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Abstract—In the literature, there are several well-known peri-
odic channel hopping (CH) sequences that can achieve maximum
rendezvous diversity in a cognitive radio network (CRN). For
a CRN with N channels, it is known that the period of such
a CH sequence is at least N2. The asymptotic approximation
ratio, defined as the ratio of the period of a CH sequence to
the lower bound N2 when N → ∞, is still 2.5 for the best
known CH sequence in the literature. An open question in
the multichannel rendezvous problem is whether it is possible
to construct a periodic CH sequence that has the asymptotic
approximation ratio 1. In this paper, we tighten the theoretical
gap by proposing CH sequences, called IDEAL-CH, that have
the asymptotic approximation ratio 2.

For a weaker requirement that only needs the two users to
rendezvous on one commonly available channel in a period, we
propose channel hopping sequences, called ORTHO-CH, with
period (2p+1)p, where p is the smallest prime not less than N .

Index Terms—multichannel rendezvous, worst case analysis.

I. INTRODUCTION

The multichannel rendezvous problem that asks two users

to find each other by hopping over their available channels is a

fundamental problem in cognitive radio networks (CRNs) and

has received a lot of attention lately (see, e.g., the excellent

book [1] and references therein). In this paper, we tighten a

theoretical gap on the minimum period of the periodic channel

hopping (CH) sequences that achieve maximum rendezvous

diversity. A channel is called a rendezvous channel of a

periodic CH sequence if two asynchronous users (with any

arbitrary starting times of their CH sequences) rendezvous on

that channel within the period of the sequence. A periodic CH

sequence is said to achieve maximum rendezvous diversity for

a CRN with N channels if all the N channels are rendezvous

channels. In the asymmetric setting, it was shown in Theorem

1 of [2] that there do not exist deterministic periodic CH

sequences that can achieve maximum rendezvous diversity

with periods less than or equal to N2. For the symmetric

setting, the negative result of Theorem 1 of [2] is further

extended in Theorem 3 of [3]. It was shown that the length of

the period p satisfies the following lower bound:

p ≥







N2 +N if N ≤ 2
N2 +N + 1 if N ≥ 3 and N is a prime power

N2 + 2N otherwise

.

The lower bound is not always tight. Via extensive computer

enumeration, it was shown in [3] that the lower bound is

tight when N = 1, 2, 5, 6. It is also tight for N = 8 by

an explicit CH sequence in [4]. In the literature, there are

various periodic CH sequences that can achieve maximum

rendezvous diversity, see, e.g., CRSEQ [5], JS [6], DRDS

[3], T-CH [7], and DSCR [8]. In particular, T-CH [7] and

DSCR [8] have the shortest period 2N2 +N⌊N/2⌋ when N
is a prime. These CH sequences are called nearly optimal CH

sequences as their periods are O(N2), which is comparable to

the lower bound N2. However, the asymptotic approximation

ratio, defined as the ratio of the period to the lower bound N2

when N → ∞, is still 2.5 for T-CH and DSCR, 3 for CRSEQ

and DRDS. One of the open questions in the multichannel

rendezvous problem is whether it is possible to construct a

periodic CH sequence that has the asymptotic approximation

ratio 1. The main objective of this paper is to further tighten

the theoretical gap by proposing CH sequences, called IDEAL-

CH, that have the asymptotic approximation ratio 2. To the best

of our knowledge, this is the best asymptotic approximation

ratio in the literature.

The mathematical tools for the construction of IDEAL-CH

are (i) perfect difference sets [9] and (ii) ideal matrices [10].

Intuitively, a perfect difference set can be visualized as a

one-dimensional (1D) dot pattern that has a dot on the 1D-

coordinate of an element. Repeat the dot pattern infinitely

often in the line. Then for any time shift, exactly one pair

of dots will overlap in every period. On the other hand, an

ideal matrix can be viewed as a two-dimensional (2D) version

of a perfect difference set. An ideal matrix can be visualized

as a 2D dot pattern that has a dot on the 2D-coordinate of an

element in the matrix. Repeat the dot pattern infinitely often

in the plane. Then except purely vertical shifts, exactly one

pair of dots will overlap within a square box for any other

two-dimensional shifts. Using different sets for constructing

CH sequences is not new (see, e.g., [3], [4]). However, it

seems that researchers in the field may not be familiar with

the concept of ideal matrices. To our surprise, we find out

that the constructions of CRSEQ [5], T-CH [7], and DSCR

[8], are all based on ideal matrices and they are “equivalent”

in that sense. To deal with the problem of purely vertical shifts,

CRSEQ, T-CH, and DSCR all add a “stay” matrix in front of
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a “jump” matrix constructed from an ideal matrix. The added

“stay” matrix increases the length of a CH sequence. To push

the asymptotic approximation ratio further down, our idea is

to embed different sets into an ideal matrix. By doing so, we

are able to eliminate the need for adding a “stay” matrix and

thus shorten the length of IDEAL-CH.

CRSEQ, JS, DRDS, T-CH and DSCR, and IDEAL-CH are

sequences that can achieve maximum rendezvous diversity

within their periods. A weaker requirement is to ask the two

users to rendezvous on one commonly available channel and

measure the maximum time-to-rendezvous (MTTR). For this,

we propose a CH sequence, called ORTHO-CH, which can

guarantee the rendezvous of the two users within a period

of the ORTHO-CH sequence. When the available channels

of a user is a subset of the N channels, the period of our

ORTHO-CH sequence is (2p + 1)p, where p is the smallest

prime not less than N . Thus, ORTHO-CH has the MTTR

bound (2p + 1)p. Such a result is comparable to the best

algorithms in the literature, e.g., FRCH [11] with the MTTR

bound (2N+1)N for N 6= ((5+2α)∗r−1)/2 for all integer

α ≥ 0 and odd integer r ≥ 3, and SRR [12] with the MTTR

bound 2p2 + 2p.

The paper is organized as follows: In Section II, we pro-

vide a brief review of the multichannel rendezvous problem,

including the classification of the problem in Section II-A, the

formulation of the problem and summaries of known results

in Section II-B. In Section III, we propose the IDEAL-CH

sequences that have the asymptotic approximation ratio 2.

By extending the mathematical theories for IDEAL-CH, we

propose in Section IV the ORTHO-CH sequences that have

the MTTR bound p(2p+1), where p is the smallest prime not

less than the total number of channels. The paper is concluded

in Section V.

II. THE MULTICHANNEL RENDEZVOUS PROBLEM

In this section, we provide a brief review of the multichannel

rendezvous problem (MRP).

A. Classification of the problem

As mentioned in the Introduction, the multichannel ren-

dezvous problem that asks two users to find each other by

hopping over a set of possible channels (discrete locations)

with respect to time. In view of this, there are three key

elements in the multichannel rendezvous problem: (i) users,

(ii) time, and (iii) channels. Based on the assumptions on

users, time, and channels, CH schemes can be classified into

various settings. To compare the level of difficulty between two

settings A and B, we use the partial ordering A ≺ B when

the assumption in setting A is stronger than that in B. Thus,

the CH sequences constructed by using a weaker assumption

in setting B are also applicable in setting A.

1) users:

There are three commonly used settings for users: (i) the

symmetric setting (sym for short), (ii) the ID setting (ID for

short), and (iii) the asymmetric setting (asym for short). In the

symmetric setting, users are indistinguishable and thus follow

the same algorithm to generate their CH sequences. On the

other hand, users are distinguishable by their unique identifiers

(ID) in the ID setting. For instance, a device in a CRN may be

equipped with a unique 48-bit medium access control (MAC)

address. The asymmetric setting is a special case of the unique

ID setting when these two users can be distinguished by one

bit ID, e.g., user 1 is assigned with ID 0 and user 2 is

assigned with ID 1. In the asymmetric setting, the two users

can be assigned two different roles so that they can follow

two different algorithms to generate their CH sequences. In

the literature, these CH algorithms are called role-based CH

algorithms. For instance, a user can be assigned the role of

a sender or the role of a receiver. The receiver can stay on

the same channel while the sender cycles through all the

available channels. Since users follow different algorithms, the

time-to-rendezvous can be greatly reduced by using role-based

algorithms. In the general ID setting, a common approach is

to map an ID into an M -bit binary vector and partition the

time into intervals with M time slots. Then ask each user to

play the role in the ℓth time slot in an interval according to

the ℓth bit in the mapped binary vector. However, using IDs

to generate CH sequences might be vulnerable to attacks from

adversaries. As such, it is preferable to remain anonymous in

practice.

In the symmetric setting, the two users are indistinguishable.

The key in the symmetric setting is to break symmetry. One

way to break symmetry is to select a channel from the available

channel set of a user and use that as the ID of a user. One

problem for that is when the two users select the same channel

and thus have the same ID. In the level of difficulty of the three

settings for users,

asym ≺ ID ≺ sym.

2) Time:

For the multichannel rendezvous problem, we only con-

sider the discrete-time setting, where time is indexed from

t = 0, 1, 2, . . .. There are two settings for time: (i) the

synchronous setting (sync for short) and (ii) the asynchronous

setting (async for short). In the synchronous setting, the clocks

(i.e., the indices of time slots) of both users are assumed to

be synchronized to the global clock and thus the time indices

of these two users are the same. When the clocks of the two

users are synchronized, both users can start their CH sequences

simultaneously to speed up the rendezvous process. On the

other hand, in the asynchronous setting, the clocks of both

users may not be synchronized to the global clock and thus

the time indices of these two users might be different. In a

distributed environment, it might not be practical to assume

that the clocks of two users are synchronized as they have not

rendezvoused yet. Without clock synchronization, guaranteed

rendezvous is much more difficult. In the level of difficulty of

the two settings for time,

sync ≺ async.

3) Available channels (search space):

For the multichannel rendezvous problem, we only consider

distinct channels (discrete locations in [13]) as the search

space. These N channels are indexed from 0, 1, . . . , N − 1.

The available channel set of a user is a subset of these
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N channels. There are two settings for available channels:

(i) the homogeneous setting (homo for short) and (ii) the

heterogeneous setting (hetero for short). In the homogeneous

setting, the available channel sets of the two users are assumed

to be the same. On the other hand, in the heterogeneous setting,

the available channel sets of the two users might be different.

In a CRN, two users that are close to each other are likely to

have the same available channel sets. Due to the limitation of

the coverage area of a user, two users tend to have different

available channel sets if they are far apart. Rendezvous in a

homogeneous environment is in general much easier than that

in a heterogeneous environment. In the level of difficulty of

the two settings for available channels,

homo ≺ hetero.

4) Labels of channels:

There are three widely used settings for the labels of

channels: (i) the globally labelled setting (global for short),

(ii) the locally labelled setting (local for short), and (iii) the

indistinguishable setting (ind for short). In the multichannel

rendezvous problem, the N channels are commonly assumed

to be globally labelled, i.e., the labels of the channels of the

two users are the same. On the other hand, the users are

only allowed to label their available channels by themselves

in the locally labelled setting. In the locally labelled setting,

the labels of channels could be different. In the book [1], the

locally labelled setting is referred to as the oblivious setting.

The most difficult setting for labels of channels is where users

are not allowed to leave any marks for channels (see, e.g.,

[14]). In such a setting, these N channels are indistinguishable

and a user even does not know the previous channels on which

it hops. Thus, nothing can be learned from a failed attempt

to rendezvous in the indistinguishable setting. In the level of

difficulty of the three settings for labels of channels,

global ≺ local ≺ ind.

Like the notations in queueing theory, a multichannel ren-

dezvous problem (MRP) can be described by a series of

abbreviations and slashes such as

A/B/C/D,

where A is the abbreviation for the setting of users, B is

the abbreviation for the setting of time, C is the abbreviation

for the setting of available channels, and D is the abbre-

viation for the setting of labels of channels. For instance,

the sym/async/hetero/global MRP denotes the problem where

(i) the two users are symmetric and thus follow the same

algorithm, (ii) the clocks of the two users are not synchronized,

(iii) the available channel sets of the two users are different,

and (iv) the channels are globally labelled.

We note that there are five categories for the classification of

the multichannel rendezvous problem in the book [1]: < Alg,

Time, Port, ID, Label >. Here we combine the Alg (algorithm)

category and the ID category into our user category. Also, the

symmetric (resp. asymmetric) port setting in [1] corresponds

to the homogeneous (resp. heterogeneous) setting in which the

two users have the same (resp. different) available channel sets.

Thus, the four categories in our classification are basically the

same as the five categories in [1].

B. Mathematical formulation of the problem

To formulate the multichannel rendezvous problem (MRP),

let us consider a CRN with N channels (with N ≥ 2),

indexed from 0 to N−1. There are two (secondary) users who

would like to rendezvous on a common unblocked channel by

hopping over these channels with respect to time. We assume

that time is slotted (the discrete-time setting) and indexed from

t = 0, 1, 2, . . .. The length of a time slot, typically in the order

of 10ms, should be long enough for the two users to establish

their communication link on a common unblocked channel.

In the literature, the slot boundaries of these two users are

commonly assumed to be aligned. In the case that the slot

boundaries of these two users are not aligned, one can double

the size of each time slot so that the overlap of two misaligned

time slots is not smaller than the original length of a time slot.

The available channel set for user i, i = 1, 2,

ci = {ci(0), ci(1), . . . , ci(ni − 1)},

is a subset of the N channels. Let ni = |ci| be the number

of available channels to user i, i = 1, 2. In the homogeneous

setting, the available channel set for each user is simply the

set of the N channels, i.e.,

c1 = c2 = {0, 1, . . . , N − 1}.

We assume that there is at least one channel that is com-

monly available to the two users (as otherwise it is impossible

for the two users to rendezvous), i.e.,

c1 ∩ c2 6= ∅. (1)

Denote by X1(t) (resp. X2(t)) the channel selected by user 1

(resp. user 2) at time t (of the global clock). Then the time-

to-rendezvous (TTR), denoted by T , is the number of time

slots (steps) needed for these two users to select a common

available channel, i.e.,

T = inf{t ≥ 0 : X1(t) = X2(t)}+ 1, (2)

where we add 1 in (2) as we start from t = 0.

In addition to the time-to-rendezvous, we are also interested

in the time to achieve maximum rendezvous diversity, denoted

by T ♯, that is defined as the first time that the two users

have met each other on every commonly available channel.

Specifically, let Ti be the first time that these two users hop

on channel i at the same time, i.e.,

Ti = inf{t ≥ 0 : X1(t) = X2(t) = i}+ 1. (3)

Then

T ♯ = max
i∈c1∩c2

Ti. (4)

Note that T can also be presented as follows:

T = min
i∈c1∩c2

Ti. (5)

Clearly, T ≤ T ♯. We say a CH scheme has a maximum time-

to-rendezvous (MTTR) bound γ (for some finite constant γ)
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if T ≤ γ. Similarly, a CH scheme has a maximum conditional

time-to-rendezvous (MCTTR) bound γ if T ♯ ≤ γ.

In the literature, there are three commonly used metrics for

evaluating the performance of a CH sequence:

(i) expected time-to-rendezvous (ETTR),

(ii) maximum time-to-rendezvous (MTTR), and

(iii) maximum conditional time-to-rendezvous (MCTTR).

The simplest way to generate CH sequences is the random

algorithm that selects a channel uniformly at random in a

user’s available channel set in every time slot. The random

algorithm performs amazingly well in terms of ETTR and

its ETTR is quite close to the lower bound in the the

asym/async/hetero/local MRP (see, e.g., [16]). As such, it

outperforms many CH algorithms proposed in the literature in

terms of ETTR. However, the random algorithm does not have

bounded MTTR. Thus, for theoretical analysis, researchers in

the field focus mostly on MTTR/MCTTR.

In Table I, we provide a summary for the known results of

various rendezvous algorithms in their most difficult settings.

III. IDEAL-CH

In this paper, we focus on the sym/async/hetero/global MRP.

As shown in Table I, CRSEQ [5], JS [6], DRDS [3], T-CH

[7], and DSCR [8] are known CH sequences that achieve

maximum rendezvous diversity. However, the asymptotic ap-

proximation ratio, defined as the ratio of the period to the

lower bound N2 when N → ∞, is still 2.5 for T-CH and

DSCR, 3 for CRSEQ and DRDS. In this section, we tighten

the theoretical gap by proposing IDEAL-CH that has the

asymptotic approximation ratio 2.

A. MACH sequences and matrices

Recall that a periodic CH sequence is said to achieve the

maximum rendezvous diversity (MRD) for a CRN with N
channels if the two users rendezvous on every channel within

the period of the sequence. In the following definition, we state

formally the mathematical properties for an Asynchronous

Channel Hopping sequence with Maximum rendezvous diver-

sity (MACH sequence).

Definition 1: An (N, p)-MACH sequence {c(t), 0 ≤ t ≤
p − 1} satisfies the following one dimensional maximum

rendezvous diversity (1D-MRD) property:

The 1D-MRD property: for any time shift 0 ≤ d ≤
p− 1 and any channel 0 ≤ k ≤ N − 1, there exists

0 ≤ t ≤ p− 1 such that

c(t) = c(t⊕ d) = k, (6)

where ⊕ denotes addition modulo p.

We note that an MACH sequence is simply called a good

sequence in [3], and its connection to the Disjoint Relaxed

Difference Set (DRDS) was first made in that paper. Analo-

gous to the definition of an MACH sequence, we define its

2D version as follows:

Definition 2: A p × p matrix C = (ci,j) with i, j =
0, 1, . . . , p− 1 is called an (N, p)-MACH matrix if it satisfies

the following two-dimensional maximum rendezvous diversity

(2D-MRD) property:

The 2D-MRD property: for any 2D-shift 0 ≤ δ, τ ≤
p − 1 and any channel 0 ≤ k ≤ N − 1, there exist

0 ≤ i, j ≤ p− 1 such that

ci,j = ci⊕δ,j⊕τ = k. (7)

A weaker version of an (N, p)-MACH matrix is called an

(N, p)-semi-MACH matrix, in which the 2D-MRD property

may not be satisfied for τ = 0.

Our construction of CH sequences, called the IDEAL-CH,

is to construct an (N, p)-MACH matrix and then use that to

construct an (N, 2p2)-MACH sequence. In our construction,

there are two elegant mathematical tools for dealing with

circular shifts: (i) perfect difference sets [9] and (ii) ideal

matrices [10]. Intuitively, a perfect difference set with a period

p and k elements can be visualized as a dot pattern that has a

dot on the 1D-coordinate of an element. Repeat the dot pattern

infinitely often in the line. Then for any time shift, exactly one

pair of dots will overlap in every period of p. On the other

hand, an ideal matrix can be viewed as a two-dimensional

version of a perfect difference set. A p × p ideal matrix has

exactly one element in each column and can be visualized

as a dot pattern that has a dot on the 2D-coordinate of an

element in the matrix. Repeat the dot pattern infinitely often

in the plane. Then except purely vertical shifts, exactly one

pair of dots will overlap within a p × p square box for any

other two-dimensional shifts (see Table II for an illustration).

Similarly, an (N, p)-MACH sequence can be repeatedly

extended to a periodic sequence in the line. For any time

shift, every channel is a rendezvous channel within an interval

of length p. On the other hand, an (N, p)-MACH matrix

can be repeatedly extended in the plane. Then for any two-

dimensional shift, every channel is a rendezvous channel

within a p× p square box.

The idea of constructing an (N, p)-MACH matrix is to first

construct a p × p ideal matrix and then embed a perfect

difference set in each column of that matrix so that the overlaps

between the constructed matrix and any two-dimensional cir-

cular shift of that matrix contain all the rendezvous channels.

Specifically, we show if p is a prime and is equal to L2+L+1
for some prime power L, our IDEAL-CH can guarantee

L2 rendezvous channels within the period 2p2. For IDEAL-

CH, the asymptotic approximation ratio is
2(L2+L+1)2

(L2)2 and it

approaches 2 when L → ∞.

B. Difference sets

In this section, we briefly review the notion of difference

sets.

Definition 3: (Relaxed difference sets (RDS)) Let Zp =
{0, 1, . . . , p − 1}. A set D = {a0, a1, . . . , ak−1} ⊂ Zp is

called a (p, k, λ)-relaxed difference set (RDS) if for every

(ℓ mod p) 6= 0, there exist at least λ ordered pairs (ai, aj)
such that ai− aj = (ℓ mod p), where ai, aj ∈ D. A (p, k, 1)-
relaxed difference set is said to be perfect if there exists exactly

one ordered pair (ai, aj) such that ai − aj = (ℓ mod p) for

every (ℓ mod p) 6= 0. In this paper, we are only interested in

the case λ = 1 and we simply say a set D is a RDS (or a

perfect difference set) in Zp when λ = 1.
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TABLE I: Known results of various rendezvous algorithms in their most difficult settings.

users time channels labels MTTR/MCTTR ETTR

WFM [13], [20] asym async homo local N N+1
2

WFM-MRD [20] asym async hetero local N2 (MRD)

AFCHS [18] asym async hetero global N2 (MRD)

coprime MC [16], [21] asym async hetero local 2(n1 + 1)n2 (MRD)

FOCAL [17] sym async homo global 1 1

SynMAC [29] sym sync hetero global N (MRD)

M-QCH [30] sym sync hetero global 3N (MRD)

SSCH [31] sym sync homo global N + 1 N+1
2

+ 1
2
− 1

2N

FPP [19] sym sync homo global N + 1 N+1
2

+ 1
2
− 1

2N
RRICH [20] sym sync hetero global N(N + 1) (MRD)

CACH [20] sym sync hetero global N(u+ 1) (MRD)

SeqR [32] sym async homo global N(N + 1)

DRSEQ [23] sym async homo global 2N + 1 N − 1
6
+ 2N2+11N−4

6N(2N+1)2

JS [6] sym async hetero global 3N3 + o(N3) (MRD)

CRSEQ [5] sym async hetero global P (3P − 1) (MRD)

DRDS [3] sym async hetero global 3P 2 (MRD)

T-CH [7] sym async hetero global P (2P + ⌊P/2⌋) (MRD)

DSCR [8] sym async hetero global P (2P + ⌊P/2⌋) (MRD)

IDEAL-CH (ours) sym async hetero global 2P ′2 (MRD)

EJS [33] sym async hetero global 4P (P + 1−G)
FRCH [11] sym async hetero global N(2N + 1)∗

SARAH [34] sym async hetero global 8N2 + o(N2)
SRR [12] sym async hetero global 2P 2 + 2P

ORTHO-CH (ours) sym async hetero global 2P 2 + P

S-ACH [2] ID async hetero global 6LN2 (MRD)

E-AHW [35] ID async hetero global (3L + 1)NP (MRD)

CBH [36] ID async hetero local O(L(max[n1, n2])2) (MRD)

Adv. rdv-η1 [24] ID async hetero local (2L+ 3)n1n2) (MRD) (2L+ 3)n1n2

G

Two-prime MC [16] ID async hetero local 6(⌈L/4⌉ ∗ 5 + 6)n1n2 (MRD) n1n2

G
+ O((1− n1n2

G
)L)

QR [37] sym async hetero global 9(⌈⌈log2 N⌉/4⌉ ∗ 5 + 6)n1n2
n1n2

G
+ O((1− n1n2

G
)log2 N )

Catalan [27] sym async hetero global O((log logN)n1n2) (MRD)

MTP [28] sym async hetero global 64(⌈log2 log2 N⌉+ 1)(max[n1, n2])2 (MRD)

FMR [26] sym async hetero global 9(2⌈log2(⌈log2 N⌉)⌉ + 7)n1n2 (MRD)

QECH [25] sym async hetero global O((logN)n1n2)

AW [13] sym sync homo local 0.829N
random sym async hetero ind

n1n2

G

Remarks: N is the total number of channels, P is a prime not less than N , P ′ is a prime with P ′ − 2
√
P ′ ≥ N , n1 (resp. n2) is the number of available

channels of user 1 (resp. user 2), G is the number of common channels of two users, and L is the length of a user ID (in bits). (MRD) stands for maximum
rendezvous diversity. For FRCH, N 6= ((5 + 2α) ∗ r − 1)/2 for all integer α ≥ 0 and odd integer r ≥ 3. For CACH (resp. FOCAL, SynMAC, M-QCH),

the channel load is 1/u (resp. 1, 1, 2/3).

• •

• • • • •

• • • •
• • • • •

• •
• •

• •
• • • •

• • • •
• • • •

TABLE II: A 7× 7 ideal matrix is repeated infinitely often in

the plane. It overlaps with the dots of the shifted 7 × 7 ideal

matrix (marked in green) at exactly one dot pair (the red dot).

The 2D shift is represented by δ = 3 and τ = 4.

Clearly, if D = {a0, a1, . . . , ak−1} is a perfect differ-

ence set in Zp, then Dℓ = {(a0 + ℓ) mod p, (a1 +
ℓ) mod p, . . . , (ak−1 + ℓ) mod p}, ℓ = 0, 1, 2, . . . , p − 1,

are all perfect difference sets in Zp. Such a rotation property

will be used in our embedding of perfect difference sets. An

explicit construction of (p2+p+1, p+1, 1)-perfect difference

set was shown in [9] for any p that is a prime power. For

instance, the set D = {0, 1, 3} is a perfect difference set in

Z7.

In view of the mathematical property of a RDS, a periodic

CH with N rendezvous channels is equivalent to that there

are N disjoint RDS in that periodic sequence. Such an

equivalent statement was previously made in [3]. Furthermore,

the Disjoint Relaxed Difference Set (DRDS) algorithm in [3]

can be used for constructing a CH sequence with maximum

rendezvous diversity that has a period of 3N2 when the

number of channels N is a prime. In [38], [39], efficient

algorithms were proposed to find disjoint (p2+p+1, p+1, 1)-
perfect difference sets for a prime power p. If the number
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of disjoint perfect difference sets that can be found for a

prime power p is not less than the total number of channel

N , then they can be used for constructing CH sequences with

maximum rendezvous diversity. However, there is no lower

bound on the number of disjoint perfect difference sets that

can be found for a prime power p in [38], [39].

C. Ideal matrices

In this section, we introduce the notion of an ideal matrix

in [10]. As discussed before, an ideal matrix can be viewed

as a two-dimensional version of a perfect difference set.

Definition 4: (Ideal matrix [10]) A binary (0, 1) p × p
matrix M = (mi,j) is called an ideal matrix if it satisfies the

following two constraints:

(i) Each column of M contains exactly one 1, i.e., for

all j = 0, 1, 2, . . . , p− 1,

p−1
∑

i=0

mi,j = 1. (8)

(ii) The doubly periodic correlation function ρ(·, ·), de-

fined by

ρ(δ, τ) =

p−1
∑

i=0

p−1
∑

j=0

mi⊕δ,j⊕τmi,j (9)

where δ, τ are integers between 0 and p − 1 and ⊕
denotes addition modulo p, satisfies the condition

ρ(δ, τ) ≤ 1 (10)

whenever either δ or τ is nonzero.

Since an ideal matrix M contains exactly p 1’s, we have

ρ(0, 0) = p. (11)

On the other hand, we have from (8) that

p−1
∑

δ=0

p−1
∑

τ=0

ρ(δ, τ)

=

p−1
∑

i=0

p−1
∑

j=0

p−1
∑

δ=0

p−1
∑

τ=0

mi⊕δ,j⊕τmi,j

=

p−1
∑

j=0

p−1
∑

i=0

mi,j

p−1
∑

τ=0

p−1
∑

δ=0

mi⊕δ,j⊕τ

= p2. (12)

Also, as each column of M contains exactly one 1, we have

for δ = 1, 2, . . . , p− 1,

ρ(δ, 0) = 0. (13)

It then follows from (10), (11), (12) and (13) that for τ 6= 0

ρ(δ, τ) = 1. (14)

In view of (13) and (14), one way to visualize an ideal matrix

M as a dot pattern is to put a dot on the 2D-coordinate of a

1 in M . Now repeat the pattern of the matrix infinitely often

in the plane. Then the ideal matrix has the following three

important properties:

(P1) (No shift) If (δ mod p) = (τ mod p) = 0, all dots

overlap.

(P2) (Purely vertical shifts) For all the purely vertical

shifts (along the columns) with (τ mod p) = 0 and

(δ mod p) 6= 0, no dot will overlap.

(P3) (The other shifts) For any the other shifts, i.e., (τ
mod p) 6= 0, exactly one pair of dots will overlap.

As each column of an ideal matrix contains exactly one

dot, one can view the dot pattern from an ideal matrix as a

“graph” of a function f(·) with both its domain and range

being the set of integers {0, 1, . . . , p− 1}. The function f(·)
can be characterized as follows:

f(j) = p− 1− i, (15)

where i is uniquely determined by the condition mi,j = 1.

With such a functional characterization, a p × p ideal matrix

M can be constructed when p is a prime.

Theorem 5: (The Elliot-Butson construction [40]) If p is

a prime and

f(j) = ((c2j
2 + c1j + c0) mod p), (16)

with c2 6= 0, then the p× p matrix M = (mi,j) with

mi,j =

{

1, if p− 1− i = f(j),
0, otherwise,

(17)

is an ideal matrix.

To see the insight of the Elliot-Butson construction, we note

that i is uniquely determined by j from (17). Thus, there is

exactly one 1 in each column and (8) is satisfied. To show

(14), it suffices to show that for any τ 6= 0 and δ there exists

a unique j such that mi,j = mi⊕δ,j⊕τ = 1. It follows from

(16) and (17) that

((c2j
2 + c1j + c0) mod p) = p− 1− i

and

((c2(j + τ)2 + c1(j + τ) + c0) mod p)

= ((p− 1− i− δ) mod p).

Solving from these two equations yields

(2c2τj mod p) = ((−c2τ
2 − c1τ − δ) mod p). (18)

Since c2 6= 0, τ 6= 0 and p is a prime, there is a unique j
satisfying (18).

One special case of the Elliot-Butson construction is to

choose

f(j) =
j(j + 1)

2
(19)

and this construction is exactly the set of the triangular

numbers used in the constructions of the jump columns in

CRSEQ [5] and T-CH [7]. Another example is to choose

f(j) =
j(3j − 1)

2
(20)

and this construction is exactly the set of the Euler pentagonal

numbers used in the constructions of the jump columns in

DSCR [8].
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D. From an ideal matrix to a semi-MACH matrix

To construct a semi-MACH matrix from an ideal matrix,

the idea is to replace each column of an ideal matrix by

a permutation of (0, 1, 2 . . . , p − 1). Specifically, define the

ith-rotation to be the permutation (i, i ⊕ 1, . . . , i ⊕ (p − 1)).
Construct a p × p matrix M̃ = (m̃i,j) by replacing the jth

column of a p× p ideal matrix M = (mi,j) by the (p− i)th-

rotation if mi,j = 1. By doing so, every dot in the ideal matrix

is mapped to channel 0 (that serves as an anchor) and every

other channel simply rotates around channel 0 in a column.

In the following, we show the conversion for the 7 × 7 ideal

matrix:




















0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 0 0 0 0
0 1 0 0 0 1 0
1 0 0 0 0 0 1





















⇒





















1 2 4 0 4 2 1
2 3 5 1 5 3 2
3 4 6 2 6 4 3
4 5 0 3 0 5 4
5 6 1 4 1 6 5
6 0 2 5 2 0 6
0 1 3 6 3 1 0





















One immediate consequence of such a conversion is when

one pair of dots overlap, the p channels in that column also

overlap. In view of the three properties of an ideal matrix,

the matrix M̃ is a (p, p)-semi-MACH matrix that satisfies the

2D-MRD property except purely vertical shifts, i.e., τ = 0 in

(7).

E. From a semi-MACH matrix to an MACH matrix

To deal with the problem of purely vertical shifts, the idea of

T-CH in [7] is to concatenate a p×p “stay” matrix (with all the

p elements in the kth column being k, k = 0, 1, 2, . . . , p− 1)

and a p×(p+⌊p/2⌋) “jump” matrix with the jth column taken

from the (j mod p)th column of a semi-MACH matrix. This

results in a p× (2p+ ⌊p/2⌋) matrix and thus has a period of

p(2p+⌊p/2⌋). The construction of T-CH shortens the number

of “jump” columns in CRSEQ [5] from 2p− 1 to p+ ⌊p/2⌋.

It seems that DSCR [8] is somehow equivalent to T-CH. They

both are constructed by concatenating a p × p “stay” matrix

and a p×(p+⌊p/2⌋) “jump” matrix with the jth column taken

from the (j mod p)th column of a semi-MACH matrix. The

only difference is that they use different quadratic functions

in the Elliot-Butson construction for ideal matrices.

Our idea to tackle the problem of purely vertical shifts is

to reserve some channels of the p channels for embedding

relaxed difference sets (RDS) that can guarantee the needed

overlaps for purely vertical shifts.

Now we show how to construct an (L2, p)-MACH matrix

from a (p, p)-semi-MACH matrix when p is a prime and p is

equal to L2 + L + 1 for some prime power L. The detailed

steps are outlined in Algorithm 1. Let D = {a0, a1, . . . , aL}
be an (L2 + L+ 1, L+ 1, 1)-perfect difference set and M̃ =
(m̃i,j) be a (p, p)-semi-MACH matrix. Let Dc = Zp\D =
{b0, b1, . . . , bL2−1}. The idea is to reserve the L+1 channels in

D for the perfect difference sets and only use the L2 channels

in Dc. The L+ 1 channels in D in the jth column of M̃ are

replaced by channel (j mod L2) and the other L2 channels

are re-mapped to the L2 channels in {0, 1, 2, . . . , L2 − 1}.

Specifically, we construct a p × p matrix C = (ci,j) by the

following rule:

ci,j =

{

(j mod L2) if m̃i,j ∈ D
ℓ if m̃i,j = bℓ

. (21)

For example, the matrix C mapped from the (7, 7)-semi-

MACH matrix and the perfect difference set D = {0, 1, 3} is

shown as follows:




















1 2 4 0 4 2 1
2 3 5 1 5 3 2
3 4 6 2 6 4 3
4 5 0 3 0 5 4
5 6 1 4 1 6 5
6 0 2 5 2 0 6
0 1 3 6 3 1 0





















⇒





















0 0 1 3 1 0 2

0 1 2 3 2 1 0
0 1 3 0 3 1 2

1 2 2 3 0 2 1
2 3 2 1 0 3 2
3 1 0 2 0 1 3
0 1 2 3 0 1 2





















.

(22)

In this example, the three numbers 0, 1, 3 in D of the jth col-

umn are mapped to (j mod 4) for j = 0, 1, . . . , 6. Moreover,

Dc = {2, 4, 5, 6} and these four numbers in the (7, 7)-semi-

MACH matrix are re-mapped to {0, 1, 2, 3}, i.e.,

2 7→ 0, 4 7→ 1, 5 7→ 2, 6 7→ 3.

In (22), we mark the channels that are used for the perfect

difference sets in boldface. From the (rotation) property of the

perfect difference set, we know for any purely vertical shift,

there is an overlap of channel j in column j, j = 0, 1, . . . , L2−
1. Also, those underlined numbers are the dots of the p × p
ideal matrix. These are used as “anchors” for any other shifts.

Algorithm 1 Construction of an (L2, p)-MACH matrix

Input A set of L2 channels {0, 1, 2, . . . , L2−1} with L being

a prime power and L2 + L+ 1 being a prime.

Output An (L2, p)-MACH matrix C = (ci,j) with p = L2 +
L+ 1.

1: Let p = L2 + L + 1 and construct a p × p ideal matrix

M = (mi,j).
2: Construct a (p, p)-semi-MACH matrix M̃ = (m̃i,j) by

replacing the jth column of M by the (p − i)th-rotation of

(0, 1, . . . , p− 1) (for all j = 0, 1, . . . , p− 1) if mi,j = 1.

3: Construct a perfect difference set D = {a0, a1, . . . , aL} in

Zp.

4: Let Dc = Zp\D = {b0, b1, . . . , bL2−1}.

5: Construct an (L2, p)-MACH matrix C = (ci,j) by the

channel mapping rule in (21).

Theorem 6: If L is a prime power and L2 + L + 1 is a

prime, then Algorithm 1 constructs an (L2, p)-MACH matrix

with p = L2 + L+ 1.

Proof. It suffices to prove the 2D-MRD property. Consider

the matrix C from Algorithm 1 and the matrix C′ = (c′i,j)
with c′i,j = ci⊕δ,j⊕τ . When δ = τ = 0, the two matrices

overlap with each other. For δ 6= 0, we consider the following

two cases:

Case 1. τ = 0:

This corresponds to a purely vertical shift. Since we embed

a perfect difference set D in the jth column of C, the 2D-

MRD property is satisfied for channel j in the jth columns of

these two matrices, j = 0, 1, . . . , L2 − 1.
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Case 2. τ 6= 0:

This corresponds to a shift that is not a purely vertical shift.

From (P3) of an ideal matrix, there is a column j1 of matrix

C that overlaps with a column j2 of matrix C′. From the

deterministic re-mapping in (21), the 2D-MRD property is

satisfied for all the L2 channels in the overlapped column.

F. From an MACH matrix to an MACH sequence

In this section, we show that one can construct an (N, 2p2)-
MACH sequence from an (N, p)-MACH matrix. The idea to

take an (N, p)-MACH matrix C = (ci,j) and concatenate two

of them to form a p× 2p matrix

C̃ = (c̃i,j) = (C|C).

By doing so, we have c̃i,j = ci,(j mod p) for all i =
0, 1, . . . , p − 1 and j = 0, 1, . . . , 2p − 1. As the matrix-

based construction of CH sequences for T-CH in [7], we then

map the matrix C̃ = (c̃i,j) to the CH sequence {c(t), t =
0, 1, . . . , 2p2−1} by letting c(t) = c̃i,j with i = ⌊t/(2p)⌋ and

j = (t mod (2p)). Since c̃i,j = ci,(j mod p), this is equivalent

to letting c(t) = ci,j with i = ⌊t/(2p)⌋ and j = (t mod p).
For example, concatenating two of the (4, 7)-MACH matrix

in (22) yields the following 7× 14 matrix:




















0 0 1 3 1 0 2 0 0 1 3 1 0 2

0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2

1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2





















.

(23)

Now the constructed CH sequence with length 98 is then

0, 0, 1, 3, 1, 0, 2, 0, 0, 1, 3, 1, 0, 2, 0, 1, 2, 3, 2, 1, 0,

0, 1, 2, 3, 2, 1, 0, 0, 1, 3, 0, 3, 1, 2, 0, 1, 3, 0, 3, 1, 2,

· · ·
3, 1, 0, 2, 0, 1, 3, 0, 1, 2, 3, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2.

Theorem 7: Suppose that the matrix C = (ci,j) with

i, j = 0, 1, . . . , p − 1 is an (N, p)-MACH matrix. Construct

the sequence {c(t), 0 ≤ t ≤ 2p2 − 1} by letting c(t) = ci,j
with i = ⌊t/(2p)⌋ and j = (t mod p). Then the sequence

{c(t), 0 ≤ t ≤ 2p2 − 1} is an (N, 2p2)-MACH sequence.

Proof. It suffices to prove the 1D-MRD property for the

sequence {c(t), 0 ≤ t ≤ 2p2 − 1}, i.e., for any time shift

0 ≤ d ≤ 2p2−1 and any channel 0 ≤ k ≤ N −1, there exists

0 ≤ t ≤ 2p2 − 1 such that

c(t) = c((t+ d) mod (2p2)) = k. (24)

Let δ = ⌊d/(2p)⌋ be the vertical shift and τ = (d mod (2p))
and be the horizontal shift. From the matrix-based construction

of the CH sequence {c(t), 0 ≤ t ≤ 2p2 − 1}, we can

represent such a sequence by the p × 2p matrix C̃ = (C|C).
Similarly, we can also represent the sequence {c((t + d)

mod (2p2)), 0 ≤ t ≤ 2p2 − 1} by a p × 2p matrix (C1|C2)
for some p× p matrices C1 and C2. In view of the 2D-MRD

property of the matrix C = (ci,j), it suffices to show that

either C1 or C2 is a p × p square box in the plane repeated

from C.

Consider the following two cases:

Case 1. 0 ≤ τ ≤ p:

In this case, the horizontal shift τ is not greater than p.

Thus, the first matrix C1 is a p × p square box in the plane

repeated from the matrix C. The 2D-MRD property of the

matrix C = (ci,j) then guarantees the 1D-MRD property of

the sequence {c((t+ d) mod (2p2)), 0 ≤ t ≤ 2p2 − 1}. For

example, for the CH sequence in (23), the sequence {c((t+d)
mod 98), 0 ≤ t ≤ 97} in this case can be represented by the

matrix C1 marked in red and the matrix C2 marked in blue.

















































0 0 1 3 1 0 2 0 0 1 3 1 0 2

0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2

1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2

0 0 1 3 1 0 2 0 0 1 3 1 0 2

0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2

1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2

















































Case 2. p < τ ≤ 2p− 1:

In this case, the horizontal shift τ is larger than p. Thus, the

second matrix C2 is a p× p square box in the plane repeated

from the matrix C. The 2D-MRD property of the matrix C =
(ci,j) then guarantees the 1D-MRD property of the sequence

{c((t+d) mod (2p2)), 0 ≤ t ≤ 2p2−1}. For example, for the

CH sequence in (23), the sequence {c((t+ d) mod 98), 0 ≤
t ≤ 97} in this case can be represented by the matrix C1

marked in red and the matrix C2 marked in blue.

















































0 0 1 3 1 0 2 0 0 1 3 1 0 2

0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2

1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2

0 0 1 3 1 0 2 0 0 1 3 1 0 2

0 1 2 3 2 1 0 0 1 2 3 2 1 0
0 1 3 0 3 1 2 0 1 3 0 3 1 2

1 2 2 3 0 2 1 1 2 2 3 0 2 1
2 3 2 1 0 3 2 2 3 2 1 0 3 2
3 1 0 2 0 1 3 3 1 0 2 0 1 3
0 1 2 3 0 1 2 0 1 2 3 0 1 2
















































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With Theorem 7, we propose the construction of the

IDEAL-CH in Algorithm 2.

Algorithm 2 The IDEAL-CH

Input A set of L2 channels {0, 1, 2, . . . , L2−1} with L being

a prime power and L2 + L+ 1 being a prime.

Output A CH sequence {c(t), t = 0, 1, 2 . . . , 2(L2+L+1)2−
1} with c(t) ∈ {0, 1, 2, . . . , L2 − 1}.

1: Use Algorithm 1 to construct an (L2, p)-MACH matrix with

p = L2 + L+ 1.

2: For t = 0, 1, 2 . . . , 2(L2 +L+ 1)2 − 1, let c(t) = ci,j with

i = ⌊t/(2p)⌋ and j = (t mod p).

As a direct consequence of Theorem 6 and Theorem 7, we

have the following corollary.

Corollary 8: If L is a prime power and L2 + L + 1 is a

prime, then Algorithm 2 constructs a CH sequence with period

2(L2 + L+ 1)2 that achieves maximum rendezvous diversity

for the L2 channels {0, 1, 2, . . . , L2 − 1}.

G. The general construction of an (N, p)-MACH matrix

By using a computer search for the set of numbers L with

L being a prime power and L2 + L + 1 being a prime, we

find {2, 3, 5, 8, 17, 27, 41, 59, 71, 89} for L ≤ 100. There are

4688 positive integers with such properties under 100,000. For

the integers that do not possess such properties, we have to

resort to less efficient constructions. Instead of using a perfect

difference set in Step 3 of Algorithm 1, we can use a RDS. It

was shown in [41] that the size of a RDS in Zp is bounded

below by
√
p. Here we show how to construct a RDS D in

Zp with the size smaller than 2
√
p.

To construct a RDS in Zp for any period p, the idea is first

to place a periodic dot pattern with the period ∆ in the interval

[0, p−1], and then add ∆ dots in the interval [0,∆−1] as the

“delimiter.” As there is at least one dot within an interval of

length ∆, the ∆ dots that serve as the delimiter will overlap

with at least one dot in any time-shifted dot pattern. This is

stated in the following proposition.

Proposition 9: For any ∆ ≥ 2 and p ≥ ∆, the set D =
{0, 1, . . . ,∆− 1} ∪ {2∆− 1, 3∆− 1, . . . , ⌊p/∆⌋∆− 1} is a

RDS in Zp.

Such a construction of a RDS can be characterized with two

parameters: the period p and the spacing ∆. For example, if we

choose ∆ = 5 for p = 23, then D = {0, 1, 2, 3, 4, 9, 14, 19}
is a RDS in Z23 with 8 elements. Note that the number of

elements in D in Proposition 9 is ∆+⌊p/∆⌋−1. To minimize

the number of elements in D in Proposition 9, one may choose

the spacing ∆ = ⌈√p⌉. Since x ≤ ⌈x⌉ < x+ 1 and ⌊x⌋ ≤ x,

we have

⌈√p⌉+ ⌊p/⌈√p⌉⌋ − 1 < 2
√
p. (25)

Thus, one can construct a RDS in Zp with the size smaller

than 2
√
p.

Instead of using a perfect difference set in Step 3 in

Algorithm 1, now we can replace it by using a RDS in Zp

with the spacing ∆ = ⌈√p⌉ in Proposition 9. This leads to the

general construction of an (N, p)-MACH matrix in Algorithm

3.

Algorithm 3 The general construction of an (N, p)-MACH

matrix

Input: A set of N channels {0, 1, 2, . . . , N − 1}.

Output: An (N, p)-MACH matrix with p being the smallest

prime such that p− (⌈√p⌉+ ⌊p/⌈√p⌉⌋ − 1) ≥ N .

1: Find the smallest prime p such that p−(⌈√p⌉+⌊p/⌈√p⌉⌋−
1) ≥ N and construct a p× p ideal matrix M = (mi,j).
2: Construct a (p, p)-semi-MACH matrix M̃ = (m̃i,j) by

replacing the jth column of M by the (p − i)th-rotation of

(0, 1, . . . , p− 1) (for all j = 0, 1, . . . , p− 1) if mi,j = 1.

3: Let ∆ = ⌈√p⌉. Construct a RDS D = {0, 1, . . . ,∆− 1} ∪
{2∆− 1, 3∆− 1, . . . , ⌊p/∆⌋∆− 1} in Zp.

4: Let Dc = Zp\D = {b0, b1, . . . , bp−1−|D|}.

5: Construct a p×p matrix C = (ci,j) by the following channel

mapping rule:

ci,j =

{

(j mod N) if m̃i,j ∈ D
(ℓ mod N) if m̃i,j = bℓ

.

Corollary 10: The (N, 2p2)-MACH sequence constructed

by the general construction of an (N, p)-MACH matrix in

Algorithm 3 and Theorem 7 has the asymptotic ratio 2.

Proof. Let D be the RDS constructed in Proposition 9 with

the spacing ∆ = ⌈√p⌉. Since |D| ≤ 2
√
p, the number of

rendezvous channels |Dc| = p − |D| ≥ p − 2
√
p. Thus, the

asymptotic approximation ratio is

2p2

|Dc|2 =
2p2

(p− |D|)2 → 2, (26)

when p → ∞.

Regarding the computational complexity of Algorithm 3, it

is clear that Step 2 to Step 5 is O(p2). Now we show that the

smallest prime p with p − (⌈√p⌉ + ⌊p/⌈√p⌉⌋ − 1) ≥ N is

smaller than 4N for N ≥ 16, and thus the time complexity

of Algorithm 3 is still O(N2). To see this, we know from the

Berstand-Chebyshev Theorem that there exists a prime p′ with

2N < p′ < 4N . Thus, for N ≥ 16, we have from (25) that

p′ − (⌈
√

p′⌉+ ⌊p′/⌈
√

p′⌉⌋ − 1)

≥ p′ − 2
√

p′

≥ 2N − 2
√
4N

≥ N + (N − 4
√
N) ≥ N.

IV. ORTHO-CH

To use the IDEAL-CH in the sym/async/hetero/global MRP,

each user can simply replace at random those channels not

in its available channel set by some channels in its available

channel set. By doing so, the two users are still guaranteed to

rendezvous on every commonly available channel in the period

of the IDEAL-CH sequence. Thus, the MCTTR is bounded by

the period of the IDEAL-CH sequence.

In this section, we consider a weaker requirement that

only needs the two users to rendezvous on one commonly

available channel in a period. For this, we propose a channel

hopping sequence, called ORTHO-CH, that can guarantee the
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rendezvous of the two users within a period of the ORTHO-

CH sequence. When the available channels of a user is a subset

of {0, 1, . . . , N − 1}, the period of our ORTHO-CH sequence

is (2p+ 1)p, where p is the smallest prime not less than N .

Thus, ORTHO-CH has the MTTR bound (2p+ 1)p.

A. Orthogonal MACH matrices

For the construction of the ORTHO-CH sequence, we

introduce a new notion of orthogonal MACH matrices.

Definition 11: A set of p× p matrices {C(r) = (c
(r)
i,j ), r =

1, 2, . . . ,K} is called a set of orthogonal (N, p)-MACH

matrices if it satisfies the following two properties:

(i) The cover property: for any channel 0 ≤ k ≤ N−1,

it appears at least once in every column of every

matrix in the set of matrices.

(ii) The 2D-MRD property: for any two different matri-

ces r1 and r2, any 2D-shift 0 ≤ δ, τ ≤ p−1, and any

channel 0 ≤ k ≤ N − 1, there exist 0 ≤ i, j ≤ p− 1
such that

c
(r1)
i,j = c

(r2)
i⊕δ,j⊕τ = k. (27)

We note that the cover property is not needed in Definition

2 for an (N, p)-MACH matrix even though such a property

is satisfied in our constructions of the (N, p)-MACH matrices

in Algorithm 1 and Algorithm 3. Intuitively, one can view an

(N, p)-MACH matrix as a matrix that is “orthogonal” to itself

in the sense of the 2D-MRD property.

We choose the phrase “orthogonal” from the notion of

orthogonal Latin squares [42]. In a p× p Latin square, every

row and every column is a permutation of {0, 1, . . . , p − 1}.

Two p× p Latin squares C(r1) = (c
(r1)
i,j ) and C(r2) = (c

(r2)
i,j )

are said to be orthogonal if the p2 ordered pairs (c
(r1)
i,j , c

(r2)
i,j ),

i, j = 0, 1, . . . , p−1 are all different. The number of mutually

orthogonal p× p Latin squares is bounded by p− 1 and it is

achieved when p is a prime power. In particular, when p is a

prime, the p− 1 orthogonal Latin squares can be constructed

by letting c
(r)
i,j = (r · i+ j) mod p, r = 1, 2, . . . , p− 1. In the

following theorem, we show such a construction also leads to

a set of p− 1 orthogonal (p, p)-MACH matrices.

Theorem 12: Suppose that p is a prime. For r = 1, 2, . . . , p−
1, 0 ≤ i, j ≤ p− 1, let

c
(r)
i,j = (r · i+ j) mod p. (28)

Then the set of matrices {C(r) = (c
(r)
i,j ), r = 1, 2, . . . , p− 1}

is a set of orthogonal (p, p)-MACH matrices.

Proof. As r 6= 0, we have from (28), every channel 0 ≤ k ≤
p−1 appears exactly once in every column of every matrix in

the set, and thus the cover property is satisfied. To show the

2D-MRD property, for r1 6= r2, any 2D-shift 0 ≤ δ, τ ≤ p− 1
and any channel 0 ≤ k ≤ N − 1, we let i∗ be the unique

solution of the following equation:

((r1 − r2) · i mod p) = ((r2 · δ + τ) mod p), (29)

and

j∗ = ((k − r1 · i∗) mod p). (30)

Then we have from (30) and (28) that

c
(r1)
i∗,j∗ = k.

Also, it is easy to see from (28) and (29) that

c
(r2)
i∗⊕δ,j∗⊕τ

= c
(r2)
(i∗+δ) mod p,(j∗+τ) mod p

= (r2 · (i∗ + δ) + (j∗ + τ)) mod p

= (r2 · i∗ + (r2 · δ + τ) + j∗) mod p

= (r1 · i∗ + j∗) mod p

= c
(r1)
i∗,j∗ .

For p = 5, the four (5, 5)-MACH matrices are as follows:












0 1 2 3 4
1 2 3 4 0
2 3 4 0 1
3 4 0 1 2
4 0 1 2 3













,













0 1 2 3 4
2 3 4 0 1
4 0 1 2 3
1 2 3 4 0
3 4 0 1 2













, (31)













0 1 2 3 4
3 4 0 1 2
1 2 3 4 0
4 0 1 2 3
2 3 4 0 1













,













0 1 2 3 4
4 0 1 2 3
3 4 0 1 2
2 3 4 0 1
1 2 3 4 0













. (32)

These four matrices are also mutually orthogonal Latin

squares.

B. From orthogonal MACH matrices to asynchronous CH

sequences

In this section, we show that one can construct the ORTHO-

CH sequence from a set of orthogonal (p, p)-MACH matrices,

{C(r), r = 1, 2, . . . , p − 1}. The idea is quite similar to the

quasi-random algorithm in [37]. Each user selects a nonzero

channel r from its available channel set as its ID channel.

Then construct the p× (2p+1) matrix C̃(r) by concatenating

the ID column r (that stays on channel r) and two identical

matrices of C(r), i.e.,

C̃(r) = (c̃
(r)
i,j ) = (r|C(r)|C(r)). (33)

As in the matrix-based construction for IDEAL-CH, we then

map the p× (2p+1) matrix C̃(r) to the periodic ORTHO-CH

sequence with period (2p+ 1)p. Channels that are not in the

available channel set are randomly replaced by channels in

the available channel set. If the two users select the same ID

channel, then both users are guaranteed to rendezvous from

the cover property of a set of orthogonal MACH matrices.

On the other hand, if the two users select two different ID

channels, then both users are guaranteed to rendezvous on

every commonly available channel from the 2D-MRD property

of a set of orthogonal MACH matrices. As such, the two users

are guaranteed to rendezvous within the period (2p+1)p. The

detailed construction is shown in Algorithm 4.
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Algorithm 4 The ORTHO-CH

Input A set of available channels c that is a subset of

{0, 1, . . . , N − 1}.

Output A CH sequence {c(t), t = 0, 1, 2 . . . , p(2p+ 1)− 1}
with c(t) ∈ c, where p is the smallest prime not less than N .

1: If channel 0 is the only channel in c, output c(t) = 0 for

all t = 0, 1, 2 . . . , p(2p+ 1)− 1.

2: Randomly select a nonzero channel r from c as the ID

channel.

3: Find the smallest prime p such that p ≥ N and construct a

p× p matrix C(r) = (c
(r)
i,j ) by letting

c
(r)
i,j = (r · i+ j) mod p.

4: Let r be the p×1 column vector with all its elements being

r. Construct the p × (2p + 1) matrix C̃(r) by concatenating

the column vector r and two identical matrices of C(r), i.e.,

C̃(r) = (c̃
(r)
i,j ) = (r|C(r)|C(r)).

5: For t = 0, 1, 2 . . . , p(2p + 1) − 1, let c(t) = c̃
(r)
i,j with

i = ⌊t/(2p+ 1)⌋ and j = (t mod (2p+ 1)).
6: If c(t) is not in c, replace it at random by a channel in c.

For example, if N = 4, then p = 5. Suppose that the

available channel set c = {0, 1, 3} and channel 3 is selected as

the ID channel. From (32), the 5×11 matrix C̃ is constructed

as follows:












3 0 1 2 3 4 0 1 2 3 4
3 3 4 0 1 2 3 4 0 1 2
3 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
3 2 3 4 0 1 2 3 4 0 1













. (34)

Now replace the channels 2 and 4 by randomly selected

channels in c (marked in R) leads to the following CH

sequence:

3, 0, 1, R, 3, R, 0, 1, R, 3, R,

3, 3, R, 0, 1, R, 3, R, 0, 1, R,

3, 1, R, 3, R, 0, 1, R, 3, R, 0,

3, R, 0, 1, R, 3, R, 0, 1, R, 3,

3, R, 3, R, 0, 1, R, 3, R, 0, 1.

Theorem 13: Suppose that user i, i = 1 and 2, have the

available channel sets ci, i = 1 and 2, that are subsets of

{0, 1, 2 . . . , N − 1} and that both users use the ORTHO-CH

in Algorithm 4 to generate its CH sequence. If there is at least

one commonly available channel, i.e., c1 ∩ c2 6= ∅, then both

users are guaranteed to rendezvous within (2p+1)p time slots

for any clock drift d between these two users, where p is the

smallest prime not less than N .

Proof. The case that one of the two users only has channel 0

in its available channel set is trivial as that user will stay on

channel 0 all the time. Thus, it suffices to consider the case

that both users have at least one channel that is not channel 0.

Let ri be the ID channel selected by user k, k = 1 and 2, and

{ck(t), t = 0, 1, . . .} be the CH sequence of user k from the

ORTHO-CH in Algorithm 4. Under the assumption that there

is at least one commonly available channel, we need to show

that there exists 0 ≤ t ≤ (2p+1)p− 1 such that for any time

shift 0 ≤ d ≤ (2p+ 1)p− 1,

c1(t) = c2(t+ d). (35)

Let δ = ⌊d/(2p + 1)⌋ be the vertical shift and τ = (d
mod (2p+ 1)) be the horizontal shift. In view of the matrix-

based construction of CH sequences, the condition in (35)

holds if and only if for any 0 ≤ δ ≤ p−1 and 0 ≤ τ ≤ 2p−1,

there exist 0 ≤ i ≤ p− 1 and 0 ≤ j ≤ 2p− 1 such that

c̃
(r1)
i,j = c̃

(r2)
i⊕δ,j⊕τ , (36)

where C̃(rk) = (c̃
(rk)
i,j ), k = 1 and 2, are the p × (2p + 1)

matrices defined in (33). Now consider the following two

cases:

Case 1. r1 = r2:

In this case, both users select the same ID channel from

their available channel sets. As such, r1 is in the available

channel set of user 2. If τ = 0, then both users rendezvous on

the same ID channel of column 0, i.e., for all 0 ≤ i ≤ p− 1,

c̃
(r1)
i,0 = c̃

(r2)
i⊕δ,0 = r1 = r2. (37)

On the other hand, if τ 6= 0, it then follows from the cover

property that column τ of C̃(r2) contains at least one r1. Thus,

there exists 0 ≤ i∗ ≤ p − 1 such that the (i∗ ⊕ δ)th element

of column τ of C̃(r2) is r1, i.e., c̃
(r2)
i∗⊕δ,τ = r1. Since the p

elements in column 0 of C̃(r1) are all r1, we then have

c̃
(r1)
i∗,0 = c̃

(r2)
i∗⊕δ,τ = r1. (38)

For example, suppose that {c1(t), 0 ≤ t ≤ 54} is the CH

sequence in (34). Then the sequence {c2((t+d) mod 55), 0 ≤
t ≤ 54} in this case can be represented by the concatenation

of its ID column, the first C(r2) matrix, and the second C(r2)

matrix. The overlaps of the ID column (resp. the first matrix,

the second matrix) with the sequence {c1(t), 0 ≤ t ≤ 54} is

marked in green (resp. red, blue) in (39). Note that the 5 ele-

ments marked in green forms a permutation of {0, 1, 2, 3, 4}.

































3 0 1 2 3 4 0 1 2 3 4
3 3 4 0 1 2 3 4 0 1 2
3 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
3 2 3 4 0 1 2 3 4 0 1
3 0 1 2 3 4 0 1 2 3 4
3 3 4 0 1 2 3 4 0 1 2
3 1 2 3 4 0 1 2 3 4 0
3 4 0 1 2 3 4 0 1 2 3
3 2 3 4 0 1 2 3 4 0 1

































. (39)

Case 2. r1 6= r2:

In this case, the two users select two different ID channels.

As such, their CH sequences are constructed from two mutu-

ally orthogonal MACH matrices. As in the proof of Theorem

7, we consider the following two subcases:

Case 2.1. 0 ≤ τ ≤ p:

In this subcase, the first matrix C(r2) of C̃(r2) overlaps with

a p×p square box in the plane repeated from C(r1) (see, e.g.,
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the square marked in red in (39)). Under the assumption that

there is at least one commonly available channel, the condition

in (36) follows immediately from the 2D-MRD property of

two mutually orthogonal MACH matrices.

Case 2.2. p < τ ≤ 2p− 1:

In this subcase, the second matrix C(r2) of C̃(r2) overlaps

with a p × p square box in the plane repeated from C(r1).

Once again, under the assumption that there is at least one

commonly available channel, the condition in (36) follows

immediately from the 2D-MRD property of two mutually

orthogonal MACH matrices.

In comparison with FRCH in [11], ORTHO-CH has the

same MTTR bound (2N + 1)N if N is a prime. Note

that N 6= ((5 + 2α) ∗ r − 1)/2 is required for FRCH.

For instance, if α = 0 and r = 3, then FRCH does not

guarantee the rendezvous of the two users for N = 7. To

achieve such an MTTR bound, FRCH has to remap the

channels that are not in the available channel set according to a

specific remapping rule. For ORTHO-CH, such replacements

can be chosen randomly. In comparison with the Sequence-

Rotating-Rendezvous (SRR) algorithm in [12], our ORTHO-

CH sequence reduces the MTTR from 2p2 +2p to (2p+1)p.

Both constructions are similar in the sense that they both

are based on the two mathematical properties of orthogonal

MACH matrices (and thus the proofs are also similar). The key

difference is that the ORTHO-CH sequence is periodic while

the SRR sequence is not. In practice, there might be a nonzero

probability that the two users may not rendezvous even when

they both hop on a common channel. In such a setting, there

might be a problem for the SRR algorithm when the two users

select the same ID channel and they miss their rendezvous on

the ID channel. In that sense, ORTHO-CH is more robust than

SRR. Similarly, IDEAL-CH is more robust than ORTH-TH as

every commonly available channel is a rendezvous channel in

IDEAL-CH. However, the period p of the general IDEAL-CH

is the smallest prime with p− (⌈√p⌉+ ⌊p/⌈√p⌉⌋ − 1) ≥ N ,

which is in general larger than the period of ORTHO-CH for

the same total number of channels N .

As described in the book [1], both IDEAL-CH and ORTHO-

CH sequences are known as global sequences as they are

constructed from all the N channel and then replace those

channels not in the available channel set of a user by some

channels in its available channel set. Another approach is to

construct CH sequences directly from the available channel

sets of users. Such sequences are called local sequences, e.g.,

QR [37], Catalan [27], MTP [28], FMR [26], and QECH [25].

When the numbers of channels of the two users, n1 and n2

are O(Nα) for some 0 < α < 1, then the MTTR bounds from

these local sequences are o(N2) (see Table I) and thus better

than those from global sequences. On the other hand, if n1

and n2 are linear in N , then the O(N2) of MTTR bounds of

global sequences are better than those of local sequences.

V. CONCLUSION

By embedding difference sets into an ideal matrix, we are

able to tighten the theoretical gap of the asymptotic approx-

imation ratio for CH sequences with maximum rendezvous

diversity from 2.5 to 2. It seems difficult to further reduce the

ratio. This is mainly due to the nature of asynchronous clocks

of the two users. As in the case that the slot boundaries are not

aligned, one needs to increase the slot size by a factor of 2 to

ensure a sufficient overlap of time for rendezvous. Finally, we

conclude the paper by quoting the following comment from

the end of the excellent book [1]”

“First of all, closing the gap between the lower bounds on

the maximum time to rendezvous in worst-case situations and

the upper bounds by the presented algorithms will likely be a

long term project.”
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