values to produce an estimation. The
computational resources required to obtain f ji from sampled
packets are far greater than those required for calculating
the estimation itself. Hence, to measure how much CPU is
consumed by our framework, and to compare it to statistical
sampling-based algorithms, we simply count the number of
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processed packets, while ignoring the CPU consumption for
the execution of predict() and partial fit(). In the same way, we
ignore all calculations performed by the statistical sampling-
based algorithms to which we compare our framework.

Statistical sampling-based algorithms process only the sam-
pled packets, while our framework processes all sampled
packets as well as complete training batches. Thus, in a
statistical sampling-based algorithm the expected number of
processed packets in a batch is

mean batch size · sampling rate,

while in our framework, this number is

mean batch size · effective sampling rate

where,

effective sampling rate =sampling rate + training rate

− sampling rate · training rate.

Thus, the computational cost of statistical sampling-based
algorithms is proportional to the sampling rate, and the
computational cost of our framework is proportional to the
effective sampling rate. When we compare between the two
methods in Section V, we ensure that the sampling rate
for the sampling-based algorithms is equal to the effec-
tive sampling rate of our framework.

C. Implementation Details

Our framework is designed to perform real-time cardinality
estimation. However, in order to get reproducible and compa-
rable results over all estimation methods, in our experiments
data processing was performed in advance as follows2. First,
all batches were sampled. Then, features and statistical proper-
ties were extracted from these samples, and the true cardinality
of each batch was calculated. Then, these values were used to
calculate an estimation and to train the online ML models.
This guarantees that all estimators and online ML algorithms
use the exact same samples and features for their estimations.

In steps 6–9 of Procedure 1, batch’s true cardinality is
computed concurrently with the partial fit() operation. This
concurrent execution prevents the training phase from delaying
subsequent estimations. In our experiments this delay was
insignificant, since the true cardinality of each batch was
calculated in advance. Nonetheless, to express this behavior,
during each training phase we first provided an estimation and
only then trained the online ML model. Thus, it is assumed that
the training phase ends before the subsequent batch estimation
is requested.

Online ML algorithms rely on training over previously seen
data examples, which are usually unavailable during the first
stages of the model’s lifespan. Hence, some kind of initial-
ization process is required. This process of initializing the
online ML algorithms is usually referred to as “bootstrapping”.
To bootstrap an online ML model we always used the first

2The code used for our experiments can be found at https://github.com/
yuvalnezri/CardEst.

batch of packets as a training batch. Since each algorithm
was implemented differently, a different bootstrapping process
was used for each. For SGD we ran numerous partial fit()
iterations until the loss difference between two subsequent
iterations became smaller than a predefined tolerance value,
while for PA and RLS we found that a single partial fit()
operation is sufficient.

D. The CAIDA-2016 Trace

The CAIDA-2016 [4] trace was collected from the Equinix-
Chicago high-speed monitor over Internet backbone links. The
part of this trace that we use contains 44,567,284 packets,
collected during approximately 48 seconds.

Our analysis of the frequency distribution (f ji values) of the
first batch shows a heavy-tailed behavior: 81% of the flows are
small (contain less than 4 packets), while 51% of the packets
belong to big flows (contain more than 20 packets). Other
batches show similar distribution. Statistical sampling-based
algorithms are known to demonstrate high error rates in heavy-
tail distributed traffic [6], [19].

Figure 6 shows real vs. estimated cardinality, when the es-
timation is performed using 3 statistical sampling-based algo-
rithms: GEE, AE and UJ2A. For these graphs, the batch size
is 100K and the sampling rate is q = 0.0199. We can see that
the prediction of all algorithms is far from the real cardinality.

Figure 7 shows real vs. estimated cardinality when the
estimation is performed using our framework with 3 different
online linear regression ML algorithms: Stochastic Gradient
Descent (SGD), Recursive Least Squares (RLS) and Passive
Aggressive (PA). In this graph we use batch size = 100K,
q = 0.01 and training rate = 0.01. The feature set is only
{f1i }. These parameters yield an effective sampling rate of
0.0199, which is identical to that used in Figure 6 for the
sampling-based algorithms. In addition, we set the learn-
ing rate of SGD to 10−6, the forgetting factor of RLS to
µ = 0.99, the ε-insensitive loss function of PA to ε = 0.1, and
the aggressiveness parameter of PA-II update rule to C = 1.
It can be clearly seen that the prediction of all the algorithms
used in our framework is very close to the real cardinality.

Figure 8 summarizes the error rates of the experiments
reported in Figure 6 and 7. Indeed, we see that the error rates
for the statistical sampling-based algorithms are significantly
higher than those of our new framework, regardless of the
online ML algorithms being used. This is despite the fact
that the same number of packets are processed in all cases.
In addition, we can see that when the flow size distribution
hardly changes, the various online ML algorithms show similar
accuracy. We also see that for this specific trace, AE is
significantly less accurate than GEE and UJ2A. Overall, the
proposed framework’s MAPE is approximately 30 times better
than the best performing statistical sampling-based algorithm.

Next, we examine the effect of adding more features to
the online ML algorithm, as discussed in Section IV-B.
Figure 9 depicts the MAPE of the three online ML algo-
rithms with the following feature sets: {f1i }, {f1i , f2i , f3i },
{f1i , f2i , f3i , avg pkt len} and {f1i , f2i , f3i , syn count}. We
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Fig. 6: Real vs. estimated batch cardinality of statistical
sampling-based algorithms for the CAIDA-2016 trace
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Fig. 7: Real vs. estimated batch cardinality of the pro-
posed framework with different online ML algorithms for the
CAIDA-2016 trace

conclude from this graph that extending the features beyond
{f1i } does not yield significant improvement in the accuracy.
Moreover, adding avg pkt len to the feature set even slightly
increases the error.

As described in Section V-B, effective sampling rate is
our metric for quantifying the computational cost of our

RMSE MAE MAPE MAXAE

GEE 13,803.0 13,793.6 60.9 17,441.7
AE 18,789.0 18,780.2 82.9 22,878.7

UJ2A 13,449.6 13,347.0 58.9 18,629.6
SGD 703.7 550.7 2.4 2,872.7
PA 751.3 585.0 2.6 2,798.0

RLS 704.0 549.2 2.4 2,956.7

Fig. 8: Different error metrics of the various sampling-based
and ML estimators for the CAIDA-2016 trace. The algorithms
used in our framework perform significantly better
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Fig. 9: The impact of extending the feature set on the accuracy
of our framework for the CAIDA-2016 trace

framework. To examine the trade-off between sampling rate
and training rate, we fix effective sampling rate to 0.02 (i.e.
2% of the stream packets are processed), and vary the sam-
pling rate between 0.005 and 0.015. We then set training rate
such that the effective sampling rate will be 0.02. Figure 10
shows the MAPE of this experiment with 3 batch sizes when
PA is used as the online ML algorithm.

It is evident from Figure 10 that bigger batches yield better
accuracy than smaller batches: as the batch size increases,
the sample becomes more statistically representative, and the
correlation between f1i and the real batch cardinality increases.

We can also see that it is better to use a high sampling rate
with a low training rate rather than vice versa. This is because
the cardinality of this trace only changes slightly over time.
Hence, more frequent training does not improve the accuracy
over time, and it is better to invest packet processing resources
in sampling more packets in every batch rather than in more
training batches.

E. The CAIDA-DDoS Trace

CAIDA-DDoS trace [5] contains approximately one hour
of anonymized traffic from a Distributed Denial-of-Service
(DDoS) attack that occurred on August 4th, 2007. We use
26,760,675 packets from this trace. These packets represent
approximately 300 seconds, and they include the transition
from “no-attack” to “attack”. Since DDoS detection is a time
sensitive application, our estimation rate is a function of time
rather than number of packets.

After the attack begins, the flow size distribution is heavy-
tailed. Thus, as for the CAIDA-2016 trace, we expect a
relatively high error rate when statistical sampling-based algo-
rithms are used. Figure 11 shows the real cardinality vs. the
cardinality estimated by statistical sampling-based algorithms,
with batch size of 1 second and sampling rate of q = 0.0199.

Next, we use CAIDA-DDoS to test our framework with
different online ML algorithms and batch size of 1 second. We
set sampling rate = 0.01, training rate = 0.01, and use only
{f1i } as our feature set. These parameters yield an effective
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Fig. 10: The trade-off between sampling rate and train-
ing rate for the CAIDA-2016 trace, with fixed effec-
tive sampling rate of 2%
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Fig. 11: Real vs. estimated batch cardinality of statistical
sampling-based algorithms for the CAIDA-DDoS trace
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Fig. 12: Real vs. estimated batch cardinality of the pro-
posed framework with different online ML algorithms for the
CAIDA-DDoS trace

sampling rate of 0.0199, which is the same as that used for

RMSE MAE MAPE MAXAE

GEE 5,976.9 4,667.7 41.8 10,422.8
AE 11,004.0 8,539.6 75.1 19,141.3

UJ2A 10,774.4 8,362.3 73.8 18,240.5
SGD 9,548.2 7,623.9 82.9 17,474.7
PA 1,689.7 1,260.7 25.4 4,024.1

RLS 1,485.2 1,100.2 21.4 4,043.9

Fig. 13: Different error metrics of the various sampling-based
and ML estimators for the CAIDA-DDoS trace

the sampling-based algorithms in Figure 11. The ML-specific
parameters are similar to those used for Figure 7: SGD has
a learning rate of 10−6, RLS has a forgetting factor of µ =
0.99, PA has an ε-insensitive loss function of ε = 0.1, and the
PA-II update rule has an aggressiveness parameter of C = 1.
Figure 12 describes the real and estimated cardinality for each
online ML algorithm.

Figure 13 summarizes the error rates of Figure 11 vs. 12.
We can conclude that SGD’s inherent learning rate is too
low. Thus, it fails to adapt fast enough to changes in flow
size distribution. But when we increase its learning rate to
10−5, the estimation diverges after the attack starts and shows
even higher error rates. SGD is known for its learning rate
sensitivity, and it is therefore not recommended when cardi-
nality values are expected to change drastically. In contrast to
SGD, PA and RLS are significantly better than the statistical
sampling-based algorithms and we see 50% improvement in
the MAPE of the best online ML algorithm (RLS), over the
best statistical sampling-based algorithm. As for the first trace,
also in this case we do not see significant impact by extending
the feature set beyond f1i .

Next, we examine the trade-off between sampling rate and
training rate. We set a fixed effective sampling rate of 0.02
(2%), and use sampling rates of 0.005 (0.5%), 0.01 (1%) and
0.015 (1.5%). The training rate is calculated such that the
effective sampling rate remains 0.02. Figure 14 shows the
MAPE for the various algorithms for three batch sizes. It
is evident that increasing the sampling rate while decreasing
the training rate yields better accuracy. This is in contrast
to what we saw in Figure 10 for the CAIDA-2016 trace. In
the CAIDA-DDoS trace, the flow size distribution changes
frequently. Hence, a higher training rate is required to obtain
high accuracy.

F. The DARPA-DDoS Trace

The DARPA-DDoS trace [9] contains a SYN flood DDoS
attack on one target (IP address 172.28.4.7) and some back-
ground traffic. The DDoS traffic comes from about 100
different sources, some of which contribute significantly more
traffic than the others.

We use a part of the trace in which the attack occasionally
goes on and off. It contains 3,955,270 packets, collected
during 352 seconds. Since the number of packets is relatively
small, a sampling rate of 1% or 2% yields a not statistically
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Fig. 14: The trade-off between sampling rate and train-
ing rate for the CAIDA-DDoS trace, with fixed effec-
tive sampling rate of 2%

representative sample size, and very high error rates. Hence,
for this trace we use higher sampling rates.

Figure 15 shows the real vs. estimated cardinality of 3 statis-
tical sampling-based algorithms with batch size of 1 second
and sampling rate of q = 0.975. Figure 16 shows the real
vs. estimated cardinality of the proposed framework with the
three online ML algorithms. The framework parameters used
in Figure 16 are: batch size = 1 second, sampling rate =
0.05 and training rate = 0.05. These parameters yield an
effective sampling rate of 0.975, which is the same as that
used for the statistical sampling-based algorithms in Figure
15. The feature set consists of {f1i } only. As before, SGD’s
learning rate is set to 10−6, RLS’s forgetting factor is set to
µ = 0.99, PA’s ε-insensitive loss function is set to ε = 0.1,
and the PA-II update rule aggressiveness parameter is set to
C = 1.

Figure 17 summarizes the error rates of the above ex-
periments. We can see that UJ2A’s MAXAE rate is much
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Fig. 15: Real vs. estimated batch cardinality of statistical
sampling-based algorithms for the DARPA-DDoS trace
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Fig. 16: Real vs. estimated batch cardinality of the pro-
posed framework with different online ML algorithms for the
DARPA-DDoS trace

RMSE MAE MAPE MAXAE

GEE 800.9 569.6 33.8 3,898.1
AE 873.4 645.0 41.4 3,729.8

UJ2A 829.4 452.0 31.2 10,826.3
SGD 447.4 271.1 23.1 1,907.2
PA 420.0 220.0 22.1 1,844.3

RLS 404.0 259.2 22.4 1,884.8

Fig. 17: Different error metrics of the various sampling-based
and ML estimators for the DARPA-DDoS trace

higher than that of the other statistical sampling-based al-
gorithms. This error is obtained from batch no. 219, which
presents an extremely high cardinality value. Overall we see
an improvement of 30% in the MAPE of the best online
ML algorithm (PA) over the best statistical sampling-based
algorithm (UJ2A).

Figure 18 presents the accuracy of PA and RLS with
different feature sets. Since this trace contains a SYN attack,
feature set {f1i , syn count} slightly improves the MAPE.

G. The UCLA-CSD Trace

The UCLA-CSD trace [28] contains packets collected dur-
ing August 2001 at the border router of the UCLA Computer
Science Department. The part of this trace that we use contains
30,000,000 TCP packets, collected during approximately 14
hours.

Figure 19 shows the real vs. estimated cardinality of the
three statistical sampling-based algorithms with batch size of
100K packets and sampling rate of q = 0.0199. UCLA-CSD
also shows a heavy-tailed behavior, but its skewness is less
acute than that of the CAIDA-2016 trace (Section V-D). For
example, analysis of the first batch shows that only 37% of
the packets belong to small flows (that contain less than 4
packets). This fact can explain the performance advantage of
GEE compared to AE and UJ2A.

Figure 20 shows the true cardinality vs. estimated cardinal-
ity values for our framework with each online ML algorithm.
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Fig. 18: The impact of extending the feature set on the
accuracy of our framework for the DARPA-DDoS trace
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Fig. 19: Real vs. estimated batch cardinality of statistical
sampling-based algorithms for the UCLA-CSD trace
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Fig. 20: Real vs. estimated batch cardinality of the proposed
framework with different online ML algorithms for the UCLA-
CSD trace

For this comparison we set the following framework param-
eters: batch size = 100K, q = 0.01, training rate = 0.01.

RMSE MAE MAPE MAXAE

GEE 763.7 600.2 19.2 3,458.1
AE 1,977.4 1,863.6 64.7 4,720.7

UJ2A 1,824.0 1,735.7 61.9 4,460.2
SGD 457.0 277.2 9.7 2,972.0
PA 474.0 271.8 9.0 2,910.8

RLS 457.9 279.4 9.8 2,974.2

Fig. 21: Different error metrics of the various sampling-based
and ML estimators for the UCLA-CSD trace

The feature set contains only {f1i }. These parameters yield an
effective sampling rate of 0.0199, which is identical to what we
used in Figure 19 for the sampling-based algorithms. SGD’s
learning rate is set to 10−5, since it shows the smallest error.
RLS’s forgetting factor is µ = 0.99, PA uses the ε-insensitive
loss function with ε = 0.1, and the PA-II update rule with an
aggressiveness parameter of C = 1.

Figure 21 summarizes the error rates of the above experi-
ments. Our framework obtains an MAPE improvement of 10%
over the best statistical sampling-based algorithm. Figure 22
presents the accuracy of PA and RLS with different feature
sets.

H. Computational Cost Analysis

Although calculating the estimation itself is not the most
resource intensive operation, we present the following evalu-
ation of its computational cost. First, we analytically analyze
the runtime complexity of the computations carried out by
the sampling-based algorithms, and that of the predict() and
partial fit() operations carried out by our framework. Then,
we show empirical measurements to support this analysis.

Except for AE, which uses a numerical method in its
estimation process and is more computationally expensive,
the time complexity of all other statistical sampling-based
algorithms is O(n), where n is the sample size, i.e., the
number of packets in the sample. As for the online ML
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Fig. 22: The impact of extending the feature set on the
accuracy of our framework for the UCLA-CSD trace
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algorithms, the time complexity of each predict() operation
is O(1). The time complexity of each partial fit() is O(f3)
for the worst online ML algorithm (RLS), and O(f) for the
others (SGD and PA), where f is the number of features.
Since the number of features we use is relatively small, and it
does not change as more packets are processed, we expect the
runtime of our framework over different sample size values to
be constant.

Figure 23 shows the execution time of statistical sampling-
based algorithms vs. online ML algorithms, over different
sample sizes. These measurements are obtained from an Intel
Core i7-4500U CPU, with 8GB DDR RAM. The data contains
445 batches taken from the CAIDA-2016 trace, where each
batch contains 100,000 packets. For the various online ML
algorithms, we used {f1i , f2i , f3i , avg pkt len, syn count} as
the feature set. To measure CPU consumption for different
sample size values, we used the following sampling rates:
q = [0.1, 0.2, 0.3, 0.4, 0.5]. Figure 23(a) shows the average
execution for the sampling-based algorithms, Figure 23(b)
shows the average execution time for the predict() operation
using several online ML algorithms, and Figure 23(c) shows
the average execution time for the partial fit() operation. As
expected, in Figure 23(a) we can see the linear increase in
the CPU consumption with the mean sample size, whereas in
Figure 23(b) and 23(c), CPU consumption is almost constant.

Mean Sample Size GEE AE UJ2A

10,000 6.20e-06 2.72e-03 4.86e-05
20,000 7.69e-06 4.06e-03 6.99e-05
30,000 9.01e-06 5.33e-03 8.95e-05
40,000 1.03e-05 6.33e-03 1.08e-04
50,000 1.14e-05 7.44e-03 1.34e-04

(a) Average execution time in seconds for sampling-based algo-
rithms

Mean Sample Size SGD PA RLS

10,000 8.81e-06 8.52e-06 3.55e-06
20,000 7.68e-06 8.20e-06 3.62e-06
30,000 8.23e-06 8.36e-06 3.70e-06
40,000 8.15e-06 8.36e-06 3.53e-06
50,000 8.40e-06 9.25e-06 3.91e-06

(b) Average execution time in seconds of the predict() operation
for online ML algorithms

Mean Sample Size SGD PA RLS

10,000 2.38e-05 3.70e-05 2.66e-05
20,000 2.08e-05 3.49e-05 2.66e-05
30,000 2.09e-05 3.49e-05 3.06e-05
40,000 2.13e-05 3.51e-05 2.65e-05
50,000 2.82e-05 3.52e-05 2.62e-05

(c) Average execution time in seconds of the partial fit() operation
for online ML algorithms

Fig. 23: Execution time analysis for CAIDA-2016 trace.

VI. CONCLUSIONS

In this work we argued that the problem of current
sampling-based algorithms for flow cardinality estimation is
their inability to adapt to changes in flow size distribution.
Hence, we suggested using online ML framework to add
adaptivity to the estimation process, and presented a novel
sampling-based adaptive cardinality estimation framework. We
analyzed the various possible features, parameters and online
ML algorithms for our framework, and proposed the most
suitable combination. We tested our framework over real
traffic traces, and showed significant improvement in accuracy
compared to the best known sampling-based algorithms while
using the same amount of computational resources.
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