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Abstract—Due to the openness of wireless medium, robotic
networks that consist of many miniaturized robots are susceptible
to Sybil attackers, who can fabricate myriads of fictitious robots.
Such detrimental attacks can overturn the fundamental trust
assumption in robotic collaboration and thus impede widespread
deployments of robotic networks in many collaborative tasks.
Existing solutions rely on bulky multi-antenna systems to pas-
sively obtain fine-grained physical layer signatures, making them
unaffordable to miniaturized robots. To overcome this limita-
tion, we present ScatterID, a lightweight system that attaches
featherlight and batteryless backscatter tags to single-antenna
robots for Sybil attack mitigation. Instead of passively “ob-
serving” signatures, ScatterID actively “manipulates” multipath
propagation by exploiting backscatter tags to intentionally create
rich multipath signatures obtainable to single-antenna robots.
Particularly, these signatures are used to carefully construct sim-
ilarity vectors to thwart advanced Sybil attackers, who further
trigger power-scaling and colluding attacks to generate dissimilar
signatures. Then, a customized random forest model is developed
to accurately infer the identity legitimacy of each robot. We
implement ScatterID on the iRobot Create platform and evaluate
it under various Sybil attacks in real-world environments. The
experimental results show that ScatterID achieves a high AUROC
of 0.987 and obtains an overall accuracy of 95.4% under basic
and advanced Sybil attacks. Specifically, it can successfully detect
96.1% of fake robots while mistakenly rejecting just 5.7% of
legitimate ones.

Index Terms—Robotic network, Sybil attack detection,
backscatter

I. Introduction

The continuous advancement of wireless technologies has
promised to facilitate effective collaboration among a team
of small and agile robots, which enables a wide spectrum
of compelling applications, such as surveillance [2], consen-
sus [3], aerial wireless coverage [4] and search and rescue [5].
Although the openness of wireless medium delivers on the
promise for efficient and agile collaboration, it also exposes
robots to cyber attacks. A particular detrimental attack in
robotic networks is the Sybil attack, which easily subverts
the fundamental trust assumption in robotic collaboration by

Part of this work has been presented at IEEE INFOCOM 2020 [1].
This work was supported in part by the National Key R&D Program

of China under Grant 2020YFB1806606, National Science Foundation of
China with Grant 62071194, 61729101, 91738202, Young Elite Scientists
Sponsorship Program by CAST under Grant 2018QNRC001. (Corresponding
author: Wei Wang.)

Y. Huang, W. Wang and T. Jiang are with the School of Electronic
Information and Communications, Huazhong University of Science and
Technology, Wuhan 430074, China (e-mail:{yonghuang, weiwangw, tao-
jiang}@hust.edu.cn).

Q. Zhang is with Department of Computer Science and Engineering, Hong
Kong University of Science and Technology, Clear Water Bay, Hong Kong,
China (e-mail:qianzh@cse.ust.hk).

forging a large number of fake identities to gain a dispro-
portionate influence in the network [6], [7]. For instance, by
forging many IDs with excessive demands, a Sybil attacker
can easily deplete valuable bandwidth resources from other
genuine agents in a robotic network.

However, due to the ad hoc, dynamic, and miniaturized
characteristics of robotic platforms, the Sybil attack mitigation
in robotic networks still remains to be a challenging issue.
Traditional pre-shared key (PSK) management schemes pre-
sume prior trust among network nodes [8]–[11], which are
difficult to implement in ad hoc robotic networks where robots
often go in and out. Alternatively, research efforts [12]–[17]
measure received signals strength indicator (RSSI), channel
state information (CSI) and angle of arrival (AoA) features in
wireless physical layer (PHY) to verify the spatial uniqueness
of each node. However, RSSI and CSI based techniques [12]–
[15] not only need collaboration among multiple receivers
or antennas, but also require all nodes to be stationary or
semi-stationary. Although fine-grained AoA signatures can be
extracted to detect nodes in close proximity under dynamic
channels [16], [17], these approaches either rely on large
multi-antenna arrays [16] or require unnecessary robotic mo-
tions, such as in-place spin with two antennas [17]. They are
ill-suited to a team of robots individually with limited payload
and hardware capabilities.

In this paper, we argue that the fundamental hurdle in
realizing lightweight Sybil-resilient solutions lies in that these
PHY-based innovations focus on passively “observing” signal
propagation signatures, which require bulky multi-antenna sys-
tems to capture fine-grained information. This paper explores a
new approach: can we instead actively “manipulate” multipath
propagation, to make conventionally multi-antenna-exclusive
signatures also obtainable to a single antenna? If we could alter
multipath propagation by just attaching several featherlight and
batteryless backscatter tags to existing single-antenna robots,
it would not require any hardware modification or incur load
burden to the robots.

This paper proposes a lightweight Sybil attack detection
system, ScatterID, which attaches featherlight and batteryless
backscatter tags to single-antenna robots for defeating Sybil
attackers who are even capable of launching advanced power-
scaling and colluding attacks. Our fundamental insight is
that when backscatter tags communicate by intermittently
absorbing and reflecting ambient radio signals, the multipath
between a pair of transceivers changes correspondingly [18].
Such fast changes, i.e., reflections from tags, provide unique
spatial properties of the communication pair. In particular,
backscattered signal strengths are highly correlated to dis-
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Fig. 1. Illustration of Sybil attacks in a robotic network. Robotic attackers
can launch various types of Sybil attacks.

tances between transceivers with respect to tags. By affixing
several tags on a robot, as shown in Fig. 1, other robots’
trajectory information can be conveyed in backscattered signal
traces. The spatial correlation indicates that similar backscat-
ter signatures come from the same moving robot with a
high probability. In this way, a ScatterID robot can exploit
backscatter signal traces to generate unforgeable PHY IDs for
its neighboring robots and thereafter discover fictitious ones
among them by finding similar PHY IDs.

We realize the above idea by tackling the following two
challenges.

1) How to exploit backscatter tags to construct sensitive
signal profiles for hardware-constrained and dynamic robots?
With merely one antenna, a robotic platform cannot acquire
fine-grained signal signatures, such as AoA information, for
reliable attack detection in dynamic channel states. To deal
with this challenge, we take sequential backscatter signatures
of each robotic transmitter as a signal profile to characterize
its long-term spatial information. Specifically, when hearing
data transmission from a surrounding robot, a ScatterID
robot controls its tags to reflect wireless signals in turn for
avoiding overlapping among their backscattered signals. These
backscattered signals are unique to the transmitter’s location.
In this way, the ScatterID robot continuously reflects a series
of transmissions to obtain a signal profile that is sensitive to
the transmitter’s trajectory.

2) How to effectively detect the presence of fake robots
based on backscatter signatures under various Sybil attacks?
A Sybil attacker can scale its transmission power for each
fake ID, making its backscatter signature different from others’
in each transmission. In addition, attackers can collude with
each other and randomly switch fake IDs in each transmission
to disturb their long-term spatial similarity. Consequently,
these attacks will incur significantly different signal profiles.
To defend against such detrimental attacks, we propose an
effective algorithm for attack-resilient robot verification. In
particular, it first leverages Cosine distance to measure angular
differences between any two profiles while mitigating power-
scaling attacks. Then, it picks out representative features to
reliably indicate each robot’s similarity with respect to others
for detecting colluding Sybil attackers. Based on extracted
similarity vectors, a customized random forest model is de-
signed to verify the legitimacy of each robot.

Summary of Results. We implement our system with
iRobot Create robots, GNURadio/USRP B210 and backscatter
tags using commercial off-the-shelf circuit components, and
extensively evaluate our system under various Sybil attacks
in typical indoor and outdoor environments. The evaluation
results show that our system obtains an accuracy of 95.5%
under basic and power-scaling attacks and an accuracy of
95.3% under colluding attacks. Overall, it can successfully
detect 96.1% of fake robots and meanwhile mistakenly reject
just 5.7% of legitimate robots.

Contributions. The main contributions of this work are
summarized as follows.
• We propose ScatterID, a lightweight Sybil attack de-

tection system. It exploits featherlight and batteryless
backscatter tags to actively create rich multipath signa-
tures, which are obtainable to single-antenna robots.

• ScatterID effectively measures angular distances among
signatures of different robots and further selects repre-
sentative features from them, which makes it resilient to
Sybil attackers with power-scaling and colluding abilities.

• ScatterID develops a customized random forest model
that suits for backscatter signatures, which enables our
system to accurately detect the existence of Sybil attack-
ers while maintaining low computational overhead.

• We implement ScatterID on commercial robotic platforms
and evaluate it under various Sybil attacks. The results
show that ScatterID has effective resistance to not only
basic and power-scaling attacks but also colluding attacks
that are even never shown in the training phase.

II. Backscatter Enabled Signatures for Sybil Attack
Detection

A. Sybil Attacks in Robotic Networks

We focus on a general multi-robot network, where a team
of miniaturized mobile robots coordinates their actions by ex-
changing information with each other in an ad hoc manner [3],
[19]. In the robotic team, each robot has limited payload
and hardware capabilities, and it is equipped with only one
antenna for data transmission and reception. Moreover, all
mobile robots have distinctive moving paths within a certain
area to perform a given task, since multi-robot systems are
usually spatially distributed to complete their tasks in a time-
efficient way [20].

In the robotic network, we consider that one robot commu-
nicates with its N neighboring robots during task performing.
However, some of these robots may be fictitious and originate
from the same robot entity. Such attacks can be launched by
Sybil attackers to gain unfair influence in the robotic network
at low cost [6]. Due to the ad hoc and dynamic characteristics
of robotic platforms, traditional PSK schemes are difficult to
maintain and therefore PHY signatures are widely exploited
to defend against Sybil attacks in wireless networks. Hence,
this work considers not only the basic Sybil attack but also
two advanced Sybil attacks, which are launched by smart
adversaries to increase the chance of avoiding PHY-based
detection. The advanced Sybil attacks in the robotic network
include power-scaling attacks and colluding attacks [13], [14].
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Specifically, let us assume that Nc Sybil attackers fabricate N f

fake robots in N neighboring robots. Three types of Sybil
attacks are defined as follows.
• Basic Attacks. Each attacker sends messages using mul-

tiple fake IDs for masquerading many fictitious robots
and obtaining disproportionate resources in the network.

• Power-Scaling Attacks. A Sybil attacker varies its trans-
mit power for each fake ID in every transmission. Such
attacks can accordingly change the power of received
signals and render fake IDs to have backscattered signals
with significantly different amplitudes.

• Colluding Attacks. Nc Sybil attackers collude with each
other and share N f fake IDs during task performing.
Specifically, all attackers select Nc non-overlapping ID
subsets from N f fake IDs at each transmission slot and
change their selections at different slots. Such attacks
make fake IDs to change among different moving at-
tackers and thus destroy the long-term similarity between
PHY signatures of fake IDs.

The remaining N−N f IDs that are not spawned are considered
to be legitimate robots.

B. Characterizing Backscattered Signals

Existing approaches to thwart Sybil attacks mainly rely
on bulky multi-antenna systems, which are unaffordable for
miniaturized robotic platforms. To overcome this dilemma,
we advocate that lightweight and batteryless backscatter tags
can provide fine-grained PHY signatures that are obtainable to
single-antenna robots. According to [18], when a transmitter is
emitting a carrier signal x(n), a receiver that is surrounded by
K backscatter tags can receive the signals from the transmitter
and tags at the same time. Thus, at the receiver side, the
received signal y(n) is a composite, which can be given as

y(n) = x(n) +

K∑
k=1

αkbk(n)x(n) + η(n), (1)

where αk and bk(n) are, respectively, the reflection coefficient
and the data bits of kth tag, and η(n) is the environmental noise.
In Eq. (1), bk(n) is generated by switching the impedance of
tag antenna between two states, which makes the kth tag to
absorb and reflect incident signal x(n) intermittently.

The fast switching between tag states can dynamically
change the multipath propagation between the transmitter
and receiver, and such changes are highly correlated to the
locations of transceivers with respect to tags. Since the mul-
tipath propagation between the transceiver pair is constant,
we consider it as a compound path that is equivalent to a
direct path in free space. Hence, we can focus on the multipath
changes incurred by backscatter tags. Specifically, according
to Friis path loss theory [21], the reflected signal strength
Pre f lected by the kth tag can be expressed as

Pre f lected =
PtGt

4πd2
kt

×
λ2Gr

16π2d2
kr

× T (λ,Gk, αk), (2)

where Pt is the transmission power, dkt and dkr the tag’s
equivalent distances to the transmitting and receiving antennas
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Fig. 2. Backscattered signal traces reflected by two tags from one legitimate
and two fake robots.

computed based on the compound direct path, Gt and Gr

the transmitting and receiving antenna gains, respectively.
Moreover, T (·) is a function of the wavelength λ, the antenna
gain Gk of the tag and its reflection coefficient αk. Based on
Eq. (2), we can find that the backscattered signal strength
Pre f lected is highly dependent on the transmission power and
the relative distances of the kth tag in terms of transmitting
and receiving antennas. By affixing the kth tag on a mobile
robot, dkr is a fixed distance, and Pt and dkt are only variables
in the Eq. (2). Therefore, the reflected signal strength highly
correlates with transmission power and the distance between
the robotic communication pair. In this way, given a constant
transmission power Pt, we can construct a spatial-related
signature relying on reflected signals from K backscatter tags.

C. Feasibility Study

We perform a set of preliminary experiments to verify the
above idea using backscatter tags, moving robotic platforms
and USRP nodes. To avoid interference between the carrier
signal x(n) and reflected signals

∑K
k=1 αkbk(n)x(n) in Eq. (1),

we implement frequency-shift backscatter tags based on recent
work [22]–[24]. Moreover, the tags are set to reflect ambient
signals in turns for avoiding overlapping among backscattered
signals from different tags. In the experiment, we attach two
tags to one USRP node who logs backscattered signal traces
in a fixed position. We place two USRP nodes on different
moving platforms to emulate one legitimate robot and one
Sybil attacker with two different identities, respectively. Both
the legitimate robot and Sybil attacker transmit packets with
the same transmission power while moving around in different
trajectories. We extract the backscattered signal traces of two
tags and plot the corresponding results in Fig. 2.

From Fig. 2, we can observe that for two fake robots,
their backscattered signal traces are nearly identical to each
other. This is because that from the same moving robot, their
signals experience similar propagation paths that are created
by two tags. Whereas, for a pair of legitimate and fake robots,
their signal propagations from the transmitter to the backscat-
ter tags are different due to distinctive trajectories. Thus,
their backscattered signal traces are uncorrelated with each
other. This observation verifies that the reflected signals from
backscatter tags are highly sensitive to robotic trajectories, and
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Fig. 3. System flow of ScatterID. It contains three core components, i.e.,
Signal Profile Construction, Profile Similarity Measurement and Fake Robot
Detection.

they can be further utilized to construct a unique signal profile
for each moving robot.

III. Backscatter Signature Based Sybil Attack Detection
A. System Overview

ScatterID is a lightweight system that provides effective
resilience to various types of Sybil attacks in multi-robot
networks. Specifically, when hearing data transmission from
surrounding robots, a ScatterID robot controls its tags to
backscatter their signals. Then, ScatterID extracts their signal
profiles that capture robotic spatial information. Next, to
mitigate potential power-scaling attacks, it calculates Cosine
distances among signal profiles. Moreover, to deal with col-
luding attacks, it constructs a similarity vector for each profile
by selecting the minimal value from distances with respect
to the others in each transmission. Based on the similarity
vector, ScatterID leverages a classification model to output a
detection decision for each robot. If one surrounding robot is
detected to be fictitious, the ScatterID robot terminates their
connection link. Otherwise, the ScatterID robot continues their
communication.

As illustrated in Fig. 3, the core of our system includes three
components – Signal Profile Construction, Profile Similarity
Measurement and Fake Robot Detection.
• Signal Profile Construction. This component first seg-

ments the backscattered signal from the received signal,
and it then effectively extracts the reflected signals from
all tags as a multipath signature in each transmission.
Then, a signal profile can be obtained as a sequence of
signatures for each neighboring robot.

• Profile Similarity Measurement. After profiling all
neighboring robots, this component measures the angular
differences among signal profiles using Cosine distance
for defending against power-scaling attacks. Then, it
extracts a vector of minimal distances from a distance
matrix to effectively mitigate colluding Sybil attacks.

• Fake Robot Detection. This component detects the pres-
ence of fake robots using a customized random forest
model. In particular, it sorts each similarity vector in
an ascent manner, inputs the sorted vector into multiple
decision trees and aggregates all prediction results to
make its final decision.
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Fig. 4. Backscattered signal segmentation and signature extraction. The
red segment represents a backscattered signal, and the green bars indicate
extracted backscatter signatures.

B. Signal Profile Construction

The first step of ScatterID is to construct sensitive signal
profiles for all surrounding robots. These profiles are carefully
constructed based on a sequence of backscattered signals to
reliably provide unique spatial properties of moving robots.

Backscattered Signal Segmentation. To update backscat-
tered signals, a ScatterID robot controls all tags to reflect data
packets in turns for avoiding overlapping between backscat-
tered signals from different tags and thereafter extracts a
segment of backscattered signal from received signals period-
ically. Since the received signal may contain the component
without tags’ reflections, it is highly desirable to detect and
segment the backscattered component from the received signal.

To achieve this goal, our system first adopts a moving
average method [18] to smooth the received signal. Fig. 4
plots an instance of a received signal and the corresponding
smoothing result. As the figure shows, such smoothing oper-
ations enable our system to effectively remove signal noise
and reliably decode transmitted message from tags. Next, we
leverage tags’ transmitted message to determine the start and
end of backscattering in the averaged signal. Specifically, the
transmitted message is a known binary array of zeros and ones,
which are encoded in the backscattered signal to differentiate
each tag’s reflection from others. Thereby, the backscattered
component of the averaged signal and the tags’ binary array
are highly correlated. Hence, we can correlate the averaged
signal s(n) with the binary array i(n) to detect when tags begin
reflecting signals. The correlation result c(n) can be written as

c(n) =

T∑
t=1

s(n + t − 1) × i(t), (3)

where T is the length of i(n). According to Eq. (3), c(n)
will have the highest peak when the backscattered signal
and i(n) completely overlap. Thus, our system identifies the
backscattering start tstart by finding n with the maximum
value in c(n). Moreover, as the length of the backscattered
signal equals to T , we can accordingly obtain the end of
backscattering as tend = tstart +T . After extracting tstart and tend,
our system can accurately segment the backscattered signal B:

B = (b1,b2, · · · ,bK), (4)
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where bi is the reflected component by the ith tag and K is
the number of tags used in our system.

Signature Extraction. Now that we have picked the
backscattered component out of the received raw signal, we
take the next step to extract a multipath signature from it.
As depicted in Fig. 4, the backscattered signal consists of not
only the tags’ reflections but also the unwanted reflections
from ambient environments. To extract reliable multipath
features from each tag, ScatterID leverages the fact that
the difference between reflected and non-reflected samples is
caused by the tags’ reflections. Therefore, by subtracting two
kinds of samples, we can effectively eliminate environmental
reflections and thereafter obtain the reflections from all tags.
Mathematically, with the backscattered signal of the ith tag
bi(n) in Eq. (4), we assume that there are N1 reflected and N0
non-reflected samples. Hence, the reflection caused by the ith

tag pi can be computed by

pi =
1

N1

N1∑
n=1

bi(n|re f .) −
1

N0

N0∑
n=1

bi(n|non − re f .). (5)

As previously analyzed in Section II, the tag’s reflection pi

highly depends on the distance between the tag and signal
resource. Thus, with multiple backscatter tags, our system
can construct a multipath signature that provides location
information of the signal resource. Formally, based on K tags’
reflections, a multipath signature f can be expressed as

f = (p1, p2, · · · , pK). (6)

Profile Construction. To this end, ScatterID can construct a
signal profile for each neighboring robot. Due to the mobility
of robotic platforms, multipath signatures from the same Sybil
attacker may have a poor similarity in each transmission.
To deal with this issue, our system periodically extracts a
multipath signature from each robot’s backscattered signal
traces, and it takes a sequence of successive multipath sig-
natures as a signal profile for reliably capturing its trajectory
information. For fake robots forged by the same moving
attacker, their backscattered signal traces have the same trend
and are nearly identical to each other, as depicted in Fig. 2.
Hence, by characterizing long-term spatial information, their
signal profiles will be similar to each other. Formally, a signal
profile F of each moving robot can be expressed as

F = [f1; f2; · · · ; fL], (7)

where fl denotes the lth multipath signature and L is the number
of signatures.

C. Profile Similarity Measurement

In the robotic network, Sybil attackers can trigger power-
scaling and colluding attacks. To mitigate these threats, Scat-
terID proceeds to transform their signal profiles into desirable
similarity vectors that are resilient to various types of Sybil
attacks as shown in Fig. 5.

Similarity Vector Construction. Consider that there are
N neighboring robots who communicate with the ScatterID
robot, and a set of their signal profiles can be denoted as
{F1,F2, · · · ,FN}. Based on these profiles, we measure the

Signal profiles 3D distance matrix 2D distance matrixs Similarity vectors

K×L N×N×L (N-1)×L 1×L

Distance

measurement Transformation

Min

extraction

  

  

  

 

   

   

   

  

  

  

Size

Fig. 5. Work flow of the profile similarity measurement. N is the number
of surrounding robots, K the number of tags and L the number of multipath
signatures in a signal profile.

distance between every two profiles and thus obtain a 3D
distance matrix D as

D =


0 d12 · · · d1N

d21 0 · · · d2N
...

...
. . .

...
dN1 dN2 · · · 0

 , (8)

where dmn is the distance measurements with respect to two
profiles Fm and Fn. Since a signal profile is comprised of
L backscatter signatures, ScatterID calculates the distances
between Fm and Fn in a pairwise manner, and it thereafter
outputs a L-dimensional distance vector as

dmn = (dmn
1 , dmn

2 , · · · , dmn
L ), (9)

where dmn
l = dist(fml, fnl), the distance between the lth rows of

Fm and Fn. Compared to a scalar distance, the distance vector
dmn contains the multipath signature differences between two
moving robots within a certain period, and thus provides finer-
grained information about their long-term similarity. To obtain
all distances with respect to the nth robot, we extract a 2D
distance matrix from D as

D̂n =


d1n

d2n
...

dNn

 =


d1n

1 d1n
2 · · · d1n

L
d2n

1 d2n
2 · · · d2n

L
...

... · · ·
...

dNn
1 dNn

2 · · · dNn
L

 , (10)

where D̂n has a size of (N − 1) × L.
For a group of smart attackers, they can collude with each

other and launch Sybil attacks. By changing between different
moving attackers, fake IDs will have more dissimilar signal
traces in the transmission period, making themselves harder to
be detected based on long-term signatures. To defend against
such detrimental attacks, we construct a similarity vector for
each robot. Specifically, we pick out the minimal distance in
each column of D̂n to indicate the similarity of the nth robot
with respect to the remaining robots in each transmission.
Thus, we can obtain a similarity vector sn as

sn =
(
min

{
din

1

}
1≤i≤N

,min
{
din

2

}
1≤i≤N

, · · · ,min
{
din

L

}
1≤i≤N

)
=

(
sn

1, s
n
2, · · · , s

n
L

)
, (11)

where
{
din

l

}
1≤i≤N

represents all elements of the lth column
in D̂n. The intuition behind this processing is that whether
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the triggered attacks are colluding or not, there always exist
two fake IDs that come from the same attacker in each
transmission, thus the distance between their signatures should
be very small. In contrast, a legitimate ID has a different
backscatter signature with the other IDs’ in a high probability
and consequently has a large signature distance from the
others. Hence, via selecting the minimum within the distances
in each transmission, a similarity vector sn would have large
values for legitimate robots and small values for fake robots
spoofed by Sybil attackers.

Angular Difference Measurement. Now that we proceed
to deal with power-scaling attacks, where a clever attacker
changes its transmission power to emulate different fake
robots. Specifically, according to Eq. (2), by intentionally
changing Pt in each transmission, the attacker can manipulate
f in Eq. (6) with a varying scale coefficient α for each identity.
Such an operation scales the reflected signals by all tags and
further leads to a scaled signature f′ = (αp1, αp2, · · · , αpK),
which consequently renders our system ineffective in discov-
ering two fake robots. Since a similarity vector sn consists of
distances between two backscatter signatures and is the pro-
cessing unit for subsequent identity verification, the distance
metric dist(·, ·) should be carefully determined for resilience
to power-scaling attacks.

As shown in Fig. 6, after power-scaling attacks, two signa-
ture vectors f and g are both scaled into p and q in the feature
space with different scale coefficients α1 = 1.2 and α2 = 0.5,
respectively. Such transformation greatly changes the lengths
of two signatures and distorts their Euclidean distance, i.e.,
d1 , d2, making Euclidean metric ineffective in capturing their
similarity information. To find an effective metric, we observe
that under power-scaling attacks, although the lengths of two
signatures are distorted, their directions remain unchanged.
Specifically, the directional difference of f and g are the same
with that of p and q, i.e., θ1 = θ2. Hence, instead of using the
length difference, our system should rely on the directional
difference between two backscatter signatures for distance
measurement. For this purpose, we use Cosine distance to
measure the directional difference between any two multipath
signatures. Formally, as depicted in Fig. 6, the Cosine distance
between p and q is defined as

distcos(p,q) = 1 −
〈p,q〉
‖p‖2 ‖q‖2

, (12)
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Fig. 7. Our RF model for fake robot detection. ”0” stands for a real robot
and ”1” for a fake one.

where 〈·, ·〉 is the inner product and ‖·‖2 the L2 norm. Ac-
cording to Eq. (12), the scaling coefficients α1 and α2 will be
eliminated, making our system effective in mitigating power-
scaling attacks from Sybil attackers.

D. Fake Robot Detection

Based on similarity vectors of all robots, we proceed to
perform fake robot detection.

Identity Verification. Given a similarity vector si, we would
like to construct a detection function F (·) such that

F (si) =

{
1 , if ith robot is fake,
0 , if ith robot is real. (13)

For this purpose, we exploit a data-driven algorithm to fit F (·)
with our labeled dataset C = {(si, yi)}i=1:M , where M is the
number of included samples and yi ∈ {0, 1} the corresponding
label. In the component of fake robot detection, the selected
detection algorithm should be lightweight to implement on
robotic platforms with limited storage and computation capa-
bilities. Besides, it should have high detection performance
under high robotic movements and environmental dynamics.

To satisfy these requirements, we resort to the random forest
(RF) model. Generally, the RF model is a well-known en-
semble learning method used in many real-world applications,
and it works by building a collection of biased decision trees
and aggregating their results for a final outcome [25]. On the
one hand, for each classification decision, the RF model only
needs to simply average outputs of all internal decision trees.
Thus, its computational complexity is just linearly related
to the number of lightweight and easily-implement decision
tree models. On the other hand, instead of relying on one
single base classifier, the RF model consults many relatively
uncorrelated decision trees, which together act as a decision
committee, and outputs the decision with the most votes. In
this way, the final outcome of the RF model is more accurate
and stable, and outliers caused by environmental noise has
little impact on it. In our experiment, we compare the RF
model with other widely-used machine learning models and
show that it achieves the highest detection accuracy with
a moderate testing time for each sample, which verifies its
merits of high performance and low complexity. Hence, we
adopt a RF model to perform the task of fake robot detection.
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Fig. 8. Mean and standard deviation of sample features in our training dataset.
The sort operation can effectively differentiate feature distributions.

Specifically, as shown in Fig. 7, our RF model first makes
a bunch of binary predictions from H decision trees with
respect to si. Then, it aggregates all intermediate predictions
and outputs the final outcome based on its decision criterion.

In the first step, we train H biased decision trees
{T1(·),T2(·), · · · ,TH(·)} as base classifiers for label predic-
tions. Since making decision trees more uncorrelated is es-
sential for a RF model, two dimensions of randomness are
introduced to decorrelate trees during tree building. First,
we construct H independent data subsets {C1,C2, · · · ,CH} by
sampling M times with replacement for each subset, known
as bootstrapping, from the original dataset C and train the tree
Th(·) on the subset Ch only without pruning. The bootstrapping
can introduce lower correlation between any two subsets and
thus force their trees to capture different trends in the dataset
C. Second, we randomly select 1 ≤ z ≤ L features out
of a similarity vector when splitting tree nodes, i.e, making
decision rules, to further introduce diversity between any two
trees and randomness into the model. In our RF model, we set
z = log2 L according to [25]. However, based on the definition
in Eq. (11), a similarity vector si is consisted of a time series
of distance features, and thus each feature, i.e., one attribute
of samples, contains the same type of data points and would
has a similar distribution with the others in the dataset C. To
verify this, we compute the mean and standard deviation of
each feature in our training dataset. As Fig. 8 (a) shows, all
features have the nearly same statistics, implying that their
distributions are very close to each other. This high similarity
of features would enlarge the correlation between trees and
eventually undermine the effectiveness of the random feature
selection. To address this problem, we sort every si in an ascent
manner before tree building as

ŝi = sort(si) =
(
ŝi

1, ŝ
i
2, · · · , ŝ

i
L

)
, (14)

where ŝi
l ∈ si and ŝi

1 ≤ ŝi
2 ≤ · · · ≤ ŝi

L. As shown in Fig. 8 (b),
both the mean and standard deviation increase as the feature
index grows after the sort operation. This observation suggests
that the sorted features have more different distributions, which
will bring more diversity in the random feature selection and
thus result in more biased and unrelated trees. Finally, given

iRobot 

USRP 

ScatterID robot
Legitimate

/Sybil robot
STEP-MAX10 

FPGA

Backscatter tag

Fig. 9. Experimental platform. We implement our system using USRP nodes,
backscatter tags and iRobot Create robots. All tags are controlled by an Altera
STEP-MAX10 FPGA.

a similarity vector ŝi, any tree classifier Th(·) outputs a label:

Th(ŝi) =

{
1 , predicted as a fake robot,
0 , predicted as a real robot. (15)

In the second stage, we aggregate H intermediate results
{T1(ŝi),T2(ŝi), · · · ,TH(ŝi)} from all decision trees to make
our final prediction. For simplicity, we consider that the
importance of each tree is equal to 1

H , and then select the
label with majority votes as the final outcome. Formally,
given a similarity vector si, our RF model RF (·) predicts the
legitimacy of the ith robot as

RF (si) =

{
1 , if 1

H
∑H

h=1 I (Th(ŝi) = 1) ≥ 0.5,
0 , otherwise. (16)

In Eq. (16), I(·) represents the indicator function and ŝi is the
sorted version of si.

IV. Implementation and Evaluation

A. Implementation

As shown in Fig. 9, we implement our system using iRobot
Create robots, backscatter tags, and GNURadio/USRP B210
nodes. We prototype four backscatter tags using off-the-shelf
circuit components according to [18]. In particular, each tag is
equipped with one omnidirectional antenna with 3 dBi gain,
and it uses the ADG902 RF switch to alternate its antenna
impedance between two states for absorbing and reflecting
incident signals. All tags are controlled by an Altera STEP-
MAX10 FPGA to backscatter signals with a frequency shift
of 20 MHz for avoiding interference between the carrier
and backscattered signals and transmit data with a bitrate
of 4 Kbps in succession for avoiding overlapping among
backscattered signals from different tags. Moreover, a total of
five commercial iRobot Create robots are leveraged throughout
the experiment. Specifically, to build a ScatterID robot, one
robot is equipped with four backscatter tags and a USRP node
that has a single antenna. The USRP node is surrounded by
tags at a distance of 12 cm, and all tags are placed about 15 cm
away from each other, which can avoid similar propagation
signatures of all tags when backscattering surrounding sig-
nals [26]. The left four robots, each of which is equipped with
one USRP node that has one antenna, act as neighboring robots
of the ScatterID robot. Among neighboring robots, two of
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Fig. 10. Floor plans of experimental environments. We evaluate our system
in the indoor and outdoor environments.

them are used as Sybil attackers and two as legitimate robots.
In addition, all USRP nodes carried by robotic platforms are
configured to communicate in the 2.4 GHz ISM band.

B. Evaluation Methodology

Experimental Setup. In our experiment, we evaluate the
performance of ScatterID in both indoor and outdoor environ-
ments. Specifically, the experimental settings include an office
room with a size of 4.5 m × 5.5 m and a building rooftop with
an area of 8 m × 10 m as depicted in Fig. 10. The office room
is a typical multipath-rich environment, which contains some
furniture and surrounding walls. The rooftop is a multipath-
poor area with a few walls and roof guardrails. According to
the speed configurations in [27], [28], we set all robots to move
with a speed of 20 cm/s for easily controlling them at the same
time. Based on this moving speed, we set the ScatterID robot
to update multipath signatures in every 0.6 s, which can avoid
similar signal propagation of successive signatures and keep
their distinguishability [26]. Note that generally, the shorter the
updating interval, the higher the detection accuracy. However,
based on the above analysis, the interval that is shorter than
0.6 s will increase the information redundancy in a signal
profile and consequently lead to a marginal accuracy gain.
To launch basic Sybil attacks, a robotic attacker broadcasts
signals with two or three IDs at the same time. Moreover, it
can trigger power-scaling attacks by changing its transmission
power for each fake ID using a random scaling coefficient
from the set {0.3, 0.6, 0.9}. To launch colluding attacks, we
first set two Sybil attackers to together use a total of four fake
IDs. Then, in each transmission, one attacker is controlled to
randomly take two of these fake IDs to communicate with
the ScatterID robot, and the other attacker is set to use the
left two fake IDs for communication. Finally, we conduct our
experiment over different days in the two environments and
yield backscattered signal traces of six-hour in total.

Datasets. We extract signal profiles from the collected radio
traces and compute their similarity vectors as described in
Section III. Then, we label the similarity vectors based on
corresponding robot legitimacy and obtain about 20K labeled
samples. Therein, about 60% of them are positive and about
40% are negative. For better evaluating our RF model, we
construct two datasets – Dataset A and Dataset B. Dataset A

Fig. 11. AUROCs in terms of different profile sizes. The red mark corresponds
to the selected size with K = 4 and L = 10.

contains about 15K labeled samples that are collected under
basic and power-scaling attacks. Dataset B contains about 5K
labeled samples that are collected under colluding attacks.

In our experiment, we implement our RF model on Matlab.
During evaluation, we use dataset A for training and testing.
Specifically, we randomly partition dataset A into three subsets
and use 3-fold cross-validation for evaluating our RF model.
In each subset, samples from indoor and outdoor environments
are included. Moreover, we leverage dataset B for testing only
to verify the system’s resistance to colluding attacks.

Evaluation Metrics. To demonstrate the performance of the
proposed system, we use the following metrics.
• Accuracy. It is computed as the ratio of the total number

of robots that are correctly recognized to the number of
legitimate and fake robots.

• True positive rate (TPR). It is the ratio of the number
of fake robots that are successfully detected to the total
number of fake robots.

• False positive rate (FPR). It is the ratio of the number
of legitimate robots that are mistakenly recognized to the
total number of legitimate robots.

• Receiver operating characteristic (ROC) curve. It is a
curve in terms of TPRs and FPRs with varying discrimi-
nation thresholds in [0, 1]. A ROC curve with high TPRs
and low FPRs stands for a good binary classifier.

• Area under the ROC curve (AUROC). It is a numeric
metric to measure the discrimination performance of a
binary classifier and computed as the area under ROC
curve, falling into [0.5, 1]. The closer the AUROC is to
one, the better performance is achieved by a classifier.

As 3-fold cross-validation is used during evaluation, we aver-
age all metric values in 3-fold validations as the final results.

C. Experimental Results

Profile Size Determination. Since a signal profile F is
a fundamental unit for similarity measurement and identity
verification, the first step of our experiment is to decide its
size. According to Eq. (7), the profile size is dependent on
two parameters K and L, i.e., the numbers of backscatter tags
and multipath signatures, respectively. Generally, the larger
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 TPR FPR Accuracy 

Indoor 95.4% 5.3% 95.1% 

Outdoor 97.5% 6.4% 95.9% 

Overall 96.1% 5.7% 95.4% 

Fig. 13. System performance in different environments.

the profile size is, the more information will be provided
and thus the better performance will be achieved by our
system. However, increasing the profile size will also incur
more computation complexity and time consumption. Thus,
a small-size profile that guarantees high performance is de-
sired. Considering that Sybil attacker detection is a binary
classification task, we leverage the AUROC metric to com-
prehensively measure the system performance under different
profile sizes for effective profile size determination. For this
purpose, we first extract signal profiles with different sizes
from the collected radio traces by varying K and L from 2
to 4 and 16, respectively. Then, we train and test our RF
model on corresponding profile samples. Next, we calculate
ROC curves in terms of different size parameters and compute
corresponding AUROC values. As depicted in Fig. 11, we
observe that AUROC has the lowest value 0.783 with K = 2
and L = 2 and the highest value 0.994 with K = 4 and L = 16.
In addition, AUROC value basically rises up as both K and L
increase, which is in line with the above analysis. Moreover,
for the number of tags, four tags ensure that all AUROC values
are more than 0.95. For the number of signatures, AUROC
grows quickly at the beginning and has marginal growth when
L exceeds 10. Therefore, we choose ten successive multipath
signatures from four backscatter tags as a signal profile.

Overall Performance. Based on the determined profile
size, we illustrate the overall performance of ScatterID in our
experiment. First, we show the ROC curve of our system as
well as its AUROC to present its capability of discriminating
legitimate robots and Sybil attackers. As depicted in Fig. 12,
the ROC curve closely follows the left-hand and top borders
of the ROC space, which suggests that high TPRs and low
FPRs are mainly achieved when the discrimination threshold

TPR FPR TPR FPR Accuracy
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0.422
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0.845

Basic+Ps Colluding Overall

Ours
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Fig. 14. Performance of our and baseline models under various Sybil attacks.
Ps stands for power-scaling attacks.

varies in [0, 1]. Accordingly, the ROC curve yields a high
AUROC of 0.987, which is close to the ideal case. To further
illustrate the effectiveness of our system, we summarize its
performance in the indoor and outdoor environments as well
as the overall performance with respect to TPR, FPR and
accuracy in Fig. 13. Compared with the outdoor environment,
the indoor setting has much richer multipath due to scattering
and reflections from surrounding furniture items and walls.
As shown in Fig. 13, such multipath effects make our system
obtain a lower TPR in the indoor setting. This is due to the fact
that rich multipath propagations disturb backscatter signatures
from the same attacker and render them less similar to each
other, which consequently causes more positive samples to be
mistakenly recognized as negative ones. In the same way, the
multipath effects enlarge the discrepancy of negative samples
and thus lead to a lower FPR. Furthermore, environment
noise in backscattered signals will impact ScatterID’s perfor-
mance. In general, the lower the signal-to-noise ratio (SNR)
of backscattered signals, the less similarity between multipath
signatures of two fake robots is. To address this issue, our
system adopts a moving average method to remove signal
outliers, subtracts reflected samples from non-reflected ones
to eliminate environmental reflections, and takes a signature
sequence as a detection unit to enhance the similarity between
two illegitimate signatures under environment dynamics. As
Fig. 13 shows, ScatterID achieves high performance in each
environment with an accuracy more than 95%, which demon-
strates its robustness to environment noise. To sum up, our
system has a detection accuracy of 95.4%. In particular, it
can successfully mitigate 96.1% of Sybil attacks and correctly
recognize 94.3% of legitimate traffic. The above results show
the effectiveness and robustness of the proposed system in
discriminating between legitimate and fake robots.

Performance under Various Sybil Attacks. Next, we show
that our system has resistance to various Sybil attacks. To
illustrate these merits, we set up a baseline system that is
developed in our previous work [1]. In the baseline system,
attackers with basic and power-scaling ability are taken into
consideration. Similarly, we train and test the baseline model
on the backscatter traces under basic and power-scaling attacks
with 3-fold cross-validation, and use the traces under colluding
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attacks for testing only.
Fig. 14 illustrates the detection performance of our and

baseline systems under various types of Sybil attacks. As
the figure shows, we can observe that our system has very
close performance in the two attack scenarios and achieves a
TPR of more than 95% and a FPR of less than 6% in each
scenario. This is due to that our system extracts representative
features from a distance matrix to form a similarity vector,
which is resilient to ID switching between colluding attackers
as explained in Section III. However, colluding attacks still
render a TPR decrease by 0.5% and a FPR increase by 0.3%.
These small gaps may be caused by the fact that samples
under colluding attacks are never used in the training phase,
making our system obtain slightly low performance in the
colluding scenario. In addition, when comparing our system
with the baseline, we have observed that although our system
has a slight performance degradation with a TPR decline of
1.3% and a FPR increase of 0.6% under basic and power-
scaling Sybil attacks, it achieves a significant performance
improvement with a TPR increase of 53.7% and a FPR de-
crease of 0.5% under colluding Sybil attacks. Moreover, when
it comes to the overall performance, our system obtains an
accuracy increase of 10.9% in comparison with the baseline.
The reason is that in colluding attacks, a Sybil attacker can
collude with others and use a random subset of fake IDs in
each transmission, which consequently makes itself hard to be
detected by the baseline system. Furthermore, the two systems
obtain low FPRs in two attack scenarios, because the attacks
launched by Sybil attackers have little impact on the system’s
capability of correctly recognizing legitimate robots. Based
on the above observations, we conclude that our system is
resilient to various Sybil attacks and has an improvement in
overall performance when compared with the baseline.

Effectiveness of Cosine Distance. We further check the
effectiveness of Cosine distance used in profile distance mea-
surement. In our application, Cosine distance has an advantage
over other distances with its ability to mitigate power-scaling
attacks. To illustrate this advantage, we calculate similarity
vectors based on Eq. (11) using Cosine, Euclidean, Chebyshev
and Manhattan distances, respectively, and obtain four sample
datasets corresponding to different distance metrics. Then, we
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Fig. 16. Performance using different distance metrics. Ps stands for power-
scaling attacks. We only annotate TPRs and FPRs of Cosine and Euclidean
distance metrics for brevity.

normalize all feature points in the four datasets and compute
the cumulative distribution functions (CDFs) of their positive
and negative samples, respectively.

As plotted in Fig. 15, the positive CDFs of four metrics
are basically higher than the negative ones, because positive
samples are from Sybil attackers and their distance features
are generally smaller. However, it can be clearly observed
that Cosine distance has a steeper positive CDF and a flatter
negative CDF in comparison to the other three distances.
The observation implies that Cosine distance that captures
angular differences is more effective in measuring distances
between any two backscatter signatures under power-scaling
attacks. To further demonstrate this, we train and test our RF
model on the Cosine, Euclidean, Chebyshev and Manhattan
datasets, respectively, and report its performance with and
without power-scaling attacks in Fig. 16. As the figure shows,
Cosine distance achieves comparable performance in the two
attack scenarios and has a TPR larger than 95% and a FPR
smaller than 7% in each scenario. This is because that in each
transmission, backscattered signal strengths are proportional
to transmission power, and thus a varying coefficient can
be eliminated during Cosine distance calculation. However,
it can be found that Euclidean distance obtains a very low
TPR of 55% in the power-scaling scenario, which indicates
that it can not handle such attacks. In addition, the FPRs of
Euclidean distance in the two attack scenarios are relatively
high, which renders it inapplicable in reliably recognizing
legitimate robots. The same observations can be found in
Chebyshev and Manhattan distances. To conclude, Cosine
distance is an effective metric in profile distance measurement
and makes our system resilient to power-scaling attacks.

Effectiveness of Our RF Model. Finally, we demonstrate
the effectiveness of our RF model for fake robot detection.
We compare our RF model with other machine learning
models. To do this, we choose several widely-used models,
i.e., logistic regression (LR), naive Bayes (NB), support vec-
tor machine (SVM), decision tree (DT) and long-short-term
memory (LSTM) network with 30 hidden units, as baselines
for comparison. Similarly, we use two-thirds of Dataset A
for training baselines and the left third as well as Dataset B
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for testing them. We report their overall detection accuracy
as well as run time for each testing sample in Fig. 17.
It can be observed that although NB achieves the lowest
testing time less than 0.001ms per sample, it also has the
lowest accuracy of 91.2%. Moreover, SVM obtains the highest
testing time of about 0.036ms per sample, while having a
low detection accuracy of 91.6%. However, our RF model
achieves the highest accuracy of 95.4% and has a moderate
testing time of about 0.004ms per sample. Note that with
more hidden units, LSTM network is expected to achieve a
better detection accuracy, while inevitably incurring higher
computational overhead. Considering the above observations,
we conclude that the RF model achieves the best performance
compared with the other five machine learning models in our
application.

Moreover, we present the impact of the sort operation and
the number of decision trees on our RF model. For this
purpose, we train and test our model with and without the sort
operation multiple times by changing the number of decision
trees from 5 to 50, and report the accuracy on Dataset B
in Fig. 18. Note that the sort operation is introduced in our
RF model for differentiating feature distributions and boosting
the effectiveness of random feature selection as mentioned
in Section III. As the figure shows, the system with the
sort operation always has a higher accuracy on Dataset B.
Considering that Dataset B is never used for training, we
conclude that the sort operation is capable of improving the
generalization performance of our system. Additionally, the
number of decision trees in a RF model has an impact on
its prediction ability. Generally, the more decision trees are
adopted, the better performance is achieved. As shown in
Fig. 18, we observe that the system’s accuracy rises up as the
tree number increases at first, and then it becomes relatively
steady after 30 trees. Based on this observation, we adopt 30
decision trees in our RF model.

V. RelatedWork
Multi-Robot Networks. Recent years have witnessed the

proliferation of multi-robot networks in many emerging appli-
cations such as surveillance [2], exploration [29] and cover-
age [30], [31]. In these applications, one of the key research
issues is how to effectively cooperate among robots to achieve
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Fig. 18. Impact of the sort operation and number of decision trees. The
dashed vertical line represents the number of trees used in our RF model.

high-quality overall performance. However, effective coopera-
tion is based on the assumption that all claimed identities are
accurate and trustful, which can be easily undermined by Sybil
attackers who can masquerade a myriad of fictitious robots.

Backscatter Communications. Nowadays, backscatters
have become one of the most energy-efficient communication
primitives. In [18], ambient backscatter is originally proposed
to facilitate two simple and batteryless tags to communicate
with each other. After that, a variety of novel techniques,
such as WiFi backscatter [22], FS backscatter [32], FM
backscatter [24] and LoRa backscatter [33], are successively
developed to achieve high energy efficiency in backscatter
communications. Beyond their benign uses, backscatter has
increasingly been used in other applications such as on-body
device authentication [34] and object tracking [35]. In [36],
backscatter tags are used to shield static Internet of Things
(IoT) networks from spoofing attacks, where attackers try to
masquerade other legitimate nodes. Differing from [36], we
consider Sybil attacks in dynamic robotic networks and pro-
vide effective resilience to basic and advanced Sybil attacks.

Sybil Attack Mitigation. Sybil attacks have been widely
considered in multi-node networks [6], [7], [15]. The past
solutions for Sybil attack mitigation are mainly falling into
two categories. (i) Cryptographic-based approaches [8], [37]
assume prior trust among network nodes and require computa-
tionally expensive PSK management schemes. These require-
ments, however, cannot be satisfied in ad hoc and miniaturized
robotic platforms. (ii) Non-cryptographic approaches [12]–
[17] use wireless PHY information to discriminate between
real and fake nodes. However, these approaches passively
observe PHY features using bulky multiple antennas and thus
do not suit to miniaturized robots with limited payload and
hardware capabilities. To transcend these limitations, our work
adopts backscatter tags to actively capture fine-grained PHY
features and constructs sensitive signal profiles that are easily
obtainable to single-antenna robots for Sybil attack detection.

Machine Learning in Wireless Security. Machine learning
algorithms have been increasingly applied to enhance the secu-
rity performance of wireless communication systems. In [38],
a neural network is designed to perform user authentication
relying on WiFi signals. In [39], an adversarial model is
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proposed to authenticate on-body devices under various user
body motions. Moreover, the work [40] proposes a logistic
regression model to reduce communication overhead between
MIMO landmarks and its security agent. Our work develops
a RF model that is suitable for backscatter signatures and can
reliably detect Sybil attacks in robotic networks.

VI. Conclusion

This paper presents ScatterID, a lightweight system against
Sybil attacks for networked and miniaturized robots in many
cooperative tasks. Instead of passively measuring PHY fea-
tures using bulky multiple antennas, ScatterID utilizes feath-
erlight backscatter tags to actively manipulate multipath prop-
agation and creates salient multipath features obtainable to
single-antenna robots. These features are used to identify the
spatial uniqueness of each moving robot under Sybil attackers
with power-scaling and colluding abilities. We implement
our system on commercial off-the-shelf robotic platforms and
extensively evaluate it in typical indoor and outdoor environ-
ments. The experimental results show that ScatterID achieves
a high AUROC of 0.987 and an overall accuracy of 95.4%
for identity verification. In addition, it can successfully detect
96.1% of fake robots while mistakenly rejecting just 5.7% of
legitimate ones.
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