
322 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Dart: Divide and Specialize for Fast Response to
Congestion in RDMA-Based Datacenter Networks
Jiachen Xue, Muhammad Usama Chaudhry, Balajee Vamanan , T. N. Vijaykumar, and Mithuna Thottethodi

Abstract— Though Remote Direct Memory Access (RDMA)
promises to reduce datacenter network latencies significantly
compared to TCP (e.g., 10x), end-to-end congestion control in the
presence of incasts is a challenge. Targeting the full generality of
the congestion problem, previous schemes rely on slow, iterative
convergence to the appropriate sending rates (e.g., TIMELY
takes 50 RTTs). Several papers have shown that even in
oversubscribed datacenter networks most congestion occurs at
the receiver. Accordingly, we propose a divide-and-specialize
approach, called Dart, which isolates the common case of receiver
congestion and further subdivides the remaining in-network
congestion into the simpler spatially-localized and the harder
spatially-dispersed cases. For receiver congestion, we propose
direct apportioning of sending rates (DASR) in which a receiver
for n senders directs each sender to cut its rate by a factor of n,
converging in only one RTT. For the spatially-localized case, Dart
provides fast (under one RTT) response by adding novel switch
hardware for in-order flow deflection (IOFD) because RDMA
disallows packet reordering on which previous load balancing
schemes rely. For the uncommon spatially-dispersed case, Dart
falls back to DCQCN. Small-scale testbed measurements and
at-scale simulations, respectively, show that Dart achieves 60%
(2.5x) and 79% (4.8x) lower 99th -percentile latency, and similar
and 58% higher throughput than InfiniBand, and TIMELY
and DCQCN.

Index Terms— Datacenters, RDMA, congestion control.

I. INTRODUCTION

MANY modern, interactive datacenter applications have
tight latency requirements due to stringent service-level

agreements (e.g., under 200 ms for Web Search). TCP-based
datacenter networks significantly lengthen the application
latency. Remote Direct Memory Access (RDMA) substantially
reduces latencies compared to TCP by bypassing the operating
system via hardware support at the network interface (e.g.,
RDMA over InfiniBand and RDMA over Converged Ethernet
(RoCE) can cut TCP’s latency by 10x [1], [2]). As such,
RDMA may soon replace TCP in datacenters [3]–[6].

Manuscript received November 27, 2018; revised June 14, 2019 and
October 8, 2019; accepted December 10, 2019; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor K. Tang. Date of publication
January 14, 2020; date of current version February 14, 2020. (Corresponding
author: Balajee Vamanan.)

Jiachen Xue was with the Department of Electrical and Computer
Engineering, Purdue University, West Lafayette, IN 47907 USA. He is
now with NVIDIA Corporation, Santa Clara, CA 95051 USA (e-mail:
xuejiachen@gmail.com).

Muhammad Usama Chaudhry was with the Department of Computer
Science, University of Illinois at Chicago, Chicago, IL 60607 USA.
He is now with VMware Inc., Palo Alto, CA 94304 USA (e-mail:
chaudhryusama@gmail.com).

Balajee Vamanan is with the Department of Computer Science, University
of Illinois at Chicago, Chicago, IL 60607 USA (e-mail: bvamanan@uic.edu).

T. N. Vijaykumar and Mithuna Thottethodi are with the Department of
Electrical and Computer Engineering, Purdue University, West Lafayette, IN
47907 USA (e-mail: vijay@ecn.purdue.edu; mithuna@purdue.edu).

Digital Object Identifier 10.1109/TNET.2019.2961671

Employing RDMA in datacenters, however, poses a
challenge. RDMA provides hop-by-hop flow control and
rate-based end-to-end congestion control [7], [8]. However,
RDMA’s congestion control is suboptimal for the well-known
datacenter congestion problem, called incast, where multiple
flows collide at a switch causing queuing delays and long
latency tails [9] despite good network design [10], [11].
Though such congestion affects only a small fraction of the
flows (e.g., 0.1%), datacenter applications’ unique characteris-
tics imply that the average latency is worsened. For example,
because Web Search aggregates replies from thousands of
nodes, the 99.9th percentile reply latency affects the average
response time; or alternatively, dropping the slowest replies
worsens the response quality. In TCP, incasts cause delays due
to packet drops and re-transmissions [9]. Though the lossless
RDMA does not incur packet drops, incast-induced queuing
delays lengthen RDMA’s latency tail [12].

InfiniBand uses Early Congestion Notification (ECN) marks
to infer imminent congestion and cuts back the send-
ing rates [7], [8]. While DCQCN [12] proposes a similar
scheme for RoCE, TIMELY [13] uses round-trip times (RTT)
measurements, instead of ECN marks, for rate control in
user-level TCP. Unfortunately, because ECN marks and RTT
measurements need many round-trips to converge to the appro-
priate sending rates (e.g., 50 RTTs in TIMELY), the schemes
are too slow for the applications’ predominantly short flows
each of which lasts only a handful of round-trips. During
convergence, the schemes also lose throughput due to over-
and under-shooting the sending rates.

To speed up convergence, we leverage the result in several
papers [14]–[17] and reports from large datacenter operators
such as Facebook [18], Google [19] and Microsoft [20]: even
under typical oversubscription most congestion in datacenter
networks occurs at the network edge (i.e., at the link from
top-of-rack (ToR) switch to the receiver) as opposed to within
the network. Our simulations confirm this result which is
due to high-bandwidth network core [10], [11] and incast at
the receiver. We make the key observation that while general
congestion is complex and may require iterative convergence,
the simpler and common case of receiver congestion can be
addressed quicker via specialization; Without isolating this
case, previous schemes apply their iterative throttling to the
general case. Instead, our proposal, called Dart, employs a
divide-and-specialize approach to isolate receiver congestion
and significantly speeds up the convergence. Dart sub-divides
the remaining case of in-network congestion into the simpler
spatially-localized case and the harder spatially-dispersed case.
For the former where the network capacity is not under
pressure (e.g., due to imperfect ECMP hashing), Dart avoids

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7581-6624

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 323

throttling which is unnecessary. For the latter where the
network capacity is under pressure (e.g., due to dynamic
network load spikes), Dart falls back on DCQCN’s throt-
tling which may be unavoidable. Load balancing [21]–[28]
can alleviate localized in-network congestion but not receiver
congestion, and usually reorders packets which is not sup-
ported by RDMA.

To address receiver congestion, we make the key observa-
tion that unlike in a wide-area setting, datacenter applications
are co-operative where a receiver of n senders can direct each
sender to cut its rate by a factor of n, This mechanism, called
direct apportioning of sending rates (DASR), ensures that the
critical, short flows get their fair share of (instantaneous)
throughput without being swamped by the background, long
flows. When a sender completes, the (instantaneous) sending
rate is adjusted as per the new sender count. Because DASR
piggybacks the count in the receiver’s acknowledgments to the
senders, DASR achieves accurate and one-RTT convergence
of sending rates without any repeated adjustments, unlike
previous schemes. Specifically, (1) RCP [29] proposes to
apportion the rates among the senders, but employs slow,
iterative convergence at the switches because RCP (a) targets
general congestion without isolating receiver congestion and
(b) uses general parameters to arrive indirectly at fair share
instead of directly counting flows which is hard to do at Inter-
net scales; we evaluate RCP’s convergence in Section VI-D.
(2) EyeQ [15] highlights edge congestion but applies RCP’s
iterative convergence, which takes 25-30 RTTs, without spe-
cializing for edge congestion. (3) NUMFabric [30] achieves
more flexible and faster bandwidth allocation than TCP but
still employs iterative convergence (e.g., 31 RTTs). And,
(4) while ExpressPass [31] and NDP [17] target general con-
gestion via receiver-based congestion control, neither scheme
isolates receiver congestion. ExpressPass employs BIC-TCP
iterative convergence which takes 20 RTTs for a datacenter
network (Section VI-D); ExpressPass shows results only for
a simple network. NDP fundamentally relies on (a) packet
spraying, which reorders packets, to reduce congestion and
(b) packet trimming, which removes payloads, to unclog
congestion notification to the receiver. Neither of these mech-
anisms is supported by RDMA which has no software stack
like TCP. Without these mechanisms, NDP would see more
congestion and slower feedback. DASR’s faster convergence
reduces latency tail (critical flows quickly get their share)
and improves throughput (fewer adjustments). In an additional
optimization, DASR leverages application-provided incast
degree to avoid counting the senders and converge even faster.

To address spatially-localized, in-network congestion, Dart
simply deflects the affected packets under the premise that an
alternate path is faster than being queued up in the shortest
path. To avoid livelock, Dart allows only a few deflections
for a packet after which the packet is not deflected even
at a congested switch. Dart avoids deadlocks via a widely-
used virtual-channel-based scheme [8], [32]. Because RDMA
does not support packet reordering, Dart provides hardware
support in the switch to keep a flow’s packets in order. While
deflection [33] is well known, our contribution is in-order flow
deflection (IOFD) unlike previous load-balancing schemes
including DIBS [28]. As a congestion response, deflection is

much lighter-weight and quicker (well under one RTT) than
rate-cutting using iterative convergence and does not affect the
sending rates. For spatially-dispersed in-network congestion,
which is uncommon, Dart falls back to DCQCN’s heavy-
weight rate modulation. By filtering out receiver congestion
and localized in-network congestion, Dart cuts the number
of ECN marks, which trigger DCQCN fall-backs, by 4x for
typical workloads.

We make four observations: First, receiver conges-
tion is easy to differentiate from in-network congestion
(Section III-C). Second, DASR works only for receiver con-
gestion but not for in-network congestion (e.g., two flows col-
lide in the network but go to different receivers which cannot
detect the collision); and vice versa for IOFD (flows colliding
at the receiver should not be deflected). As such, one of our
contributions is identifying the specific case and applying the
appropriate specialization. Third, because DASR and IOFD
separately target receiver congestion and localized in-network
congestion, respectively, they are more effective despite being
simpler than previous schemes which tackle the full generality
of the problem using a common mechanism. Finally, Dart
leverages RDMA’s unique features. While DASR is applicable
to both RDMA and TCP, our DASR implementation relies on
RDMA’s discrete messages as opposed to TCP’s continuous
flows (Section III-B). IOFD specifically addresses RDMA’s
lack of support for packet reordering,

In summary, our key contributions are:
• employing a divide-and-specialize approach to congestion

control;
• addressing receiver congestion via direct apportioning of

sending rates by using the sender count to achieve accurate and
faster, one-RTT convergence of sending rates than previous
schemes which are iterative; and
• addressing spatially-localized in-network congestion via

in-order flow deflection whereas previous schemes reorder
packets which is not supported by RDMA.

A small-scale 16-node testbed implementation shows that
Dart converges to the desired sending rate in one RTT and
achieves 60% (2.5x) lower latency than and similar through-
put as InfiniBand. Datacenter-scale ns-3 simulations show
that Dart achieves 79% (4.8x) lower 99th-percentile latency
and 58% higher throughput, on average, than TIMELY and
DCQCN for typical over-subscription and load settings.

II. CHALLENGES AND OPPORTUNITIES

Modern datacenter applications demand both low latency
tails and high throughput from the network. Interactive data-
center applications, such as Web Search, generate thousands of
short flows to lookup large distributed datasets for each user
query. As described in Section I, the overall response time is
bound by the 99th - 99.9th percentile of flow completion times
(i.e., the tail-latency problem) [34]. Further, the synchronous
nature of the lookup responses, which are aggregated in
subsets, implies that each subset arrives at a switch causing an
incast, which worsens when multiple queries’ subsets arrive
at the same time. On the other hand, background applications
(e.g., Web Index update) demand high throughput for large
volumes of Internet data. These long flows colliding with the
short flows also exacerbate incasts.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

324 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

The OS overheads in TCP drastically dilate network tail
latencies (e.g., 99th percentile latency is 10-20x of median
latency [9]). Further, a slow response to congestion hurts
latency at the start of incasts and throughput at the end.
Similarly, an inaccurate response affects latency or throughput,
depending on whether the rate was less or more than the
optimum.

A. RDMA

With RDMA, the application invokes the NIC directly
without involving the OS – (1) At the sender, the NIC uses
DMA to copy data from the application memory to its buffers
using DMA and sends the data after some protocol processing;
(2) At the receiver, the NIC copies data into the receiving
application’s buffer. Thus, RDMA eliminates OS intervention
and accelerates protocol processing at both the sender and the
receiver. The buffers are pinned in physical memory and the
address translations are cached at the NIC during connection
establishment. RDMA-based transports [4], [5] show an order-
of-magnitude reduction in flow latencies at low loads. As such,
RDMA, initially proposed for multiprocessor networks [35],
is finding its way into modern datacenters.

B. Challenges

Existing RDMA transports provide hop-by-hop flow control
to ensure lossless operation. For example, InfiniBand [36]
employs credit-based flow control and RoCE [37] uses
Priority-based Flow Control (PFC). InfiniBand provides rate-
based end-to-end congestion control using ECN marks [7], [8].
DCQCN [12] has shown that RoCE without end -to-end
congestion control degrades in both latency and throughput
at high loads.

As discussed in Section I, previous schemes address the full
generality of the congestion problem and end up with iterative
convergence to the appropriate sending rate upon congestion.
Unlike TCP’s window-based rate control, RCP’s [29] routers
iteratively calculate and convey the fair-share bandwidth to
the senders sharing a link, which slows convergence (see
Section VI-D). DCQCN [12] and TIMELY [13] improve end-
to-end congestion control at datacenter scales for RDMA
(RoCE) and user-level TCP respectively. Both DCQCN and
TIMELY directly control the sending rate by pacing the
packets sent out of the NIC. DCQCN starts a flow at the full
line rate, employs ECN marks as feedback and cuts the send-
ing rate in proportion to the exponentially-averaged fraction
of ECN-marked packets. To avoid some problems of ECN
(e.g., low-priority packets may not see ECN marks), TIMELY
employs RTT measurements as feedback and modulates the
sending rate (additive increase and multiplicative decrease)
based on RTT gradients bounded by thresholds at the extremes.

Despite these innovative ideas, because these schemes tackle
the general case with arbitrarily changing number of flows
which interact in arbitrary ways, the schemes rely on slow,
iterative convergence to the appropriate sending rates. As dis-
cussed in Section I, other schemes, including EyeQ [15],
NumFabric [30] and ExpressPass [31], also rely on iterative
convergence. Such convergence requires many round trips
(e.g., 60 RTTs in RCP, 50 RTTs in TIMELY, 31 RTTs in
NUMFabric, and 25-30 RTTs in EyeQ), as illustrated in

Fig. 1. Dart’s fast, one-RTT convergence.

Figure 1 for a sender whose initial sending rate is 100%
of the line rate and the target rate is 50%. The upper half
of Figure 1 shows the tuning of sender-inferred rates. Such
iterative convergence hurts both latency and throughput, as we
show in Section VI-B. Because DCQCN and TIMELY specif-
ically target RDMA (RoCE) and user-level TCP (which
bypasses the OS like RDMA), respectively, and are repre-
sentative of iterative convergence, we compare Dart to these
two schemes in our results.

C. Opportunities

Dart employs a divide-and-specialize approach to avoid iter-
ative convergence in the common case of receiver congestion
(i.e., multiple senders intentionally sending to a receiver).
For this case, Dart uses direct apportioning of sending rates
(DASR) which specifies the appropriate sending rate in one
RTT without repeated adjustments (see the lower half of
Figure 1). Thus, Dart achieves accurate and fast convergence
for receiver congestion. Dart further sub-divides the remain-
ing case of in-network congestion into two sub-cases: the
easier spatially-localized congestion and the harder spatially-
dispersed congestion. For the localized sub-case, Dart employs
in-order flow deflection (IOFD) which does not affect the
sending rates. Such deflection is a quicker, lighter-weight,
in-network response (well under one RTT) than the previous
schemes’ iterative convergence. For the dispersed sub-case,
which is uncommon especially after IOFD filters out localized
congestion, Dart falls back to DCQCN.

III. RECEIVER CONGESTION

We start with direct apportioning of sending rates (DASR)
and describe in-order flow deflection (IOFD) in Section IV.
We note that when contention is at the end-points, the fair
share of bandwidth for each of n (say) senders is well-defined
as 1

n . The fair share can be extended easily to weighted fair
shares.

In our description of DASR and IOFD, we use the term
‘flows’ to mean RDMA messages. Short flows are effectively
small messages (e.g., those that contain small search queries
for web-search, or key-value lookup requests for memcached).
Long flows are effectively large messages that perform bulk-
copying of large sections of memory (e.g., for index-updates in
web-search). Both short and long flows may be packetized as
necessary. While flow sizes are not known to the TCP layer,
message sizes must be sent explicitly in RDMA and hence
the RDMA application messaging layer can identify long and
short flows.

A. Direct Apportioning of Sending Rates

All flows begin at the full line rate because (1) we want
to avoid penalizing the latency of short flows, and (2) Dart’s

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 325

Fig. 2. Direct apportioning of sending rates.

fast feedback can quickly throttle long flows if necessary.
Dart piggybacks the sender count, the n value, with ACKs
to all the senders; ACKs use high-priority queues in Dart as
well as all the other schemes we compare. Such piggybacking
can be achieved via NIC firmware without hardware changes.
(In practice, implementing firmware changes on proprietary
NICs is not feasible without vendor support. We discuss
our prototyping approach later in Section V.) As such,
senders receive continuous, fast – one-RTT – direction
from the receivers on their allowed transmission rate. Such
co-ordination is between the end-point NICs; the switches
need not be modified.

Figure 2 shows an oversubscribed fat tree to illustrate
Dart’s operation in terms of fair-sharing among long flows.
Consider the example shown in Figure 2(a) wherein a single
receiver (D) receives a steady long flow from one sender (S1)
at the line rate. That sender continues to transmit at the line
rate without throttling as it sees the n value remain 1 in the
ACKs from the receiver. When a second sender (S2) initiates
another long flow to the same receiver (D), there is contention
at the leaf-level switch, as shown in Figure 2(b) where the solid
and broken lines show the two flows. As the two flows’ packets
arrive interleaved at the destination node, the receiver’s NIC
piggy-backs the updated n = 2 value with the ACKs to each
sender. The ACKs cause the sender NICs to throttle the rate to
1
n = 1

2 of the line rate, which can be sustained in steady state.
The above discussion illustrates the two key benefits

of DASR. First, the continuous feedback mechanism means
that congestion control feedback to senders is fast, in one RTT.
Second, the senders are given an accurate and precise rate not
to exceed. The algorithm seamlessly handles flow “churn” by
constantly sending updated n values.

B. Short Flows and Incasts Under DASR

The case of short flows, including incasts, interacting with
long flows uses the same mechanism to ensure that the latency
of short-flows is not hurt (Figure 3(a)). A long flow that
contends with k other short flows from k unique senders
is directed to reduce its sending rate to 1

k+1 because n =
k + 1. While this throttling helps the short flows’ latency,
such throttling is short-lived and does not hurt the long flow’s
throughput. The presence of short flows can be treated as a
case of flow-churn; the long flows throttle their rates according
to the number of short flows, but only for the duration of the
short flows (Figure 3(b).

The rate throttling at the sender is staggered by the
time required for the receiver’s ACK (with the piggy-backed
n value) to reach the sender. while DCQCN and TIMELY
also incur this ACK delay (Section II), the previous schemes

Fig. 3. Short flows mixed with long flows.

Fig. 4. Active Unique Sender Set for sender S (in software).

require several iterations of RTT measurements or ECN marks,
involving several round trips, for the sender to infer the
appropriate rate (e.g., 50 RTTs in TIMELY). This delay
hurts both short flows’ latency and long flows’ throughput.
In contrast, DASR converges in one RTT to the appropriate
sending rates.

Dart addresses one other challenge: accurate counting of
senders. Consider a case where two incasts to the same
destination (say D) begin close in time and there is an overlap
in the senders of the two incasts (sender S is part of both incast
groups). Because S’s two incast flows would be serialized at
S’s NIC, D’s NIC should count source S exactly once when
determining n. This case is handled naturally because Dart
tracks in software the unique senders of active flows – in the
Active Unique Sender Set (AUSS). Upon a new message/flow,
the sender of the message is added to the AUSS if not already
present (see Figure 4(a)). Further, Dart initializes a count of
in-flight messages associated with that sender to 1 (if not
previously present in the AUSS) or increment the in-flight
message count (if previously present in the AUSS and multiple
messages from the same sender are concurrently active). Dart
finally decrements the sender count only when all the messages
from that sender terminate, as shown in Figure 4(b). With the
above tracking in place, DASR can use the number of elements
in the AUSS as the n value (i.e., n = |AUSS|).

Finally, each sender in the AUSS is associated with a
timestamp of the flow’s last packet. Any flow that is idle for
long (e.g., 2 seconds) is assumed to be dead and eliminated
from the AUSS. This well-known soft-state approach ensures
that DASR does not artificially throttle active senders in
cases where other senders may fail after initiating message
transmission. Recall that RCP requires switch support to
handle the full generality. In contrast, Dart requires extra state
only at the receiver (host) to specialize the common case of
receiver congestion.

RDMA’s connectionless nature (unlike TCP) and its clearly-
marked message start/end ensures that senders are not counted

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

326 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 5. Handling receiver and non-receiver congestion.

in idle periods (as shown in Figure 4). Because our DASR
implementation relies on RDMA’s message start/end markers
for accurate AUSS tracking, it does not extend to TCP which
views communication as a continuous stream without markers
making it hard to account for flow idleness.

C. Handling Non-Receiver Congestion

Figure 5 illustrates our state machine that exhaustively
handles receiver and non-receiver (in-network and at source)
congestion. Dart distinguishes between receiver and non-
receiver congestion based on two observable symptoms:
(1) throughput at the receiver, and (2) ECN marks. Changes in
either of the two trigger state changes as shown in Figure 5.

As long as no ECN marks are received, Dart remains in
the “No Congestion” state. While DASR targets receiver con-
gestion, both receiver congestion and non-receiver congestion
(including network and source congestion at the sender’s NIC)
may result in ECN marks. For source congestion, we require
that the source NICs be capable of ECN marking, which
is possible in today’s SmartNICs. For example, we can
programmatically set ECN on Netronome Agilio CX NICs
based on queue depth, which is accessible as intrinsic meta-
data [38]. Without any additional safeguards, the ECN-based
DCQCN fall-back may over-throttle the sending rates in
addition to DASR even for receiver congestion. To avoid such
over-throttling, we observe that during receiver congestion,
the throughput seen by the receiver is not affected as all flows
headed to that receiver would be serialized anyway at the last
hop (i.e., the receive throughput is equal to line rate). This
condition triggers DASR, denoted by “Receiver Congestion”
state in Figure 5. In this state, Dart piggy-backs the n values
while suppressing the ECN marks on the returning ACKs. The
throughput is unaffected even if receiver congestion occurs at
an internal switch – it is still receiver congestion irrespective
of where it occurs.

In contrast, in the case of non-receiver congestion
(i.e., network and source congestion) where contending flows
are headed to different destinations, the bottleneck link capac-
ity would be shared by contending flows. As a result, when
the flows eventually reach their destinations, the receivers
would observe throughputs that are less than the line rate.
In addition, the receiver would also observe ECN marks
due to congestion. Accordingly, Dart enters “Non Receiver

Congestion” state when the receiver observes lower than line
rate as well as ECN marks. Because DASR cannot handle non-
receiver congestion, the receiver allows ECN marks, which
trigger DCQCN at the senders. Finally, to avoid DASR from
interfering with DCQCN, Dart sets n = 1 in this state. While
the above description handles receiver and non-receiver con-
gestion occurring separately, Dart naturally handles the case
of the two together in two steps. In the first step, Dart enters
the “Receiver Congestion” state causing DASR to kick in.
For non-receiver congestion, however, DASR’s apportioning
may cause the senders to underutilize their throughput share.
In that case, the receiver rate would fall below the line rate,
causing a transition to the “Non-Receiver Congestion” state in
the second step, where DSQCN kicks in to avoid continued
throughput loss. Thus, Dart exhaustively covers all cases of
congestion among the three states in Figure 5.

Dart’s convergence: From Figure 5, it is clear that
DASR covers only the special case of receiver congestion
and converges to the correct sender rate (i.e., fair share).
During non-receiver congestion (i.e., in-network or source
congestion), Dart falls back to DCQCN. Dart’s convergence
is thus guaranteed by DCQCN’s convergence in this case.
Overall, because our state machine exhaustively covers all
congestion states, Dart converges to the correct sender rates
in all cases.

D. Accelerated DASR

We further improve Dart’s performance by having the
application provide a look-ahead notification of the upcoming
set of incast flows that are part of an incast group. For example,
if each incast message carries (1) information that it is part
of a 20-flow incast and (2) the list of the 20 senders, the
receiver NIC can advertise rate limits to the 20 senders after
just the first such message, even before the other senders’
packets arrive at the receiver. As with the n value, such
lookahead notification can also be handled via NIC firmware.
Thus, the AUSS can be populated with the set of senders in
advance of actual packet arrival from all the senders. The
long flows back off quicker with this look-ahead, as shown
by the dotted line in Figure 3(b). For accurate counting,
Dart treats any flow as if it begins when the look-ahead
notification first arrives. The ending of flows is handled as
without the look-ahead. The look-ahead overhead is reasonable
(e.g., 20 two-byte sender-ids, each of which can address
64K sender NICs, amount to 40-byte or 2% overhead for
a 2-KB payload). Unlike generic applications, latency-sensitive
applications are specialized where the incast groups – static
in the application – are likely known to the programmer
(e.g., Web Search). Identifying the static groups is enough
even if they dynamically and unpredictably break into subsets
at different switches because eventually the whole static group
causes receiver congestion which is DASR’s target.

E. Failures and Attacks Under DASR

Because the AUSS tracking uses soft-state (as described
in Section III-B), Dart can handle failures seamlessly. Any
flow in the AUSS (irrespective of whether it uses look-ahead)
will naturally timeout and exit the AUSS when senders fail.
However, untrusted entities in multi-tenant datacenters may

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 327

Fig. 6. Misrouting to avoid congested links.

attempt denial-of-service attacks by frequently sending look-
ahead notifications which results in other senders throttling
themselves. To ensure SLA compliance, datacenters typically
use rate-limiting to ensure that VMs of a tenant do not
exceed their fair share of bandwidth. Dart’s AUSS tracking
can be private to individual tenant’s flows. As such, any false
information from one tenant can not affect other tenants’
flows. As a last resort, the look-ahead optimization can be
turned off in multi-tenant datacenters, while retaining the main
DASR which is not susceptible to such attacks. We isolate
the look-ahead’s performance from that of the main DASR
in Section VI-C.

IV. LOCALIZED IN-NETWORK CONGESTION

We now address in-network congestion, starting with the
easier spatially-localized congestion, including incasts, and
then discuss the harder spatially-dispersed congestion. Local-
ized in-network contention is usually the result of temporary
link contention in a small neighborhood of switches. Such
contention may result in packets being unnecessarily seri-
alized (e.g., even though they may be headed to different
destinations). In such situations, Dart deflects all the packets
of selected short-flows to avoid this serialization penalty.
Consider the example shown in Figure 6 with two flows
between the source-destination pairs (S1, D1) (solid arrows)
and (S2, D2) (dashed arrows). Assuming the second flow
(dashed arrows) finds one of the links congested, the flow
may take an alternate path, away from the congested link –
a response well under one RTT. While such deflection results
in additional hops (two in the example – one misroute and
another to recover from the misroute), Dart’s deflection poli-
cies ensure that (1) this penalty is far lower than that of the
serialization so that deflection significantly improves latency
over previous schemes’ iterative convergence, and (2) the
relative overhead of extra link utilization is low (Section IV-B).
Further, our design is free from livelocks and deadlocks
(Section IV-B). We describe below Dart’s mechanisms and
policies for such deflection-based congestion avoidance.

A. In-Order Flow Deflection Mechanisms

Deflection routing is a well-known technique for load bal-
ancing [33]. In general, deflection routing can cause reordering
of packets. As such, deflection is relatively straightforward to
use when either the application does not require ordered packet
delivery or there is a reassembly layer that reorders received
packets to be delivered in the correct order (e.g., TCP).
Indeed, in addition to being well-explored in other contexts,
such packet-by-packet deflection has also been proposed for
congestion avoidance in data centers (DIBS [28]).

In contrast, for RDMA networks, there is no software stack
to reassemble out-of-order packets of a message/flow. Con-
sequently, the limited hardware support for packet reordering
are cases where re-ordering does not change the semantics.
For example, current support in ConnectX5 [39] is limited
to read/write RDMA verbs. A bulk remote-write can be
broken into many pieces and the order among the pieces
is not important as long as they all complete. However,
such reordering can change the semantics in send/recv based
RDMA verbs. For example, a flow abstraction, if broken
up into pieces, needs (1) sequence numbers associated with
each piece, and (2) reassembly at the receiver to put the
pieces back together in sequence order. Note that send/recv
verbs are widely used and acknowledged as higher performing
than read/write for server applications [5]. Recent work by
Mittal et al [40] extends modest support even for reordering of
flows with such sequence numbers; but with a fixed hardware
window for reassembly. Such limited window size requires the
source to throttle packets to ensure that the sliding window
does not overflow, which reduces throughput. On the other
hand, packet-by-packet deflection would require the ability
to handle unbounded reordering (and not just the limited
reordering support in [40]), which can impose significant CPU
overheads [26].

To avoid such overheads, the network must guarantee
in-order delivery semantics. For such networks, Dart uses
novel in-order flow deflection (IOFD) instead of the above
packet-level deflection. The key challenge in IOFD is to ensure
that later packets of the flow traverse the same network path
as the header packet of the flow. Further, the semantics do not
allow for any false-positives (i.e., the switch misidentifies a
non-deflected flow as a deflected flow) or false negatives (i.e.,
the switch ‘forgets’ a misrouted flow to be one). Such strong
semantics may seem challenging especially when considering
router failures. We describe the fault-free case below and
address faults in Section IV-C.

A naive solution would be to maintain routing history in
the switch for every flow which may be many at a given time,
and look up the history for every packet. Fortunately, because
only short flows are latency-critical, IOFD applies only to short
flows only a few of which overlap at a switch at any given time
(say 4 to 8). Long flows that collide at the receiver are handled
by DASR. Some spatially-dispersed in-network congestion due
to long flows is inevitable despite best-in-class hashing and
other schemes [21], [25], [26]. In our design, such collisions
trigger the DCQCN fall-back. Crucially, the latency-critical
short flows are deflected away from such collisions. Recall
that flow sizes are known in RDMA (Section III).

IOFD maintains the set of misrouted flows in a small
content-addressable memory (CAM) called the deflected flow
table (DFT) at each router. Entries in the DFT are allocated
when the start packet of an RDMA message is chosen
for deflection and a free entry is available in the DFT.
Each entry includes the flow id or RDMA message id
(the searchable field) and a randomly-selected output port for
that flow (the data field of the table entry). Entries in the DFT
are de-allocated when the end packet of an RDMA message
passes through the switch. To ensure that the history of
misrouted flows is not lost, no DFT entry may be overwritten

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

328 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 7. Packet routing with DFT lookup (in hardware).

except by natural deallocation. To avoid livelocks, IOFD
allows a packet only a limited number of misroutes which are
encoded as deflection token bits in each packet header. The
switch removes a token from each misrouted packet. If either
DFT entries are unavailable or the flow has exhausted its
tokens, the flow may not be deflected at the switch. Every
packet consults the DFT to determine its path, as shown in
Figure 7. If the packet’s flow-identifier matches one of the
entries, the packet is deflected to the port indicated by the entry
(e.g., a packet matching DFT entry id = 0xBC is deflected to
port 12 in Figure 7). To ensure that messages do not end up
at unintended end-nodes, leaf-level switches (ToR switches)
deflect messages back to the network and not to end-nodes.
Note that, because the DFT is small (e.g., 8-entry CAM), the
delay and power overheads are negligible.

B. IOFD Policies

There are three policy decisions that IOFD makes to strike
a balance between over-aggressive deflection and inadequate
deflection. First, to determine if deflection is competitive
(i.e., the expected queuing delay at the switch is high
enough that a few additional network hops may be better),
IOFD compares the current queue position to an empirically-
determined deflection threshold. Deflection is allowed only if
the queue position is above the threshold. Second, to avoid
unnecessarily-long deflection chains and livelock caused by
loops, IOFD deflects only the packets with spare deflec-
tion tokens (Section IV-A). Once the deflection tokens
are exhausted, a packet incurs the full latency penalty of
waiting in the network queues. Finally, the possibility of
deadlocks must be carefully handled. Specifically, modern
DC networks (Clos variants [41]) typically use Valley-free
routing [42] or up*/down* routing [43] to guarantee deadlock-
freedom. Although IOFD can violate the rules of valley-free-
routing, such violations are possible independent of IOFD.
Hu et al [44] show the violations of valley-free routing in real
data-center measurements for a RoCE network. As such, IOFD
can leverage the same (or similar) mechanisms that are used to
handle failures to handle flow deflections. We employ one such
well-understood deadlock avoidance [32] technique by lever-
aging virtual channels (‘virtual lanes’ (VL) in InfiniBand [8]).
Deadlock avoidance employs two class of VLs: (1) escape VLs
that are guaranteed to avoid cyclic buffer dependencies and
(2) non-escape VLs that may incur cyclic buffer dependencies.
Packets/flows may move from non-escape VLs to escape VLs
(which ensures that flows in non-escape VLs can always make
forward progress) but not vice versa. In our context, if traffic
on one virtual lane (VL) – the escape VL – is not deflected,

and flows that traverse the escape VLs never flow back to non-
escape VLs, deadlock-freedom is guaranteed. Unlike deadlock
prevention which places routing restrictions that avoid certain
turns (e.g., [42], [45]), deadlock avoidance works without
preventing any turns [32], [43]; rather it takes the approach
that any turn may be allowed by at least some VLs. Recent
work [46] discusses deadlocks, other than routing dead-
locks, created by extraneous reasons such as SDN updates,
BGP re-routes, and misconfigurations. Such deadlocks can
occur despite deadlock-free routing and must be solved sepa-
rately (e.g., via sound SDN updates).

IOFD does not misroute long flows. Misrouting is a latency
optimization for short flows only. Unlike short flows, long
flows are sensitive to throughput not latency. Also, long
flows are a dominant fraction of network load, and, therefore,
deflecting long flows to longer paths would overload the
network. We achieve this restriction by setting the number
of deflection tokens to zero for long-flow packets. Deflecting
only short flows only a few times ensures that the increase
in link utilization and path dilation due to IOFD are modest,
as shown in Section VI-B.

Finally, if IOFD succeeds in dissipating localized conges-
tion then DCQCN does not kick in (i.e., no ECN marks).
Otherwise (e.g., deflection tokens exhausted), the flows incur
ECN marks which trigger the DCQCN fall-back. To ensure
that IOFD is activated before ECN marks are triggered,
IOFD’s deflection threshold is lower than the ECN threshold.
Our results in Section VI-B show that Dart (DASR and IOFD)
cuts the number of ECN marks, which trigger DCQCN fall-
backs, by 4x (i.e., the fall-back is infrequent; otherwise, Dart
would not perform better than DCQCN).

C. Failures Under IOFD

Because each deflected flow’s meta-state is distributed
across multiple routers’ DFTs, router failures must be correctly
handled. To understand how IOFD handles router failures,
let us consider how conventional RDMA handles failures.
The back pressure of InfiniBand/RDMA networks ensures that
packets queue up at upstream routers (and do not get dropped).
The neighboring routers detect a failed router and propagate
that information back to senders and effectively cause the
in-flight packets to be dropped. For reliable (i.e., RC) com-
munication, the senders must re-transmit the messages whose
completion events have not been received). This approach
carries over to IOFD without changes irrespective of whether
flows have been deflected. As in the baseline case, flows
blocked by failures are not allowed to locally reroute around
the failed routers (which could cause ordering violations).
Instead, all such blocked flows are effectively dropped and
must be re-transmitted by the senders.

V. SMALL-SCALE MEASUREMENTS

Dart has two key components: DASR which does not
need any hardware switch changes and IOFD which does.
Accordingly, we implement DASR in our small testbed as
we lack access to datacenter-scale networks (this section).
Because hardware changes are hard to implement for a paper,
we simulate IOFD, and the full Dart, at datacenter scales using
ns-3 (Section VI-A).

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 329

Fig. 8. DASR convergence time measurement.

Our testbed consists of 20 nodes, each consisting of four
eight-core AMD Opteron 6320 CPUs running at 2.8 GHz and
256 GB of memory, which connect to a 36-port Mellanox
SX6025 InfiniBand switch using Mellanox ConnectX-3 Pro
HCA. The switch provides bidirectional bandwidth of 56 Gbps
per port. All the nodes run RHEL6.7 (kernel version 2.6.32)
and Mellanox OFED 3.3-1.0.4.

We conduct one experiment to evaluate DASR’s con-
vergence (Section V-A) and another to evaluate DASR’s
performance in the presence of incast (Section V-B). Imple-
menting DASR in our testbed via firmware changes on propri-
etary NICs is infeasible without vendor support. Fortunately,
because we do not have multiple applications in our test-
bed, we implement AUSS in the application layer, in which
senders and receivers exchange n values using application-
level acknowledgements. Further, we evaluate accelerated
DASR only using simulations, and not in our testbed.

A. DASR’s Convergence

We answer two key questions: (1) whether DASR converges
to fair share bandwidth, and (2) whether it converges fast.
We use two senders (Figure 8) – a long-flow sender (LFS)
and a short-flow sender (SFS) – and a receiver (R). While
LFS continuously sends to R, SFS starts a new transmission,
taking tf to reach R, which then takes tcpu to recalculate
the new n value. Finally, the updated n value is received
at both SFS and LFS, which then adjust their sending rates,
all of which takes tb. The convergence time is the sum of
tf , tcpu, and tb. However, because the key events occur at
different servers with independent clocks, the time components
cannot be determined accurately from the events. Therefore,
we map the multi-server events into meaningful single-server
measurements at R. First, instead of measuring tf , we measure
t′f for a specially-marked message from LFS to R indicating
that LFS has seen the new n value. tf and t′f are equal because
SFS and LFS are equidistant from R and those paths are not
congested (if anything, LFS to R may be loaded more than R to
SFS so that t′f > tf making our measurements conservative).
Second, upon receiving SFS’s first message at R, we measure
tcpu, tb, and t′f , which also add up to the convergence time.

LFS constantly sends 64-KB messages to R. Later, SFS
sends periodic bursts, during which both SFS and LFS drop
to 50% of the line rate. Each burst consists of 32K messages
of 64 KB each. We define the time to send such a burst as an
epoch. We measure throughput for groups of 1K messages
because per-message bandwidth measurement is extremely
noisy. SFS, LFS and R run on separate nodes.

Figure 9(a) plots LFS’s throughput (Y-axis) over time in
epochs on the X-axis. The vertical grid lines correspond to
SFS’s bursts. In the absence of contention, LFS achieves
43 Gbps which is the peak throughput achieved in our testbed

Fig. 9. Testbed measurements of DASR convergence.

for our message/batch size. However, when SFS sends its
periodic traffic, LFS near-instantaneously throttles itself to
approximately half the sending rate (22.5 Gbps). As soon as
SFS stops, LFS goes back to the maximum rate. We measured
1K bursts from SFS (which are seen as troughs in LFS’s
throughput) but show only five to avoid clutter.

Figure 9(a) is not a good indicator of the absolute conver-
gence time because the throughput is averaged over groups
of 1K messages. As such, we directly measure DASR’s
absolute convergence times in each of the 1024 epochs.
Figure 9(b) shows the distribution (solid line) of our 1K
measurements of the convergence times (in μs on X-axis).
The 90th, 99th, and 99.9th percentile convergence times
are 28 μs, 41 μs, and 44 μs, respectively. The unloaded
RTT is 15 μs. In contrast to DASR’s one-RTT convergence,
TIMELY’s convergence takes 50 1-ms RTTs. Figures 18 and 2
in TIMELY [13] show 50-ms convergence and the worst-
case RTT to be 1 ms, respectively. Similarly, RCP [29] and
ExpressPass [31] require several RTTs to converge; we study
their convergence in Section VI-D.

The above convergence time is for our DASR implemen-
tation which maintains the AFS in software (Section III-B).
We also show a dashed line in Figure 9(b) which depicts
the convergence time for a NIC hardware implementation
of DASR. Here, RDMA’s built-in completion queues notify
a sender that communication is complete which is faster than
in software. Then, our convergence time would approach the
hardware-RTT (12 μs).

B. DASR’s Incast Performance

We compare the completion times of short, incast flows
and throughput of long, background flows of InfiniBand
and DASR. We initiate short 256-KB incasts from a group
of servers every 100 ms to an aggregator server. Meanwhile,
we send continuous background traffic from another server to
the aggregator. We introduce random jitter of 0-100 μs among
the incast senders in each round. While InfiniBand uses its
congestion control [8], we implement DASR’s rate control by
staggering the messages in time at the application layer. Here,
we do not compare to DCQCN or TIMELY which require NIC
firmware changes and special timer hardware, respectively; we
simulate them in Section VI-A.

Figure 10 shows the median and tail (99th percentile)
flow completion times of DASR and InfiniBand (Y-axis), for
varying incast degrees (X-axis). As expected, higher incast
degrees lead to longer flow completion times and even longer
tails. DASR reduces the medians and tails by 2.5 - 3.3x.
DASR’s reductions in the tails are close to those in the medians
because the tails are only about 1.2x longer than the medians

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

330 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Fig. 10. Testbed flow completion latency.

in InfiniBand due to our testbed’s (small) scale. As the tails
grow at datacenter scales (e.g., 5-10x of the median), DASR
achieves greater tail reductions (e.g., 5x in Section VI-B).
Figure 10(b) shows the flow completion time distributions of
InfiniBand and DASR for the incast degree of 16. As compared
to InfiniBand, DASR reduces the spread and shifts the curve to
the left. Both DASR and InfiniBand achieve similar throughput
(within 0.5%) for long flows (not shown).

VI. AT-SCALE SIMULATIONS

We evaluate Dart , DCTCP (includes OS overheads),
DCQCN, and TIMELY using typical datacenter traffic
patterns [14].

A. Simulation Methodology

Simulated Network: We simulate a datacenter with
1024 hosts that are connected in an over-subscribed Clos
topology [41]. As per common practice, we use (1) an over-
subscription factor of 4 [10], (2) 10 Gbps point-to-point links
with a propagation delay of 5 μs so that the longest path is
6 hops or 30 μs, and (3) shallow, 225 KB switch buffers
and accordingly the ECN threshold of 22.5 KB (i.e., 10%
of the buffer size) [47], [48]. To utilize all the fat tree
paths, we enable Equal Cost Multi-Path (ECMP) routing. Dart
adaptively deflects packets, in addition to ECMP.

Workload: We model our workloads based on real data-
center production traffic characteristics [14] and similar to
TIMELY’s [13]. Section 4 in [14] lists MapReduce and
Web applications as the applications that create the traffic.
Specifically, we follow both the flow size distribution as
well as the background/foreground traffic mix from [14].
To model background traffic (e.g., Web Index update), each
server initiates a long flow of size 1 GB with a randomly-
chosen receiver. Our foreground traffic that models interactive
applications uses short flows of size uniformly chosen among
{2 KB, 4 KB, and 8 KB} with a default incast-degree of 16
(varied later). Further, groups of randomly-chosen servers send
to randomly-chosen receivers causing multiple incasts which
are typical (e.g., in Web Search). Further, we vary both the
overall network load and the split between background (long)
and foreground (short, incast) flows.

DCTCP: Our DCTCP implementation is built over TCP
New-Reno. We set the initial congestion window to be 10 seg-
ments and the re-transmit timeout to 10ms (typical). We model
an OS overhead of 300μs for each data transfer and calibrate
our DCTCP latencies to match those reported by DCQCN.

TIMELY: We implemented TIMELY on ns-3 where the RTT
measurements are precise (i.e., we avoid the measurement
issues discussed in the TIMELY paper). While TIMELY

uses 64-KB segments to amortize the cost of NIC offload
which is not modeled in ns-3, we use smaller 1460-byte
segments which provides finer rate control and only improves
TIMELY’s performance in our runs. To reduce implementation
complexity, we use a window-based implementation which
sets the window size based on TIMELY’s desired sending
rate. We set TIMELY’s parameters as per the TIMELY paper:
Tlow = 50 μs, Thigh = 500 μs, α = 1 Mbps, and β = 0.8.
We also modeled Hyperactive Increment (HAI) for flows to
quickly ramp-up their rates.

DCQCN: DCQCN utilizes ECN to infer congestion, sim-
ilar to DCTCP but with different thresholds. On receiving
ECN, our simulated receivers run the Notification Point
(NP) algorithm and generate Congestion Notification Pack-
ets (CNP) back to the sender if needed using high-priority
queues. The receivers generate at most one CNP packet every
50μs, as specified by DCQCN. On receiving a CNP packet,
the senders calculate their target rate based on DCQCN’s
Reaction Point (RP) algorithm. Following DCQCN’s rec-
ommendations, we set the exponential averaging factor, g,
to 1/256, the byte counter and Timer to be 10MB and 55μs,
respectively. Flows start at the line rate (i.e., there is no slow
start). Finally, similar to TIMELY’s HAI, there is a hyper-
increase phase to quickly ramp-up the sending rates.

Dart : Dart leverages DASR and starts flows at the full
line rate (Section III). We use an 8-entry deflected flow table
(DFT); because we enable IOFD only for short flows (i.e., 2 –
8 KB flows), only a few misrouted flows co-exist at a switch
(Section IV-A). To ensure that the light-weight IOFD occurs
before the ECN-based heavy-weight response (Section IV-B),
we set the deflection threshold to be 15 KB (ECN threshold is
22.5 KB). Because we experimentally found that our IOFD’s
benefits diminish after four misroutes, we set the deflection
token count to be 4 (Section IV-A).

To avoid congestion in the reverse (i.e., ACK) path for
ECN marks in DCTCP and DCQCN, RTT measurements in
TIMELY, and n values in Dart, we use high-priority queues
only for ACKs, as suggested by TIMELY.

B. Latency and Throughput

Figure 11 plots the 99th percentile flow completion latency
(Y-axis) for all the schemes (individual curves) under various
load mixes using 8-KB short flows (the three sub graphs)
and load levels (X-axis). We show the 8-KB flows out of the
mix of 2-, 4-. and 8-KB flows as described in Section VI-A;
we cover the others in Section VI-C. Note that the scales of
both axes are different for the subgraphs because the network
saturates differently across load levels. Figure 12 is similar to
Figure 11 but it shows the median latency on the Y-axis.

Latency: For the typical load-mix (40% short flows, 60%
long flows), as shown in Figure 11(a), Dart consistently
achieves the lowest tail latency at the pre-saturation loads
of 20% and 40% with a mean reduction in tail latency of
82% (5.6x); the range varies from 79% – 89% reduction over
all the other schemes. Dart’s (mean) reduction in tail latency
is 79% (4.8x) when compared with DCQCN and TIMELY
(i.e., ignoring DCTCP). Dart’s DASR avoids iterative con-
vergence for receiver congestion to arrive accurately and
quickly – in one RTT – at the appropriate sending rate.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 331

Fig. 11. 99th percentile flow completion latency.

Fig. 12. Median flow completion latency.

Fig. 13. Throughput.

We found that 72% of ECN marks in DCTCP occur at the
ToR-receiver links confirming the key result that receiver con-
gestion is the common case [14]–[20]. Further, Dart’s IOFD
provides quick response to avoid spatially-localized in-network
congestion. Thus, Dart’s divide-and-specialize approach using
these two techniques achieves lower latency than TIMELY
and DCQCN. Further, Dart delays the point of saturation past
60% load where DCQCN, TIMELY, and DCTCP saturate.
DCQCN and TIMELY are similar because both rely on
iterative convergence of the sending rates differing only in
the congestion signals (ECN marks versus RTT measurements
as mentioned in Section II-B); their median latencies and
throughputs differ more (analyzed later). As expected, both
are better than DCTCP, which incurs high operating system
(OS) overhead avoided by the other schemes.

Figure 11 (b) and (c) illustrate the behavior when the load
mix is made lighter or heavier, respectively, in terms of short
flows (incasts). For the light load mix (Figure 11(b)), DCQCN,
TIMELY, and Dart perform comparably because there is not
much room for improvement. Due to its high OS overhead,
DCTCP’s latency penalty remains qualitatively similar to that
for the typical load mix. For the heavy load mix (Figure 11(c)),
Dart achieves 77% to 83% lower tail latency than the previous
schemes. Further, while the previous schemes saturate above
20% load, Dart’s latency increase is more modest as Dart
extends the point of saturation.

One trend across the load mixes is that the network
saturates earlier at higher short-flow fractions. This trend is
not surprising as short flows do not offer sufficient time to take
reactive action. (On the other hand, proactive methods such
as slow-start would introduce unnecessary latency for short
flows.)

Dart achieves significantly lower median latency at all load
levels and load mixes as well (Figure 12). On average, Dart
achieves 30% (1.4x) lower latency than DCQCN and TIMELY
and 66% (3x) lower latency than DCTCP for the typical load
mix. For the light mix and the heavy mix (Figure 12(b) and
Figure 12(c), respectively), the latency reductions are 36%
and 29%, respectively. Dart’s improvements in median and
tail latencies are higher here than in our testbed experiments
(Section V-B) primarily because the larger scale provides more
opportunity. DCQCN and TIMELY differ modestly in the
median latencies in some cases. Median latency reduction
indicates throughput improvements, as we see next.

Throughput: Figure 13 shows the throughput achieved for
the same set of load levels and load-mix ratios. Figure 13(a)
shows that Dart consistently outperforms the DCQCN and
TIMELY. The mean improvement in throughput is 48% and
68%, (mean across all load levels) over DCQCN and TIMELY,
respectively. DASR’s accurate and one-RTT convergence is
the key reason for Dart’s higher throughput. IOFD directly
improves only the latency and affects the throughput only
indirectly by avoiding DCQCN fall-back which would cut
the sending rates. As with latency, DCQCN and TIMELY
outperform DCTCP in throughput due to DCTCP’s OS over-
heads. With the heavy mix (Figure 13(c)), Dart is 173% better
(on average) than DCQCN and TIMELY. This improvement is
not surprising as both DCQCN and TIMELY saturate at such
heavy loads. Though the relative ordering with the light mix
(Figure 13(b)) remains the same as that with the typical mix,
the absolute throughputs are higher, as expected. We see the
correspondence between Dart’s median latency and throughput
at high loads. Like the median latencies of DCQCN and
TIMELY, their throughputs also differ slightly.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

332 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

TABLE I

SHORT-FLOW PACKETS WITH ECN MARKS

TABLE II

IOFD’S LOAD INCREASE AND PATH DILATION (%)

Fall-Back to DCQCN: To evaluate DCQCN fall-backs in
Dart, Table I shows the percent of short-flow packets with
ECN marks under DCQCN and Dart. Because long flows are
not latency-critical, we focus on short flows. As expected,
both schemes incur more ECN marks as the load increases.
However, Dart cuts the number of ECN marks by more than
4x at higher loads in typical and heavy mixes (i.e., significant
fraction of short flows) where there is more congestion. These
results (1) show that by filtering out receiver congestion and
localized in-network congestion, Dart drastically reduces the
number of DCQCN fall-backs and (2) reconfirm that these
congestion components are significant.

Load Increase and Path Dilation Due to IOFD: Table II
shows the percent increase in (a) network load and (b) short-
flow path length under IOFD relative to DCQCN. Both the
load and path dilation increase with more short flows ((i.e.,
light < typical < heavy) and at higher loads. For typical
and heavy mixes, Dart increases the network load by 7%
(geometric mean over the load settings) and dilates short-flow
paths by 16% which is roughly one hop (our topology has
5.8 hops on average). Thus, Dart incurs a modest amount of
network load to reduce congestion delays significantly.

C. Isolating Dart’s Techniques

We quantify the relative contributions of Dart’s two tech-
niques: DASR and IOFD. Figure 14 plots Dart’s 99th per-
centile flow completion latency for the 8-KB short flows
normalized to that of DCQCN (Y-axis) for the typical load
mix (i.e., 40% short flows and 60% long flows) at various
load levels (groups of bars along the X-axis). In addition
to Dart, we quantify the benefits of DCQCN with priority
queues using two priority levels to prioritize short flows over
long flows (Pri-Q), IOFD without DASR (IOFD-only), DASR
without IOFD or the look-ahead optimization in Section III-D
(DASR w/o LA), and DASR with look-ahead but without IOFD
(DASR-only).

As we see from Figure 14, Pri-Q does not improve latency at
low loads where the long flows do not cause much congestion
and hence provide limited opportunity. At higher loads,
Pri-Q improves latency as expected. However, the
improvement is limited because Pri-Q does not alleviate
congestion among short flows, and, therefore, performs worse
than IOFD-only and DASR-only, our key techniques. IOFD
and DASR specifically address congestion among short
flows — IOFD addresses localized congestion, whereas

Fig. 14. Isolating Dart’s techniques.

DASR addresses receiver congestion. Three key trends
regarding the relative benefits of DASR and IOFD are
apparent in Figure 14. First, at the intermediate load of 40%
(middle bars), each of DASR (including the look-ahead) and
IOFD contribute to Dart’s improvements. DASR contributes
more because receiver congestion is the common case
(Section VI-B). Further, the difference between DCQCN and
IOFD-only shows that IOFD can handle localized congestion
without triggering DCQCN fall-back (Section IV-B). Second,
at lower loads (left bars), most of the gains come from
DASR which effectively protects the short flows from the
long flows (79% of the 84% total latency reduction). This
result is not surprising because in-network congestion is less
likely at lower loads. The sizable difference between DASR
w/o LA and DASR-only shows the look-ahead’s impact. In the
absence of localized congestion, the opportunity for IOFD
is lower; as such IOFD-only contributes only 31% latency
reduction in isolation, and approximately 21% incremental
latency reduction over DASR-only. Finally, in contrast to the
low-load results, IOFD contributes relatively more to the
overall latency reduction at higher loads, where in-network
congestion is more likely (79% of the 93% total latency
reduction at 60% load). IOFD handles even this higher
congestion without falling back to DCQCN. DASR-only’s
relative contribution is smaller than IOFD’s (77% latency
reduction in isolation, and 35% incremental latency over
IOFD-only). The median latencies follow the same trends.
The effectiveness of DASR-only and IOFD-only illustrate the
power of Dart’s divide-and-specialize approach.

Sensitivity: We varied the deflection threshold
(Section IV-B) as 5, 15 (default) and 20 KB. IOFD
works well in the range of 5-15 KB, whereas the 20-KB
threshold being close to the ECN threshold (22.5 KB) results
in IOFD being disabled. We also varied the short-flow sizes
as 2, 4 and 8 (default) KB. Dart’s improvement across these
flow sizes match those in Figure 11. Finally, we varied the
incast degree as 6, 16 (default), and 26. At higher incast
degree, Dart’s latency improvement over DCQCN increases.
However, at 60% load and incast degree of 26, the network
saturates leaving no room for Dart. These results are not
shown due to lack of space.

D. Comparison to RCP and ExpressPass

a) Comparison to RCP: We study RCP’s convergence
using an ns-3 implementation [49]. We simulate a simple
topology with three servers that connect to a single switch.
The topology uses 10 Gbps links with a delay of 5 μs,
matching today’s datacenters. We set RCP’s main parameters,
α = 0.4 and β = 0.4, as recommended [29], [50].

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 333

Fig. 15. Convergence time for RCP and Dart.

We compare how fast RCP and Dart converge to the fair-
share rate of 5 Gbps for the simple case of receiver congestion
with two flows. In our experiment, the second flow starts after
the first flow. Figure 15 shows time, in RTT time units, along
the X axis and the throughputs achieved by the two flows for
RCP (in Figure 15(a)) and Dart (in Figure 15(b)), along the
Y axis. Because RCP does not explicitly count flows,
it requires about 60 RTTs to converge (i.e., the second flow
joins at about 15 RTTs but the rate does not converge to
5 Gbps until 75 RTTs). In contrast, Dart converges in 1 RTT
by explicitly tracking the number of senders at the receiver.

b) Comparison to ExpressPass: We obtained the
ExpressPass [31] simulator from the authors. We found that
while ExpressPass converges in 4 RTTs for two senders
and two receivers in a simple dumbbell topology (matches
ExpressPass paper’s results), it takes 20 RTTs for 10 senders
and one receiver in the fat tree topology used in the paper
(the paper does not show this case). In the former case,
convergence is effected by fair queuing of credit packets at
the switch where the two flows collide, whereas the latter
case converges using ExpressPass’s BIC-TCP-like algorithm,
which is iterative and slow.

VII. RELATED WORK

Because we have discussed DCQCN, TIMELY, NUM-
Fabric, ExpressPass, and NDP at length in earlier sections,
we focus on other work related to our key techniques – DASR
(congestion control) and IOFD (load balancing).

DCTCP [9], a pioneering work in datacenter transport
protocols, finely modulates the sending rate by observing
ECN marks in each RTT and nearly eliminates incast-induced
timeouts. D2TCP [51] builds upon DCTCP to prioritize flows
based on deadlines. TCP Bolt [48] uses flow-level congestion
control via ECN to address PFC’s limitations. ICTCP [52] iter-
atively adjusts the TCP receive window before incast-induced
packet drops. Like DCQCN and TIMELY, all these TCP vari-
ants incur several RTTs (i.e., tens or hundreds) to converge to
the appropriate sending rate. In RCP [29], another pioneering
work, routers explicitly convey the fair share rate to the senders
that share a link. However, because RCP routers don’t have
per-flow state and many short flows begin and end in each
RTT, RCP’s convergence is iterative and takes many RTTs.
D3 [53] and PDQ [54] employs explicit rate control to priori-
tize critical flows. For the same reasons as RCP, D3 and PDQ’s
convergence requires several RTTs. pFabric [47], Karuna [55],
UPS [56] and pHost [57] address flow scheduling but their rate
control is still iterative. EyeQ [15] leverages RCP to provide
weighted fair share in multi-tenant datacenters but inherits
RCP’s iterative convergence. QCN [58] provides end-to-end
congestion control for RDMA in Layer2 but not in IP-switched
datacenter-scale networks. IRN [40] adapts ideas from

I-WARP to avoid the problems associated with PFC. Unlike
DASR, none of the above work isolates receiver congestion to
achieve fast, one-RTT convergence. DIATCP [59] is a receiver-
based rate control protocol where each sender informs the
receiver of the message size and deadline so that the receiver
calculates the per-sender sending rate accordingly. Though
DIATCP can achieve one-RTT convergence, its calculation
requires an a priori globally-common RTT which is achieved
by artificially delaying acks. In a DC setting, such delay
would force all flows to have the same RTT as the tail,
which is often 2-5x longer than the median [9]. In contrast,
Dart sends only the sender count to the senders each of
which then flexibly and locally arrives at a sending rate based
on the currently-observed, individual RTT. Apart from this
fundamental difference, while both Dart and DIATCP use
timeouts (Section III-B) they do so for different purposes.
Because RDMA has explicit message start/end markers, Dart
does not need to use timeouts for message ends. Instead,
Dart uses timeouts for infrequent, catastrophic events like
crashes. In contrast, DIATCP uses timeouts to detect idling
because TCP does not have message start/end markers. Thus,
Dart’s mechanisms are optimized for RDMA unlike DIATCP.
Because flow idling is more frequent than crashes, DIATCP’s
timeouts can affect performance – a timeout being too short
means delayed flow completions and being too long means
wasted throughput. Further, each sender in DIATCP provides
its deadline and message size to the receiver at the time of
establishing the connection. This exchange occurs before each
flow starts, but not necessarily before the start of all the other
flows in an incast group. As such, DIATCP cannot know the
correct rate before all the flows start. In contrast, DASR’s
lookahead (Section III-D) is based on the application where
all the flows in an incast group know before any of them start
that they are a part of an incast group. Thus, DIATCP does
not achieve DASR’s lookahead.

Among load balancing schemes, MPTCP [21], [60] splits
a TCP flow into many sub-flows that may be routed inde-
pendently along different paths. FlowBender [25] proposes
re-hashing at end-hosts to change flow paths. Presto [26]
splits large flows into equal-sized flowcells and uses a central
scheduler to balance the load. DeTail [24], Random Packet
Spraying [23], and DIBS [28] balance load at the finer
granularity of packets. Recent schemes [61], [62] improve load
balancing but they also require reordering at the receiver. In
contrast to these above schemes all of which reorder packets
which is not supported by RDMA, IOFD is designed to deflect
without packet reordering. SPAIN [22] and CONGA [27]
also avoid packet reordering. However, SPAIN pre-computes
multiple paths which are mapped to different VLANs but such
precomputation may be slow in reaction to short flows in
a datacenter. CONGA uses global congestion information to
load balance at the granularity of flowlets. However, CONGA
works only with two-tier leaf-spine topology and does not
scale to large datacenters.

VIII. CONCLUSION

RDMA can significantly reduce datacenter network laten-
cies compared to TCP but provides suboptimal end-to-end
congestion control for the well-known problem of incasts.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

334 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 28, NO. 1, FEBRUARY 2020

Previous schemes target the full generality of the conges-
tion problem and rely on slow, iterative convergence to the
appropriate sending rates. Several papers have shown that
even in oversubscribed datacenter networks most congestion
occurs at the receiver. Accordingly, we proposed a divide-and-
specialize approach, called Dart, which isolates the common
case of receiver congestion and further sub-divides the remain-
ing in-network congestion into the simpler spatially-localized
and the harder spatially-dispersed cases. To address receiver
congestion, we proposed direct apportioning of sending rates
(DASR) in which a receiver for n senders directs each sender
to cut its rate by a factor of n. DASR converges in only
one RTT. For the spatially-localized case, Dart adds novel
switch hardware for in-order flow deflection (IOFD) because
RDMA disallows packet reordering on which previous load
balancing schemes rely. IOFD provides fast (under one RTT),
light-weight response. For the uncommon spatially-dispersed
case, Dart falls back to DCQCN. Our small-scale testbed
measurements showed that Dart converges in one RTT and
achieves 60% (2.5x) lower tail (99th-percentile) latency than
and similar throughput as InfiniBand. Our at-scale simulations
showed that Dart achieves 79% (4.8x) lower tail latency,
and 58% higher throughput than TIMELY and DCQCN.
As datacenter networks evolve towards adopting RDMA to
avoid TCP’s overhead, Dart’s superior latency and throughput
characteristics are likely to be attractive.

REFERENCES

[1] J. Liu, J. Wu, and D. K. Panda, “High performance RDMA-based
MPI implementation over infiniband,” Int. J. Parallel Program., vol. 32,
no. 3, pp. 167–198, Jun. 2004, doi: 10.1023/B:IJPP.0000029272.
69895.c1.

[2] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in Proc. 11th USENIX
Conf. Netw. Syst. Design Implement. (NSDI). Berkeley, CA, USA:
USENIX Association, 2014, pp. 429–444. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2616448.2616488

[3] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA reads
to build a fast, CPU-efficient key-value store,” in Proc. USENIX
Conf. Annu. Tech. Conf. (USENIX ATC). Berkeley, CA, USA:
USENIX Association, 2013, pp. 103–114. [Online]. Available: http://dl.
acm.org/citation.cfm?id=2535461.2535475

[4] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast
remote memory,” in Proc. 11th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI). Berkeley, CA, USA: USENIX Association, Apr. 2014.
[Online]. Available: http://research.microsoft.com/apps/pubs/default.
aspx?id=208395

[5] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in Proc. ACM Conf. (SIGCOMM). New York,
NY, USA: ACM, 2014, pp. 295–306, doi: 10.1145/2619239.2626299.

[6] J. Jose et al., “Scalable memcached design for infiniband clusters using
hybrid transports,” in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud
Grid Comput. (Ccgrid). Washington, DC, USA: IEEE Computer Society,
2012, pp. 236–243, doi: 10.1109/CCGrid.2012.141.

[7] E. G. Gran et al., “First experiences with congestion control in infiniband
hardware,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. (IPDPS),
Apr. 2010, pp. 1–12.

[8] D. Crupnicoff, S. Das, and E. Zahavi, “White paper: Deploying qual-
ity of service and congestion control in infiniband-based data center
networks,” Mellanox Technol., Sunnyvale, CA, USA, Tech. Rep. 2379,
Nov. 2005.

[9] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf. New York, NY, USA: ACM, 2010, pp. 63–74,
doi: 10.1145/1851182.1851192.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in Proc. ACM SIGCOMM Conf. Data
Commun. New York, NY, USA: ACM, 2008, pp. 63–74, doi: 10.1145/
1402958.1402967.

[11] C. E. Leiserson, “Fat-trees: Universal networks for hardware-
efficient supercomputing,” IEEE Trans. Comput., vol. C-34, no. 10,
pp. 892–901, Oct. 1985. [Online]. Available: http://dl.acm.org/citation.
cfm?id=4492.4495

[12] Y. Zhu et al., “Congestion control for large-scale RDMA deployments,”
in Proc. ACM Conf. Special Interest Group Data Commun. (SIGCOMM).
New York, NY, USA: ACM, 2015, pp. 523–536, doi: 10.1145/2785956.
2787484.

[13] R. Mittal et al., “Timely: RTT-based congestion control for the dat-
acenter,” in Proc. ACM Conf. Special Interest Group Data Commun.
(SIGCOMM). New York, NY, USA: ACM, 2015, pp. 537–550,
doi: 10.1145/2785956.2787510.

[14] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th ACM SIGCOMM Conf.
Internet Meas. (IMC). New York, NY, USA: ACM, 2010, pp. 267–280,
doi: 10.1145/1879141.1879175.

[15] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg, “EyeQ: Practical network performance isolation at the
edge,” in Proc. 10th USENIX Conf. Netw. Syst. Design Implement.
(NSDI), 2013, pp. 297–312.

[16] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution
measurement of data center microbursts,” in Proc. Internet Meas. Conf.
(IMC). New York, NY, USA: ACM, 2017, pp. 78–85.

[17] M. Handley et al., “Re-architecting datacenter networks and stacks for
low latency and high performance,” in Proc. Conf. ACM Special Interest
Group Data Commun. (SIGCOMM). New York, NY, USA: ACM, 2017,
pp. 29–42.

[18] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun. (SIGCOMM). New York, NY, USA:
ACM, 2015, pp. 123–137.

[19] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM Conf.
Special Interest Group Data Commun. (SIGCOMM). New York, NY,
USA: ACM, 2015, pp. 183–197.

[20] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
9th ACM SIGCOMM Conf. Internet Meas. (IMC). New York, NY, USA:
ACM, 2009, pp. 202–208.

[21] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM Conf. (SIGCOMM).
New York, NY, USA: ACM, 2011, pp. 266–277, doi: 10.1145/2018436.
2018467.

[22] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “Spain:
Cots data-center Ethernet for multipathing over arbitrary topologies,” in
Proc. 7th USENIX Conf. Netw. Syst. Design Implement. (NSDI), 2010.

[23] A. Dixit, P. Prakash, Y. Hu, and R. Kompella, “On the impact of packet
spraying in data center networks,” in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2130–2138.

[24] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail: Reducing
the flow completion time tail in datacenter networks,” in Proc. ACM
SIGCOMM Conf. Appl., Technol., Archit., Protocols Comput. Commun.
New York, NY, USA: ACM, 2012, pp. 139–150, doi: 10.1145/2342356.
2342390.

[25] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene, “Flowbender: Flow-
level adaptive routing for improved latency and throughput in datacenter
networks,” in Proc. 10th ACM Int. Conf. Emerg. Netw. Exp. Technol.,
2014, pp. 149–160.

[26] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,” in
Proc. ACM Conf. Special Interest Group Data Commun. (SIGCOMM),
2015, pp. 465–478.

[27] M. Alizadeh et al., “Conga: Distributed congestion-aware load balancing
for datacenters,” in Proc. ACM Conf. (SIGCOMM), 2014, pp. 503–514.

[28] K. Zarifis, R. Miao, M. Calder, E. Katz-Bassett, M. Yu, and J. Padhye,
“Dibs: Just-in-time congestion mitigation for data centers,” in Proc. 9th
Eur. Conf. Comput. Syst. (EuroSys). New York, NY, USA: ACM, 2014,
pp. 6:1–6:14, doi: 10.1145/2592798.2592806.

[29] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and N. McKeown,
“Processor sharing flows in the Internet,” in Proc. 13th Int. Conf.
Qual. Service (IWQoS). New York, NY, USA: Springer-Verlag, 2005,
pp. 271–285.

[30] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti, “Numfabric: Fast and flexible bandwidth allocation in data-
centers,” in Proc. Conf. ACM SIGCOMM Conf. (SIGCOMM), 2016,
pp. 188–201.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2619239.2626299
http://dx.doi.org/10.1109/CCGrid.2012.141
http://dx.doi.org/10.1145/1851182.1851192
http://dx.doi.org/10.1145/2785956.2787510
http://dx.doi.org/10.1145/1879141.1879175
http://dx.doi.org/10.1145/2592798.2592806
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1023/B:IJPP.0000029272.69895.c1
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1145/1402958.1402967
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2785956.2787484
http://dx.doi.org/10.1145/2018436.2018467
http://dx.doi.org/10.1145/2018436.2018467
http://dx.doi.org/10.1145/2342356.2342390
http://dx.doi.org/10.1145/2342356.2342390

XUE et al.: DART: DIVIDE AND SPECIALIZE FOR FAST RESPONSE TO CONGESTION IN RDMA-BASED DATACENTER NETWORKS 335

[31] I. Cho, K. Jang, and D. Han, “Credit-scheduled delay-bounded con-
gestion control for datacenters,” in Proc. Conf. ACM Special Interest
Group Data Commun. (SIGCOMM). New York, NY, USA: ACM, 2017,
pp. 239–252.

[32] J. Duato, “A new theory of deadlock-free adaptive routing in worm-
hole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 12,
pp. 1320–1331, Dec. 1993, doi: 10.1109/71.250114.

[33] P. Baran, “On distributed communications networks,” IEEE Trans.
Commun. Syst., vol. 12, no. 1, pp. 1–9, Mar. 1964.

[34] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013, doi: 10.1145/2408776.2408794.

[35] D. Dunning et al., “The virtual interface architecture,” IEEE Micro,
vol. 18, no. 2, pp. 66–76, Mar./Apr. 1998, doi: 10.1109/40.671404.

[36] (2017). Infiniband Trade Association. [Online]. Available: http://www.
infinibandta.org

[37] (2017). RDMA Over Converged Ethernet. [Online]. Available:
http://www.mellanox.com/page/products_dyn?product_family=79

[38] Agilio CX SmartNICS. Accessed: Dec. 28, 2019. [Online]. Available:
https://www.netronome.com/products/agilio-cx

[39] Mellanox Connectx-5 Product Brief. Accessed: Dec. 28, 2019. [Online].
Available: http://www.mellanox.com/related-docs/prod_adapter_cards/
PB_ConnectX-5_VPI_Card.pdf

[40] R. Mittal et al., “Revisiting network support for RDMA,” in Proc. Conf.
ACM Special Interest Group Data Commun. (SIGCOMM). New York,
NY, USA: ACM, 2018, pp. 313–326, doi: 10.1145/3230543.3230557.

[41] C. Clos, “A study of non-blocking switching networks,” Bell Labs Tech.
J., vol. 32, no. 2, pp. 406–424, 1953.

[42] L. Gao, “On inferring autonomous system relationships in the Internet,”
IEEE/ACM Trans. Netw., vol. 9, no. 6, pp. 733–745, Dec. 2001.

[43] F. Silla and J. Duato, “Improving the efficiency of adaptive routing in
networks with irregular topology,” in Proc. 4th Int. Conf. High-Perform.
Comput., Dec. 1997, pp. 330–335.

[44] S. Hu et al., “Tagger: Practical PFC deadlock prevention in data
center networks,” IEEE/ACM Trans. Netw., vol. 27, no. 2, pp. 889–902,
Apr. 2019.

[45] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multi-
processor interconnection networks,” IEEE Trans. Comput., vol. C-36,
no. 5, pp. 547–553, May 1987.

[46] S. Hu et al., “Deadlocks in datacenter networks: Why do they form,
and how to avoid them,” in Proc. 15th ACM Workshop Hot Topics Netw.
(HotNets). New York, NY, USA: ACM, 2016, pp. 92–98, doi: 10.1145/
3005745.3005760.

[47] M. Alizadeh et al., “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf. SIGCOMM. New York, NY, USA:
ACM, 2013, pp. 435–446, doi: 10.1145/2486001.2486031.

[48] B. Stephens, A. Cox, A. Singla, J. Carter, C. Dixon, and W. Felter,
“Practical DCB for improved data center networks,” in Proc. IEEE
INFOCOM, Apr. 2014, pp. 1824–1832.

[49] M. Flores, A. Wenzel, and A. Kuzmanovic, “Enabling router-assisted
congestion control on the Internet,” in Proc. IEEE 24th Int. Conf. Netw.
Protocols (ICNP), Nov. 2016, pp. 1–10.

[50] N. Dukkipati, “Rate control protocol (RCP): Congestion control to make
flows complete quickly,” Ph.D. dissertation, Dept. Elect. Eng., Stanford
Univ., Stanford, CA, USA, 2008.

[51] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware datacenter
tcp (d2tcp),” in Proc. ACM SIGCOMM Conf. Appl., Technol., Archit.,
Protocols Comput. Commun. (SIGCOMM), 2012.

[52] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast congestion con-
trol for TCP in data center networks,” in Proc. 6th Int. Conf. (Co-NEXT).
New York, NY, USA: ACM, 2010, pp. 13:1–13:12, doi: 10.1145/
1921168.1921186.

[53] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron, “Better never
than late: Meeting deadlines in datacenter networks,” in Proc. ACM
SIGCOMM Conf. (SIGCOMM). New York, NY, USA: ACM, 2011,
pp. 50–61, doi: 10.1145/2018436.2018443.

[54] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows quickly
with preemptive scheduling,” in Proc. ACM SIGCOMM Conf. Appl.,
Technol., Archit., Protocols Comput. Commun. (SIGCOMM). New York,
NY, USA: ACM, 2012, pp. 127–138, doi: 10.1145/2342356.2342389.

[55] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling mix-flows in
commodity datacenters with karuna,” in Proc. Conf. ACM SIGCOMM
Conf. (SIGCOMM), 2016, pp. 174–187.

[56] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet
scheduling,” in Proc. 13th USENIX Conf. Netw. Syst. Design Implement.
(NSDI), 2016, pp. 501–521.

[57] P. X. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “pHost: Distributed near-optimal datacenter transport over
commodity network fabric,” in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technol. (CoNEXT), 2015, pp. 1:1–1:12.

[58] (2007). QCN: Quantized Congestion Notification an Overview.
[Online]. Available: http://www.ieee802.org/1/files/public/docs2007/
au_prabhakar_qcn_overview_geneva.pdf

[59] J. Hwang, J. Yoo, and N. Choi, “Deadline and incast aware TCP
for cloud data center networks,” Comput. Netw., vol. 68, pp. 20–34,
Aug. 2014.

[60] C. Raiciu et al., “How hard can it be? Designing and implementing a
deployable multipath TCP,” in Proc. USENIX Symp. Netw. Syst. Design
Implement. (NSDI), San Jose, CA, USA, 2012.

[61] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
datacenter load balancing in the wild,” in Proc. Conf. ACM Special
Interest Group Data Commun. (SIGCOMM), 2017, pp. 253–266.

[62] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian,
“Drill: Micro load balancing for low-latency data center networks,” in
Proc. Conf. ACM Special Interest Group Data Commun. (SIGCOMM),
2017, pp. 225–238.

Jiachen Xue received the bachelor’s degree in com-
puter engineering from Beihang University in 2006,
the M.S. degree in electrical engineering from Ari-
zona State University in 2008, and the Ph.D. degree
in computer engineering from Purdue University
in 2017. He currently works as a Senior Distributed
System Engineer at NVIDIA.

Muhammad Usama Chaudhry received the bach-
elor’s degree from the National University of Com-
puter Science, Islamabad, Pakistan, in 2014, and the
M.S. degree from the Computer Science Depart-
ment, University of Illinois at Chicago, in 2019. He
is currently a Software Engineer with VMware Inc.

Balajee Vamanan received the Ph.D. degree from
Purdue University in 2015. Prior to his Ph.D., he
worked at NVIDIA as a Design Engineer. He is cur-
rently an Assistant Professor with the Department of
Computer Science, University of Illinois at Chicago
(UIC). His research interests span various aspects of
computer networks and computer systems.

T. N. Vijaykumar is currently a Professor with
the School of Electrical and Computer Engineering,
Purdue University. His research interests include
computer architecture targeting on various aspects
of performance, power, programmability, and relia-
bility of computer hardware and systems. Recogni-
tion of his work has received awards including the
1999 NSF CAREER Award, the IEEE Micro’s Top
Picks on computer architecture papers in 2003 and
2005, being listed in the International Symposium
on Computer Architecture (ISCA) Hall of Fame, and

the First Prize in 2009 Burton D. Morgan Business Plan Competition.

Mithuna Thottethodi received the B.Tech. degree
(Hons.) in computer science and engineering from
the Indian Institute of Technology Kharagpur and
the Ph.D. degree in computer science from Duke
University. He is currently an Associate Professor
of electrical and computer engineering with Purdue
University. His research interests include computer
architecture, distributed systems, and networks. He
received the NSF CAREER Award in 2007.

Authorized licensed use limited to: University of Illinois at Chicago Library. Downloaded on July 07,2023 at 21:31:16 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/71.250114
http://dx.doi.org/10.1145/2408776.2408794
http://dx.doi.org/10.1109/40.671404
http://dx.doi.org/10.1145/3230543.3230557
http://dx.doi.org/10.1145/2486001.2486031
http://dx.doi.org/10.1145/2018436.2018443
http://dx.doi.org/10.1145/2342356.2342389
http://dx.doi.org/10.1145/3230543.3230557
http://dx.doi.org/10.1145/3005745.3005760
http://dx.doi.org/10.1145/3005745.3005760
http://dx.doi.org/10.1145/1921168.1921186
http://dx.doi.org/10.1145/1921168.1921186

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

