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Abstract—Caching networks can reduce the routing costs of
accessing contents by caching contents closer to users. However,
cache nodes may belong to different entities and behave selfishly
to maximize their own benefits, which often lead to performance
degradation for the overall network. While there has been
extensive literature on allocating contents to caches to maximize
the social welfare, the analysis of selfish caching behaviors
remains largely unexplored. In this paper, we model the selfish
behaviors of cache nodes as selfish caching games on arbitrary
directed graphs with heterogeneous content popularity. We study
the existence of a pure strategy Nash equilibrium (PSNE) in
selfish caching games, and analyze its efficiency in terms of social
welfare. We show that a PSNE does not always exist in arbitrary-
topology caching networks. However, if the network does not have
a mixed request loop, i.e., a directed loop in which each edge is
traversed by at least one content request, we show that a PSNE
always exists and can be found in polynomial time. Furthermore,
we can avoid mixed request loops by properly choosing request
forwarding paths. We then show that the efficiency of Nash
equilibria, captured by the price of anarchy (PoA), can be
arbitrarily poor if we allow arbitrary content request patterns,
and adding extra cache nodes can make the PoA worse, i.e., cache
paradox happens. However, when cache nodes have homogeneous
request patterns, we show that the PoA is bounded even allowing
arbitrary topologies. We further analyze the selfish caching games
for cache nodes with limited computational capabilities, and show
that an approximate PSNE exists with bounded PoA in certain
cases of interest. Simulation results show that increasing the cache
capacity in the network improves the efficiency of Nash equilibria,
while adding extra cache nodes can degrade the efficiency of Nash
equilibria.

Index Terms—Caching networks, selfish caching games, Nash
equilibrium, price of anarchy.

I. INTRODUCTION

CACHING networks can reduce the routing costs for
accessing contents by caching the requested contents

as close to the requesting users as possible. Prevailing
caching networks include content delivery networks (CDN) [2,
3], information-centric networks (ICN) [4], femtocell net-
works [5], web caching networks [6], and peer-to-peer net-
works [7]. There has been extensive previous work (e.g., [8–
10]) on how to optimally allocate contents to available caches.
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However, most existing work assumes that cache nodes are
altruistic and cooperate with each other to optimize an overall
network performance objective.

In practice, cache nodes may belong to different entities
[11]. For example, in wireless community mesh networks such
as Google WiFi [12] and Guifi [13], individual users contribute
their wireless routers (as caches) to the community. On the
Internet, different operators and providers deploy their own
caching infrastructures and services. Examples include AT&T
Content Delivery Network Service, Google Global Cache,
Netflix Open Connect, and Akamai.1

In caching networks where different entities operate their
own caches, cache nodes may behave selfishly to maximize
their own benefits. For example, in multi-hop wireless com-
munity mesh networks [14], a cache node has an incentive
to cache the content items to minimize its own routing cost,
which may not always maximize the social welfare. This
motivates us to study the selfish caching behaviors through
a game-theoretic approach.

To our best knowledge, this is the first paper to examine
selfish caching games on arbitrary directed graphs with het-
erogeneous content popularity. We focus on the pure strategy
Nash equilibrium (PSNE),2 and address two fundamental
questions. First, is a PSNE guaranteed to exist in any selfish
caching game? Second, if a PSNE exists, does it have a
guaranteed efficiency in terms of social welfare? The short
answers to the above two questions are “No” and “No”. In
other words, the selfish caching game does not always admit
a PSNE. Even if a PSNE exist, its efficiency in terms of social
welfare can be very poor.

In this paper, we characterize the conditions under which (i)
a PSNE exists, and (ii) a PSNE has a guaranteed efficiency. We
characterize the efficiency of PSNE by the price of anarchy
(PoA), which is the ratio of the social welfare achieved
by the worst PSNE to that achieved by a socially optimal
strategy [16, 17]. The analysis of PSNE and PoA takes into
account the asymmetric and node-specific interdependencies
among cache nodes, which reflect the network topology and
content request patterns. Our analysis will help the network
designer understand when the network behaves with certain
performance guarantees, and how to create these conditions
in the network.

We analyze the selfish caching game in two scenarios.
We first consider a scenario where all contents have equal
sizes, which corresponds to practical applications such as
video-on-demand services using harmonic broadcasting that

1In this paper, we treat one provider as one cache node. Another example
is a caching network where each provider owns multiple cache nodes. In such
a case, we can model the interactions among multiple cache nodes belonging
to the same provider as a coalititional game.

2The main reason for implementing PSNE in practice is simplicity [15].
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divide each video into segments of equal size [18]. We then
consider a scenario where contents have unequal sizes, which
corresponds to practical applications such as video streaming
services over HTTP (e.g., Netflix and Hulu) that split each
video into segments of lengths from 2 to 10 seconds [19].

Our primary contributions are:
• Selfish Caching Game: To the best of our knowledge,

this is the first work that studies the selfish caching
game on directed graphs with arbitrary topologies and
heterogeneous content popularity.

• Pure Strategy Nash Equilibrium (PSNE): For selfish
caching games with equal-sized content items, we first
show that a PSNE does not always exist. We then show
that a PSNE exists if the network does not have a mixed
request loop, i.e., a directed loop in which each edge is
traversed by at least one content request. Furthermore,
we propose a polynomial-time algorithm to find a PSNE
for the selfish caching game with no mixed request loop.

• Price of Anarchy: We show that the PoA in general can
be arbitrarily poor if we allow arbitrary content request
patterns. Furthermore, adding extra cache nodes can make
the PoA worse, a phenomenon which we call the cache
paradox. However, when cache nodes have homogeneous
request patterns, we show that the selfish caching game is
an α-scalable valid utility game and the PoA is bounded
in arbitrary-topology caching networks.

• Approximate PSNE: For selfish caching games with
unequal-sized content items, each node’s payoff maxi-
mization problem is NP-hard. When cache nodes have
limited computational capability, we show that their self-
ish caching behaviors lead to an approximate PSNE with
bounded PoA in certain cases of interest.

The rest of the paper is organized as follows. In Section II,
we review related literature. In Section III, we introduce our
system model. In Section IV, we model the selfish caching
game and analyze the PSNE. In Section V, we study the PoA.
In Section VI, we analyze selfish caching games with unequal-
sized content items. In Section VII, we provide simulation
results. We conclude in Section VIII.

II. RELATED WORK

There has been a rich body of previous work on caching,
many of which are summarized in an excellent recent survey
[20]. In the following, we introduce related work regarding
caching optimization and selfish caching game, respectively.

Caching Optimization. There is considerable recent litera-
ture on a variety of caching optimization problems, including
proactive caching [21, 22], optimal caching under queuing
models [23, 24], optimal caching under unknown content pop-
ularities [25, 26], distributed adaptive algorithms for optimal
caching [8–10, 27], caching at the edges [28–32], TTL (time-
to-live) caches [33, 34], optimal caching in evolving networks
[35], joint caching and routing optimization [36–38], optimal
cache partitioning [39], and collaborative caching [40–45]. All
the above work assumes that all cache nodes aim to maximize
the social welfare.

Selfish Caching Game. There are several papers which
study selfish caching behaviors in simple settings. In [46],

Figure 1. A caching network with |V | = 8 nodes and |I| = 2 content items,
where node 4 (node 7, respectively) is the designated server of item 1 (item
2, respectively). The request forwarding paths are fixed in our model. For
example, the path of node 5 requesting item 1 is p(5,1) = (5, 6, 4), and the
path of node 3 requesting item 2 is p(3,2) = (3, 6, 5, 7).

Chun et al. study the selfish caching game on undirected
graphs with a single content item, assuming homogeneous
content popularity across users. In [47], Goemans et al. study
the content market sharing game, where users get rewards
for caching content items. The paper assumes that any node
which caches a requested item can serve the request with same
cost, without considering network topology. The authors in
[6] and [48] study a distributed selfish replication game in an
undirected complete graph, where the distance between any
two nodes is the same. In [49], Gopalakrishnan et al. study the
capacitated selfish replication game in an undirected network,
where users are equally interested in a set of content items.

The analysis in the above literature is applicable to undi-
rected graphs, and some are restricted to homogeneous content
popularity. In this work, we study the selfish caching game on
directed graphs with arbitrary topologies and heterogeneous
content popularity.

III. SYSTEM MODEL

We consider a network of selfish caches, represented by
a directed caching graph G(V,E) with an arbitrary topol-
ogy, where V is the set of cache nodes and E is the set
of bidirectional edges which enable ARQ with asymmetric
edge costs (see an example in Figure 1). Each cache node
requests one or more content items (e.g., movies) from the
set I = {1, . . . , |I|}. For each content item i ∈ I, there is a
fixed set of designated server nodes Di ⊆ V , |Di| > 0, that
store i in their permanent storage (outside of their caches).3

We consider equal-sized content items in Sections III–V,
which correspond to applications such as video-on-demand
services using harmonic broadcasting that divide each video
into segments of equal size [18].4 We will consider the case
of unequal-sized items in Section VI.

3For example, designated server nodes can be content providers’ caches.
4Without loss of generality, we normalize the size of each item to be one.
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A. Caching Strategies

Each node s ∈ V has a cache of capacity cs ∈ N, i.e., node
s can store exactly cs equal-sized content items. We denote
the caching strategy of node s ∈ V by xs = {xsi : ∀i ∈ I} ∈
{0, 1}|I|, where

xsi ∈ {0, 1}, for all i ∈ I,

indicates whether node s stores content item i, and satisfies∑
i∈I xsi ≤ cs, for all s ∈ V.

We let x−s = {x1, . . . ,xs−1,xs+1, . . . ,x|V |} denote the
caching strategy of nodes other than node s, and let x =
{xs,x−s} denote the global caching strategy. Given xs, we
let Zs = {i : xsi = 1, i ∈ I} denote the set of items cached
by node s ∈ V .

B. Content Requests

We describe each content request by a pair (s, i), where the
request source5 s ∈ V requests content item i ∈ I. We assume
that each request (s, i) arrives according to a stationary ergodic
process [50, 51] with arrival rate λ(s,i) ≥ 0 for all s ∈ V and
i ∈ I, which reflects heterogeneous content popularity across
items and request nodes.6

Request (s, i) is forwarded over a pre-determined fixed
request forwarding path7 p(s,i), from request source s to one
of content item i’s designated server nodes in Di. Specifically,
the path p(s,i) of length K ≤ |V | is a sequence (p1, . . . , pK) of
nodes pk ∈ V such that p1 = s, pK ∈ Di, and (pk, pk+1) ∈ E
for all k ∈ {1, . . . ,K − 1}. We require that p(s,i) contains no
loops (pk 6= pl for all 1 ≤ k < l ≤ K) and no node other than
the terminal node on p(s,i) is a designated server for content
item i (pk 6∈ Di for all 1 ≤ k < K). For request (s, i), we
let V(s,i) = {v : v ∈ p(s,i), v 6= s, v /∈ Di} denote the set of
intermediate nodes on path p(s,i). We denote Vs = ∪i∈IV(s,i)
as the set of intermediate nodes on all the request forwarding
paths of node s.8

Request (s, i) travels along path p(s,i) until either (i) the
request reaches a node v ∈ p(s,i) such that node v caches
content item i, i.e., xvi = 1 or, (ii) if xvi = 0 for all v ∈
p(s,i) \ {pK}, the request reaches pK ∈ Di. Having found
the closest copy of content item i, the network generates a
response message carrying the requested content item i. The
response message is propagated in the reverse direction along

5We consider a request source to be a point of aggregation which combines
many network users. While a single user may request a given content item
only once over a time period, an aggregation point is likely to submit many
requests for a given content item over a time period.

6We consider selfish caching behaviors under complete information, where
cache nodes know all other nodes’ content request patterns [11, 46, 47].
Specifically, cache nodes can estimate content request patterns through his-
torical information or long-term learning [21].

7Similar as in the named data networks, we assume that the request
forwarding path is determined in a longer timescale compared with caching.
And we consider selfish caching behaviors under complete information where
cache nodes know the request forwarding paths [11, 46, 47].

8Note that each cache node can play some or all of the following roles: a
designated server of content items, a source of requests, and an intermediate
node on request forwarding paths.

Table I
KEY NOTATION

G(V,E) Caching graph, with nodes in V and edges in E
cs Cache capacity of node s ∈ V
wuv Cost on edge (u, v) ∈ E
I Set of content items
Di Set of designated servers for content item i ∈ I
(s, i) Request for item i from node s
λ(s,i) Arrival rate of request (s, i)

p(s,i) Request forwarding path of request (s, i)

V(s,i) The set of intermediate nodes on path p(s,i)

Vs The set of intermediate nodes on node s’ paths
xsi Caching strategy of node s ∈ V for item i ∈ I
xs Caching strategy of node s ∈ V
Zs The set of content items cached by node s ∈ V
x Global caching strategy of all nodes
h(s,i) The routing cost to serve request (s, i)
hs The routing cost of node s
gs The caching gain of node s
G The aggregate caching gain in the network

the request forwarding path, i.e., from the closest node with
content item i back to the request source node s.9

C. Routing Costs

Transferring a content item across edge e = (u, v) ∈ E
incurs a cost (e.g., delay or financial expense) denoted by
wuv ≥ 0.10 Since the size of each request message is
relatively small compared with the content item, we assume
that costs are only due to content item transfers, and the
costs of forwarding requests are negligible [9]. To serve the
request (s, i), the routing cost depends on the caching decision
xsi of the request source node s, as well as the caching
decisions xvi,∀v ∈ V(s,i), of all the intermediate nodes on the
request forwarding path p(s,i). Specifically, the routing cost of
transferring item i over the reverse direction of p(s,i) is

h(s,i)
(
xsi, {xvi : v ∈ V(s,i)}

)
=
∑|p(s,i)|−1
k=1 wpk+1pk

∏k
k′=1

(
1− xpk′ i

)
=
∑|p(s,i)|−1
k=1 wpk+1pk (1− xsi)

∏k
k′=2

(
1− xpk′ i

)
.

Note that h(s,i)(·) includes the cost on edge (pk+1, pk), i.e.,
wpk+1pk , if and only if none of the nodes from p1 to pk on
path p(s,i) has cached content item i. For example, in Figure
1, p(3,2) = (3, 6, 5, 7) and the routing cost of request (3, 2)
depends on x32, x62 and x52. If (x32, x62, x52) = (0, 0, 1),
then h(3,2)(x32, x62, x52) = w63 + w56.

D. Selfish Caching Behavior

Each selfish cache node s ∈ V seeks a caching strategy
to optimize its own benefit, i.e., minimizing the aggregate

9In this paper, we assume that forwarding and transmission follow standard
network protocols. In some settings, forwarding and transmission incur a
service cost to the cache node due to the consumption of the transmit power
and communication resource. We will consider such costs in the future work.

10We do not model the congestion effect on each edge. How to jointly
consider cost and throughput issues is an interesting open problem.
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Figure 2. An example where PSNE does not exist. The caching network has
|V | = 5 nodes and |I| = 2 content items, where node 4 (node 5, respectively)
is the designated server of item 1 (item 2, respectively). The cache capacity is
1 at each node. The request arrival rates satisfy λ(v,i) = λi, ∀v ∈ V, i ∈ I,
where λ1 = 10 and λ2 = 14. The request forwarding paths are fixed, for
example, p(3,1) = (3, 2, 4).

expected cost for serving all its own requests, calculated as
follows:

hs (xs, {xv : v ∈ Vs})

=
∑
i∈I

λ(s,i) · h(s,i)
(
xsi, {xvi : v ∈ V(s,i)}

)
. (1)

For notation simplicity, we write hs(·) as hs(xs,x−s). In the
absence of caching, i.e., x = 0, the aggregate expected cost
of node s is:

hs(0) =
∑
i∈I

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk .

We define the caching gain of node s as

gs(xs,x−s) = hs(0)− hs(xs,x−s). (2)

Intuitively, the caching gain is the cost reduction enabled by
caching. Since hs(0) is a constant, minimizing the aggregate
expected cost in (1) is equivalent to maximizing the caching
gain in (2). Hence, the caching gain in (2) serves as node s’
payoff function.

IV. SELFISH CACHING GAME

In this section, we model the interactions among selfish
cache nodes by a selfish caching game on directed graphs. We
construct an example where the pure strategy Nash equilibrium
(PSNE) does not exist for such a game. We then identify
the condition under which a PSNE exists, and propose a
polynomial-time algorithm to find a PSNE under the condition.

A. Game Modeling

We define the selfish caching game as follows:

Game 1 (Selfish Caching Game on Directed Graphs).
• Players: the set V of cache nodes on the caching graph;
• Strategies: the caching strategy xs = {xsi : ∀i ∈ I}

for each cache node s ∈ V , where xsi ∈ {0, 1} and∑
i∈I xsi ≤ cs;

• Payoffs: the caching gain gs(xs,x−s) for each s ∈ V .

Figure 3. An example where there is no mixed request loop. The request
forwarding path is p(3,1) = (3, 1, 2, 4).

Since the selfish caching game is a finite game, there exists
at least one mixed strategy Nash equilibrium (including pure
strategy Nash equilibrium as a special case). However, since it
is difficult to implement random caching strategies in practical
caching networks, we focus on analyzing pure strategy Nash
equilibria in this paper, as defined below.

Definition 1 (Pure Strategy Nash Equilibrium). A pure strat-
egy Nash equilibrium of the selfish caching game is a caching
strategy profile xNE such that for every cache node s ∈ V ,

gs(x
NE
s ,xNE

−s ) ≥ gs(xs,xNE
−s ), for all feasible xs. (3)

B. An Example with No PSNE

In the following, we first show that the PSNE does not
always exist.

Theorem 1. There exists a selfish caching game for which the
pure strategy Nash equilibrium does not exist.

Proof. Figure 2 is an example with no PSNE. For node 4
(node 5, respectively), caching item 2 (item 1, respectively) is
its dominant strategy. Now we analyze the selfish behaviors
of nodes 1, 2, and 3. It is easy to verify that for all 8 feasible
caching strategy profiles, there always exists one cache node
that can improve its caching gain by changing its caching
strategy unilaterally. For example, if all the three nodes cache
item 1, then node 3 has the the incentive to cache item
2 to improve its caching gain assuming that the other two
nodes do no change their caching strategies. Hence there is
no strategy profile where everyone is achieving its maximum
payoff assuming other nodes do not change their strategies.
Hence, the PSNE does not exist.

C. Existence of a PSNE

Deciding the existence of a PSNE for games on graphs is
NP-hard in general [52]. However, we identify the condition
under which a PSNE of the selfish caching game exists and can
be found in polynomial time. To proceed, we first introduce
the definition below.

Definition 2 (Mixed Request Loop). A mixed request loop on
a directed graph is a directed loop (p1, p2, . . . , pK , pK+1 =
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p1) involving 3 ≤ K ≤ |V | nodes, where pk ∈ V for 1 ≤ k ≤
K, pk 6= pl for all 1 ≤ k < l ≤ K, and at least one content
request traverses edge (pk, pk+1) ∈ E for all 1 ≤ k ≤ K.

In Figure 2, (1, 3, 2, 1) forms a mixed request loop, where
requests for item 1 traverse edge (3, 2), and requests for item
2 traverse edges (2, 1) and (1, 3).

Note that a loop on graph is not always a mixed request
loop. For example, (1, 3, 2, 1) in Figure 3 is a loop. However,
the request forwarding path is p(3,1) = (3, 1, 2, 4) rather than
(3, 2, 4), meaning no request traverses edge (3, 2). Hence, loop
(1, 3, 2, 1) is not a mixed request loop. In other words, we can
avoid mixed request loops by properly choosing the request
forwarding paths.

Next, we will show that a PSNE exists in the selfish caching
game on caching graphs with no mixed request loop.11

Theorem 2. A PSNE always exists in the selfish caching game
on caching graphs with no mixed request loop.

Proof. See Appendix A.

Theorem 2 holds in caching networks with arbitrary topolo-
gies and heterogeneous content popularity. We prove the
existence12 of the PSNE by finding a PSNE in polynomial
time.

D. Polynomial-Time Algorithm to Find a PSNE

In this section, we present a polynomial-time algorithm to
find a PSNE for the selfish caching game. Specifically, for
each selfish caching game, we can define a state graph [47]
as follows.

Recall that given node s’ caching strategy xs, the set Zs =
{i : xsi = 1, i ∈ I} is the set of content items cached by
node s ∈ V . Hence we can use x = {xs : ∀s ∈ V } and
Z = {Zs : ∀s ∈ V } interchangeably to represent the caching
strategy profile.

Definition 3 (State Graph [47]). A state graph is a directed
graph where each vertex corresponds to a strategy profile Z.
There is a directed arc from vertex Z to vertex Z ′ with label
v if the only difference between Z and Z ′ is the strategy of
player v and the payoff of player v in Z is strictly less than
its payoff in Z ′.

A PSNE corresponds to a vertex on the state graph without
any outgoing arc, i.e., a sink. Hence identifying a PSNE of
the selfish caching game is equivalent to identifying a sink on
the corresponding state graph.

We propose a polynomial-time algorithm (Algorithm 1 [47])
to find a sink on the state graph. The algorithm proceeds
in rounds. The first round starts at the vertex Z = ∅,
corresponding to the strategy profile where none of the cache
nodes cache any content item (Line 1 of Algorithm 1). In each
round, the first arc traversed on the state graph corresponds
to an add arc where a player, say s, changes from Zs

11Note that no mixed request loop is a sufficient (but not necessary)
condition for a PSNE to exist.

12The selfish caching game generally admits multiple PSNEs, depending
on system parameters such as edge weights and request arrival rates.

Algorithm 1: Find PSNE on State Graph [47]

Input: G(V,E), I, wuv, ∀(u, v) ∈ E, λ(s,i) and p(s,i), for
all s ∈ V, i ∈ I

Output: ZNE

1 Set Z = ∅;
2 repeat
3 Randomly pick a node s ∈ V where |Zs| < cs;
4 Add item i∗ where

i∗ ∈ argmaxi∈I\Zs gs(Zs ∪ {i}, Z−s) to node s, i.e.,
Zs ← Zs ∪ {i∗};

5 while ∃v ∈ V, j /∈ Zv, t ∈ Zv , such that
gv(Zv ∪ {j} \ {t}, Z−v) > gv(Zv, Z−v) do

6 Set Zv ← Zv ∪ {j} \ {t};
7 end
8 until ∀s ∈ V satisfies |Zs| = cs;
9 Set ZNE = Z;

to Zs ∪ {i∗}. Intuitively, player s adds only one content
item i∗ to its cache, where we select i∗ among all possible
content items not currently in Zs to maximize player s’
caching gain (Lines 3-4 of Algorithm 1). After the first arc,
subsequent arcs in the same round correspond to change arcs.
Specifically, a change arc corresponds to a player, say v,
replacing Zv by Zv ∪ {j} \ {t}, where j /∈ Zv and t ∈ Zv .
Intuitively, player v replaces content item t for content item
j if gv(Zv ∪ {j} \ {t}, Z−v) > gv(Zv, Z−v) (Lines 5-7 of
Algorithm 1). When the current vertex on the state graph has
no change arcs, one round ends. For the vertex where a round
ends, if there is an add arc outgoing from it, a new round
starts; otherwise, it is a sink and the algorithm terminates.
Such a sink corresponds to the PSNE.

In the following theorem, we show that Algorithm 1 can
find a sink on the state graph in polynomial time.

Theorem 3. For the selfish caching game on arbitrary-
topology caching graphs with no mixed request loop, Algo-
rithm 1 computes a PSNE in polynomial time by traversing a
path of length at most |V ||I|2(|V |−2)2 on the corresponding
state graph.

Proof. See Appendix B.

Note that for any given selfish caching game, Algorithm 1
does not require the construction of the whole state graph. At
any given vertex of the state graph, Algorithm 1 only requires
one to find the next arc to traverse, which takes O(|V |)
time. Hence, the total maximum running time of Algorithm
1 is O(|V |2|I|2(|V | − 2)2). Furthermore, different random
choices of the next arc to traverse in Algorithm 1 correspond
to different outcomes if there is more than one PSNE in the
selfish caching game.

Since each cache node maximizes its own benefit, a PSNE
of the selfish caching game does not in general optimize the
social welfare. We will quantify the efficiency of the Nash
equilibria in terms of social welfare next.

V. PRICE OF ANARCHY

To evaluate the efficiency of Nash equilibria, we analyze the
price of anarchy (PoA) [16], i.e., the ratio of the social welfare
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Figure 4. An example where PoA approaches 0. Consider a caching network
with |V | = 3 nodes where node 3 is the designated server of content items
in set I = {1, 2, . . . , I}. The request arrival rates at node 1 satisfy λ(1,1) >
0, λ(1,i) = λ(1,1) − ε > 0, where ε > 0, for i ∈ I \ {1}. Node 2 does not
generate request, i.e., λ(2,i) = 0,∀i ∈ I . The cache capacities are c1 = 1
and c2 = I − 1.

achieved by the worst Nash equilibrium to that achieved by a
socially optimal strategy.

In this paper, we define the social welfare as the aggregate
caching gain in the network. Specifically, the social welfare
maximization problem is

max G(x) ,
∑
s∈V gs(xs,x−s)

s.t.
∑
i∈I xsi ≤ cs, xsi ∈ {0, 1}, ∀s ∈ V, i ∈ I.

(4)

Problem (4) is NP-hard [9]. It is challenging to calculate the
socially optimal solution and analyze the PoA in general.

In the following, we first show that the PoA can be arbi-
trarily poor if we allow any content request patterns. We then
identify the cache paradox where adding extra cache nodes
can make the PoA worse. Under reasonable constraints of
request patterns and paths, however, we can show that the
PoA is bounded in general caching networks. Furthermore,
for given caching networks with known network topology and
parameters, we can derive a better bound for PoA.

A. An Example with an Arbitrarily Poor PoA

Next, we show that the PoA can be arbitrarily close to
0, indicating that the selfish caching behaviors can lead to
unboundedly poor performance in terms of social welfare.

Lemma 1. There exists a selfish caching game for which the
PoA is arbitrarily close to 0.

Proof. We construct an example where PoA approaches 0,
as shown in Figure 4. In this example, the socially optimal
caching strategy is for node 1 to cache content item 1 and
for node 2 to cache content items 2 to I . The optimal social
welfare, i.e., aggregate caching gain, is13

GSO = λ(1,1)(w21 + w32) +
∑I
i=2 λ(1,i)w32.

There may exist more than one PSNE. One is that node 1
caches item 1 and node 2 caches none of the content items
(since node 2 has no request of its own). The social welfare
achieved by this PSNE is GNE = λ(1,1)(w21 +w32). We have

GNE

GSO = 1

1+
∑I
i=2

λ(1,i)w32

λ(1,1)(w21+w32)

.

When w32 � w21 and ε → 0, we have λ(1,i)w32

λ(1,1)(w21+w32)
→ 1

and GNE

GSO → 1
I , which goes to 0 as I becomes very large.

Since PoA measures the worst case ratio between any PSNE

13The superscript “SO” represents socially optimal.

Figure 5. An example where adding an extra cache node makes the PoA
worse.

and the social optimal solution, the PoA will be no larger than
GNE/GSO and hence can be arbitrarily close to 0.

B. Cache Paradox

In practice, one way to improve the aggregate caching gain
in the network is to add extra cache nodes. However, we
identify the following cache paradox.

Lemma 2. In the selfish caching game, adding extra cache
nodes can make the PoA worse.

Proof. Consider a caching network with two nodes in Figure
5 (left subfigure), where node 2 is the designated server for
two content items. Assume c1 = 1 and λ(1,1) > λ(1,2) > 0. At
the equilibrium, node 1 caches item 1, which is also socially
optimal. Hence, PoA = 1.

Now we add an extra cache node, i.e., node 3 (see the right
subfigure in Figure 5), where c3 = 1 and λ(3,1) = λ(3,2) = 0.
Assume w21 = w31 + w23, w31 > 0, and w23 > 0. Then one
equilibrium is that node 1 caches item 1 and node 3 caches
nothing. However, the socially optimal strategy is that node 1
caches item 1 and node 3 caches item 2. Hence, the PoA with
node 3 satisfies

PoA′ =
λ(1,1)(w31 + w23)

λ(1,1)(w31 + w23) + λ(1,2)w23
< 1.

Intuitively, adding node 3 does not change the social welfare
achieved at the equilibrium, but increases the optimal social
welfare, and hence makes the PoA worse.

C. Bound on PoA

In this section, we show that under reasonable constraints of
request patterns and paths, the selfish caching game belongs
to a class of games that we call α-scalable valid utility games,
and the PoA is bounded by the length of the longest request
forwarding path in the network.

Recall that Zs = {i : xsi = 1, i ∈ I} represents the set
of content items cached by node s ∈ V . For convenience,
we express the caching gain of node s as gs(Zs, Z−s),
and the aggregate caching gain of the network as G(Z) =∑
s∈V gs(Zs, Z−s).
We first define the valid utility games (for general games

not restricted to selfish caching games), introduced by Vetta
in [15].

Definition 4 (Valid Utility Game [15]). A game (with social
function γ(·) and individual payoff functions fs(·),∀s ∈ V )14

14Note that the social function can be any objective that the network aims
to optimize, and may not be the summation of individual players’ payoff
functions.
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Figure 6. An example that satisfies the path overlap property. Here, p(2,1) =
(2, 3) and p(1,1) = (1, 2, 3).

is a valid utility game if the following three properties are
satisfied:

1) The social function γ(·) is non-decreasing and submod-
ular. Mathematically, for every content item i ∈ I and
for any subsets Z,Z ′ such that Z ⊆ Z ′,

γ(Z) ≤ γ(Z ′), (5)
γ(Z ∪ {i})− γ(Z) ≥ γ(Z ′ ∪ {i})− γ(Z ′). (6)

2) The sum of players’ payoff functions fs(·) for any
strategy profile x should be no larger than the social
function γ(·):∑

s∈V fs(xs,x−s) ≤ γ(x). (7)

3) The payoff of a player is no less than the difference
between the social function when the player participates
and that when it does not participate

fs(xs,x−s) ≥ γ(xs,x−s)− γ(0,x−s). (8)

Vetta in [15] proved that the PoA of a valid utility game
is bounded by 2. In the following, we define a new class of
games called α-scalable valid utility games, which generalizes
the notation of valid utility games.

Definition 5 (α-Scalable Valid Utility Game). A game is an
α-scalable valid utility game if it satisfies the two properties in
(5), (6), and (7), and the payoff of a player is no less than the
product of a positive constant α and the difference between
the social function when the player participates and that when
it does not participate:

fs(xs,x−s) ≥
1

α
·
[
γ(xs,x−s)− γ(0,x−s)

]
. (9)

Note that the valid utility game is a special case of the α-
scalable valid utility games with α = 1. We show that the
selfish caching game is an α-scalable valid utility game with
α = maxv∈V,i∈I |p(v,i)|−1 when the following two properties
are satisfied.

Definition 6 (Homogeneous Request Pattern Property). The
request arrival processes for content item i ∈ I at different
nodes are the same, i.e.,

λ(s,i) = λi,∀s ∈ V, i ∈ I. (10)

The homogeneous request pattern property implies that each
content item has a global popularity. Note that even under
the homogeneous request pattern property, the popularity of
different content items can be different, i.e., λi 6= λj , i 6=
j, i, j ∈ I.

Figure 7. An example to calculate the value of δ(G). We assume λ(v,i) =

λi, ∀v ∈ V, i ∈ I. According to (14), we have δ(G) = 1
1+w21/w32

∈ [0, 1].

When w21/w32 → 0, we have δ(G)→ 1; when w21/w32 →∞, we have
δ(G)→ 0.

Definition 7 (Path Overlap Property). If node s is on path
p(v,i), then starting from node s, path p(v,i) overlaps with
path p(s,i), i.e.,

s ∈ p(v,i) ⇒ p(s,i) ⊆ p(v,i). (11)

Figure 6 shows an example that satisfies the path overlap
property. Note that the path overlap property is naturally
satisfied when each node chooses a unique shortest path to
fetch content items.

Theorem 4. The selfish caching game with the homogeneous
request pattern and path overlap properties on caching graphs
with no mixed request loop is an α-scalable valid utility game
where

α = maxv∈V,i∈I |p(v,i)| − 1. (12)

Proof. See Appendix C.

In the following theorem, we show that when the selfish
caching game is an α-scalable valid utility game, the PoA is
bounded by the length of the longest request forwarding path
in the network.

Theorem 5. When the selfish caching game is an α-scalable
valid utility game, the PoA satisfies

PoA ≥ 1

1 + α
=

1

maxv∈V,i∈I |p(v,i)|
. (13)

Proof. See Appendix D.

The PoA bound decreases with α. The intuition is that
as the length of the request forwarding path increases, the
selfish behaviors of the intermediate nodes on a request
forwarding path affect more succeeding nodes. The above
performance guarantee is true for general caching networks
with an arbitrary topology. However, given a caching network
with a known topology and network parameters, we can further
explore the network structure and derive a better bound for
PoA. This is achieved by characterizing the discrete curvature
of the social function, as discussed next.

D. PoA and the Discrete Curvature of the Social Function

To understand how the discrete curvature [15] of the social
function will affect our PoA analysis, we first introduce the
discrete derivative. For a set function G(·), we define the
discrete derivative at Y in the direction Z as

G′Z(Y ) = G(Y ∪ Z)−G(Y ).
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We define the discrete curvature of a non-decreasing, submod-
ular social function G(·) to be

δ(G) = max
∀s∈V :G′Zs (∅)>0

G′Zs(∅)−G
′
Zs

(I |V | − Zs)
G′Zs(∅)

∈ [0, 1],

(14)
where I |V |−Zs represents the caching strategy profile (which
can be infeasible) under which node s caches content items in
set I \Zs while all other nodes cache all content items in set
I. Figure 7 shows an example to calculate the value of δ(G).

Given the discrete curvature of the social function, we can
obtain a better bound for the PoA of the selfish caching game.

Theorem 6. Given the discrete curvature δ(G) of the social
function, for any selfish caching game with the homogeneous
request pattern and path overlap properties on caching graphs
with no mixed request loop, the PoA satisfies

PoA ≥ 1

α+ δ(G)
. (15)

Proof. See Appendix E.

The PoA bound decreases with δ(G). The intuition is that
under a larger δ(G), the selfish behavior of a cache node
has a greater impact on the achieved social welfare. Since
δ(G) ∈ [0, 1] exploits the curvature property of the given
network structure, the performance guarantee in (15) is better
than the one in (13).

VI. SELFISH CACHING GAMES WITH UNEQUAL-SIZED
ITEMS

In this section, we analyze more general selfish caching
games with unequal-sized items, which correspond to the
practical applications such as video streaming services over
HTTP (e.g., Netflix and Hulu) that split each video into
segments of lengths from 2 to 10 seconds [19]. We show that
the caching gain maximization problem for each cache node is
NP-hard. We further generalize the model by considering that
each cache node has limited computational capability to solve
its caching gain maximization problem. This may lead to an
approximate PSNE. We analyze the existence and efficiency
of an approximate PSNE under these two generalizations.

A. Game Modeling

Let Li denote the size of content item i, for all i ∈ I. We
define the selfish caching game with unequal-sized items as
follows:

Game 2 (Selfish Caching Game with Unequal-Sized Items).
• Players: the set V of cache nodes on the caching graph

G(V,E);
• Strategies: the caching strategy xs = {xsi : ∀i ∈ I}

for each cache node s ∈ V , where xsi ∈ {0, 1} and∑
i∈I Lixsi ≤ cs;

• Payoffs: the caching gain gs(xs,x−s) for each s ∈ V .

In the following, we will show that for each cache node s ∈
V , given fixed x−s, its caching gain maximization problem is

equivalent to a knapsack problem. For node s ∈ V , the caching
gain in (2) can be equivalently written as

gs(xs,x−s) =
∑
i∈I

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk(1−
k∏

k′=2

(1− xpk′ i))

+
∑
i∈I

xsi · λ(s,i)
|p(s,i)|−1∑
k=1

wpk+1pk

k∏
k′=2

(1− xpk′ i).

(16)
Given fixed x−s, the first term in (16) is a constant, while the
second term in (16) depends on xs. Define weight

qsi(x−s) = λ(s,i)
∑|p(s,i)|−1
k=1 wpk+1pk

∏k
k′=2(1−xpk′ i). (17)

Intuitively, qsi(x−s) represents the routing cost for request
(s, i) under x−s if xsi = 0. Given fixed x−s, the caching gain
maximization problem of node s is equivalent to the following
knapsack problem:

max
xs

∑
i∈I

xsi · qsi(x−s)

s.t.
∑
i∈I Lixsi ≤ cs, xsi ∈ {0, 1},∀i ∈ I.

(18)

Solving the knapsack problem (18) is NP-hard.15 In prac-
tice, each cache node has limited computational capability
in a short time period (e.g., minutes or hours for which
the request patterns remain unchanged [25]), and can only
solve the knapsack problem (18) to an approximate solution
x̂s = {x̂si : ∀i ∈ I}. There is extensive literature on the
polynomial-time approximation algorithms for the knapsack
problem [53]. We present one such algorithm in Lines 4-12 of
Algorithm 2, which achieves a 1/2 approximation ratio (see
Section 9.4.2 of [53]).

Now we consider the general case where cache nodes obtain
only a 1/β approximate solution with β > 1 for problem (18).
This leads to the β-approximate PSNE of Game 2.

B. Existence of an Approximate PSNE

A β-approximate PSNE is a strategy profile for which no
player can improve its caching gain by a factor more than β of
its current caching gain by unilaterally changing its strategy.16

Definition 8 (β-Approximate PSNE [55]). A pure strategy
profile xβ−NE is a β-approximate PSNE if no player can find
an alternative pure strategy with a payoff which is more that
β times its current payoff. That is for any player s ∈ V ,

gs(x
′
s,x

β−NE
−s ) ≤ β·gs(xβ−NEs ,xβ−NE−s ), for all feasible x′s.

(19)

Next, we show that a β-approximate PSNE exists when the
following property is satisfied:

15When Li = Lj , ∀i, j ∈ I, problem (18) is a max-weight knapsack
problem, which is easy to solve and corresponds to the scenario with equal-
sized items in Sections III–V.

16An alternative notion of approximate PSNE (see, e.g., [54]) is based on
an additive error, rather than the multiplicative error. Our definition is equally
natural, and indeed more in line with the notion of price of anarchy in game
theory [15, 16, 55].
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Definition 9 (Cloud Property). All content items are stored in
the same designated server node, i.e.,

|Di| = 1 and Di = Dj ,∀i 6= j, i, j ∈ I. (20)

Furthermore, for each cache node s ∈ V , its request forward-
ing path for different content items is the same, i.e.,

p(s,i) = ps,∀i ∈ I. (21)

In practice, a network in which all content items are stored
in the cloud server satisfies (20). Note that (21) is naturally
satisfied when each node chooses the unique shortest path to
fetch content items. Furthermore, (21) is naturally satisfied in
a tree topology.

In the following, we show that a β-approximate PSNE
exists in Game 2 with the cloud property and the path overlap
property in (11).17 Note that in the caching graph satisfying
the cloud property and the path overlap property, there is no
mixed request loop.

Theorem 7. A β-approximate PSNE always exists in Game 2
with the cloud property and the path overlap property.

Proof. See Appendix F.

The result holds in arbitrary-topology networks with het-
erogeneous content popularity. However, the complexity for
finding an approximate PSNE may grow exponentially with
the number of nodes and their strategies in general.

C. Polynomial-Time Algorithm to Find an Approximate PSNE

In this section, we propose a polynomial-time algorithm to
find an approximate PSNE of Game 2.

With the cloud property in (20) and (21), and given des-
ignated server node u, the caching gain of each cache node
s ∈ V depends on not only xs but also {xv : v ∈ Vs},
where Vs = {v : v ∈ ps, v 6= s, v 6= u} is the set of
intermediate nodes on node s’ request forwarding path ps.
We group nodes with the same number of intermediate nodes
into one set, i.e., denote the set of nodes with |Vs| = m by
Vm = {s ∈ V : |Vs| = m} where 0 ≤ m ≤ |V | − 2. Note
that since node u stores all content items, its caching strategy
does not affect other nodes.

If the path overlap property in (11) is satisfied, we know
that if node v ∈ Vs, then s /∈ Vv . That is, if node v in on
path ps, then node s is not on path pv . Hence, for each node
s ∈ Vm with |Vs| = m intermediate nodes in set Vs = {v :
v ∈ ps, v 6= s, v 6= u}, every intermediate node v ∈ Vs has
a smaller number of intermediate nodes, i.e., |Vv| < m. This
motivates us to find the equilibrium strategies for nodes in sets
Vm, 0 ≤ m ≤ |V | − 2, according to the increasing order of
m.

We propose a polynomial-time algorithm (Algorithm 2)
to find a β-approximate PSNE. Specifically, We find the
equilibrium strategies of nodes in sets Vm for 0 ≤ m ≤ |V |−2
sequentially (Lines 1-2 of Algorithm 2). For example, for

17The cloud property and the path overlap property are sufficient conditions
for existence. Analyzing the sufficient and necessary conditions for existence
of (approximate) PSNE on graphs is an open problem, and we will consider
it in the future work.

Algorithm 2: Find β-Approximate PSNE

Input: G(V,E), I, wuv, ∀(u, v) ∈ E, λ(s,i) and p(s,i), for
all s ∈ V, i ∈ I

Output: xβ−NE
1 Classify nodes into sets Vm for 0 ≤ m ≤ |V | − 2;
2 for m = 0 : |V | − 2 do
3 for s ∈ Vm do
4 Set x̂s = 0, i.e., x̂si = 0, ∀i ∈ I;
5 Relax problem (18) to a linear programming problem

by relaxing xs ∈ {0, 1}|I| to x̃s ∈ [0, 1]|I|;
6 Compute an optimal solution x̃∗s of the

LP-relaxation;
7 Set Is = {i : x̃∗si = 1} and Fs = {i : 0 < x̃∗si < 1};
8 if

∑
i∈Is q(s,i)(x−s) > maxi∈Fs q(s,i)(x−s) then

9 Set x̂si = 1,∀i ∈ Is;
10 else
11 Set x̂sj = 1 for j = argmaxi∈Fs q(s,i)(x−s);
12 end
13 end
14 end
15 Set xβ−NE = x̂;

node s ∈ V0 such that Vs = ∅ (Line 3 of Algorithm
2), its β-approximate equilibrium strategy xβ−NEs is the β-
approximate solution to problem (18), calculated by Lines 4-12
of Algorithm 2. Note that for a node s ∈ V0, qsi(x−s) = qsi
is a constant independent of other nodes’ strategies. For node
s ∈ Vm with 1 ≤ m ≤ |V | − 2 (Line 3 of Algorithm 2), its
equilibrium strategy is the β-approximate solution to problem
(18), calculated by Lines 4-12 of Algorithm 2.18 Note that its
equilibrium strategy depends only on the caching strategies of
nodes v ∈ Vs in its intermediate node set with |Vv| < m, and
hence qsi(x−s) = qsi({xβ−NEv : v ∈ Vs}). We continue this
sequential process until all nodes decide their β-approximate
equilibrium caching strategies. The resulting caching strategy
profile is a β-approximate PSNE of Game 2.

In the following theorem, we show that Algorithm 2 can
find a β-approximate PSNE of Game 2 in polynomial time.

Theorem 8. For Game 2 with the cloud property and the
path overlap property, Algorithm 2 computes a β-approximate
PSNE in O(|V ||I|) time.

Proof. See Appendix G.

We next analyze the PoA of Game 2.

D. Price of Anarchy

we show that the PoA for the β-approximate PSNE is
bounded under the homogeneous request pattern property in
(10).

Theorem 9. For Game 2 with the cloud property, the path
overlap property, and the homogeneous request pattern prop-
erty, the PoA for the β-approximate PSNE satisfies

PoAβ ≥ 1

1 + α · β
=

1

1 + β ·
(
maxv∈V,i∈I |p(v,i)| − 1

) .
(22)

18Lines 4-12 of Algorithm 2 achieve a 1/2 approximation ratio of problem
(18), and hence β = 2. Note that β is identical across all nodes.
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Figure 8. Abilene network. Figure 9. Abilene network with extra nodes.
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Proof. See Appendix H.

The performance guarantee holds for arbitrary caching
networks. However, due to cache nodes’ limited computational
capabilities, the guarantee for the approximate PSNE in (22)
is worse than the one in (13) for the equal-sized item case.

VII. SIMULATION RESULTS

We perform simulations on networks including the Abilene
network shown in Figure 8, the GEANT network shown in Fig-
ure 14, and the Grid topology shown in Figure 18. Simulation
results show that the performance of Nash equilibria improves
with the cache capacity at each node, while it degrades with
the number of nodes that do not generate content requests.
Furthermore, adding extra cache nodes to the existing network
can make the performance of Nash equilibria worse.

Upper Bound of the Optimal Social Welfare. Since the
social welfare maximization problem (4) is NP-hard, we calcu-
late an upper bound for the optimal social welfare. Specifically,
we relax problem (4) by relaxing the binary caching strategy
x = {xsi ∈ {0, 1} : ∀s ∈ V, i ∈ I} to be a continuous caching
probability strategy φ = {φsi ∈ [0, 1] : ∀s ∈ V, i ∈ I} where∑
i∈I φsi ≤ cs,∀s ∈ V , while keeping the objective function

unchanged. The relaxed problem is

max G(φ) s.t.
∑
i∈I φsi ≤ cs, φsi ∈ [0, 1], ∀s ∈ V, i ∈ I.

(23)
The relaxation objective function G(φ) is not concave, so (23)
is not a convex optimization problem. We approximate G(φ)
by L(φ) below [9]:

L(φ) =
∑

s∈V,i∈I
λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk min

{
1,

k∑
k′=1

φpk′ i

}
.

Note that L(φ) is concave, and we can solve the following
convex optimization problem in polynomial time.

max L(φ) s.t.
∑
i∈I φsi ≤ cs, φsi ∈ [0, 1], ∀s ∈ V, i ∈ I.

(24)
We have the following result:

Lemma 3. Let x∗, φ∗, and φ∗∗ be the optimal solutions to
problems (4), (23), and (24), respective. Then:

G(x∗) ≤ G(φ∗) ≤ L(φ∗) ≤ L(φ∗∗). (25)

Proof. See Appendix I.

Hence, L(φ∗∗) serves as an upper bound for the optimal
social welfare G(x∗). We define Ḡ(xSO) = L(φ∗∗).19

In the following, we first perform simulations for the case
with equal-sized content items and show the results in Figures
10–21, which validate the existence of a PSNE in Theorem
2 and the PoA analysis in Theorem 5. We then perform
simulations for the case with unequal-sized content items
and show the results in Figures 22 – 25, which validate the
existence of an approximate PSNE in Theorem 7 and the PoA
analysis of the approximate PSNE in Theorem 9.

Experiment Setup for the Abilene Network. For the
Abilene network shown in Figure 8, we take all edge costs
from the Abilene network configuration [56].20 We consider a
set I = {1, . . . , 10} of content items [9], where node 1 is the
designated server of the first 6 content items and node 2 is
the designated server of the remaining 4 content items. Each
node chooses the shortest path to fetch every content item,
following which there is no mixed request loop on the graph.

19The superscript “SO” represents socially optimal.
20We assume that the edge costs are symmetric.
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Figure 14. GEANT network.
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Figure 15. G(·) vs. cv , under both
heterogeneous and homogeneous re-
quest patterns.
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Cache Capacity at Each Node
2 4 6 8 10

G
(X

N
E
)=
7 G
(X

S
O
)

0.4

0.5

0.6

0.7

0.8

0.9

1
NII = 0

NII = 3
NII = 6

Figure 17. G(xNE)/Ḡ(xSO) vs.
cv , under different NII .

Figure 18. Grid topology.
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Figure 19. G(·) vs. cv , under both het-
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Figure 20. G(·) vs. cv , under different
no. of Type-II nodes NII .
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Figure 21. G(xNE)/Ḡ(xSO) vs. cv ,
under different NII .

We generate the arrival rates λ(s,i),∀s ∈ V, i ∈ I uniformly
at random in the interval [0, 10].

Results in the Abilene Network. Figure 10 shows the
aggregate caching gain G(xNE) and Ḡ(xSO) under different
cache capacities at each node,21 for the case with heteroge-
neous request patterns λ(s,i) (the upper two curves) and for
the case with homogeneous request patterns λ(s,i) = λi,∀s ∈
V, i ∈ I (the lower two curves)22, respectively. We can see that
the gap between G(xNE) and Ḡ(xSO) under homogeneous
λi is smaller than the gap under heterogeneous λ(s,i). Thus,
the homogeneous request pattern leads to better performance
achieved by selfish caching behaviors in the Abilene network.

In practice, some cache nodes are intermediate routers
which do not request for any content items. We define nodes
with positive request rates as Type-I nodes (with a total number
NI ), and nodes with no request as Type-II nodes (with a total
number NII ). We show the impact of NII in Figure 11. We
can see that the gap between G(xNE) and Ḡ(xSO) decreases
with the cache capacity at each node, while the gap increases
with NII . This implies that the impact of the selfish behaviors
is mitigated when the cache resource increases, and the selfish
behaviors of Type-II nodes degrade the (relative) performance
of Nash equilibria (since the selfish Type-II nodes will not
cache content items at equilibrium).

To understand the impact of the randomness of request
arrival rates λ(s,i), we perform simulations on 100 sets of
randomly generated {λ(s,i) : ∀s ∈ V, i ∈ I}, and show the
average ratios G(xNE)/Ḡ(xSO) of the 100 trials in Figure

21We show the results for the case where cache nodes may have different
cache capacities in Appendix J.

22We take λi =
∑
s∈V λ(s,i)/V given the heterogeneous λ(s,i), ∀s ∈

v, i ∈ I.

12, where the error bars represent the standard deviations.
As is consistent with our observation from Figure 11, the
performance of the Nash equilibria increases with the cache
capacity, while decreases with NII .

In practice, one direct way to improve the aggregate caching
gain in the network is to add extra cache nodes. To check the
impact of extra caches on the performance of Nash equilibria,
we sequentially add node 12, node 13, until node 21, shown in
Figure 9. We show the ratio G(xNE)/Ḡ(xSO) with different
number of extra nodes in Figure 13. We can see that adding
more extra caches makes PoA worse. The reason is that adding
extra cache nodes can improve the optimal social welfare,
while it cannot improve the social welfare achieved by Nash
equilibria due to the selfish nature of cache nodes. Hence the
“relative” performance of the Nash equilibria (measured in
terms of PoA) reduces.

Results in the GEANT Network. We perform simulations
on the GEANT network shown in Figure 14. We consider a
set I = {1, . . . , 20} of content items. We generate the cost on
each edge uniformly at random from the interval [1, 100]. We
show the performances corresponding to selfish behaviors in
Figures 15–17. As in the Abilene network, the homogeneous
request pattern leads to better (relative) performance achieved
by selfish caching behaviors, and the ratio G(XNE)/Ḡ(XSO)
increases with cv and decreases with NII .

Results in the Grid Topology. We perform simulations
on the Grid topology shown in Figure 18. We consider a
set I = {1, . . . , 16} of content items, and generate the cost
on each edge uniformly at random from the interval [1, 100].
We show the performance corresponding to selfish behaviors
in Figures 19–21. Different from the Abilene and GEANT
networks, we observe in Figure 19 that the homogeneous
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Figure 22. G(·) vs. cv , under both
heterogeneous and homogeneous re-
quest patterns.
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Figure 24. G(xNE)/Ḡ(xSO) vs.
cv , under different NII .
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Figure 25. G(xNE)/Ḡ(xSO) vs. no.
of extra cache nodes, under different cv .

request pattern leads to a larger aggregate caching gain but
a smaller ratio G(XNE)/Ḡ(XSO) than that under the het-
erogeneous request pattern. As in the Abilene and GEANT
networks, G(XNE)/Ḡ(XSO) increases with cv , and decreases
with NII .

Results for the Scenario with Unequal-Sized Items. We
perform simulations in the Abilene network for the case where
different content items have different sizes in Figures 22
– 25. We assume that the sizes of the |I| = 10 content
items are L = {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0},
and node 1 is the designated server of the 10 content items. We
compare the performance achieved by the approximate Nash
equilibria of Game 2 and that by the socially optimal solution.
Figure 22 shows that the homogeneous request pattern leads
to larger gaps between G(xNE) and Ḡ(xSO), and hence a
worse performance achieved by selfish caching behaviors at
the approximate Nash equilibrium. Figures 23 – 25 show that
the gap between G(xNE) and Ḡ(xSO) decreases with the
cache capacity at each node, while the gap increases with NII .
Furthermore, adding more extra caches makes the PoA worse.

VIII. CONCLUSION

In this paper, we analyze selfish caching games on directed
graphs, which can yield arbitrary bad performance. We show
that a PSNE exists and can be found in polynomial time if
there is no mixed request loop, and we can avoid mixed request
loops by properly choosing request forwarding paths. We then
show that although cache paradox happens, i.e., adding extra
cache nodes does not improve the performance of PSNE, with
the homogeneous request pattern property and the path overlap
property, the PoA is bounded in arbitrary-topology networks.
We further show that the selfish caching game with unequal-
sized items admits an approximate PSNE with bounded PoA
in special cases.

There are several interesting directions to explore in the
future, such as analyzing the impact of the congestion effect on
each edge, analyzing the joint caching and routing decisions
of selfish nodes, analyzing the privacy issue, analyzing the
dynamic selfish caching game under incomplete information,
and analyzing the coalitional game for the caching network
with multiple cache providers where each provider owns
several cache nodes.
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APPENDIX A
PROOF OF THEOREM 2

A PSNE of the selfish caching game corresponds to a vertex
on the state graph without any outgoing arc, i.e., a sink. By
showing the existence of a sink on the state graph, we can
show the existence of the PSNE of the selfish caching game.
Since Algorithm 1 can find a sink on the corresponding state
graph, the PSNE of the selfish caching game exists.

APPENDIX B
PROOF OF THEOREM 3

As one player adds a content item to its cache at the first
arc of each round, the number of rounds is no greater than
|V ||I|.

We next show that each round ends after traversing at most
|I|(|V | − 2)2 arcs. We focus on one round where player s
adds content item i. The add step will only affect nodes v ∈ V
where s ∈ p(v,i). If xvi = 0, i.e., i /∈ Zv , the add step will not
change node v’s behavior, as the add step will only decrease
the value of content item i to node v. If xvi = 1, i.e., i ∈ Zv ,
since the add step will decrease the value of content item i to
node v, node v may replace item i with item j. Subsequently,
the change step where node v replaces item i with item j will
lead to the change step where node u (such that v ∈ p(u,j)

and xuj = 1) replaces item j with item n. The sequence of
change steps caused by node s adding item i ends in at most
|V | − 2 steps, and node s will keep item i in its cache during
the sequence of change steps, due to the assumption on no
mixed request loop. Note that the number of such sequences
of change steps is at most |I|(|V | − 2). Hence, each round
ends in at most |I|(|V | − 2)2 arcs.

This proves our bound of |V ||I|2(|V | − 2)2 on the length
of the traversal to reach a PSNE.

APPENDIX C
PROOF OF THEOREM 4

The first property (5) and (6), i.e., the social function G(·)
is nondecreasing and submodular, is proved in [9].

By the definition of our social function, we have

G(x) =
∑
s∈V

gs(xs,x−s),

and therefore the second property (7) is satisfied.
In the following, we prove that the third property (9) is

satisfied. For the social function G(·), we have

G(xs,x−s)−G(0,x−s)

(a)
=
∑
i∈Zs

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk

k∏
k′=2

(1− xpk′ i)

+
∑
i∈Zs

∑
v∈V \{Di,s}
s∈p(v,i)

λ(v,i)

|p(v,i)|−1∑
k=k

p(v,i)
(s)

wpk+1pk

k∏
k′=1

(1− xpk′ i)

(b)
=
∑
i∈Zs

λi

|p(s,i)|−1∑
k=1

wpk+1pk

k∏
k′=2

(1− xpk′ i)·∑
v∈V \Di

1{
v=s or

[
s∈p(v,i) and ∏k

p(v,i)
(s)−1

k′=1
(1−xp

k′ i
)=1

]}
(c)

≤
∑
i∈Zs

λi

|p(s,i)|−1∑
k=1

wpk+1pk

k∏
k′=2

(1− xpk′ i) ·
(

max
v∈V,i∈I

|p(v,i)| − 1

)
Step (a) is from the definition of G(·). Step (b) holds under
the homogeneous request pattern and path overlap properties.
Step (c) is due to

∏k
p(v,i)

(s)−1
k′=1 (1 − xpk′ i) ≤ 1 and |{v ∈

V \ Di : s ∈ p(v,i)}| ≤ maxv∈V,i∈I |p(v,i)| − 1. Hence for
gs(·), we have

gs(xs,x−s) =
∑
i∈Zs

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk

+
∑

i∈I\Zs

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk

(
1−

k∏
k′=2

(1− x′pk′ i)

)

(d)

≥
∑
i∈Zs

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk

(e)

≥
∑
i∈Zs

λ(s,i)

|p(s,i)|−1∑
k=1

wpk+1pk

k∏
k′=2

(1− xpk′ i)

(f)

≥ 1

α
· (G(xs,x−s)−G(0,x−s))

Step (d) is due to 1−
∏k
k′=2(1− x′pk′ i) ≥ 0. Step (e) is due

to
∏k
k′=2(1 − xpk′ i) ≤ 1. Step (f) is due to step (c). This

completes our proof.

APPENDIX D
PROOF OF THEOREM 5

To characterize the PoA, the key step is to find the rela-
tionship between the Nash equilibria and the socially optimal
solution. Let xNE and x∗ denote the caching strategy under
any Nash equilibria and socially optimal solution, respectively.
For any Nash equilibria xNE, we have

G(xNE)
(a)
=
∑
s∈V gs(x

NE
s ,xNE

−s )

(b)

≥
∑
s∈V gs(x

∗
s,x

NE
−s )

(c)

≥
∑
s∈V

1
α

(
G(x∗s,x

NE
−s )−G(0,xNE

−s )
)

(d)
= 1

α

∑
s∈V

(
G(Z∗s , Z

NE
−s )−G(∅, ZNE

−s )
)

(e)

≥ 1
α

∑
s∈V (G(Z∗1 , . . . , Z

∗
s , Z

NE)

−G(Z∗1 , . . . , Z
∗
s−1, Z

NE))

(f)
= 1

α

(
G(Z∗1 , . . . , Z

∗
|V |, Z

NE)−G(ZNE)
)

(g)

≥ 1
α

(
G(Z∗)−G(ZNE)

)
(h)
= 1

α

(
G(x∗)−G(xNE)

)
Step (a) is from the definition of G(·). Step (b) is from the
definition of Nash equilibrium. Step (c) is due to (9). Step
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(d) is due to the one-to-one correspondence between xs and
Zs. Step (e) is due to the submodularity of G(·). Step (f)
is derived by calculating the summation over all s ∈ V . Step
(g) is because G(·) is non-decreasing. Step (h) is due to the
one-to-one correspondence between x and Z. The relationship
between G(xNE) and G(x∗) leads to

G(xNE)

G(x∗)
≥ 1

1 + α
=

1

maxv∈V,i∈I |p(v,i)|
.

This completes our proof.

APPENDIX E
PROOF OF THEOREM 6

We first introduce two notations. Given a strategy profile
Z = {Z1, . . . , Z|V |}, let Z⊕Z ′s denote the new strategy profile
where player s changes its strategy from Zs to Z ′s. Math-
ematically, Z ⊕ Z ′s = {Z1, . . . , Zs−1, Z

′
s, Zs+1, . . . , Z|V |}.

Given Z = {Z1, . . . , Z|V |}, we define Zs =
{Z1, . . . , Zs, ∅s+1, . . . , ∅|V |}.

The social function G(·) satisfies the following two lemmas.

Lemma 4. [15] For any feasible strategy profile Z, the
socially optimal solution Z∗ satisfies:

G(Z∗) ≤G(Z) +
∑

s:Z∗s∈Z∗−Z
G′Z∗s (Z ⊕ ∅s)

−
∑

s:Zs∈Z−Z∗
G′Zs(Z

∗ ∪ Zs−1).

Proof. By the submodularity of G, we have

G(Z∗ ∪ Z)−G(Z)

= [G(Z ∪ Z∗1 )−G(Z)] + · · ·
+
[
G(Z ∪ Z∗1 ∪ · · · ∪ Z∗j )−G(Z ∪ · · · ∪ Z∗j−1)

]
≤ [G(Z ∪ Z∗1 )−G(Z)] + · · ·+

[
G(Z ∪ Z∗j )−G(Z)

]
=

∑
s:Z∗s∈Z∗−Z

G′Z∗s (Z)

≤
∑

s:Z∗s∈Z∗−Z
G′Z∗s (Z ⊕ ∅s)

Furthermore,

G(Z∗ ∪ Z) = G(Z∗) +
∑

s:Zs∈Z−Z∗
G′Zs(Z

∗ ∪ Zs−1).

This completes our proof.

Lemma 5. For the selfish caching game with the homogeneous
request pattern and path overlap properties on caching graphs
with no mixed request loop, any Nash equilibrium Z and the
socially optimal solution Z∗ satisfy

G(Z∗) ≤ (1 + α)G(Z)−
∑
s∈V G

′
Zs

(Z∗ ∪ Z − Zs).

Proof. From Lemma 4, we know that

G(Z∗)

≤ G(Z) +
∑

s:Z∗s∈Z∗−Z
G′Z∗s (Z ⊕ ∅s)

−
∑

s:Zs∈Z−Z∗
G′Zs(Z

∗ ∪ Zs−1)

(a)

≤ G(Z) + α ·
∑

s:Z∗s∈Z∗−Z
gs(Z)

−
∑

s:Zs∈Z−Z∗
G′Zs(Z

∗ ∪ Zs−1)

(b)
= G(Z) + α ·

∑
s:Zs∈Z−Z∗

gs(Z)

−
∑

s:Zs∈Z−Z∗
G′Zs(Z

∗ ∪ Zs−1)

(c)
= G(Z) + α ·

[
G(Z)−

∑
s:Zs∈Z∩Z∗ gs(Z)

]
−
∑
s:Zs∈Z−Z∗ G

′
Zs

(Z∗ ∪ Zs−1)

(d)

≤ G(Z) + α ·
[
G(Z)− 1

α ·
∑
s:Zs∈Z∩Z∗ G

′
Zs

(Z ⊕ ∅s)
]

−
∑
s:Zs∈Z−Z∗ G

′
Zs

(Z∗ ∪ Zs−1)

(e)

≤ (1 + α)G(Z)−
∑
s:Zs∈Z∩Z∗ G

′
Zs

(Z∗ ∪ Z − Zs)
−
∑
s:Zs∈Z−Z∗ G

′
Zs

(Z∗ ∪ Z − Zs)
= (1 + α)G(Z)−

∑
s∈V G

′
Zs

(Z∗ ∪ Z − Zs)

Step (a) is due to (9). Step (b) is due to the fact that the set
of indices where Z∗s 6= Zs is the same as the set of indices
where Zs 6= Z∗s . Step (c) is due to G(Z) =

∑
s∈V gs(Z).

Step (d) is due to (9). Step (e) is due to the submodularity of
G(·). This completes our proof.

Now we are ready to prove Theorem 6. By the submodu-
larity of G, any Nash equilibrium Z and the socially optimal
solution Z∗ satisfy∑

s∈V G
′
Zs

(Z∗ ∪ Z − Zs) ≥
∑
s∈V G

′
Zs

(I |V | − Zs)

≥
∑
s∈V G

′
Zs

(I |V | − Zs)
G′Zs (Z

s−1)

G′Zs (∅)

≥ min
s∈V

G′Zs(I
|V | − Zs)

G′Zs(∅)
∑
s∈V

G′Zs(Z
s−1) = (1− δ(G))G(Z).

From Lemma 5, we know that

G(Z∗) ≤ (1 + α)G(Z)−
∑
s∈V

G′Zs(Z
∗ ∪ Z − Zs)

≤ (1 + α)G(Z)− (1− δ(G))G(Z)

= (α+ δ(G))G(Z)

This completes our proof.

APPENDIX F
PROOF OF THEOREM 7

We show a constructive proof. Since Algorithm 2 can find a
β-approximate Nash equilibrium, we can prove the existence
of the β-approximate Nash equilibria for Game 2.
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Figure 26. G(·) vs.
∑
v∈V cv , under both heterogeneous and homo-

geneous request patterns.
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Figure 27. G(·) vs.
∑
v∈V cv , under different number of idle nodes.

APPENDIX G
PROOF OF THEOREM 8

The procedure to find a β-approximate Nash equilibrium
in Algorithm 2 takes at most |V | − 1 steps. In each step,
the equilibrium strategy of the particular player can be found
by solving problem (18) with complexity O(|I|) (see Section
9.4.2 of [53]). Hence, the β-approximate Nash equilibrium can
be found in O(|V ||I|) time.

APPENDIX H
PROOF OF THEOREM 9

Let xβ−NE and x∗ denote the caching strategy under any β-
approximate Nash equilibria and the socially optimal solution,
respectively. According to the definition of the β-approximate
Nash equilibrium, we have

gs(x
β−NE
s ,xβ−NE−s ) ≥ 1

β
· gs(x∗s,x

β−NE
−s ),∀s ∈ V.

Summing over all s ∈ V , we have

G(xβ−NEs ,xβ−NE−s ) ≥ 1

β

∑
s∈V

gs(x
∗
s,x

β−NE
−s ),∀s ∈ V.

According to (9) and Theorem 5, we know that

gs(x
∗
s,x

β−NE
−s ) ≥ 1

α

(
G(x∗s,x

β−NE
−s )−G(0,xβ−NE−s )

)
≥ 1

α

(
G(x∗)−G(xβ−NE)

)
.

Hence,

G(xβ−NEs ,xβ−NE−s )

≥ 1

β

∑
s∈V

gs(x
∗
s,x

β−NE
−s )

≥
∑
s∈V

1

α · β

[
G(x∗s,x

β−NE
−s )−G(0,xβ−NE−s )

]
≥ 1

α · β
[
G(x∗)−G(xβ−NE)

]
,

which leads to

G(xβ−NE)

G(x∗)
≥ 1

1 + α · β
=

1

1 + β ·
(
maxv∈V,i∈I |p(v,i)| − 1

) .
This completes our proof.

APPENDIX I
PROOF OF LEMMA 3

Since problem (23) maximizes the same function as problem
(4) over a larger domain, we have:

G(φ∗) ≥ G(x∗).

By Goemans-Williamson inequality, we have that: for any
sequence of zi ∈ [0, 1], i ∈ {1, . . . , n},(

1− 1

e

)
min

{
1,

n∑
i=1

zi

}
≤ 1−

n∏
i=1

(1−zi) ≤ min

{
1,

n∑
i=1

zi

}
So for any feasible φ, we have:(

1− 1

e

)
L(φ) ≤ G(φ) ≤ L(φ).

Hence, we have
L(φ∗) ≥ G(φ∗).

By the optimality of φ∗∗ to problem (24), we have

L(φ∗∗) ≥ L(φ∗).

This completes our proof.

APPENDIX J
SIMULATIONS FOR DIFFERENT CACHE CAPACITIES

We perform simulations on how the aggregate caching gains
G(xNE) and Ḡ(xSO) change with the total cache capacity in
the Abilene network. We start from the state where the cache
capacity of each node is zero. In each trial of the simulation,
we add one unit of cache capacity to one node (staring from
node 1 to node 11). For example, when the total cache capacity
is 3, we have cv = 1 for v = 1, 2, 3, and cv = 0 for v =
4, 5, . . . , 11. When the total cache capacity is 28, we have
cv = 3 for v = 1, . . . , 6, and cv = 2 for v = 7, . . . , 11.

Figure 26 shows the aggregate caching gains G(xNE) and
Ḡ(xSO) under different total cache capacities in the network,
for the case with heterogeneous request patterns λ(s,i) (the
upper two curves) and for the case with homogeneous request
patterns λ(s,i) = λi,∀s ∈ V, i ∈ I (the lower two curves),
respectively. We can see that the gap between G(xNE) and
Ḡ(xSO) under homogeneous request patterns λi is smaller
than the gap under heterogeneous request patterns λ(s,i). This
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is consistent with the observation that we obtained from Figure
10 in the paper.

In practice, some cache nodes are intermediate routers
which do not request for any content items, i.e., idle nodes. We
show the impact of the number of idle nodes in Figure 27. We
can see that the gap between G(xNE) and Ḡ(xSO) decreases
with the total cache capacity in the network, while the gap
increases with the number of idles nodes. This is consistent
with the observations that we obtained from Figure 11 in the
paper. This implies that the impact of the selfish behaviors is
mitigated when the cache resource increases, and the selfish
behaviors of idle nodes degrade the (relative) performance of
Nash equilibria (since the selfish idle nodes will not cache
content items at equilibrium).
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