
1

Edge Federation: Towards an Integrated Service
Provisioning Model

Xiaofeng Cao, Student Member, IEEE, Guoming Tang, Member, IEEE, Deke Guo, Member, IEEE, ACM, Yan Li,
and Weiming Zhang

Abstract—Edge computing is a promising computing paradigm
by pushing the cloud service to the network edge. To this end,
edge infrastructure providers (EIPs) need to bring computation
and storage resources to the network edge and allow edge service
providers (ESPs) to provision latency-critical services for end
users. Currently, EIPs prefer to establish a series of private edge-
computing environments to serve specific requirements of users.
This kind of resource provisioning mechanism severely limits the
development and spread of edge computing in serving diverse
user requirements. In this paper, we propose an integrated
resource provisioning model, named edge federation, to seamlessly
realize the resource cooperation and service provisioning across
standalone edge computing providers and clouds. To efficiently
schedule and utilize the resources across multiple EIPs, we
systematically characterize the provisioning process as a large-
scale linear programming (LP) problem and transform it into an
easily solved form. Accordingly, we design a dynamic algorithm
to tackle the varying service demands from users. We conduct
extensive experiments over the base station networks in Toronto.
Compared with the fixed contract model and multihoming model,
edge federation can reduce the overall costs of EIPs by 23.3%
to 24.5%, and 15.5% to 16.3%, respectively.

Index Terms—Edge federation, resource integration, optimal
service provisioning solution.

I. INTRODUCTION

The emergence of edge computing offers a new paradigm
to deliver computation-intensive and latency-critical services
to traditional cloud users [1], [2]. The basic idea is to push
the cloud service to the network edge (e.g., access points,
base stations, or central offices), which is closer to users than
the cloud. In this way, users can still exploit the power of
cloud computing, while no longer suffering from network
congestion and long latency [3]. The prosperous development
of edge computing offers an excellent opportunity for service
providers, where they can rent resources from edge infrastruc-
ture providers (EIPs) to host their services. An EIP usually has
to deploy and maintain a set of distributed edge nodes at the
network edge, where an edge node can consist of multiple edge
servers and be configured with certain computation and storage
resources. As the owners of edge nodes, EIPs are responsible
for service provisioning and resource management.

Nevertheless, compared with the existing cloud computing
solution, edge computing is still constrained in the resource

X. Cao, D. Guo, Y. Li, W. Zhang are with the Science and Technol-
ogy on Information Systems Engineering Laboratory, National University
of Defense Technology, Changsha, Hunan, 410073, P. R. China (e-mail:
{caoxiaofeng10, dekeguo, liyan10, wmzhang}@nudt.edu.cn). G. Tang is with
the Peng Cheng Laboratory, Shenzhen, Guangdong 518055, P. R. China. (e-
mail: tanggm@pcl.ac.cn).
Corresponding author: Deke Guo.

capacity and implemented with high costs in maintaining edge
infrastructure widely [3], [4]. The main reason is that EIPs tend
to establish a series of private edge-computing environments
to serve specific requirements of users from the aspect of
their own viewpoint [5]. That is, each EIP only manages and
uses its own resources; hence, a standalone edge-computing
environment is usually resource-constrained, especially in the
scenario of serving the increasing amount of users. When a
large number of services need to be deployed in broad geo-
graphic areas, the involved EIPs have to deploy and maintain
more edge nodes for service coverage potentially leading to a
huge cost. On the other hand, however, different EIPs may
build edge nodes in the same place independently without
any cooperation, causing unbalanced and under-utilized edge
resources. To make matters worse, since the individual EIP has
limited information about the whole edge-computing environ-
ment, it is tough to make a global optimization for efficiently
delivering various services to different users. Consequently,
the inefficient resource management and service deployment
paradigm could severely limit the development of a healthy
edge computing ecosystem.

With the above challenges in mind, this paper presents
edge federation, an integrated service provisioning model for
the edge computing paradigm. It aims to establish a cost-
efficient platform for EIPs and offer end users and ESPs
a transparent resource management scheme by seamlessly
integrating individual EIPs as well as clouds.

Private or Public: In the horizontal dimension, EIPs
independently construct and maintain their private resource
infrastructures, which restricts the quick development and
spread of edge computing. In the existing model, an EIP
usually has a limited amount of edge servers, and hence
cannot cover broad areas and may cause long service delivery
latency to those users outside the covered areas. This would
severely limit the market size of each EIP. A straightforward
solution for the individual EIP is to build edge servers at more
locations. This method, however, would cause a large amount
of duplicated edge nodes across EIPs in many sites, leading to
the increased capital and operational expenditure. Therefore,
it is sensible to enable interoperability and resource sharing
across EIPs.

Edge or Cloud: In the vertical dimension, cloud computing
and edge computing both have their own advantages, but
neither of them can meet the high latency requirement (a.k.a.,
low time delay) of services and low-cost resource provision
simultaneously. Although edge computing can achieve much
lower latency in service delivery than cloud computing, it

ar
X

iv
:1

90
2.

09
05

5v
3

 [
cs

.N
I]

 2
7

M
ar

 2
02

0

2

also incurs a high deployment cost of new computation and
storage infrastructures [6], [7]. On the contrary, the low cost
and sufficient resources are precisely the advantages of cloud
computing. Moreover, as each edge node has a limited range
of serving areas, the cloud could be an essential complement
to support end users in the areas not served by edge nodes [8].
In summary, edge computing and cloud computing can reason-
ably complement each other, with an effective mechanism to
cooperate.

The edge federation proposed in this paper brings a new
service-provisioning model for the next generation edge-
computing network, which could be a triple-win solution for
EIPs, ESPs and end users. For EIPs, more effective service de-
ployment and delivery can be achieved by fewer infrastructure
constructions, resulting in higher revenue. For ESPs, due to the
shared resource pool in edge federation, the market size could
be easier to expand, and the reliability of service delivery can
be considerably enhanced. To this end, end users can enjoy
an improved service experience with lower latency. To realize
edge federation, we are facing three critical challenges. First,
an edge-computing network is very complex, which consists
of a series of EIPs, diverse services, and heterogeneous end
devices. The edge federation designed in this paper should
realize the targets of scalability, efficiency, and low-latency.
Second, the edge federation should effectively model the joint
service provisioning process across heterogeneous edge nodes,
and across edge and cloud. Third, the service provisioning
problem under the edge federation involves a large number
of optimization variables and exhibits very high computation
complexity. An efficient solution with affordable complexity
is needed to deal with the large-scale optimization problem.

We address all the above challenges in this work and make
the following major contributions:

• We design the edge federation, an integrated edge com-
puting model, to realize the transparent service provi-
sioning across independent EIPs and the cloud. The edge
federation model is designed to improve the QoE of end
users and save the cost of EIPs.

• We characterize the service provisioning process un-
der our edge federation as a linear programming (LP)
optimization model and propose a dimension-shrinking
method to reformulate it into an easily solved model.
Accordingly, we develop a service provisioning algorithm
SEE.

• We evaluate the proposed solution for edge federation
under the base station network of Toronto city with the
real-world trace. Compared with the fixed contract model
and multihoming model, edge federation can reduce the
overall cost of EIPs by 23.3% to 24.5%, and 15.5% to
16.3%, respectively.

The rest of the paper is organized as follows. We introduce
the background and the related challenges of the edge feder-
ation in Sec. II. Then, the detailed architecture is illustrated,
and the contributions are also highlighted in Sec. III. Sec. IV
formulates the cost minimization problem for EIPs with hard
latency constraints. In Sec. V, the problem is transformed with
the dimension-shrinking method and the dynamic provisioning

algorithm is developed. We evaluate the performance of our
solution using real-world network service data and validate the
effectiveness of the edge federation model in Sec. VI. Sec. VII
gives the discussion and future work. Sec. VIII reviews the
related work and the state-of-the-art. Sec. IX concludes the
paper.

II. EDGE FEDERATION VS. CLOUD FEDERATION

Edge federation is the platform that spans the continuum
of resources in different EIPs, from cloud to the edge. In a
cross-EIP way, edge federation can bring the customized re-
sources (e.g., computation, storage, and networking resources)
for ESPs and end users in a broad, fast, and reliable geo-
distributed manner.

A similar idea to the edge federation is the cross-cloud
cooperation architecture in previous works. Such works at-
tempted to establish the integrated cloud resources provision-
ing architecture, named as Joint Cloud [5], Hybrid Cloud [9],
etc. The cloud federation tries to establish the environment
that combines the public and the private resources, which can
enable infrastructure providers scale resources for handling
short-term spikes (e.g., Black Friday in the Amazon, Single’s
day in the Taobao, etc.) in demand [5]. It can be regarded as
the horizontal integration mentioned before. Some works also
considered vertical integration in the field of content caching
or computation offloading. Most of the works constructed the
cloud-assisted [8] or edge-assisted [10] network structures,
both of which aimed to solve two main problems: the limita-
tion of the edge resource capacity and the long latency caused
by the backhaul network from users to the cloud.

Compared with the aforementioned works, edge federa-
tion is much different and the construction is even more
challenging. The resource integration in the edge federation
could be more complicated and urgent, mainly due to three
aspects of the edge computing: (i) the highly distributed,
limited and heterogeneous edge resources, (ii) the high cost of
edge resources, and (iii) the latency-critical and computation-
intensive edge services. Based on these characteristics, we are
facing several particular challenges in edge federation.

1) The trade-off between the cloud and the edge: As de-
scribed in the previous section, the edge can achieve the
lower service latency but with higher cost. In contrast,
the cloud may incur a lower cost but with higher latency.
Neither of them can meet the high latency requirement
of services and low-cost resource provision simultane-
ously. Thus, the goal of the edge federation is trying to
strike a balance between the latency and the cost, either
the trade-off between the cloud and the edge. How to
use the least cost to fulfill the service requirements and
achieve the best QoS is the most critical problem in the
edge federation.

2) The optimization of resource allocation on distributed
and limited edge resources: Compared with cloud nodes,
edge nodes are much more scattered in geography with a
limited amount of resources. Due to such the limitation,
EIPs have to be careful when they provide the resource
to services. This severely restricts their capacity in the

3

size of the serving area and service demands. Thus,
the cooperation of different EIPs and the optimization
of resource provision in the edge federation are more
urgent than those in the cloud computing scenario. The
challenge is how to maximize the resource provisioning
efficiency in the highly distributed and limited edge
resources.

3) The contradiction between the computation-intensive
edge services and the limited edge resources: The re-
sources in edge nodes are limited. Worse still, most
of the emerging services in the edge scenario have
high computation and strict latency requirements (e.g.,
self-driving services, virtual reality, etc.) which require
significant computation and storage resources. This
dilemma makes the edge more likely to get into the
“Spike” trouble (i.e., overload trouble) and suffer from
resource shortages.

For these challenges, an efficient service provisioning
method is needed. In the following section, we first design
the architecture of the edge federation, under which the
corresponding service provisioning method can be developed.

III. THE ARCHITECTURE OF EDGE FEDERATION

We start with an initial example and an overview of the
edge federation and then present the detailed architecture of
the edge federation.

A. Rationale

As shown in the left of Fig. 1, existing network environment
mainly has three layers: (i) the user layer consists of a
large amount of heterogeneous smart devices (e.g., mobile
phones, vehicles, etc.), which dynamically request for high-
performance services from ESPs; (ii) the edge layer is formed
by EIPs, which are responsible for resource provisioning for
ESPs. EIPs provide computation and storage resources, as
well as techniques (e.g., NFV and SDN) and platforms (e.g.,
Amazon Web Services, Microsoft Azure ,etc.); (iii) the cloud
layer provides similar types but a larger amount of resources to
end users. In the current network environment, ESPs usually
sign contracts and package the content of their services to
EIPs. An EIP usually manages its own resources and deliver
the contracted services to corresponding end users.

Current service-provisioning models for individual EIP can
be inefficient and costly. From the perspective of resources,
EIPs independently deploy edge nodes at the edge of the
network, where each edge node consisting of multiple edge
servers provides computation and storage resources for accom-
modating diverse services. The capacity and the serving range
of an individual edge node are much smaller than those of the
cloud. Moreover, EIPs independently manage their resources
without any cooperation in the current edge-computing model.
Consequently, such a mechanism fails to achieve globally
optimal scheduling of resources and services, hence leading
to the resource overloaded or under-utilization situation and
even resulting in a low QoS. From the perspective of cost,
each EIP tends to build more edge nodes in new locations
to increase the amount of resources and expand the service

…… ……

Current Edge FederationVS

Users

Edge

Cloud

Upstream and downstream
in edge federation

Upstream and downstream
across layers

Edge
Federation

EIP1 EIP2 EIP3 Cloud

Fig. 1. The comparison between the current edge computing paradigm and
the edge federation. The edge federation consortium can realize a transparent
resource management mechanism over EIPs and cloud.

coverage. Multiple EIPs even build edge nodes in the same
location for the market competition. Such a method would
cause a huge overhead (e.g., the expenditure of infrastructure
construction, maintenance cost, energy cost, etc.) and severe
resource waste. Eventually, such heavy burdens will be taken
by either EIPs, ESPs, or end users in this triple-lose situation.

To overcome the above disadvantages, we propose edge fed-
eration, a transparent service-provisioning model in the multi-
EIP environment. It involves two-dimension integration for the
service deployment, including the integration between edge
and cloud, and the seamless cooperation among heterogeneous
edge nodes of multiple EIPs. The basic idea of edge federation
is shown on the right side of Fig. 1, where each EIP and
cloud is a member of edge federation, and the edge nodes and
cloud nodes can share resources and interact with each other,
where they are not necessary to be genuinely interconnected.
They only disclose detailed information to the authoritative
and trusted consortium, which is the core of edge federation.

B. Architecture of Edge Federation

As shown in Fig. 2, edge federation consortium mainly
consists of three components, including the traffic analyzer,
the central optimizer, and the dispatcher.

Traffic analyzer is a module that continuously analyzes
the traffic pattern based on various service requests from
end users. The traffic patterns can accurately characterize the
service demands temporally and spatially and will be served
as an essential input to the central optimizer. Considering
that many proposals have devoted to traffic prediction and
modeling, we use the existing methods1 (e.g., ARIMA [11])
in our traffic analyzer to predict the traffic. A comprehensive
study of the traffic prediction and modeling is out of the scope
of this paper.

Central optimizer is the brain of edge federation consortium.
It computes the traffic redirection schedule based on the
obtained traffic pattern and the temporal-spatio information
of end users (e.g., location, time, type of requesting service).
Based on the schedule, EIPs deploy the corresponding re-

1The short-term prediction (e.g., conventional methods: ARIMA [11], etc.,
computation intelligence methods with off-line training and on-line prediction:
LSTM [12] etc..) has been intensely developed and proven to be reliable
with high prediction accuracy. They can provide proper input to the further
optimization.

4

ESP-1

ESP-2 Central
optimizer

Traffic analyser

Dispatcher

Traffic pattern

End User

Routing

Computing

Caching

Server-1

Routing

Computing

Caching

Server-2

Edge

Cloud

Schedule

Consortium

Contract relationship Service request
and redirection Service delivery

Fig. 2. The architecture of edge federation.

quested services at the edge and cloud, and the dispatcher
will redirect the service request accordingly.

Dispatcher redirects users’ service requests to correct edge
or cloud servers. Such redirection can be performed by the
existing routing mechanisms (DNS CNAME record, A record).
To ease the understanding, we present a detailed example of
service redirection based on the DNS technique in Fig. 3. The
end user at a specific area requests a video of YouTube. Differ-
ent from the traditional mechanism, the EIP DNS modifies its
CNAME record to point to the domain of a federation DNS
instead of the contracted EIP DNS domain. Then, based on the
CNAME record from the redirection schedule, the consortium
dispatcher makes the decision to redirect the user’s request to
the optimal edge server. Thus the high-performance service
can be achieved.

C. Benefits of Edge Federation

The business relationship: Traditionally, ESPs will run
services on the infrastructure of EIPs with the pay-as-you-
go function. Different EIPs will manage their resources and
deliver services to the end user independently. The difference
between the money ESPs paid to EIPs, and the operation cost
(e.g., storage cost, computation cost, communication cost, etc.)
of EIPs is the revenue of the EIP. In the edge federation, ESPs
will also run services on the EIP and pay the corresponding
fee to the EIP. However, these services will be deployed by the
edge federation with a global view of the unified resource pool,
which consists of cloud nodes and edge nodes from different
EIPs. Then, the node will deliver the corresponding service to
the end user.

1) For EIPs: EIPs in the conventional model can only
manage the corresponding service delivery on their edge nodes
in limited areas. Compared with the traditional method, edge
federation makes it possible that EIPs can operate the service
more flexible among the unified resource pool. Such the
method can help EIPs deliver the service to end users with
a shorter distance, less infrastructure construction, and thus
enable a more cost-efficient service deployment and delivery
with reasonable edge cooperation and cloud assist. Therefore,
the operation cost of the EIP can be reduced, and the revenue
of the EIP can be improved.

2) For ESPs: In the existing method, due to the limited
coverage area of a single EIP, the corresponding contracted

ESP DNS

Federation
DNS

IBM DNS

Edge Servers

Local DNS
Server

(1)

(2)

(3) (4)

(6)

(5)

(7)

End User
(1) Resolve www.youtube.com
(2) CNAME: direction.edge_federation.net
(3) Resolve direction.edge_federation.net
(4) CNAME: server.IBMedge.com

(5) Resolve server.IBMedge.com
(6) A Record: IP address of chosen edge server
(7) Access https://www.youtube.com/watch?v=LAr6oAKieHk

Fig. 3. An example of request direction.

ESP can only spread its service in a considerably small
region, which means that the ESP has a limited market size.
Fortunately, due to the wide and densely distributed edge
nodes of different EIPs in the unified resource pool, the above
dilemma will not exist in the edge federation. Moreover, with
the same unit price, ESPs will get a higher QoS.

3) For end users: Edge federation makes ESPs run their
services on any edge nodes of multiple EIPs. These edge nodes
can be distributed in a variety of geographical locations. As a
result, end users can potentially get the services from closer
nodes with lower latency. Moreover, the reliability of service
delivery can also be considerably enhanced.

Note that edge federation is a trusted consortium, which is
authorized to control the resources of EIPs. For the existing
infrastructures, edge federation mainly aims to union the in-
frastructures of different EIPs to improve service performance
via optimized resource management and service deployment.
For further business development and extension, edge feder-
ation could be a joint-stock company, which shall undertake
tasks of not only global resource management but also the
infrastructure construction. Thus, the infrastructure can be the
shared facility instead of belonging to a certain EIP and is only
managed by the edge federation. For the detailed design of
cooperation paradigm or models cross different EIPs, however,
it falls into the field of Network Economics and is beyond the
scope of this paper. As to the privacy issue raised by user data
sharing among EIPs, previous work can be found in tackling it,
e.g., private information retrieve [13] and data encryption [14].
In addition, previous works also demonstrated that data privacy
could be guaranteed under the cloud computing and big data
scenario, even the infrastructure provider is unrelable [15].

IV. OPTIMAL SERVICE PROVISIONING IN EDGE
FEDERATION

After introducing the architecture of edge federation, in
this section, we present the service provisioning process in
detail. We first model the dynamic service demands, based on
which the two-phase resource allocation process is formulated
from the vertical and horizontal dimensions. Then, in order
to guarantee the service performance, we get the latency
constraints and formulate the cost minimization problem of
edge federation.

5

TABLE I
MAIN NOTATIONS

Notation Description
T A time period of n consecutive time slots.
U Set of end users.
P Set of ESPs.
A Set of cloud nodes a.
E Set of edge nodes e in EIPs.
αe
u,p(t) Fraction of storage demands of service p from end user u assigned to edge node e at time slot t.
βe
u,p(t) Fraction of computation demands of service p from end user u assigned to edge node e at time slot t.
θS,au,p(t) Fraction of storage demands of service p from end user u assigned to cloud a at time slot t.
θC,a
u,p (t) Fraction of computation demands of service p from end user u assigned to cloud a at time slot t.
Su,p(t) Amount of storage demands of service p from end user u at time slot t before computation.
S

′
u,p(t) Amount of delivery contents of service p from end user u at time t after computation.
Cu,p(t) Amount of computation demands of service p from end user u at time slot t.
Sa Storage capacity of cloud node a.
Ca Computation capacity of cloud node a.
Se Storage capacity of edge node e.
Ce Computation capacity of edge node e.
SE(t) Total amount of storage demands deployed on edge at time slot t.
CE(t) Total amount of computation demands deployed on edge at time slot t.
lu,p(t) Service latency of service p for end user u at time slot t.
hau Delivery distance between cloud server a and end user u.
heu Delivery distance between edge server e and end user u.
lp Latency requirement of service p.
mu,p(t) Service satisfaction parameter indicates whether the service meets the latency requirement.
lsatp Satisfaction ratio of specific service p.

A. Modeling the Service Provisioning

1) Network Environment and Dynamic Service Demands
For an edge-computing network, there are various edge

nodes, each of which may consist of multiple edge servers. We
assume that end users are geographically distributed according
to the locations of edge nodes. Generally, there are four roles
in the entire edge-computing network. Define U as the set of
all end users, A as the set of cloud nodes, E as the set of edge
nodes, and P as the set of edge services, respectively. Let u ∈
U represents a specific user, a ∈ A represents a specific cloud
node, e ∈ E represents a specific edge node, while p ∈ P
represents a specific edge service. For simplicity, we assume
that the topology of the designed edge federation is known in
advance. The main notations are shown in Table. I.

The end users have time-varying service demands toward
the storage and computations. The service demands within a
time period T could be divided into n smaller equal time
slots, e.g., 1 hour. Let the service demands p from end user
u at time slot t be Ku,p(t) = {Su,p(t), S

′

u,p(t), Cu,p(t)}
(∀t ∈ T, t = 1, 2, . . . , n). Here, Su,p(t) and S

′

u,p(t) represent
the amount of content before and after processing, respectively,
while Cu,p(t) denotes the computation demands of accom-
plishing the service. These terms can be captured as follows:∑

u∈U
Su,p(t) = |U | · qp(t),∀p ∈ P, (1)

S
′

u,p(t) = Su,p(t) · ks,∀u ∈ U,∀p ∈ P,∀t ∈ T, (2)

Cu,p(t) = Su,p(t) · kc,∀u ∈ U,∀p ∈ P,∀t ∈ T, (3)

where |U | refers to the population of the target location area,
qp(t) is the normalized traffic profile at time slot t whose value
is related to a specified service p. ks is the coefficient profile
that describes the size of the content after processing, and kc is

the coefficient profile that describes the required computation
resource for accomplishing the corresponding task. The traffic
demands of the service p in the related area around edge server
e at time t can be also captured by:

dep(t) = |U |e · qp(t),∀p ∈ P, (4)

where |U |e represents the population of specified edge server
location. As the service demands of users are highly dynamic,
a tailored time slot is necessary to the cost-efficiency schedule
of the edge federation. Our implementation in later experi-
ments shows that the time slot with a length of 1 hour is good
enough to yield the better result than the existing method. We
also give a discussion on how to choose the suitable length of
the time slot in Sec. VII.

2) Two-phase Resource Allocation
Vertically, we assume that each EIP will resolves part or

all the storage demands Su,p(t) and computation demands
Cu.p(t) by cloud nodes. Two variables θS,au,p(t) and θC,au,p (t)
represent the fraction of storage and computation demands
supplied by cloud node a at time slot t, respectively. The other
(1 −

∑
a∈A

θS,au,p(t)) storage and (1 −
∑
a∈A

θC,au,p (t)) computation

demands will be served by the edge nodes. The values of these
fractions fall in the range of [0, 1]:

0 ≤ θS,au,p(t) ≤ 1,∀u ∈ U,∀p ∈ P,∀t ∈ T, (5)

0 ≤ θC,au,p (t) ≤ 1,∀u ∈ U,∀p ∈ P,∀t ∈ T. (6)

At any time slot t, the storage and computation demand
should not exceed the capacity of the involved cloud nodes
and edge nodes. Thus, we have the following two constraints:∑

u∈U

∑
p∈P

Su,p(t)θ
S,a
u,p(t) ≤ Sa,∀t ∈ T, (7)

∑
u∈U

∑
p∈P

Cu,p(t)θ
C,a
u,p (t) ≤ Ca,∀t ∈ T, (8)

6

where Sa and Ca are the storage and computation capacity
of a specific cloud node a. Given the dynamic demands from
each location area of end users, we assume that the least cloud
capacities should be able to satisfy the peak service demands,
thus: ∑

a∈A
Sa = max

t∈T
{

∑
u∈U,p∈P,a∈A

Su,p(t)θ
S,a
u,p(t)}, (9)

∑
a∈A

Ca = max
t∈T
{

∑
u∈U,p∈P,a∈A

Cu,p(t)θ
C,a
u,p (t)}. (10)

Noting that the service demands of end users may change
over time, so the edge federation needs to manage available
resources hourly. Compared to accessing an edge node, the
latency of accessing a cloud node is higher, however, with
lower resource cost. Therefore, to achieve a trade-off between
the edge and cloud (i.e., the cost and latency), we need to
dynamically find the reasonable variables θS,au,p(t) and θC,au,p (t)
by the management of the edge federation.

Horizontally, the amount of storage and computation de-
mands supplied by edge nodes are:

SE(t) =
∑
u∈U

∑
p∈P

Su,p(t)(1−
∑
a∈A

θS,au,p(t)), (11)

CE(t) =
∑
u∈U

∑
p∈P

Cu,p(t)(1−
∑
a∈A

θC,au,p (t)). (12)

We use two variables αeu,p(t) and βeu,p(t) to denote the
fraction of storage demands Su,p(t) and computation demands
Cu,p(t) supplied by edge node e at time slot t, respectively.
Thus, we have the following constraints:

0 ≤ αeu,p(t) ≤ 1,∀u ∈ U,∀p ∈ P,∀e ∈ E,∀t ∈ T, (13)

0 ≤ βeu,p(t) ≤ 1,∀u ∈ U,∀p ∈ P,∀e ∈ E,∀t ∈ T. (14)

Then, we define the storage and computation capacity of
the edge node e as Se and Ce, respectively. They represent
the maximum demands the edge node can serve in a single
time slot. Then, we have the following constraints:∑

u∈U

∑
p∈P

Su,p(t)α
e
u,p(t) ≤ Se,∀e ∈ E,∀t ∈ T, (15)

∑
u∈U

∑
p∈P

Cu,p(t)β
e
u,p(t) ≤ Ce,∀e ∈ E,∀t ∈ T. (16)

Formulas (15) and (16) mean that the storage and computa-
tion demands assigned to the edge node e should not exceed
its capacity at any time slot. Ideally, those demands from all
users should be completely satisfied. Thus, we have∑

e∈E
αeu,p(t) +

∑
a∈A

θS,au,p(t) = 1,∀u ∈ U,∀p ∈ P,∀t ∈ T,

(17)∑
e∈E

βeu,p(t) +
∑
u∈U

θC,au,p (t) = 1,∀u ∈ U,∀p ∈ P,∀t ∈ T.

(18)
3) Cost Minimization for the Edge Federation
To serve the demands of a set of users, the edge federation

treats the minimization of the overall cost (i.e., maximization
of revenue) of EIPs as an important optimization goal. Under

the edge-computing scenario, the overall cost, V , can be
divided into three parts, including the computation cost, the
storage cost, and the communication cost.

Remark 1: For the cost of EIPs, it could be roughly
divided into two categories: the maintenance cost (the cost
of servers, networking and power draw) and the deployment
cost (the cost of infrastructures) [16], [17]. The maintenance
cost varies temporally and could be possibly affected by many
environmental factors in the edge computing scenario, such
as the number of service demands and service requirements.
The deployment cost, however, is one-shot cost, which makes
no difference once the infrastructure has deployed. Thus, in
this work, we mainly considered the maintenance cost and did
not consider the (fixed) deployment cost in the long-term cost
minimization problem. Moreover, the related power or energy
cost will be properly “absorbed” in the components modeled
in the service data storage, service computation, and service
delivery process.

Therefore, during a time period T , the servers’ cost on cloud
nodes can be written as:

V cloud = V cloudS + V cloudC + V cloudM

=
∑

u∈U,p∈P,a∈A,t∈T
Su,p(t)θ

S,a
u,p(t)VS

+
∑

u∈U,p∈P,a∈A,t∈T
Cu,p(t)θ

C,a
u,p (t)VC

+
∑

u∈U,p∈P,a∈A,t∈T
(Su,p(t) + S

′

u,p(t))θ
S,a
u,p(t)VM ,

(19)

where V cloudS , V cloudC and V cloudM are the cost of storage, the
cost of computation and the cost of communication in cloud
nodes, respectively. VS , VC , and VM are the cost of per storage
unit, the cost of per computation unit and the cost of per
communication unit, respectively. The servers’ cost on edge
nodes is:

V edge = V edgeS + V edgeC + V edgeM

=
∑

u∈U,p∈P,e∈E,t∈T
Su,p(t)α

e
u,p(t)V

e
S

+
∑

u∈U,p∈P,e∈E,t∈T
Cu,p(t)β

e
u,p(t)V

e
C

+
∑

u∈U,p∈P,e∈E,t∈T
(Su,p(t) + S

′

u,p(t))α
e
u,p(t)V

e
M ,

(20)

where V edgeS , V edgeC , V edgeM are the cost of storage, the cost of
computation and the cost of communication on edge nodes,
respectively. V eS , V eC and V eM are the cost per storage unit, the
cost per computation unit and the cost per communication unit
of a specific edge node e, respectively.

Remark 2: The resource price is relatively stable in the cur-
rent cloud computing market. Thus, we set all cloud nodes with
the same storage, computation and communication cost per
unit. However, for the edge computing, the resource market is
still in an initial and unstable stage, and the resource price of
an edge node resources in each EIP is quite different [6], [7].

7

Therefore, the edge nodes of different EIPs will have different
storage, computation, and communication price in our edge
federation model.

Then the total cost of all involved edge servers and cloud
servers in an edge federation can be written as:

V = V cloud + V edge. (21)

The optimization goal is to minimize V over a certain time
period. It is worth note that the final optimization result should
be subjected to the strict service latency requirements.

B. Guaranteeing the Service Performance

1) Modeling the Service Latency
Latency is the key factor affecting service performance and

can be roughly divided into two components, including com-
puting latency and content delivery latency. The computing
latency is the time consumption of completing the computation
process of services. For an end user u, the computing latency
of the service p on the cloud and edge servers could be
respectively measured by:

lcloud,Cu,p (t) =
∑
a∈A

Cu,p(t)θ
C,a
u,p (t)

rp
Ca

,∀u ∈ U,∀p ∈ P,∀t ∈ T,

(22)
ledge,Cu,p (t) =

∑
e∈E

Cu,p(t)β
e
u,p(t)

rp
Ce
,∀u ∈ U,∀p ∈ P,∀t ∈ T,

(23)
where the parameter rp represents required the computation
resource of service p by the end user u and is related to
the service category (e.g., social networking, gaming, etc.).
Note that, compared to the extra-large computation resources
provided by the cloud, the computation resources offered by
the edge are limited. Thus, we have Ca � Ce in general.

The delivery latency could be divided into the uploading
delivery latency and the downloading delivery latency. Users
usually access services through a one-hop transmission. Thus,
we use the delivery distance instead of the hop distance to
estimate the delivery latency in this model. We use hau and
heu to denote the delivery distance from cloud node a and
edge node e to end user u, respectively. First, the service
data should be transferred from the user to the server. The
uploading delivery latency in the cloud and the edge at time
slot t can be estimated as follows, respectively:

lcloud,upu,p (t) =
∑
a∈A

Su,p(t)θ
S,a
u,p(t)h

a
u,∀u ∈ U,∀p ∈ P,∀t ∈ T,

(24)
ledge,upu,p (t) =

∑
e∈E

Su,p(t)α
e
u,p(t)h

e
u,∀u ∈ U,∀p ∈ P,∀t ∈ T.

(25)
Then, after processing in the server, the processed service

data will be returned to the users. Thus, the downloading
delivery latency in the cloud and the edge at time slot t can
be desribed as:

lcloud,dou,p (t) =
∑
a∈A

S
′

u,p(t)θ
S,a
u,p(t)h

a
u,∀u ∈ U,∀p ∈ P,∀t ∈ T,

(26)

ledge,dou,p (t) =
∑
e∈E

S
′

u,p(t)α
e
u,p(t)h

e
u,∀u ∈ U,∀p ∈ P,∀t ∈ T.

(27)
2) The Constraint on the Service Latency
The service demands of services usually vary temporally

and spatially for heterogeneous end users. Hence, we should
make sure that the required performance of services (e.g.,
latency requirement) can be guaranteed by the schedule of
edge federation. Let lp denote the required latency of accessing
service p. In any time slot t, only when the actual latency
does not exceed lp, the service can be regarded as satisfied in
that time slot. Therefore, the relationship between the actual
latency and required latency can be defined as:

lu,p(t) = lcloudu,p (t) + ledgeu,p (t)

= [lcloud,Su,p (t) + lcloud,Cu,p (t)] + [ledge,Su,p (t) + ledge,Cu,p (t)]

≤ lp,
(28)

where lu,p(t) denotes the actual latency of service p from end
user u at time slot t. Then, we use a satisfaction parameter
mu,p(t) to represent whether a service demand of the user u
is guaranteed, which can be defined as:

mu,p(t) =

{
1 , lu,p(t) ≤ lp,
0 , lu,p(t) > lp.

(29)

Moreover, edge federation needs to keep the corresponding
services at a high-level performance in the business environ-
ment to attract more users and improve revenues. The overall
performance of service p in edge federation can be measured
by the satisfaction ratio rsatp , which can be written as:

rsatp =

∑
t∈T

∑
u∈U

Su,p(t)mu,p(t)∑
t∈T

∑
u∈U

Su,p(t)
. (30)

According to the existing industry standards, the satisfaction
ratio should reach following range:

l1 ≤ rsatp ≤ l2, (31)

where l2 could be 100%, and l1 is usually larger than 99%.
The satisfaction ratio of service p is evaluated by the

satisfied service demands of each user in every time slot.
Thus, we accumulate those service demands, whose latency
requirements have been satisfied, to calculate the satisfaction
ratio of a specific service. Note that calculating the service
satisfaction with a global measure is inaccurate, such as the
average service latency, due to the potential uneven distribution
(e.g., a bimodal distribution) of the service latency for each
user.

Therefore, under the latency constraints, the problem that
the central optimizer needs to solve for the edge federation
can be formulated as the following optimization problem:

min
{θS,a

u,p(t),θ
C,a
u,p (t),αe

u,p(t),β
e
u,p(t)}

V (32a)

s.t. (5) ∼ (8), (13) ∼ (18) and (31). (32b)

8

By solving this optimization problem, we can find the
optimal resource assignment schedules (e.g. optimal caching
and computing variables) of edge federation at every time slot.
Thus, edge federation can achieve following superiorities:

Scalability: although the edge resources of EIPs are limited,
the cloud resource could be the important supplement (verti-
cal integration) and enable EIPs to easily serve the service
demands with elastic resource configuration. For instance, if
there are huge-amount service demands beyond the capacity
of edge resources, edge federation can improve θS,au,p(t) and
θC,au,p (t) to utilize more cloud resources. Then, as pointed
in (17) and (18), the αeu,p(t) and βeu,p(t) will be reduced.
With such the adjustment, EIPs could enhance their resource
capacities and push services with low latency requirements to
the cloud and thus leave more edge resources for the coming
services with high latency requirements.

Efficiency: as pointed in (28) to (31), the service latency
requirements should be guaranteed in the service provisioning
process. Therefore, with the latency constraints, the central
optimizer of edge federation gives the optimal service pro-
visioning schedule to minimize the cost of EIPs. Note that,
with the target of minimizing the cost of EIPs, the service
latency is unnecessary as low as possible, but rather to control
the latency (i.e., the variables θS,au,p(t), θ

C,a
u,p (t), α

e
u,p(t) and

βeu,p(t)) just satisfy the requirement, and then EIPs could use
the cheap cloud resources as more as possible to avoid the high
edge overhead. Therefore, edge federation can always achieve
efficient and qualified service delivery under different service
requirements.

Low Latency: due to the horizontal resource integration,
edge federation could have more edge nodes to deploy service
in a wide geographical area. Edge federation is able to place
services closer (e.g., the smaller heu in (25) and (27)) to the
end user by adjusting the edge resource variables (i.e., αeu,p(t)
and βeu,p(t)). Although in this paper, we mainly focus on the
cost minimization problem instead of minimizing the service
latency, the above operation could possibly make better use of
the edge resources and enable the lower service latency (i.e.,
the smaller accumulated delivery distance

∑
e∈E

heu in (25) and

(27)).

V. PROBLEM TRANSFORMATION AND DYNAMIC
RESOLVING ALGORITHM

In this section, we propose a dimension-shrinking method
to reformulate the optimization problem into an easily solved
form. Based on this method, we further develop a dynamic
service provisioning algorithm to deal with varying service
demands.

A. Problem Transformation

In our problem, variables θS,au,p(t), θ
C,a
u,p (t), α

e
u,p(t) and

βeu,p(t) are related to four factors including the edge
nodes/cloud nodes, end users, services and time slots. Hence,
when we formulate the optimization problem of each time slot,
we find that the variable matrix is the four-dimension matrix,
which is hard to solve with the existing solvers and can be

time-consuming. Therefore, we reformulate this problem as a
low-dimension optimization problem so that it can be solved
efficiently using the off-the-shelf solvers. Particularly, in our
transformation, we transform these variable matrices to the
two-dimension matrices.

We use V edgeS , part of the V , as an example to illustrate
the transformation process. To ease understanding, we begin
with a simple scenario where only one service and a single
time slot (i.e., |P |=1, |T |=1) are considered. Then, the original
four-dimension caching variables can be converted to two-
dimension variables, e.g., αeu,p(t) can be coverted to αeu, where
u ∈ U , e ∈ E. Assume that |U | = i, |E| = j, the variable
matrix of αeu can be written as:

α =

α1
1 α2

1 · · · αj1
α1
2 α2

2 · · · αj2
...

...
. . .

...
α1
i α2

i · · · αji

 , (33)

where each αji means the fraction of storage demands re-
quested by user u and assigned to edge node e. Let the
vector S = (S1, S2, · · · , Si)T denote the amount of storage
demands from each of these end user. The vector V E

S =
(V e1S , V e2S , · · · , V ejS) represent the cost of per storage unit
in different edge nodes. Therefore, the V edgeS part can be
formulated as:

V edgeS = ‖(SV E
S) ◦α)‖1. (34)

where the symbol ”◦” denotes the Hadamard product of two
matrices, and each element of the matrix (SV E

S)◦α represents
the cost at a certain edge node.

So far, we consider the solution for a more general case
that includes multiple services and multiple time slots (i.e.,
|P | = m and |T | = n). In this case, the martrix of variable
αeu,p(t) can be converted into a super matrix that consists of
m ∗n aforementioned two-dimension matrices (refer to (33)).
Thus, the variable αeu,p(t) could be extended as following:

α̂ = [α(1),α(2), · · · ,α(m ∗ n)]T , (35)

where each matrix α(l) represents the matrix of storage vari-
able αeu of a certain service p̂ at time slot t, and m∗(t−1)+p̂ =
l.

The vector S and V E
S could also be extended for the general

case as follows:

Ŝ = [S(1),S(2), · · · ,S(m ∗ n)]T , (36)

V̂ E
S = [V E

S (1),V E
S (2), · · · ,V E

S (m ∗ n)]. (37)

In both of which each S(l) and V E
S (l) represent the storage

demand vector and the edge caching cost vector of service p̂
at time slot t, respectively. Thus, m ∗ (t − 1) + p̂ = l. The
V edgeS could be converted to:

V edgeS = ‖(ŜV̂ E
S) ◦ α̂)‖1. (38)

9

Algorithm 1 SEE algorithm
Input : Ca, Sa, Ce, Se, rp, lp, he, ha
Output : edge storage variable αeu,p(t) d, edge computation

variable βeu,p(t), cloud storage variable θS,au,p(t), and cloud
computation variable θC,au,p (t);

1: for t1 to tn do
2: Predict the service demands of different services

Ku,p(t)=(Su,p(ti), S
′

u,p(ti), Cu,p(ti))
3: Update the αeu,p(ti), β

e
u,p(ti), θ

S,a
u,p(ti), θ

C,a
u,p (ti) by

solving the optimization problem (32a)
4: Calculate the cost of EIPs at time slot ti: V (ti) =

(V edge(ti) + V cloud(ti))
5: end for

In this way, we reduce the variable matrices of θS,au,p(t), θ
C,a
u,p (t),

αeu,p(t) and βeu,p(t) to two dimensions and without any ap-
proximation. Thus, there is no loss with the transformation,
and the optimization result is still optimal. Finally, the problem
(32) could be solved efficiently with existing LP solvers such
as CVX Gurobi solver [18].

B. Service Provisioning Algorithm

After the transformation mentioned above, we further de-
velop a dynamic resolving algorithm, named SEE (Service
provision for Edge fEderation), to achieve an efficient service
provisioning solution in the edge federation environment.

To be more specific, as shown in Algorithm 1, our algo-
rithm is developed under the dynamic service demands; thus
the service provisioning should be rescheduled at each time
slot. We take the storage and computation capacities of cloud
nodes and edge nodes (Ca, Sa, Ce and Se), the profile of
services’ computation and latency requirements (i.e., rp and
lp), and the transmission distance (he and ha) as the inputs of
our algorithm. In each time slot, we first predict the demands
of services by a well-studied method (e.g., ARIMA). Based
on the prediction results, the edge federation could solve the
optimization problem (32) and calculate the schedule for the
next time slot in advance. Such an optimization process is
mainly executed by the consortium of edge federation for
enabling dynamic optimal service provisioning. It decides how
much workload retain at the edge or offload to the cloud, and
how to deploy services among heterogeneous edge servers and
cloud servers.

VI. EXPERIMENTAL EVALUATION

In this section, we conduct trace-driven experiments over
the base station network in Toronto, Canada and evaluate the
performance of our service provisioning model under a multi-
EIP network environment. We measure the performance of the
edge federation in terms of the total cost of EIPs for serving
a given set of edge services.

A. Experimental Settings

1) Designed Network
We first obtain the datasets of the edge-computing environ-

ment from the published data of the Canada government [19],

which provides the details of the location and company of
base stations all over Canada. We make use of the base station
dataset for the following reasons: i) upgrading base stations
to edge nodes is a reasonable and accessible solution for the
construction of future edge-computing environment; ii) the
datasets have specific location information of base stations.
Hence, based on the fact that round trip time between two
nodes is approximately linear with their geo-distance [20], the
content delivery latency could be accurately estimated.

The designed network of our experiments is constructed
across the region of the Toronto city. As shown in Fig. 5,
we carefully select the amount of 30 and 50 base stations as
the potential edge nodes by fully considered the density of
the population and the business condition in different areas of
the city. In common sense, compared with the non-flourishing
area, the larger number of edge nodes are needed in the
prosperous and populous area. All of the base stations are
chosen from three popular telecommunication providers in
Canada, including the Bells, Rogers, and Telus. Then, we
further select the Amazon Datacenter in Montreal, the Google
datacenters in the United States as the potential cloud nodes
in our experiments.2 Therefore, these selected edge nodes and
cloud nodes make up the designed network in this paper.

2) Service Demands of End Users
Then, we collect the service traffic data from the NOR-

DUnet3, a research and education oriented network infrastruc-
ture that hosts caching servers at various peering points over
Europe and North America. By using these real-world trace
data, we generate synthetic service demands of end users at
each location in our designed network.

Dynamic Service Demands: We mainly consider three
types of services in our paper, including online gaming, online
video, and social media. They represent the high, normal, and
low latency requirements, respectively. Thus, we correspond-
ingly select three representative services, including Valve,
Netflix, and Facebook. Fig. 4 shows the traffic curves in a 24-
hour time window on May. 7, 2017. There are some interesting
observations of the service traffic: Netflix accounts for the
most significant portion of the traffic. The peak demands of
Valve and Netflix appear at night, while the peak demands of
Facebook appear in the daytime.

Synthetic Traffic Generation: Referring to the above ser-
vice demand patterns, we generate synthetic traffic demands
for the evaluation. First, we normalize the traffic demand of
each service as the traffic profile, i.e., qp(t),∀t ∈ T . Then, we
collect the amount and density of the population of Toronto,
from the online published data [22], [23]. Based on that, we
can generate the synthetic service demands for the location
area of each end user by calculating (1)-(3) of different types
of services. This traffic information is treated as the result of
Traffic Analyser in Fig. 2 and sent to the Central Optimizer

2Under the common situation, most of the users in the world are hundreds
of kilometers away from the data center, and some of them even need to get
the service from the data center continental distance away [21]. To make our
experiment more representative, we carefully select the data centers far away
from Toronto city as the potential cloud nodes.

3http://stats.nordu.net/connections.html

10

0 4 8 12 16 20 24
Time (local hour)

0

5

10

15

20

Tr
af

fic
 (G

bp
s)

Total

0 4 8 12 16 20 24
Time (local hour)

0

1

2

3

4

Tr
af

fic
 (G

bp
s)

Facebook

0 4 8 12 16 20 24
Time (local hour)

0

5

10

15

Tr
af

fic
 (G

bp
s)

Netflix

0 4 8 12 16 20 24
Time (local hour)

0

1

2

3

4

Tr
af

fic
 (G

bp
s)

Valve

Fig. 4. Traffic demands of different services at NORDUnet nodes on May. 07, 2017.

30-node Case

79.60°N 79.50°N 79.40°N 79.30°N 79.20°N 79.10°N

45.86°W

45.76°W

45.66°W

45.56°W

50-node Case

79.66°N 79.50°N 79.40°N 79.30°N 79.20°N 79.10°N

43.86°W

43.76°W

43.66°W

43.56°W

Rogers

Telus

Bell

Fig. 5. The base station map of Toronto city.

TABLE II
LATENCY REQUIREMENTS FOR THREE SERVICES.

Service
Group 1 2 3 4 5 6 7

Facebook 72 68 64 60 56 52 48
Valve 36 34 32 30 28 26 24
Netflix 54 51 48 45 42 39 36

for calculating the optimal service provisioning and requesting
schedules.

B. Performance Evaluation

In this part, we analyze the service provisioning process of
Telus, Rogers, and Bell in both the 30-node case and 50-node
case. We mainly refer to two service provisioning models to
compare with ours in edge federation. 1) Fixed contract model:
each ESP can only contract with one EIP. To test the perfor-
mance of the fixed contract model, we assume several fixed
relationships: Telus contracts with Facebook, Rogers contracts
with Valve, and Bell contracts with Netflix. 2) Multihoming:
one ESP can contract with several EIPs, where each EIP
manages its resource independently without the global view.
We assume that Telus contracts with Facebook and Valve,
Rogers contracts with Valve and Netflix and Bell contracts
with Netflix and Facebook. Moreover, to achieve fairness, the
computation and storage capacity of edge and cloud nodes
are set to be the same in different models. We evaluate the
performance of the existing service provisioning models and
our edge federation model by the cost of EIPs, under different
latency requirements of services and the varying amount of
service demands. Particularly, we consider not only the total
cost but also the average cost, which could be defined as
follow:

• The total cost: the overall cost in total 24 time slots for
all EIPs, which can be calculated by (21).

• The average cost: the average cost of each EIP for end

users at each location at time slot t can be defined as

vu,p(t) =[
∑
u∈U

∑
e∈E

Su,p(t)α
e
u,p(t)V

e
S+∑

u∈U

∑
e∈E

Su,p(t)β
e
u,p(t)V

e
C)]/nusers,

where nusers represents the number of users.

1) The Overall Performance comparison
Fig. 6(a) presents the overall cost of the 50-node and

30-node cases with various latency requirements. Detailed
requirements are shown in Table. II, where the smaller number
means the more strict requirement. First, we can observe that,
with the requirements from loose to strict, the overall cost
increases. This is consistent with our expectations that the edge
resource is used to provide low service latency, higher require-
ments of latency will incur more usage of edge resources (than
that of the cloud). Because the edge resource has a higher cost
per unit than the cloud resource, the overall cost increases.
Moreover, it can be seen that compared with other models,
the edge federation can be more cost-efficient for EIPs and
achieve better service provisioning performance. For instance,
compared with the multihoming model and fixed contract
model, edge federation can achieve average 15.5% and 23.3%
savings in 30-node case, and average 16.3% and 24.5% savings
in 50-node case, respectively. The saving will be significant for
EIPs, especially for those with a large number of edge nodes
in the extensive coverage area. There is also an interesting
phenomenon that in each latency requirement group, the total
cost of the 50-node case is lower than the cost in the 30-node
case. This could be concluded that: compared with the 30-
node case, the 50-node case has more and better (i.e., shorter
distance to the end user) options in a specific area for the EIPs’
deployment. Thus, EIPs can avoid remote service deployment,
and the cost of service delivery could be saved.

Does Service Type Matter?: To figure out whether or not
the type of service has a significant impact on the cost saving,
we analyze the performance of each EIP individually under
the constraints of varying latency requirements from latency
requirement groups 1 to 7 in Table. II. The corresponding
results are shown in Fig. 6(b), where the range of cost savings
for each EIP is given. We can see that, compared with the fixed
contract model, Telus, Rogers, and Bell save about 3.7% and
3.0%, 33.6% and 26.0%, 34.8% and 38.1% of the costs in
30-node and 50-node cases, respectively; compared with the
multihoming model, Telus, Rogers, and Bell save about 2.5%
and 1.5%, 20.1% and 16.1%, 20.6% and 22.2% of the costs in
30-node and 50-node cases, respectively. Such results indicate
that the edge federation is advantageous for all kinds of EIPs,

11

30-node Case

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

O
ve

ra
ll

Co
st

104

Edge Federation Multihoming Fixed Contract
50-node case

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

O
ve

ra
ll C

os
t

104
Edge Federation Multihoming Fixed Contract

(a) Overall service provisioning cost of all EIPs under the 7 latency require-
ments.

Telus Rogers Bell Telus Rogers Bell
0

0.1

0.2

0.3

0.4

C
os

t S
av

in
g

(%
)

30-node Case
Fixed Contract Multihoming

Telus Rogers Bell Telus Rogers Bell
0

0.1

0.2

0.3

0.4

C
os

t S
av

in
g

(%
)

50-node Case
Fixed Contract Multihoming

(b) Cost savings of edge federation with varying latency requirements over
the 30-node case and 50-node case, repectively.

Fig. 6. Overall service provisioning performance of three EIPs in the fixed contract model, multihoming model and edge federation model.

5 10 15 20
Time Slot

0

0.1

0.2

0.3

0.4

C
os

t S
av

in
g

Requirement 6 in 30-node Case
Telus-F Rogers-F Bell-F
Telus-M Rogers-M Bell-M

(a) Cost saving of three EIPs.

5 10 15 20
Time Slot

0

2

4

6

A
ve

ra
ge

 C
os

t

Rogers
Edge Federation
Multihoming
Fixed Contract

Peak 2

(b) Average cost of Rogers.

5 10 15 20
Time Slot

0

10

20

30

A
ve

ra
ge

 C
os

t

Bell
Edge Federation
Multihoming
Fixed Contract

Peak 3

(c) Average cost of Bell.

5 10 15 20
Time Slot

0

1

2

3

A
ve

ra
ge

 C
os

t

Telus
Edge Federation
Multihoming
Fixed Contract

Peak 1

(d) Average cost of Telus.

Fig. 7. Service provisioning cost of three EIPs, under the fixed contract, multihoming and edge federation model in 30-node case. In Fig. 7(a), F and M
represent the fixed contract and multihoming model, respectively.

irrespective of the services they contracted and the number of
nodes they have.

In addition, we find that the EIP contracted with the higher
latency requirement service will receive even greater cost
saving.4 The reason for this result may be due to the fact that
higher latency requirement services need to use more edge
resources. However, the limited-capacity and low-coverage
edge resources in an individual EIP make it difficult for
EIPs deploying and provisioning service in an efficient way,
i.e., due to the considerable accumulated distance between
different edge nodes, the service provisioning process will
cause significant service delivery cost. Such a dilemma can
be significantly alleviated by the resource integration in the
edge federation, and thus the cost of service delivery could be
reduced, especially for the high latency requirement services.

2) Variance of the Cost Saving over Dynamic Traffic
In the previous part, we accumulate the total cost over the

whole period without considering the cost variation of each
time slot. In this part, given the fixed latency constraints of
the services (i.e., group six in Table. II), we consider the cost
variation under dynamic service demands (i.e., from the time
dimension). We show the average cost of Rogers, Bell and
Telus over the whole time period in Fig. 7(b), 7(c) and 7(d),
respectively, and have two major observations. First, combined
with Fig. 4 (i.e., the inset plot in Fig. 7(b), 7(c) and 7(d)), we
can easily find that the average cost curve of edge federation
oscillates as time varies and has similar changing trend with
the amount of the service demand, e.g., the peak of the average
cost curve is consistent with that of the service demand curve.
Second, regardless of the service demand variations, our edge
federation model always outperforms the other two models in
both 30-node and 50-node cases, with 11.8% and 17.6% cost

4In this paper, we assume that the latency requirement of the Valve is more
strict than the Netflix, and the Netflix is more strict than Facebook.

savings for Rogers, 15.1% and 22.6% for Bell, and 1.3% and
1.8% for Telus, respectively.

Does Amount of Service Demands Matter?: Figure 7(a)
shows the cost saving of three EIPs under the latency require-
ment 6 in 30-node case. Combined with Fig. 4, there is a
similar changing trend between the amount of service demands
and cost savings, and the higher cost saving is likely to occur
when service demand is larger, which demonstrates that the
cost saving has a strong correlation with the amount of service
demands. For instance, we use a 4-time-slot window to circle
the peak cost of each service in Fig. 7. Peak 1 (time slot 12
to 15), Peak 2 (time slot 20 to 23) and Peak 3 (time slot
21 to 24) represent the peak costs of Telus, Rogers and Bell,
respectively. It is clear that the time windows of peak cost
saving are perfectly matched with the peak service demands
in each service. This means that the edge federation achieves
even better performance in the case of the larger amount
of service demands. It could be significantly helpful in the
practical huge-traffic network environment.

3) Strength of Edge Federation
Resilient and Robust Service Provisioning: Can edge fed-

eration achieve good performance all the time under varying
requirements and dynamic service demands? The question is
critical to justify whether the edge federation can be reliable
to the real network environment.

As shown in Fig. 8(a), to answer this question, we mainly
analyze the performance from both the time dimension and
the latency requirement dimension in 30-node case. From
the time dimension, compared with the fixed contract model
and multihoming model, we can easily observe that the
cost savings are positive all the time, which means edge
federation outperforms other models no matter how much
service demands are required. From the dimension of varying
requirements, the edge federation shows steady cost savings

12

1 4 8 12 16 20 24
Time Slot

0

0.1

0.2

0.3
C

os
t S

av
in

g

Fixed Contract
Multihoming

(a) EIPs’ cost saving over seven differ-
ent latency requirements.

Combined Rogers Bell
0

100

200

300

400

500

600

To
ta

l C
os

t

0

0.1

0.2

0.3

0.4

0.5

0.6

C
lo

ud
 U

til
iz

at
io

n
R

at
ioCost Ratio

(b) Validation of the horizontal ex-
tending edge nodes.

1 2 3 4 5 6 7
Latency Requirement Group

0.2

0.4

0.6

0.8

1

R
es

ou
rc

e
U

til
iz

at
io

n
R

at
e

FacebookEdge FacebookCloud NetflixEdge
NetflixCloud ValveEdge ValveCloud

(c) Edge and cloud resource utiliza-
tion ratio in different ESPs.

0 10 20 30 40 50
Time Slot

0

0.1

0.2

0.3

C
os

t S
av

in
g

30 mins
60 mins
120 mins

(d) EIPs’ cost saving over different
lengths of time slot.

Fig. 8. Comparison of the service provisioning cost and the resource utilization ratio.

with minor fluctuations over different latency requirements.
There is an interesting phenomenon: the cost saving has the
relative big fluctuations from time slot 5 to time slot 10,
whereas the performance oscillates within a small range in
the other time. To figure out the underlying rationale, we then
check the daily traffic in Fig. 4 and find that the traffic from the
time slot 5 to the time slot 10 is much lower than the other time
slots. This indicates that edge federation could achieve more
stable performance in the massive traffic scenario than in the
light traffic scenario. This result once again proves that edge
federation is suitable for the real huge-traffic environment.

Cost-Efficiency Function with Horizontal Extending Edge
Nodes: Edge federation enables the horizontal extension by
integrating the edge nodes of EIPs. Is this extending edge
nodes function can indeed reduce the cost of EIPs? For
validating the effectiveness of the horizontal extending, we
specially select two EIPs: Rogers and Bell. As shown in the
map of the 50-node case in Fig. 5, Bell has better coverage
in Western Toronto while weak in the Eastern. Rogers has a
relatively balanced edge node geographical distribution. Then,
we assume a virtual EIP owns all the edge nodes of Rogers
and Bell (labeled as Combined EIP in Fig. 8(b)). Moreover, for
fairness, we set all three EIPs to have the same total amount
of resources (i.e., same storage and computation capacity).
Fig. 8(b) presents the performance of different EIPs, and
it can be seen that the combined EIP outperforms Rogers
and Bell with 13.3% and 10.6% performance improvement,
respectively. The black curve further illustrates this result with
a cloud resource utilization ratio. The cloud utilization ratio
of the Combined EIP is the highest, which indicates that the
optimal provisioning schedule could be more efficient in the
edge nodes extending scenario, as more cloud resources are
utilized and the overall cost is reduced.

Adaptive Vertical Resource Allocation: To test the effec-
tiveness of the dynamic service provisioning algorithm in edge
federation, we calculate the resource utilization ratio of the
services with seven different latency requirements (i.e., the
latency requirement groups in Table. II). The results are shown
in Fig. 8(c). We can see that when the requirement becomes
more and more strict, the edge resource utilization ratio of
all the services is increasing. This indicates that when facing
the varying latency requirements, the algorithm truly realizes
the dynamic resource utilization adjustment between edge and
cloud resources, i.e., utilizing more edge resources under the
strict requirement.

The above all experimental results show that edge federation

indeed solves the difficulties and challenges presented in
Sec.II. It performs particularly effective under the heavy load
and strict latency requirements, which fully match the needs of
the latency-critical and resource-intensive smart services and
show the value of our model in the real network environment.

VII. DISCUSSION AND FUTURE WORKS

A. Determining the Length of the Time Slot

The performance of edge federation could be affected by
the length of the scheduling time slot. Compared with the
fixed contract model in 30-node case, we present a preliminary
result of edge federation with different lengths of the time slot
(e.g., 30mins, 60mins, and 120mins.). As shown in Fig. 8(d),
we can observe that: a shorter time slot (i.e., the higher
rescheduling frequency) can yield better performance. For
instance, the 30mins, 60mins, and 120mins can achieve 20.5%,
19.5%, and 18.2% cost savings, respectively. For simplicity,
we assume that the overhead of each rescheduling Vre is the
same, which includes the costs of computation and commu-
nication. Hence, compared with the setting of 120mins, the
settings of 30mins and 60mins obtain 2.3% and 1.3% cost
saving gain, while incurring 4× (120/30) and 2× (60/30)
times overhead loss, respectively. This may not be a cost-
efficient deal. In this work, we assume that only the additional
rescheduling cost is less than the saving improvement of the
total cost, EIPs may be willing to take a higher rescheduling
frequency. Thus, the rescheduling frequency largely depends
on the rescheduling cost Vre and the total service cost V .

Automatically determining the length of the time slot is an
interesting and promising idea. One possible solution could
be applying reinforcement learning to the scheduling, which
aims to make better decisions by learning from experiences
through trial and error interactions with the environment [24].
In our context, based on the historical data, the reinforcement
learning agent can adapt quickly to the dynamic service
demands change, and thus be readily applied to unique net-
work environments and architectures. Then, the rescheduling
frequency can be flexibly adjusted according to the actual
network environments and service requirements. We leave this
as an open problem for our future works.

B. Determining the Optimal Controlling Scale

Rather than solving problems in the specific scenario, the
edge federation is a general resource management model for
the macro edge-computing scenario. The edge federation is

13

operated in a centralized control manner, which could enable
the most cost-efficiency service management for EIPs and
provide the guaranteed QoS and QoE for the ESP and the
end user, respectively.

One of the critical issue for the centralized management is
the scale of the controlling area, which greatly determined by
the factors in geography (e.g., different time zones may affect
the prediction accuracy, different users in different areas may
have different behavior patterns.), business environment (e.g.,
unique business policies in different countries and regions.),
etc.. According to these factors, the centralized control in a
city, a country or a strongly related region (e.g., the area of
European union countries) can be more effective and robust.
Traffic behaviors of these areas are more predictable and
amenable to provide a mathematically well-grounded sizing
solution.

C. Designing the Suitable Algorithm

The networking environment in this paper is quite com-
plicated. We formulate the optimization problem in the edge
federation by mainly considering 1) resource factors (e.g.,
the heterogeneous resources of communication, storage, and
computation); 2) geo factors (e.g., distributed edge nodes and
users); 3) traffic factors (e.g., heterogeneous services, varying
service demands, different latency requirements). Then, what
we should do is finding the optimal analytical solution by
solving the optimization problem. The primary purpose of
this paper is to prove that edge federation is more cost-
efficiency than the existing solution. Additionally, from other
perspectives, one can also design new algorithms or exploit the
advantages of the optimization techniques to solve problems
(e.g., latency minimization, etc.) in edge federation. We leave
this point as an open issue.

VIII. RELATED WORK

The related work can be roughly divided into two categories,
including the service placement method and the service pro-
visioning model.

Service placement is a popular topic in mobile edge comput-
ing (MEC), which involves the content caching and the compu-
tation offloading. The content caching has been studied exten-
sively to avoid frequent replication and enable faster access by
placing a large volume of content based on the popularity [25].
The caching of the multimedia content is a representative field
of the content caching area. Many efforts have been made on
the collaborative multi-bitrate video caching and processing
in MEC network [26], [27]. To enhance the QoS and QoE,
some works also seek the aid of network technologies (e.g.,
software-defined network [28], network function vituraliza-
tion [29]) to efficiently manage network caching resources
and delivery service content. Recently, the emerging concept
of In-Network Caching has been proposed [30]. The basic
idea of In-Network Caching is that according to the contents’
popularity, servers tend to cache some content passing through
them and enable a global caching architecture. Based on such
the strategy, each server may send the required content directly
to the end users with a small round trip time.

The computation offloading mainly focuses on designing
dedicated strategies for offloading partial even the entire
task from an end device to edge servers. The major factors
influence the offloading strategies including the characteristics
of end devices and edge servers, such as the location [31],
energy [32], and different optimization objectives (e.g., min-
imizing the cost [8] or delay [33]). Liu et al. propose a
searching algorithm to find the optimal task scheduling policy
to achieve the minimum average delay [33]. Mao et al. develop
a LODCO algorithm to minimize the execution delay and
addressed the task failure as the performance metric [34].
There is also some literature jointly consider the caching
and offloading for maximizing the revenue of mobile network
operator [35]. Different from these works mentioned above,
our work considers a general multi-EIP scenario.

Although the service provisioning is a crucial issue for edge
computing, there still lack sufficient studies. The most involved
literature focuses on the integration between cloud and edge.
Tong et al. design a hierarchical edge cloud architecture to
alleviate the peak workload from end users [36], and Xu
et al. also propose a similar hierarchical architecture with
in-memory caching function to enable an energy-efficient
caching scheme [37]. To minimize the cost of resources, Ma
et al. propose a cloud-assisted framework in MEC, named
CAME [8], by combing the queueing network and convex
optimization theories. Villari et al. also propose a similar
architecture call Osmotic Computing, which aims to decom-
pose the applications into microservices and enhance seamless
cooperation between cloud and edge resources [38]. It is true
that literature [39] considers the cooperation between cells in
a cellular network and [40] even study the D2D collaboration
among edge devices. However, there still lacks much literature
study the cooperation among edge servers, as pointed out in
this paper.

Such a dilemma has already attracted considerable atten-
tion from industries, several organizations (e.g., OpenFog5,
EdgeComputingConsortium6) have been formed trying to find
the effective network architecture and service provisioning
model. To our best knowledge, this is the first step to con-
sider the service provisioning model from the entire edge-
computing environment. Our edge federation considers the
service-provisioning problem among multiple EIPs and cloud
with hard latency constraints.

IX. CONCLUSION

In this paper, we proposed an integrated service provi-
sioning model, named edge federation, which considered a
two-dimension integration between multiple EIPs, including
the vertical and the horizontal. Over the edge federation, we
formulated the provisioning process as an LP problem and
took a variable dimension shrinking method to solve the large-
scale optimization problem. Furthermore, for varying service
demands, we proposed a dynamic service provisioning algo-
rithm, SEE, which dynamically updates schedules to enable an
efficient service deployment. Via the trace-driven experiments

5https://www.openfogconsortium.org/
6http://en.ecconsortium.org/

14

conducted on the real-world base station map of Toronto,
we demonstrated that our edge federation model can help
EIPs save the overall cost by 23.3%to 24.5%, and 15.5% to
16.3%, compared with the existing fixed contract model and
multihoming model, respectively.

X. ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant U19B2024,
Grant 61802421 and Grant 71571186, in part by Na-
tional Key Research and Development Program under Grant
2018YFE0207600, and in part by the National Science Foun-
dation of Hunan Province under Grant 2019JJ30029.

REFERENCES

[1] GMSA, “GSMA intelligence,” https://www.gsmaintelligence.com/, Ac-
cessed On: Feb. 2019.

[2] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on
edge computing systems and tools,” Proceedings of the IEEE (PIEEE),
vol. 107, no. 8, pp. 1537–1562, 2019.

[3] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
2016.

[4] SDxCentral, “Sdxcentral,” https://www.sdxcentral.com/mec/, Accessed
On: Feb. 2019.

[5] H. Wang, P. Shi, and Y. Zhang, “Jointcloud: A cross-cloud cooperation
architecture for integrated internet service customization,” in Proceed-
ings of International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2017, pp. 1846–1855.

[6] Amazon, “Amazon Greengrass,” https://aws.amazon.com/cn/greengrass
/pricing/, Accessed On: Feb. 2019.

[7] Google, “Google IoT Core,” https://cloud.google.com/iot-core/, Ac-
cessed On: Feb. 2019.

[8] X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, “Cost-efficient
workload scheduling in cloud assisted mobile edge computing,” in
Proceedings of International Symposium on Quality of Service (IWQoS).
IEEE, 2017, pp. 1–10.

[9] Microsoft, “Microsoft hybrid cloud,” https://azure.microsoft.com/en-u
s/overview/hybrid-cloud/, Accessed On: Feb. 2019.

[10] B. Yang, W. K. Chai, Z. Xu, K. V. Katsaros, and G. Pavlou, “Cost-
efficient nfv-enabled mobile edge-cloud for low latency mobile applica-
tions,” IEEE Trans. Netw. Service Manag., vol. 15, no. 1, pp. 475–488,
2018.

[11] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications qos,”
IEEE Trans. Cloud Comput., vol. 3, no. 4, pp. 449–458, 2015.

[12] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at uber,” in Proceedings of
International Conference on Machine Learning (ICML), no. 34, 2017,
pp. 1–5.

[13] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, 2017.

[14] K. Gai, M. Qiu, and H. Zhao, “Privacy-preserving data encryption
strategy for big data in mobile cloud computing,” IEEE Trans. Big Data,
2017.

[15] M. Naveed, M. Prabhakaran, and C. A. Gunter, “Dynamic searchable
encryption via blind storage,” in Proceedings of Symposium on Security
and Privacy (S&P). IEEE, 2014, pp. 639–654.

[16] Schneider Electric, “The cost of the micro data center,” https://www.
schneider-electric.com/en/download/document/apc vavr-99x6svk en/,
Accessed On: Feb. 2019.

[17] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: research problems in data center networks,” ACM SIGCOMM
computer communication review, vol. 39, no. 1, pp. 68–73, 2008.

[18] Gurobi, “Gurobi optimization,” http://www.gurobi.com/, Accessed On:
July 2019.

[19] Government of Canada, “The Broadcasting and Telecommunications
Regulation of Canada,” http://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.ns
f/eng/h 00010.html, Accessed On: Feb. 2019.

[20] O. Krajsa and L. Fojtova, “Rtt measurement and its dependence on the
real geographical distance,” in Proceedings of International Conference
on Telecommunications and Signal Processing (TSP). IEEE, 2011, pp.
231–234.

[21] Google, “The location of the Google data centers,” https://www.goog
le.com/about/datacenters/inside/locations/, Accessed On: Feb. 2019.

[22] City Population, “Toronto population,” http://www.citypopulation.de/,
Accessed On: Feb. 2019.

[23] The Star, “Toronto population density,” https://www.thestar.com/busine
ss/, Accessed On: Feb. 2019.

[24] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne, “Deepmimic:
Example-guided deep reinforcement learning of physics-based character
skills,” ACM Transactions on Graphics, vol. 37, no. 4, p. 143, 2018.

[25] G. Dán and N. Carlsson, “Dynamic content allocation for cloud-
assisted service of periodic workloads,” in Proceedings of International
Conference on Computer Communications (INFOCOM). IEEE, 2014,
pp. 853–861.

[26] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili, “Collaborative
multi-bitrate video caching and processing in mobile-edge computing
networks,” in Proceedings of Conference on Wireless On-demand Net-
work Systems and Services (WONS). IEEE, 2017, pp. 165–172.

[27] C. Li, L. Toni, J. Zou, H. Xiong, and P. Frossard, “Qoe-driven mobile
edge caching placement for adaptive video streaming,” IEEE Trans.
Multimedia, vol. 20, no. 4, pp. 965–984, 2018.

[28] H. Li, K. Ota, and M. Dong, “Virtual network recognition and optimiza-
tion in sdn-enabled cloud environment,” IEEE Trans. Cloud Comput.,
2018.

[29] W. Borjigin, K. Ota, and M. Dong, “In Broker We Trust: A double-
auction approach for resource allocation in NFV markets,” IEEE Trans.
Netw. Service Manag., vol. 15, no. 4, pp. 1322–1333, 2018.

[30] J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi, and
D. C. Kilper, “Dynamic in-network caching for energy efficient content
delivery,” in Proceedings of International Conference on Computer
Communications (INFOCOM). IEEE, 2013, pp. 245–249.

[31] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation
offloading,” IEEE Commun. Lett., vol. 18, no. 10, pp. 1779–1782, 2014.

[32] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? the bandwidth and energy costs of mobile cloud computing,” in
Proceedings of International Conference on Computer Communications
(INFOCOM). IEEE, 2013, pp. 1285–1293.

[33] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proceedings of
International Symposium on Information Theory (ISIT). IEEE, 2016,
pp. 1451–1455.

[34] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[35] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Resource allocation for
information-centric virtualized heterogeneous networks with in-network
caching and mobile edge computing,” IEEE Trans. Veh. Technol., vol. 66,
no. 12, pp. 11 339–11 351, 2017.

[36] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Proceedings of International Conference on
Computer Communications (INFOCOM). IEEE, 2016, pp. 1–9.

[37] J. Xu, K. Ota, and M. Dong, “Saving energy on the edge: In-memory
caching for multi-tier heterogeneous networks,” IEEE Communications
Magazine, vol. 56, no. 5, pp. 102–107, 2018.

[38] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, “Osmotic
computing: A new paradigm for edge/cloud integration,” IEEE Cloud
Computing, vol. 3, no. 6, pp. 76–83, 2016.

[39] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Joint computation
offloading, resource allocation and content caching in cellular networks
with mobile edge computing,” in Proceedings of International Confer-
ence on Communications (ICC). IEEE, 2017, pp. 1–6.

[40] X. Chen, L. Pu, L. Gao, W. Wu, and D. Wu, “Exploiting massive
d2d collaboration for energy-efficient mobile edge computing,” IEEE
Wireless Communications, vol. 24, no. 4, pp. 64–71, 2017.

https://www.gsmaintelligence.com/
https://www.sdxcentral.com/mec/
https://aws.amazon.com/cn/greengrass/pricing/
https://aws.amazon.com/cn/greengrass/pricing/
https://cloud.google.com/iot-core/
https://azure.microsoft.com/en-us/overview/hybrid-cloud/
https://azure.microsoft.com/en-us/overview/hybrid-cloud/
https://www.schneider-electric.com/en/download/document/apc_vavr-99x6svk_en/
https://www.schneider-electric.com/en/download/document/apc_vavr-99x6svk_en/
http://www.gurobi.com/
http://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010.html
http://sms-sgs.ic.gc.ca/eic/site/sms-sgs-prod.nsf/eng/h_00010.html
https://www.google.com/about/datacenters/inside/locations/
https://www.google.com/about/datacenters/inside/locations/
http://www.citypopulation.de/
https://www.thestar.com/business/
https://www.thestar.com/business/

	I Introduction
	II Edge Federation vs. Cloud Federation
	III THE ARCHITECTURE OF EDGE FEDERATION
	III-A Rationale
	III-B Architecture of Edge Federation
	III-C Benefits of Edge Federation

	IV Optimal Service Provisioning in Edge Federation
	IV-A Modeling the Service Provisioning
	IV-B Guaranteeing the Service Performance

	V Problem Transformation and Dynamic Resolving Algorithm
	V-A Problem Transformation
	V-B Service Provisioning Algorithm

	VI Experimental Evaluation
	VI-A Experimental Settings
	VI-B Performance Evaluation

	VII Discussion and Future Works
	VII-A Determining the Length of the Time Slot
	VII-B Determining the Optimal Controlling Scale
	VII-C Designing the Suitable Algorithm

	VIII Related work
	IX Conclusion
	X Acknowledgment
	References

