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Abstract—We study the problem of wireless edge caching when
file popularity is unknown and possibly non-stationary. A bank
of J caches receives file requests and a utility is accrued for each
request depending on the serving cache. The network decides
dynamically which files to store at each cache and how to route
them, in order to maximize total utility. The request sequence is
assumed to be drawn from an arbitrary distribution, capturing
time-variance, temporal and spatial locality of requests. For
this challenging setting, we propose the Bipartite Supergradient
Caching Algorithm (BSCA) which provably exhibits no regret
(RT /T → 0). That is, as the time horizon T increases, BSCA
achieves (at least) the same utility with the cache configuration
that we would have chosen knowing all future requests. The
learning rate of the algorithm is characterized by its regret
expression RT = O(

√
JT ), which is independent of the file

library size. For the single-cache case, we prove that this is
the lowest attainable bound. BSCA requires at each step J
projections on intersections of boxes and simplices, for which
we propose a tailored algorithm. Our model is the first that
draws a connection between the network caching problem and
Online Convex Optimization, and we demonstrate its generality
by discussing various practical extensions and presenting a trace-
driven comparison with state-of-the-art competitors.

I. INTRODUCTION

The wireless edge caching architecture proposes to cache
popular files at small-cell base stations (SBS) in order to
serve future user requests [2]. This is a promising approach
for accommodating the increasing mobile data traffic in a
cost-efficient fashion [3], and has rightfully spurred a flurry
of related work [4]. A weakness of these proactive caching
solutions, however, is that they assume static and known
file popularity. Practice has shown quite the opposite: file
popularity changes fast, and it is challenging to learn it.
Here, we study these systems from a new perspective and
propose an online caching policy that optimizes their perfor-
mance under any popularity model. Our approach tackles the
caching problem in its most general form and reveals a novel
connection between (wireless or wired) caching networks and
Online Convex Optimization (OCO) [5].

A. Motivation

Due to its finite capacity a cache can host only a small
subset of the file library, and it is therefore necessary to employ
a caching policy that selects which files should be stored. The
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Fig. 1. Wireless Edge Caching. Storage-endowed SBSs underlay the main
base station (MBS) and can serve user requests with cached content over
short-range links. The MBS can serve all users and has direct access to the
entire file library, while each SBS can only store a small portion of it.

main selection criterion is typically the fraction of file requests
the cache can satisfy (cache hit ratio), and different policies
employ different rules in order to maximize this metric. For
instance, the Least-Recently-Used (LRU) policy inserts in the
cache the newly requested file and evicts the one that has
not been requested for the longest time period; while the
Least-Frequently-Used (LFU) policy evicts the file that is
least frequently requested. These widely adopted policies were
designed empirically, and hence a question that arises is under
what conditions they achieve high hit ratio?

The answer depends on the file popularity model. For
instance, it has been shown that (i) for stationary requests, LFU
achieves the highest hit ratio [6]; (ii) an age-based-threshold
policy maximizes the ratio when requests follow the Poisson
Shot Noise model [7]; and (iii) LRU has the highest hit ratio
[8] for more general request models [9], [10]. These policies,
however, perform poorly when the request model is other than
the one assumed [1]; and indeed in practice the requests follow
unknown and possibly time-varying distributions. This renders
imperative the design of a universal caching policy that works
provably well for all possible request models.

This requirement is even more crucial for wireless edge
caching networks, see Fig. 1, where the caches receive requests
with low rate and therefore “see” processes with highly non-
stationary behavior [11], [12]. Moreover, due to the wireless
medium, a user might be within the range of multiple SBS
caches, each one offering a different transmission rate and
thus caching utility. This creates the need for explicit routing
decisions which are inevitably intertwined with the caching
policy. In other words, the caching decisions across different
SBSs are coupled, routing affects caching, and the requests
might change both in space and time. Request models for
this intricate case include random replacement models [12],
and inhomogeneous Poisson processes [7], [13], among others.
However, such multi-parametric models are challenging to fit
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to data, and rely on strong assumptions about the popularity
evolution (see Sec. II). Our approach is orthogonal to these
works as we design an online learning mechanism for adaptive
caching and routing decisions that reduce the MBS transmis-
sions and maximize the utility offered by the SBS caches.

B. Methodology and Contributions
We introduce a model-free caching model along the lines of

the OCO framework. We assume that file requests are drawn
from a general distribution, which is equivalent to caching
versus an adversary that chooses the requests arbitrarily.1 At
each slot (i) the adversary creates a new file request; (ii) a
routing plan is deployed to retrieve the file from the SBS
caches and/or MBS; (iii) a (file, cache)-dependent utility is
obtained; and (iv) the caching policy updates the stored files
at each SBS. This generalizes the criterion of cache hit ratio
and allows one to build policies that, for instance, minimize
delay or provide different priority to different users.

In this setting we seek to design a policy with sublinear
regret; i.e., one that achieves zero utility loss per slot as
the time horizon T increases when it is compared to the
best static cache configuration (hindsight policy). To this end,
we propose the Bipartite Supergradient Caching Algorithm
(BSCA) policy, and prove that its regret RT is upper bounded
by w(1)

√
2degJCT for a network of J caches that each can

store up to C of the N library files. Constants w(1) and
deg are independent of parameters T and N ; and therefore
BSCA amortizes the average loss compared to the hindsight
policy, i.e. RT /T → 0, and its oblivious to the library size.
Moreover, for the single cache scenario we derive the lower
attainable regret bound and prove that BSCA matches it. Our
contributions can be thus summarized as follows:
• Machine Learning (ML) caching: We provide a fresh ML

angle for the design of wireless edge caching policies by
reformulating this problem to handle time-varying file pop-
ularity and ensure its efficient solution. To the best of our
knowledge this is the first time online convex optimization
is used in the context of caching networks.

• Universal caching policy: BSCA has zero loss over the
hindsight policy under any request model and hits the sweet
spot of complexity versus performance. It is applicable to a
variety of settings, including general caching networks that
can be modeled with a bipartite graph, and networks with
time-varying parameters or file prefetching costs.

• Single-cache performance: For the basic model of one
cache, we prove that the lowest attainable regret is RT =
Ω(B
√
CT ), where parameter B is independent of T . We

show that BSCA achieves this bound, by employing a smart
combination of LFU and LRU-type decisions.

• Fast Cache Projection: BSCA requires at each slot J pro-
jections on the intersection of box and simplex constraints.
We design a routine that performs each of them in O(N)
steps. This simplifies the execution of BSCA and enables
its application to large caching networks.

1The adversary might even select the requests attempting to degrade the
system performance, exploit our past caching decisions, and so on.

• Trace-driven Evaluation: We evaluate BSCA using several
request models and real traces, and compare it with state-
of-the-art competitor algorithms. We verify that BSCA has
no regret and we find that it outperforms previous policies
by up to 45.8% in typical scenarios.

C. Paper Organization

The rest of this paper is organized as follows. Section
II presents the related work and Section III introduces the
system model. The online wireless edge caching problem is
formulated in Section IV, and Section V presents the BSCA
algorithm for a network of caches. Section VI introduces our
projection routine. Section VII focuses on the simpler but
important case of one cache. We discuss model extensions in
Section VIII, compare BSCA with key competitors in Section
IX and conclude in Section X.

II. BACKGROUND AND RELATED WORK

The literature of caching policies cannot, by any means, be
covered in a single section, and we refer the interested reader
to [4], [14] for a thorough presentation. We focus here on
reactive policies and online algorithms for caching networks.

A. Reactive Policies

The design of caching policies depends heavily on the file
popularity model that is assumed to generate the requests.
One option is to use the adversarial model of [8], where a
policy’s hit rate is compared to Belady’s dynamic hindsight
policy that evicts the file which will be requested farther in the
future [9], [10]. LRU performs better than other policies under
this model2 [8], but its performance is actually comparable to
any other marking policy [15], e.g., even to a simple FIFO.
In a sense, this dynamic hindsight policy is a “too strong”
benchmark to help us identify a good caching policy. On the
other hand, moderately stationary models like IRM [6] are
easy to fit in data, and LFU maximizes the cache hit rate
in this case. However, IRM is accurate only when used to
model requests within small time intervals where popularity
is roughly static, hence it is not suitable for evaluating long-
term performance of a caching network.

In fact, in real systems the requests are rarely stationary
and this has motivated the proposal of several non-stationary
models. For instance, [16] uses the theory of variations,
[12] makes random content replacements in the catalog, [13]
proposes a time-dependent Poisson model, and [7] introduced
the shot noise model for correlated requests in temporal
proximity. Unfortunately, selecting and fitting these models
to data is a time-demanding task [11], and thus not suitable
for fast-changing environments. There are also several model-
based/free approaches for predicting content popularity using
statistical analysis, transfer learning, or social network prop-
erties, see [17]–[20]. Yet, these works do not incorporate the
predictions into the system operation. Unlike prior efforts, our

2Comparing with this very demanding benchmark requires one to restrict
the caching cacpacity of the Belady cache to a portion of the actual cache —
otherwise all policies perform very poorly.
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proposal does not involve model selection and the learning
mechanism is fully embedded into the caching policy.

Instead of fitting models, another option is to learn the
popularity without using prior assumptions [21], [22]. For
instance, [22] models the popularity evolution as a Markov
process and employs Q-learning to estimate the transition
probabilities which are then used for proactive caching. Such
model-free solutions work well if there are adequate data, but
have substantial computation and memory requirements. For
instance, tabular Q-learning needs memory size combinato-
rial in the catalog size and cache capacity; and Q-learning
with function approximation requires more involved gradient
computations, while its convergence can be slow. Following
a different approach, [23] predicts file popularities using clas-
sification. This interesting approach, however, needs feature
extraction, does not consider routing, nor accounts for changes
in utilities. Other online caching proposals include [24]–[26]
which study the basic paging problem of hit-maximization in
one cache. Our approach works for networks of caches without
requiring stationary or known request models.

B. Caching Networks (CNs)

The first OCO-based caching policy was proposed in [1]
which reformulated the caching problem and embedded a
learning mechanism, while [27] studied how such policies
can be used in device-to-device caching scenarios. In CNs
one needs to additionally decide which cache will satisfy a
request (routing) and which files will be evicted (caching), and
these decisions are perplexed when each user is connected to
multiple caches. Thus, it is not surprising that online policies
for CNs are under-explored. Placing more emphasis on the
network, [28] introduced a joint routing and caching algo-
rithm assuming that file popularity is stationary. On the other
hand, proposals for reactive CN policies include: randomized
caching policies for small-cell networks [29]; joint caching
and SBSs transmission policies [30]; distributed cooperative
caching algorithms [31]; and policies using a TTL-based
utility-cache model [32]. All these solutions presume that the
popularity model is fixed and known.

Finally, [33] proposed the multi-LRU (mLRU) heuristic
strategy, and [34] the “lazy rule” extending q-LRU to provide
local optimality guarantees under stationary requests. These
works pioneered the extension of the seminal LFU/LRU-type
policies to the case of multiple connected caches and designed
efficient caching algorithms with minimal overheads. Nev-
ertheless, dropping the stationarity assumption, the problem
of online routing and caching remains open. Our method is
different as we embed a learning mechanism into the system
operation that adapts the caching and routing decisions to any
request model and to network changes.

III. SYSTEM MODEL

Network Connectivity. The caching network consists of
small-cell base stations (SBS) denoted with the set J =
{1, 2, . . . , J}, and a macro-cell base station (MBS) indexed
with 0; each station is equipped with a cache. There is a set

of user locations I = {1, 2, . . . , I}, where file requests are
created. The connectivity between user locations and SBSs is
modeled by parameters ` =

(
`ij ∈ {0, 1} : i ∈ I, j ∈ J

)
,

where `ij=1 only if cache j can be reached from location i.
The MBS is within the range of all users in I.

File Requests. The system evolves in slots, t = 1, 2, . . . , T .
Users submit requests for obtaining files from a library N
of N files with unit size3. We denote with rn,it ∈ {0, 1}
the event that a request for file n ∈ N has been submitted
by a user at location i ∈ I during slot t. At each slot we
assume that there is exactly one request.4 From a different
perspective, this means that the policy is applied after every
request, exactly as it happens with the standard LFU/LRU-
type of reactive policies, see [33], [34] and references therein.
Hence, the request process can be described by a sequence of
vectors {rt}Tt=1 drawn from:

R =
{
r ∈ {0, 1}N×I

∣∣∣ ∑
n∈N

∑
i∈I

rn,i = 1
}
.

The instantaneous file popularity is expressed by the proba-
bility distribution P (rt) (with support R), which is considered
unknown and arbitrary. The same holds for the joint distribu-
tion P (r1, . . . , rT ) that describes the file popularity evolution
within the time interval T . This general model captures all
studied request sequences in the literature, including stationary
(i.i.d. or otherwise), non-stationary, and adversarial models.
The latter are the most demanding models one can employ as
they include request sequences selected by an adversary aim-
ing to disrupt the system performance, e.g., consider Denial-
of-Service attacks. If a policy achieves a certain performance
under this model, it is guaranteed to meet this benchmark for
all request models.

Caching. Each SBS j can cache only Cj files, with
Cj <N,∀j ∈J , while the MBS can store the entire library,
i.e., C0 = N . One may also assume that the MBS has
high-capacity direct access to the file server. Following the
standard femtocaching model [2], we perform caching using
the Maximum Distance Separable (MDS) codes, where files
are split into a fixed number of F chunks, and each stored
chunk is a pseudo-random linear combination of the original
F chunks. Using the properties of MDS codes, a user will be
able to decode the file (with high probability) if it receives
any F coded chunks, a property that greatly facilitates cache
collaboration and improves efficiency.

The above model results in the following: the caching
decision vector yt has N × J elements, and each element
yn,jt ∈ [0, 1] denotes the amount of random coded chunks
of file n stored at cache j.5 Based on this, we introduce the

3For simplicity, we assume that files have unit size; but the results can be
readily extended for the case the files are of size s 6= 1.

4We can also consider batches of requests. If the batch has 1 request
from each location, it is biased to equal request rate at each location. An
unbiased batch contains an arbitrary number of requests from each location.
Our guarantees hold for unbiased batches of arbitrary (but finite) length.

5The fractional model is justified by the observation that large files are
composed of thousands chunks, stored independently [35]. Hence, rounding
the fractional decisions to the closest integer induces small errors.
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set of eligible caching vectors:

Y =
{
y ∈ [0, 1]N×J

∣∣∣ ∑
n∈N

yn,j ≤ Cj , j ∈ J
}
,

which is convex. We can now define the online caching policy:

Definition 1. A caching policy σ is a (randomized) rule:

σ : (r1, r2, . . . , rt−1, y1, y2, . . . , yt−1) −→ yt ∈ Y .

which at each slot t maps past observations {rt}t−1
t=1 and

configurations {yt}t−1
t=1 to a new caching vector yt ∈ Y .

Note that unlike previous strictly proactive caching policies,
we assume here that files can be cached dynamically in
response to submitted requests.

Routing. Since each location i ∈ I is possibly connected to
multiple caches, we introduce routing variables to determine
the cache from which the requested file will be fetched.
Namely, let zn,i,jt ∈ [0, 1] denote the portion of request rn,it
that is served by cache j, and we define the respective routing
vector zt. There are two important remarks here. First, due to
the coded caching model, the requests can be simultaneously
routed from multiple caches. Second, the caching and routing
decisions are coupled and constrained: (i) a request cannot be
routed from an unreachable cache; (ii) we cannot route from
a cache more data chunks than it has; and (iii) each request
must be fully routed, i.e., satisfied.

Based on the above, we define the set of eligible routing
vectors conditioned on caching policy yt as:

Z(yt)=

{
z∈ [0, 1]N×I×J

∣∣∣∣∣
∑
j∈J∪{0} z

n,i,j
t = rn,it ,

zn,i,jt ≤`ijyn,j , ∀n∈ N , i, j∈ J

}
where the first constraint ensures that the entire request is
routed, and the second constraint captures connectivity and
caching limitations. We note that routing from MBS (variable
zn,i,0t ) does not appear in the second constraint because the
MBS stores the entire file library and can serve all users. This
last-resort routing option ensures that the set Z(yt) is non-
empty for all yt ∈ Y . As it will become clear in the next
section, the optimal routing decisions can be easily devised
for a given caching and request vector. This is an inherent
property of uncapacitated bipartite caching networks, and also
appears in prior works, e.g., see [2].

IV. PROBLEM STATEMENT & FORMULATION

We begin this section by defining the caching objective and
then proving that the online wireless edge caching operation
can be modeled as a regret minimization problem.

A. Cache Utility

We consider a utility-cache model which is more general
than cache-hit maximization [4]. We introduce the weights
wn,i,j to denote the utility when delivering a unit of file n
(i.e., a coded chunk) to location i from cache j instead of the
MBS, and trivially set wn,i,0 = 0. This detailed file-dependent
utility model can be used to capture bandwidth economization

State CachingArrival Utility

Next Slot

f(rt, yt)rt yt(σ)y1, . . . , yt−1

r1, . . . , rt−1
Routing

zt

State CachingArrival Utility

Next Slot

f(rt, yt)rt
Routing

zt y1, . . . , yt
r1, . . . , rt yt+1

Fig. 2. Online caching model. When a request rt arrives, the file is routed
optimally based on the current cache configuration i.e., zt = Z(yt). We
accrue utility f(rt, yt) and the caching decisions are updated using the state
that includes the observed requests and caching decisions.

from cache hits [35], QoS improvement from using caches
in proximity [2], or any other cache-related benefit such as
transmission energy savings due to proximity with the SBSs.6

Our model allows these benefits to be different for each cache
and user location due to, for example, the impact of wireless
links; and we extend it in Sec. VIII to account for network
dynamics such as link capacity variations.

We can then define the network utility accrued in slot t as:

ft(yt) = max
z∈Z(yt)

∑
n∈N

∑
i∈I

∑
j∈J

wn,i,jrn,it zn,i,jt , (1)

where index t is used to remind us that ft is affected by the
request rt. It is easy to see that ft(·) states that utility wn,i,j is
accrued when a unit of request is successfully routed to cache
j where file n is available. Note also that we have written ft(·)
only as function of caching, as for each yt we have already
included in the utility definition the selection of the optimal
routing zt. As we will see next, this formulation facilitates the
solution of the problem by simplifying the projection step.

B. Problem Formulation
Formulating the caching network operation as an OCO

problem is non-trivial and requires certain conceptual inno-
vations. For the discussion below please refer to Fig. 2. First,
in order to model that the request sequence can follow any
arbitrary and unknown probability distribution, we use the
notion of an adversary that selects rt in each slot t. In the
worst case, this entity generates requests aiming to degrade
the performance of the caching system. Going a step further,
we model the adversary as selecting the utility function instead
of the request. Namely, at each slot t, the adversary picks ft(y)
from the family of functions {f(rt, y)} by deciding the vector
rt. We emphasize that these functions are piece-wise linear.
In the next subsection we will show that they are concave in
the caching vector yt, but not always differentiable.

It is important to emphasize that we consider here the prac-
tical online setting where yt is decided after the request has
arrived and the caching utility has been calculated. This timing
reflects naturally the operation of reactive caching policies,
where first a generated request yields some utility (based on
whether there was a cache hit or miss), and then the system
reacts by updating the cached files. In other words, caching
decisions are taken without knowing the future requests. The
above steps allow us to reformulate the caching problem and
place it squarely on the OCO framework [36].

6We can obtain the special case of hit ratio maximization from the above
model if we set wn,i,j = w,∀n, i, j.
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Given the adversarial nature of our request model, the ability
to extract useful conclusions depends crucially on the choice
of the performance metric. Differently from the competitive
ratio approach of [8], we introduce a new metric for designing
our policies. Namely, we will compare how our policy fares
against the best static cache configuration designed in hind-
sight. This benchmark is a hypothetical policy that makes one-
shot caching decisions having a priori knowledge of the entire
request sequence. This metric is commonly used in machine
learning [36], [37] and is known as the worst-case static regret.
In particular, we define the regret of policy σ as:

RT (σ) = max
P (r1,...,rT )

E

[
T∑
t=1

ft
(
y∗
)
−

T∑
t=1

ft
(
yt
)]
, (2)

where T is the time horizon of reference. The maximization is
over all possible adversary distributions and the expectation is
taken w.r.t. the possibly randomized rt and {yt, zt(yt)}Tt=1.
Essentially, this captures that the adversary can select any
sequence of functions {ft}Tt=1 so as to deteriorate the effec-
tiveness of our caching decisions7 {yt}Tt=1.

The best cache configuration is found by using the entire
sample path of requests {rt}Tt=1 and solving:

y∗∈arg max
y∈Y

T∑
t=1

ft(y).

Intuitively, measuring the performance of σ w.r.t y∗ constrains
the power of the adversary; for example a rapidly changing
request pattern will impact σ but also y∗. This comparison
makes regret different from the standard competitive hit ratio8

[8], and allow us to discern policies that learn high-utility
caching configurations from those that fail to do so.

Our goal is to study how the regret scales with T . A policy
σ with sublinear regret produces average loss

lim
T→∞

RT (σ)/T = 0,

w.r.t. the optimal static cache configuration. This means that
the two policies have the same average per-slot performance
in the long-run, a property that is called no-regret in OCO.
In other words, σ learns which file chunks to store and how
to route requests, without having a priori access to the file
popularity. We can now formally define the online caching
and routing problem as follows:

7In defining the regret [36], the maximization is taken w.r.t. the sequence of
functions, which for our problem is determined by the sequence of requests.

8As explained in Sec. II, the competitive ratio metrics typically use a
dynamic benchmark that has full knowledge of requests and can select the
exact optimal sequence of caching decisions, not simly a static configuration.

Online Caching Problem (OCP)

Given a file library N ; a set of user locations I and
caches J ; a set of links connecting them (`ij : i ∈
I, j∈J ); and utilities (wn,i,j : n∈N , i∈I, j∈J ):

Determine the policy σ that selects at each slot caching
decisions yt that incur no regret over horizon T , i.e.,
RT (σ) = o(T ), where RT (σ) is defined in (2).

We stress that while OCO typically focuses on time horizon
T , in (OCP) the number and size of caches and, importantly,
the library size, are large enough to induce high utility loss
themselves. Hence, it is crucial to study how the regret is
affected by these parameters as well.

C. Problem Properties

We prove that (OCP) is an OCO problem by establishing
the concavity of ft(y) with respect to yt. Note that we propose
here a different formulation from the typical femtocaching
model [2] by including routing variables and the request arrival
events. This re-formulation is imperative in order to fit our
problem to the OCO framework, but also because otherwise
(e.g., if were using [2] ) we would need to make in each slot
a computationally-challenging projection operation.

First, we simplify ft(y) by exploiting the fact that there is
only one request at each slot. Let n̂, î be the file and location
where the request in t arrives. Then ft(yt) is zero except for
rn̂,̂it . Denoting with Jî ⊆ J the set of reachable SBS caches
from î, and simplifying the notation by setting wn̂,̂i,j = wj ,
zn̂,̂i,j = zj , and dropping subscript t, eq. (1) reduces to:

f(y) , max
z≥0

∑
j∈Jî

wjzj (3)

s.t.
∑
j∈Jî

zj ≤ 1 (4)

zj ≤
{
yj , j ∈ Jî,
0, j /∈ Jî.

. (5)

Although the standard femtocaching problem is known to
be convex [2], our re-formulated utility function (3)-(5) is
different, and hence we need to show that f(·) remains convex.

Lemma 1. Function f(y) is concave in its domain Y .

Proof: Consider two feasible caching vectors y1, y2 ∈ Y .
We will show that:

f(λy1 + (1− λ)y2) ≥ λf(y1) + (1− λ)f(y2), ∀λ ∈ [0, 1].

We begin by denoting with z1 and z2 the routing vectors that
maximize (3) for vectors y1, y2 respectively. Immediately, it is
f(yi) =

∑
j w

jzji , i = 1, 2. Next, consider a candidate vector
y3 = λy1 + (1 − λ)y2, for some λ ∈ [0, 1]. We first show
that routing z3 = λz1 + (1 − λ)z2 is feasible for y3. By the
feasibility of z1, z2, we have:∑
j

zj3 =
∑
j

(λzj1+(1−λ)zj2)=λ
∑
j

zj1 + (1−λ)
∑
j

zj2≤1,

5



which proves that z3 satisfies (4). Also, ∀j ∈ J it is:

zj3 = λzj1 + (1− λ)zj2 ≤ λy
j
1 + (1− λ)yj2 = yj3,

thus z3 satisfies also (5) and z3 ∈ Z(y3). It follows:

f(y3) , max
z∈Z(y3)

∑
j

wjzj ≥
∑
j

wjzj3.

Combining the above, we obtain:

f
(
λy1+ (1− λ)y2

)
= f(y3) ≥

∑
j

wjzj3 =

λ
∑
j

wjzj1 + (1−λ)
∑
j

wjzj2 =λf(y1) + (1−λ)f(y2)

which establishes the concavity of f(y).
Observe that the term −

∑T
t=1 ft(yt) of the regret definition

is convex, and the max operator applied for all possible request
arrivals preserves this convexity. This makes (OCP) an OCO
problem, and this holds even when we consider general graphs
and other convex functions ft(yt).

Finally, we can show with a simple example that ft(·) does
not belong to the class C1, i.e., it is not always differentiable.
Consider a network with a single file N = 1, and two caches
with C1 =C2 =1, that serve one user with utility w1 =w2 =1.
Assume that y1,1

t =y1,2
t =0.5−ε for some very small ε. Notice

that the partial derivatives ∂f/∂y1,1
t = ∂f/∂y1,2

t = 1 (equal
to w). But if we suppose a slight increase in caching variables
such that ε term is removed, then the partial derivatives become
zero. This is because extra caching of this file cannot improve
the utility, which is already maximal. The same holds in
many scenarios which make it impossible to guess when the
objective changes in a non-smooth manner (having points of
non - differentiability). Hence we will employ supergradients.

V. BIPARTITE SUPERGRADIENT CACHING ALGORITHM

Our solution employs an efficient and lightweight gradient-
based algorithm for the caching decisions, which incorporates
the optimal routing as a subroutine. We start from the latter.

A. Optimal Routing

Recall that file routing is naturally decided after a request is
submitted, at which time the caching yt has been determined,
Fig. 2. Thus, in order to decide zt we will assume rt and yt
are given. The goal of routing is to determine which chunks
of the file are fetched from each cache.

Specifically, let us fix a request for file n̂ submitted to
location î. Using the notation Jî, wj defined above, and letting
ẑ , zn̂,̂i,j be the optimal routing variables related to these
caches, file, and user location, we may recover an optimal
routing vector as one that maximizes the utility:

ẑ ∈ arg maxz≥0,(4),(5)

∑
j∈Jî

wjzj . (6)

Ultimately, the routing at t is set:

zn,i,jt =

{
ẑj if n = n̂, i = î,
0 otherwise.

Problem (6) is a Linear Program (LP) of a dimension at most
deg, where deg = maxi∈I |Ji|, and |Ji| is the number of
caches reachable from location i. This LP is computationally-
efficient and can be solved by the interior point or the simplex
method [38]. Interestingly, however, due to its structure a
solution can be found by inspection as follows. First, we order
the reachable caches in decreasing utility, i.e., let φ(·) be a
permutation such that wφ(1) ≥ wφ(2) ≥ · · · ≥ wφ(|Jî|). We
set zφ(1) = min{1, yn̂,̂i,φ(1)} for the first element, and then
iteratively for each round k, we set:

zφ(k) = min{yn̂,̂i,φ(k), 1−
k−1∑
i=1

zφ(i)},

until all reachable caches are visited, or we obtain∑k
i=1 z

φ(k) = 1 for some k; where in the latter case the
rest of the caches have zj = 0. Both approaches, i.e., solving
directly the LP or using this iterative process, may be helpful
in practice. By explicitly solving the LP we also obtain the
value of the dual variables, which, as we will see, help us to
compute the supergradient.

B. Optimal Caching - BSCA Algorithm

The general idea is to gradually update caching decisions
along the direction of the gradient. However, since f(y) is
not differentiable everywhere we need to find a supergradient
direction at each slot. We describe next how this can be
achieved. Consider the partial Lagrangian of (3):

L(y, z, α, β)=
∑
j∈Jî

wjzj+α
(
1−
∑
j∈Jî

zj
)
+
∑
j∈Jî

βj(yj−zj) (7)

where wj , wn̂,̂i,j , and define the auxiliary function:

Λ(y, β) = L(y, z∗, α∗, β) , min
α≥0

max
z≥0

L(y, z, α, β). (8)

From the strong duality property of linear programming [38],
we may exchange min and max in the Lagrangian, and obtain:

f(y) = min
β≥0

Λ(y, β). (9)

We prove next the following lemma for the supergradients.

Lemma 2 (Supergradient). Let β∗(y),arg minβ≥0Λ(y, β) be
the vector of optimal multipliers corresponding to (5). Define

gn,i,j =

{
βj,∗(y) if n = n̂, i = î, j ∈ Jî
0 otherwise.

(10)

The vector g ∈RN×I×J is a supergradient of f at y, i.e., it
holds f(y)≥f(y′)− g>(y′ − y), ∀y′∈Y .

Proof: First note that we can write: f(y)
(9)
=

min
β≥0

Λ(y, β) , Λ
(
y, β∗(y)

) (a)
= Λ

(
y′, β∗(y)

)
− β∗(y)>(y′ − y).

Where (a) holds since it is:

L(y′, z, α, β)=
∑
j∈Jî

wjzj+α
(
1−

∑
j∈Jî

zj
)

+
∑
j∈Jî

βj(y′,j−zj)
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and by applying (8), where the optimization is independent of
variables y (or y′), we obtain Λ(y′, β) = L(y′, z∗, α∗, β), with
α∗ and z∗ being the same as those appearing in Λ(y, β) =
L(y, z∗, α∗, β) (since their calculation is independent of y).
Hence, we can subtract the two expressions (observe the linear
structure of (7)), plug in a certain vector β and obtain:

Λ
(
y, β∗(y)

)
− Λ

(
y′, β∗(y)

)
= −β∗(y)>(y′ − y). (11)

where β∗(y) = arg min Λ(y, β). Note also that it holds
Λ(y′, β∗(y)) > Λ(y′, β∗(y′)) by definition of β∗, hence:

f(y) = Λ
(
y′, β∗(y)

)
− β∗(y)>(y′ − y)

≥ Λ
(
y′, β∗(y′)

)
− β∗(y)>(y′ − y)

= f(y′)− β∗(y)>(y′ − y),

which concludes our proof.
Intuitively, the dual variable βj,∗(y) (element of vector

β∗(y)) is positive only if the respective constraint (5) is tight
which ensures that increasing the allocation yn̂,̂i,j will induce
a benefit in case of a request with rn̂,̂i = 1 occurs in future.
The actual value of βj,∗(y) is proportional to this benefit.
The reason the algorithm emphasizes this request, is that in
the online gradient-type of algorithms the last function (in
this case a linear function with parameters the last request)
serves as a corrective step in the “prediction” of future. Having
this method for calculating a supergradient direction, we can
extend the seminal online gradient ascent algorithm [5], to
design an online caching policy for (OCP). In detail:

Definition 2 (BSCA). The Bipartite Subgradient Caching
Algorithm adjusts the caching decisions with a supergradient:

yt+1 = ΠY (yt + ηtgt) ,

where ηt is the stepsize, gt can be taken as in Lemma 2, and

ΠY (q) , arg min
y∈Y
‖q − y‖, (12)

is the Euclidean projection of the argument vector q onto Y .

Algorithm 1 explains how BSCA can be incorporated into
the network operation for devising the caching and routing
decisions in an online fashion. The algorithm requires as input
only the network parameters `ij , Cj ,N , wn,i,j . The stepsize ηt
is computed using the set diameter ∆Y , the upper bound on
the supergradient K, and the time horizon T . The former two
depend on the network parameters as well. Specifically, define
first the diameter ∆S of set S to be the largest Euclidean
distance between any two elements of this set. In order to
calculate this quantity for Y , we select vectors y1, y2 ∈ Y
which cache exactly Cj different files at each cache j ∈ J ,
and hence:

∆Y =

√∑
n∈N

∑
j∈J

(yn,i,j1 − yn,i,j2 )2 =

√∑
j∈J

2Cj ≤
√

2CJ,

where C,maxj Cj . Also, we denote with K the upper bound
on the norm of the supergradient vector. By construction this
vector is non-zero only at the reachable caches, and only for

Algorithm 1: Bipartite Supergradient Caching Algorithm

1 Input: {`ij}(i,j); {Cj}j ; N ; {wn,i,j}(n,i,j);
ηt = ∆Y/K

√
T .

2 Output: yt, ∀t.
3 Initialize: n̂, î, y1 arbitrarily.
4 for t = 1, 2, . . . do
5 Observe request rt and set n̂, î for which rn̂,̂it =1 ;
6 Find the routing zt solving (3)-(5); % decides routing
7 Calculate the accrued utility ft(rt, yt) ;
8 Calculate the supergradient gt for n̂, î using (10);
9 Update the vector qt+1 = yt + ηtgt ;

10 Project: yt+1 = ΠY (qt+1); % decides caching
end

the specific file. Further, its smallest value is zero by the non-
negativity of Lagrangian multipliers, and its largest is no more
than the maximum utility, denoted with w(1). Thus, using
deg=maxi∈I |Ji| we can bound the supergradient norm:

‖g‖ =

√∑
j∈Jî

(w(1))2 ≤ w(1)
√

deg , K. (13)

The algorithm proceeds as follows. At each slot t, the
system receives a request rt and sets î, n̂ for the requester
and file (line 5). Given the cached files, the system finds the
optimal routing zt for serving rt (line 6), e.g. by solving an LP
with at most deg variables and finding the dual variables. This
yields utility ft(rt, yt) (line 7). The supergradient is calculated
(line 8) and is used to update the cache configuration (line 9).
Finally, the decisions are projected to the feasible set so as to
satisfy the cache capacities (line 10).

It is interesting to note the following. Since the supergradi-
ent computation in line 8 and the optimal routing, explained
in the previous subsection, require the solution of the same
LP, it is possible to combine these as follows. When the
optimal routing is found, the dual variables are stored and
used for the direct computation of the supergradient in the
next iteration of BSCA. Note that, given the cache update rule,
the algorithm state needs to include only yt, and therefore its
memory requirements are very small.

C. Performance of BSCA

Following the rationale of the analysis in [5], we show that
our policy achieves no regret and we analyze how the various
system parameters affect the regret expression.

Theorem 1. The regret of BSCA satisfies:

RT (BSCA) ≤ w(1)
√

2degJCT , where

C=maxj Cj , deg= maxi∈I |Ji|, w(1) =maxn,i,j w
n,i,j

Proof: Using the non-expansiveness property of the Eu-
clidean projection [39], we can bound the distance of each
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new value yt+1 from the hindsight policy y∗, as follows:

‖ΠY (yt+ηtgt)−y∗‖2≤‖yt+ηtgt−y∗‖2 =

‖yt−y∗‖2+2ηtgt
>(yt−y∗)+η2

t ‖gt‖2, (14)

where we expanded the norm. If we fix the step size ηt = η
and sum telescopically over all slots until T , we obtain:

‖yT+1−y∗‖2≤‖y1−y∗‖2+2η

T∑
t=1

gt
>(yt−y∗)+η2

T∑
t=1

‖gt‖2.

Since ‖yT+1−y∗‖2 ≥ 0, rearranging the terms and using that
‖y1 − y∗‖ ≤ ∆Y and ‖gt‖ ≤ K we obtain:

T∑
t=1

gt
>(y∗ − yt) ≤

∆2
Y

2η
+
ηTK2

2
. (15)

Since our utility function is concave, it holds:

ft(y)≤ft(yt)+gt
>(y − yt), ∀y ∈ Y (16)

for every ft, and therefore also for the function that maximizes
the regret; thus, we can remove the max operator from (2) and
rewrite it as:

RT (BSCA) =

T∑
t=1

(ft(y
∗)− ft(yt))

≤
T∑
t=1

gt
>(y∗ − yt)

(15)
≤

∆2
Y

2η
+
ηTK2

2
.

We can minimize the regret bound by optimizing the step size.
Using the first-order condition w.r.t. η for the RHS of the above
expression, we obtain η∗ = ∆Y/K

√
T which yields:

RT (BSCA) ≤ ∆YK
√
T . (17)

Recall also that ∆Y ≤
√

2CJ , and that K = ω(1)
√

deg, due
to (13)-(13). Hence, the theorem follows.

Theorem 1 shows that the regret of BSCA scales as O(
√
T )

and therefore BSCA solves (OCP). The regret expression
captures how fast the algorithm learns the right caching
configuration, and therefore the detailed constants we obtain
in the theorem are of great importance. For example, we see
that the bound is independent of the file library size N . This
is very crucial in caching problems where the N drives the
problem’s dimension. Another interesting observation is that
the learning rate of the algorithm might become slow (i.e.,
resembling regret behavior of ∼O(T )) when C is comparable
to T . This is in line with empirical observations suggesting that
in order to extract safe conclusions about the performance of
a policy, one should simulate datasets with size T >> C.

We stress also that Theorem 1 does not imply that BSCA
outperforms all other possible policies; for example, if the
requests have a particular structure, e.g., are highly correlated,
then another policy might perform better. However, policies
that exploit the structure of requests tend to perform poorly
when the request model assumptions do not hold. We present
such examples in Sec. IX

Finally, note that calculating η∗ = ∆Y/K
√
T requires to

know T , but this can be relaxed by using the standard doubling
trick [36]. Alternatively, we can employ a diminishing step.
Namely, if we sum telescopically (14) for T slots, we obtain:

RvT (BSCA) ≤
∆2
Y

2ηT
+
K2
∑T
t=1 ηt

2
, (18)

and if we set ηt = 1/
√
t, then the two terms in (18) yield

factors of order O(
√
T ), hence:

RvT (BSCA) ≤
∆2
Y
√
T

2
+
(√

T − 1

2

)
K2. (19)

Comparing the two sublinear regret expressions, (17) and (19),
we see that their exact relationship depends on the relative
values of parameters K and ∆Y .

VI. CACHE PROJECTION ALGORITHM

BSCA involves a projection (line 9) which might affect
significantly its complexity and runtime. We develop here a
tailored algorithm that resolves this issue.

The Euclidean projection defined in (12) can be written as
the equivalent quadratic program:

ΠY (q) , arg min
y

∑
j∈J

∑
n∈N

(yn,j − qn,j)2 (20)

s.t.
∑
n∈N

yn,j ≤ Cj , ∀j ∈ J

0 ≤ yn,j ≤ 1, ∀n ∈ N , j ∈ J ,

that might be computationally very expensive in some cases;
see [40], [41] and references therein. Our problem has certain
properties that facilitate this operation. First, the projection
can be performed independently for each cache, namely we
project q on the intersection of a simplex-type constraint∑
n y

n,j ≤ Cj and a N -dimensional box yj ∈ [0, 1]N (capped
simplex). Second, yjt+1 and qjt+1 differ only in one element.
Exploiting these properties we design an algorithm for (20)
with complexity O(JN), that uses the Karush-Kuhn-Tucker
(KKT) conditions [39] to navigate fast the solution space.

We first introduce the Lagrangian:

L(y, ρ, µ, κ)=
∑
n∈N

∑
j∈J

(qn,j−yn,j)2 +
∑
j∈J

ρj

( ∑
n∈N

yn,j−Cj
)

+
∑
n∈N

∑
j∈J

µn,j(y
n,j − 1)−

∑
n∈N

∑
j∈J

κn,jy
n,j

where ρj , µn,j , κn,j , ∀n, j, are the non-negative Lagrange
multipliers introduced when relaxing the constraints above.
The KKT conditions of (20) at the optimal point, are:

∂L(·)
∂yn,j

=−2(qn,j − yn,j) + ρj+µn,j−κn,j=0, ∀n, j, (21)

ρj
( ∑
n∈N

yn,j − Cj
)

= 0, ∀j, (22)

µn,j(y
n,j − 1) = 0, κn,jy

n,j = 0 ∀n, j, (23)
ρj , µn,j , κn,j ≥ 0, ∀n, j, (24)
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Algorithm 2: Fast Cache Projection

1 Input: {Cj}j ; qj ,∀j ∈ J ; Output: y = ΠY (q);
2 Initialize: Mj

1 ← ∅,M
j
2 ← N ,M

j
3 ← ∅, ∀j ∈ J .

3 repeat
for j = 1, 2, . . . , J do

4 ρj ← 2(|Mj
1| − C +

∑
n∈Mj

2
qn,j)/|Mj

2|;

5 yn,j ←


1 n ∈Mj

1,

qn,j − ρj/2 n ∈Mj
2,

0 n ∈Mj
3

;

6 Sj ←
{
n ∈ N : yn,j < 0

}
;

7 Mj
2 ←M

j
2 \ Sj , M

j
3 ←M

j
3 ∪ Sj ;

8 if y1,j > 1 then
Mj

1 ← {1}, M
j
2 ← {2, . . . , N}, M

j
3 ← ∅;

GoTo line 5;
end

end
until Sj = ∅, ∀j ∈ J ;

where we have omitted the primal constraints of (20) for
brevity. In order to solve the projection problem we will
use a simple algorithm that tests, in a systematic fashion,
combinations of the complementary slackness conditions (22)-
(23) until it finds a solution that is primal and dual feasible.
An important observation is the following: since C <N , the
simplex constraint will be tight at the optimal point (the cache
is filled) and hence we only need to check cases for (23).

First, note that the caching decisions yj = (yn,j , n ∈ N )
for each cache j are partitioned at the optimal point into three
sets defined as follows:

Mj
1 = {n ∈ N : yn,j = 1}, Mj

3 = {n ∈ N : yn,j = 0},
Mj

2 = {n ∈ N : yn,j = qn,j − ρj/2},

whereMj
1 contains the files that will be stored in their entirety,

Mj
2 the partially cached files (κn,j = µn,j = 0) in cache

j, and Mj
3 the evicted files. Due to full utilization of cache

capacity, it holds for each cache j ∈ J :∑
n∈N

yn,j = Cj = |Mj
1|+

∑
n∈Mj

2

qn,j − ρj |Mj
2|/2 ⇒

ρj = 2
(
|Mj

1| − Cj +
∑
n∈Mj

2

qn,j
)
/|Mj

2|.

In order to solve the projection problem it suffices to deter-
mine for each cache a partition of files into setsMj

1,M
j
2,M

j
3.

Note that we can check in linear time if a candidate partition
satisfies all KKT conditions (and only the optimal one will).
Additionally, one can show that the ordering of files in q is
preserved at optimal y, hence prior approaches, e.g., [41] that
search exhaustively over all possible ordered partitions will
need O(N2) steps. Here, however, we expedite the solution by
exploiting the property that all elements of q satisfy qn,j ≤ 1
except at most one (hence also |Mj

1| ∈ {0, 1} for every cache

j). This allows us to reduce the runtime to O(N logN) steps
for each cache. Furthermore, our algorithm can also operate
without sorting the files, and therefore the runtime for one
cache is O(N), and the overall runtime is O(JN).

The details are presented in Algorithm 2. The initial parti-
tion places all files to the set of partially cached (line 2). For
the given partition, we compute the Lagrange multiplier ρj
(line 4), and calculate a tentative caching allocation (line 5).
The indices of all files whose tentative allocation is negative
are stored in a set Sj (line 6), removed from the middle set
and added to the set of files to be evicted (line 7). If there
exists a file with allocation more than 1, it is placed at the set
of fully cached, and the procedure is repeated. We exploit the
structure of our problem: since in the previous slot all files had
allocation at most 1, it follows that adding the supergradient
element and taking into account the multiplier ρj , the new
allocation of all files (but the one in the supergradient) will
be strictly smaller than 1. Therefore, Mj

1 can either have one
file or none, and we search between these two possibilities
(line 8). The set operation we perform in line 7 is proven in
[42] to be monotonous, and therefore we will at most search
all possibilities, resulting in worst-case runtime O(JN) that
matches previously known results [40]. Finally, we observed
in simulations that each loop was visited at most two times
(instead of N ), resulting in an extremely fast projection.

VII. THE SINGLE CACHE CASE

The problem is simplified for a single cache as there are no
routing decisions. Nevertheless, even for this basic version, we
lack a policy that can achieve no-regret caching performance
for any request sequence. BSCA not only fills this gap, but in
fact it achieves the best learning rate than any possible policy
(based on OCO or not) can achieve.9

A. BSCA for One Cache

We denote with C the size of our single cache and with rnt
the request arriving at slot t, where now we do not consider
different user locations as all requests are served by the same
cache. The cache utility can be written:

ft(yt) =
∑
n∈N

ynt w
nrnt , (25)

which states that a request for file n yields utility proportional
to a file-specific parameter wn per unit of its cached fraction
ynt . There are no routing variables in this case. Also, the
gradient gt , ∇ft at yt exists, and it is the N -dimensional
vector with coordinates:

∂ft
∂ynt

= wnrnt , n = 1, . . . , N.

This simplifies the implementation of BSCA as we can directly
calculate the gradients in each slot t and update the cached
files using yt+1 = ΠY(yt + ηtgt).

9As it will become clear in the simulations, BSCA ensures no regret for
any request sequence, and in the case of a single cache we prove that its
learning rate is the best possible. However, this does not mean that there are
no policies which can achieve better performance for specific request patterns.
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The regret of BSCA for the one cache (henceforth called
BSCA-1) stems from Theorem 1. Namely, setting J = 1 and
deg=1, we derive the following Corollary.

Corollary 1 (Regret of BSCA-1). Fix step size ηt =
∆Y1/K1

√
T , the regret of BSCA for 1 cache satisfies:

RT (BSCA-1) ≤ ∆Y1K1

√
T ≤ w(1)

√
2CT

Where K1 = maxn{wn} , w(1) upper bounds ∇ft, ∀t; and
the eligible caching vectors belongs to the convex set:

Y1 =
{
y ∈ [0, 1]N

∣∣∣ ∑
n∈N

yn ≤ C
}
,

which has dimension:

∆Y1 =

{ √
2C if 0 < C ≤ N/2,√
2(N − C) if N/2 < C ≤ N.

It is easy to calculate ∆Y1 using two vectors y1, y2 ∈ Y1 that
cache entirely different files.

B. Regret Lower Bound

We now derive a regret lower bound which is a powerful
theoretical result that provides the fundamental limits of
how fast any algorithm can learn to cache, much like the
information-theoretic upper bound of the channel capacity.
Regret lower bounds in OCO have been previously derived for,
e.g., N -dimensional unit ball centered at the origin in [43], and
N -dimensional hypercube in [36]. In our case, however, the
above results are not tight since Y1 is a capped simplex, i.e.,
the intersection of a box and a simplex inequality. Therefore,
we need the following new regret lower bound tailored to the
online caching problem.

Theorem 2 (Regret Lower Bound). The regret of any
caching policy σ satisfies:

RT (σ) >

C∑
i=1

E
[
Z(i)

]√
T , as T →∞,

where Z(i) is the i-th max element of a Gaussian random
vector with zero mean and covariance matrix Σ(w) in (29).
Furthermore, assume C < N/2 and define φ any permu-
tation of N and Φ the set of all such permutations, then:

RT (σ) >
maxφ∈Φ

∑C
k=1

√
wφ(2(k−1)+1) + wφ(2k)√

2π
∑N
n=1 1/wn

√
T

In the special case that we wish to maximize the hit rate,
where it is wn=w,∀n ∈ N , the above bound simplifies to:

Corollary 2. Fix γ , C/N , wn = w, ∀n, and C <
N/2. Then, the regret of any caching policy σ satisfies:

RT (σ) > w

√
γ

π

√
CT, as T →∞.

This bound is tighter than the classical result Ω
(√
T logN

)
[36], [43], which is attributed to the difference of sets R,Y1.

Proof of Theorem 2: To find a lower bound, we will
analyze a specific adversary rt. In particular, we will consider
an i.i.d. rt such that file n is requested with probability:

P(rt = en) =
1/wn∑N
i=1 1/wi

, ∀n, t,

where en is a unit vector with only its nth element being
non-zero. With such a choice of rt, any causal caching policy
yields an expected utility at most CT/

∑N
n=1(1/wn), since:

E

[
T∑
t=1

ft
(
yt
)]

=

T∑
t=1

N∑
n=1

wnP(rt = en) ynt (26)

=

T∑
t=1

1∑
n 1/wn

N∑
n=1

ynt ≤
CT∑
n 1/wn

,

To obtain a regret lower bound we show that a static policy
with hindsight can exploit the knowledge of the sample path
{rt}Tt=1 to achieve a higher utility than (26). Specifically,
defining νnt the number of times file n is requested in slots
1, . . . , t, the best static policy will cache the C files with
highest products wnνnT . In the following, we characterize how
this compares against the average utility of (26) by analyzing
the order statistics of a Gaussian vector.

For i.i.d. requests we may rewrite the regret as the expected
difference between the best static policy in hindsight and (26):

RT ≥ E

[
max
y∈Y1

y>
T∑
t=1

w � rt

]
− CT∑

n 1/wn
, (27)

where w � rt = [w1r1
t , w

2r2
t , ..., w

NrNt ]> is the Hadamard
product between the weights and request vector. Further, (27)
can be rewritten as a function:

RT ≥ E[gN,C(zT )] = E

[
max
b∈

◦
Y1

[
b>zT

]]
,

where
◦
Y1 is the set of all integer caching configurations

(thus, gN,C(·) is the sum of the maximum C elements of its
argument); and the process zT is the vector of utility obtained
by each file after the first T rounds centered around its mean:

zT =

T∑
t=1

w � rt − w �
T∑N

n=1 1/wn
w−1

=

T∑
t=1

(
zt −

1∑N
n=1 1/wn

1N

)
(28)

where zt = w � rt are i.i.d. random vectors with distribution

P
(
zt = wiei

)
=

1/wi∑N
n=1 1/wn

,∀t, ∀i,
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and, therefore, they have mean10:

E[zt] =
1∑N

n=1 1/wn
1N .

Key in our proof is the limiting behavior of gN,C(zT ):

Lemma 3. Let Z be a Gaussian vector N (0,Σ(w)), where
Σ(w) is given in (29), and Z(i) its i−th largest element. Then

gN,C(zT )√
T

distr.−−−−→
T→∞

C∑
i=1

Z(i).

Proof: Observe that zT is the sum of T uniform i.i.d.
zero-mean random vectors, where the covariance matrix can
be calculated using (28): Σ(w) =

= E

(z1 −
1∑N

n=1 1/wn
1N

)(
z1 −

1∑N
n=1 1/wn

1N

)>
=

1∑N
n=1 1/wn

{
wi − 1∑N

n=1 1/wn , i = j

− 1∑N
n=1 1/wn , i 6= j

, (29)

where the second equality follows from the distribution of zt
and some calculations.11 Due to the Central Limit Theorem:

zT√
T

distr.−−−−→
T→∞

Z. (30)

Since gN,C(x) is continuous, (30) and the Continuous Map-
ping Theorem [44] imply

gN,C (zT )√
T

= gN,C

(
zT√
T

)
distr.−−−−→
T→∞

gN,C (Z) ,

and the proof is completed by noticing that gN,C(x) is the
sum of the maximum C elements of its argument.

An immediate consequence of Lemma 3 is that

RT√
T

=
E[gN,C(zT )]√

T

T→∞−−−−→ E

[
C∑
i=1

Z(i)

]
=

C∑
i=1

E
[
Z(i)

]
and the first part of the Theorem is proved.

To prove the second part, we remark that the RHS of the last
equality is the expected sum of C maximal elements of vector
Z, and hence larger than the expected sum of any C elements
of Z. In particular, we will compare with the following: Fix
a permutation φ̄ over all N elements, partition the first 2C
elements in pairs by combining 1-st with 2-nd, ..., i-th with
i+1-th, 2C-1-th with 2C-th, and then from each pair choose
the maximum element and return the sum. We then obtain:

E

[
C∑
i=1

Z(i)

]
≥ E

[
C∑
i=1

max
[
Zφ̄(2(i−1)+1), Zφ̄(2i)

]]

=

C∑
i=1

E
[
max

[
Zφ̄((2(i−1)+1), Zφ̄(2i)

]]
,

10Above we have used the notation w−1 =
[
1/w1, 1/w2, ..., 1/wN

]>
.

11For the benefit of the reader, we note that Z has no well-defined density
(since Σ(w) is singular). For the proof, we only use its distribution.

where the second step follows from the linearity of the
expectation, and the expectation is taken over the marginal
distribution of a vector with two elements of Z. We now
focus on max

[
Zk, Z`

]
for (any) two fixed k, `. We have that

(Zk, Z`)> ∼ N
(
0,Σ(wk, w`)

)
, where Σ(wk, w`) =

=
1∑N

n=1 1/wn

[
wk − 1∑N

n=1 1/wn − 1∑N
n=1 1/wn

− 1∑N
n=1 1/wn w` − 1∑N

n=1 1/wn

]
.

From [45] we then have:

E
[
max

[
Zk, Z`

]]
=

√
1∑N

n=1 1/wn

1√
2π

√
wk + w`,

therefore:

E

[
C∑
i=1

Z(i)

]
≥ 1√

2π

∑C
i=1

√
wφ̄((2(i−1)+1) + wφ̄(2i)√∑N

n=1 1/wn
, (31)

for all φ̄. The result follows noticing that the tightest bound
is obtained by maximizing (31) over all permutations.

Corollary 3 (Regret of Online Caching). Fix C/N =
γ, wn = w, for all n, and assume C < N/2, the regret
of online caching satisfies:

w

√
γ

π

√
CT ≤ min

σ
RT (σ) ≤ w

√
2
√
CT as T →∞.

Corollary 3 follows from Corollary 2 and Theorem 1. We
conclude that omitting

√
2π/γ, which i s amortized by T ,

BSCA achieves the best possible learning rate for the one
cache problem.12

VIII. MODEL GENERALITY AND EXTENSIONS

The proposed model and algorithm can be used to solve
different instances of (OCP) and other problems that have
similar structure. We discuss some representative cases next.

General Graphs. An arbitrary network can be modeled
with a bipartite graph if it does not have hard link capacity
constraints or load-dependent routing costs. This is achieved
by calculating the best path connecting a user to any reachable
cache, and using this path cost as the link cost in the bipartite
model. With this transformation our analysis applies to a very
broad class of caching nework problems. Two such examples
are Content Delivery Networks (CDN) if their links have
large enough capacities, Fig. 3(a); and multi-memory paging
systems appearing in data centers and disaggregated server
architectures [46], [47], Fig. 3(b).

Dynamic Networks. The links connecting user locations
to edge caches might be heterogeneous, introducing different
costs in terms of transmission power or delay. This aspect can
be modeled through the utility functions in order to reflect that

12We note that in the special case where the term γ = C/N diminishes
as the time horizon T increases, we do not obtain matching bounds and the
question of what is the fastest learning policy is open.
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Fig. 3. Bipartite model for general networks. (a) Content delivery network
with root and edge servers, and uncapacitated links. Each path can be modeled
as a super-link in a bipartite graph of (root or edge) servers and end-users. (b)
Network of connected memory elements in a disaggregated server system.

users would prefer to obtain the files over low-cost links. We
can redefine the utility parameters as a product of a cache-
related benefit and a link-related benefit, i.e., wn,i,j =wn,jcach ·
wi,jrout, and then apply BSCA. The steps are identical as in
Algorithm 1, and the only change is in the constants of the
regret bound. Moreover, our model can capture the case where
utility parameters change over time, wn,i,jt , e.g., due to link
costs changing or users moving from one location to another.
This extension, indirectly, allows to include mobility models
in our analysis. BSCA can handle this effect by replacing the
step in line 5 where in each slot we need now to observe both
the submitted request rn̂,̂it and the current utility vector wt.
This generalization does not affect the regret which already
includes the maximum utility distance.

Reconfiguration Costs. Finally, an important case arises
when there is cost for prefetching the files over the backhaul
SBS links. First, note that BSCA might select to reconfigure
the caches in a slot t (yt 6= yt−1) even if the requested files
were already available, if this update is expected to improve
the total utility. However, such changes induce bandwidth cost
and therefore the question “when should a file be prefetched?”
arises naturally. Unlike other policies that make also such
proactive updates, e.g., the LRU-ALL policy [33], BSCA can
take into account these costs and reconfigure when they are
smaller than the expected benefits. In detail, if we denote with
cn,j the cost for transferring a file unit from the origin servers
to cache j, we can define the utility-cost function:

Jt(yt, yt−1) = ft(yt)−
∑
n∈N

∑
j∈J

cn,j max{yn,jt − yn,jt−1, 0}

where ft(yt) is given in (1), and the convex max operator
ensures that we pay cost whenever we increase the cached
chunks of a file n at a cache j (but not when we evict data).
Function Jt is concave and hence BSCA can be employed.

Namely, it suffices to use the supergradient qt for Jt(·) instead
of that for ft(·). Denoting qt the supergradient of Jt and using
basic subgradient algebra we can write qt = gt + ht, where

hn̂,jt =

{
−cn̂,j , if yn̂,jt − yn̂,jt−1 > 0
0 otherwise

(32)

which is calculated for each request rn̂,jt and cache j. The
policy’s learning rate is not affected by this change, and we
only need to redefine K by adding the maximum value of h.
This makes our policy suitable for placement problems beyond
caching, e.g., costly deployment of in-network services.

IX. PERFORMANCE EVALUATION

We evaluate the performance of several policies in terms of
hit rate and accrued utility, using different request sequences.
We see that although BSCA might not always achieve the
highest performance, it is in every case close to the best-
performaning policy, something that is not true for any other
benchmark. We begin with the single cache problem which
highlights some interesting features of BSCA, such as the
hybrid recency/frequency criterion it uses to cache files. We
then compare BSCA with state-of-the-art reactive policies in
caching networks, namely multi-LRU [33] and q-LRU [34].
We find that BSCA outperforms these policies and creates,
asymptotically, average utility equal to that of the best static
cache configuration.

A. Single Cache Scenarios

In these experiments we use a cache with capacity equal
to 30% of the (observed) library in each scenario, unless
otherwise stated. We test different request models: (a) an i.i.d.
Zipf model that represents requests in a CDN [49]; (b) a
Poisson shot noise model that represents ephemeral YouTube
video requests [7]; and (c) a dataset from [48] with actual
web browsing requests at a university campus. This latter
model draws files, naturally, from a larger file library. For
cases (a) – (c) we use T = 105 requests, and for case (d)
T = 106 requests. The results are shown in Figure 4 where we
plot the evolution of the cache hit ratio (i.e., hits versus total
current requests) for BSCA, LRU, LFU and the best static
configuration. It is important to emphasize that the latter is
decided using the entire time horizon T , and hence might even
yield zero hits for certain time intervals.

We observe that the performance of BSCA is very close
to the best among LFU and LRU for each scenario, after we
allow for some adaptation time. Namely, the relative gain (in
terms of hits) compared to the second best policy is as high
as 20% over LRU (Fig. 4(a)) and up to 16% over LFU (Fig.
4(c)), while BSCA outperforms both in case (b).13 Note that
it is even possible for BSCA and the other reactive policies to
outperform the static benchmark.

13The percentages are the relative gains in terms of cache hit ratio, i.e., we
divide the difference of BSCA hits minus LRU hits, with this latter quantity.
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Fig. 4. Average Number of Hits for BSCA in one cache: We consider the following request models: (a) i.i.d. Zipf [49]; (b) Poisson Shot Noise [7]; (c)
web browsing dataset [48]; (d) web browsing dataset [48] for 10 times longer time horizon.
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Taking a closer look in these experiments, we can identify
the source of the remarkable agility of BSCA. First, recall that
LFU calculates the request frequency of each item and evicts
the one that is (up to this slot) less frequently requested. On
the other hand, LRU keeps track of how recently an item was
requested in the past, and evicts the one that was least recently
requested. BSCA bears similarities to both policies but uses
a Euclidean regularizer (in the projection step) which yields
smoother — and, it turns out, wiser — decisions.14. Namely, it
decides which chunks to cache based on the recently submitted
requests (recall that for 1 cache it is gt=rn̂,̂iwn̂,̂i) resembling
LRU, but also makes these decisions gradually, requiring
multiple requests for each file, similarly to LFU. In other
words, BSCA can be viewed as a normalized version of utility-
LFU policy, where the frequency-based eviction decisions are
smoothened; and similarly considers the recency as LRU but
reacts with inertia.

This is demonstrated in Fig. 5 which shows an example
of the LRU decisions (C = 1K most recently used) and
the respective BSCA decisions for these files. This reveals

14The regularization becomes clear if one sees that our subgradient iteration
yt+1 = ΠY (yt + ηtgt) can be viewed as linearization of the proximal
algorithm [50], i.e., yt+1 = arg miny∈Y{〈y, gt〉+ 1

2ηt
‖y − yt‖2}.

that the two policies take strongly correlated decisions, but
BSCA additionally “remembers” the frequency of requests.
For instance, point (A) represents a file nA that was requested
recently but infrequently overall, and hence BSCA decreases
the value of ynA just like LFU. On the other hand, point
(B) represents a file nB that was both recently requested and
frequently, and hence BSCA sets large value for ynB .

B. Bipartite Caching Networks

Next we consider a bipartite graph with 3 caches of size
C = 10 and 4 user locations, Fig. 6(a). The utility vector is
wn = (1, 2, 100),∀n, hence an efficient policy needs to place
popular files on cache 3. The network is fed with stationary
Zipf requests from a library of N = 100 files, and each
request arrives at a user location that is selected uniformly
at random. We stress that we have chose a small value for
N only to facilitate the calculation of the hindsight policy.
We compare BSCA to the best static configuration, and state-
of-the-art reactive policies: (i) the multi-LRU policy proposed
in [33] where a request is routed to a given cache (e.g., the
closest) which is updated based on the LRU rule; and (ii) and
the q-LRU policy with the “lazy” rule [34] for q = 1, which
works as the multi-LRU but updates the cache only if the file
is not in any other reachable cache.

Fig. 6(b) presents the results for the highly asymmetric (in
terms of utility) network of Fig. 6(a), while Fig. 6(c) presents
a similar experiment for a larger network with symmetric
utilities. Please note that here, unlike Fig. 4, we calculate the
optimal static configuration for the period up to each slot t
and compare its performance with that of BSCA – this allows
us to examine how the quantity RT /T evolves with T , and
observe in practice how BSCA learns. Indeed, we see that
BSCA converges to the best static hindsight policy in both
cases, which verifies that it is a universal no-regret policy. In
other words, BSCA gradually learns which files are popular
and increases their placement at the high utility caches. For
the first experiment in Fig. 6(b), the second best policy is
lazy-LRU which is outperformed by BSCA by 45.8%. On
the other hand, both lazy-LRU and mLRU have comparable
performance for the experiment in Fig. 6(c) and, interestingly,
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Fig. 6. BSCA for a bipartite network. (a) User 2 is connected to caches j = 1, 2; a request rn,2t arrives, and serving it from cache 1 yields wn,2,1. (b)
The average utility of BSCA and competitor policies for this network. (c) New comparison for a network with J = 6 caches, I = 14 locations, and utilities
that are uniformly random in [0, 100].

BSCA has a lower performance for the first 1000 slots but
quickly adapts to the requests and outperforms its competitors.

X. CONCLUSIONS

The seminal femtocaching proposal [2] initiated a fasci-
nating research thread on wireless edge caching that extends
beyond content delivery, to deployment of services and to
edge computing. One limitation of this idea is that it presumes
the existence of a static and known popularity model for the
requests. Previously proposed solutions either try to estimate
the (assumed) fixed popularity or fit intricate non-stationary
models to data. Taking a fundamentally different path, we
design here an online network mechanism that adapts the
caching and routing decisions to any request pattern, even one
that is designed by an adversary, and converges to the optimal
static performance. To achieve this, we employed online
convex optimization and developed a learning algorithm that
is simple, fast, and fully-embedded to the network operation.
The regret of our policy is sublinear on time and independent
of the content catalog size. The algorithm achieves the best
possible regret for the single-cache case, and we have also
established a link between this OCO-based policy and the clas-
sical LRU/LFU policies. Trace-based experiments demonstrate
the effectiveness of our approach in different cases.

This work brings together the theory of online convex opti-
mization and (wireless or wired) caching networks, and paves
the road for the principled design of dynamic caching and
routing policies. Exciting future research directions include,
among others, the extension of these ideas to non-bipartite
graphs, to systems that allow dynamic storage placement
or cache rescaling, and to incorporate resource allocation
decisions such as transmission power or link scheduling.
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