TopoX: Topology Refactorization for Minimizing Network Communication in Graph Computations | IEEE Journals & Magazine | IEEE Xplore

TopoX: Topology Refactorization for Minimizing Network Communication in Graph Computations


Abstract:

Efficient graph partitioning is vital for high-performance graph-parallel systems. Traditional graph partitioning methods attempt to both minimize communication cost and ...Show More

Abstract:

Efficient graph partitioning is vital for high-performance graph-parallel systems. Traditional graph partitioning methods attempt to both minimize communication cost and guarantee load balancing in computation. However, the skewed degree distribution of natural graphs makes it difficult to simultaneously achieve the two objectives. This article proposes topology refactorization (TR), a topology-aware method allowing graph-parallel systems to separately handle the two objectives: refactorization is mainly focused on reducing communication cost, and partitioning is mainly targeted for balancing the load. TR transforms a skewed graph into a more communication-efficient topology through fusion and fission, where the fusion operation organizes a set of neighboring low-degree vertices into a super-vertex, and the fission operation splits a high-degree vertex into a set of sibling sub-vertices. Based on TR, we design an efficient graph-parallel system (TopoX) which pipelines refactorization with partitioning to both reduce communication cost and balance computation load. Prototype evaluation shows that TopoX outperforms PowerLyra by up to 78.5% (from 37.2%) on real-world graphs and is faster than most other graph-parallel systems, while only introducing small overhead and memory consumption.
Published in: IEEE/ACM Transactions on Networking ( Volume: 28, Issue: 6, December 2020)
Page(s): 2768 - 2782
Date of Publication: 17 September 2020

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.