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Abstract—In this paper, we consider the problem of scheduling
real-time traffic in wireless networks under a conflict-graph
interference model and single-hop traffic. The objective is to
guarantee that at least a certain fraction of packets of each
link are delivered within their deadlines, which is referred
to as delivery ratio. This problem has been studied before
under restrictive frame-based traffic models, or greedy maximal
scheduling schemes like LDF (Largest-Deficit First) that can
lead to poor delivery ratio for general traffic patterns. In this
paper, we pursue a different approach through randomization
over the choice of maximal links that can transmit at each time.
We design randomized policies in collocated networks, multi-
partite networks, and general networks, that can achieve delivery
ratios much higher than what is achievable by LDF. Further,
our results apply to traffic (arrival and deadline) processes that
evolve as positive recurrent Markov chains. Hence, this work
is an improvement with respect to both efficiency and traffic
assumptions compared to the past work. We further present
extensive simulation results over various traffic patterns and
interference graphs to illustrate the gains of our randomized
policies over LDF variants.

Index Terms—Scheduling, Real-Time Traffic, Markov Pro-
cesses, Stability, Wireless Networks

I. INTRODUCTION

Much of the prior work on scheduling algorithms for wire-
less networks focus on maximizing throughput. However, for
many real-time applications, e.g., in Internet of Things (IoT),
vehicular networks, and other cyber-physical systems, delays
and deadline guarantees on packet delivery are more important
than long-term throughput [1]–[3]. Recently, there has been
an interest in developing scheduling algorithms specifically
targeted towards handling deadline-constrained traffic [4]–[9],
when each packet has to be delivered within a strict deadline,
otherwise it is of no use. The key objective in these works
is to guarantee that at least a fraction of the packets will be
delivered to their destinations within their deadlines, which is
refereed to as delivery ratio (QoS). Providing such guarantees
is very challenging as it crucially depends on the temporal
pattern of packet arrivals and their deadlines, as opposed to
long-term averages in traditional throughput maximization.
One can construct adversarial traffic patterns that all have the
same long-term average but their achievable delivery ratio is
vastly different [8], [10].

Recently, there have been two approaches for providing
QoS guarantees for real-time traffic in wireless networks.
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One is the frame-based approach [4]–[7], and the other is a
greedy scheduling approach like the largest-deficit-first policy
(LDF) [8], [9]. In the frame-based approach, it is assumed that
each frame is a number of consecutive time slots, and packets
arriving in each frame have to be scheduled before the end
of the frame. They crucially rely on the assumption that all
packets of all users arrive at the beginning of frames [4]–
[6], or the complete knowledge of future packet arrivals and
their deadlines in each frame is available at the beginning of
the frame [7]. This restricts the application of such policies to
specific traffic patterns with periodic arrivals and synchronized
users. The results for general traffic patterns without such
frame assumptions are very limited, as in such settings, the
real-time rate region is difficult to characterize and the optimal
policy is unknown. A popular algorithm for providing QoS
guarantees for real-time traffic is the largest-deficit-first (LDF)
policy [4], [8], [9], [11], which is the real-time variation of
the longest-queue-first (LQF) policy (see, e.g., [12], [13]). It
is known that LDF is optimal in collocated networks under
the frame-based model [4], [11]. The performance of LDF in
the non-frame-based setting has been studied in [8] in terms
of the efficiency ratio, which is the fraction of the real-time
throughput region guaranteed by LDF. It is shown that LDF
achieves an efficiency ratio of at least 1

1+β for a network
with interference degree1 β, under i.i.d. (independent and
identically distributed) packet arrivals and deadlines. Further,
when traffic is not i.i.d., the efficiency ratio of LDF is as low as

1
1+
√
β

[8]. In particular, for collocated networks, the efficiency
ratio of LDF under non-i.i.d. traffic is 1/2, and in a simple
star topology with one center link and K neighboring links,
it scales down as low as O( 1√

K
). This shows that LDF might

not be suitable for high throughput real-time applications,
especially with non-i.i.d. traffic, which is the case if packet
drops due to deadline expiry trigger re-transmissions.

Besides the works above on providing QoS guarantees
for wireless networks, there is literature on approximation
algorithms for single-link buffer management problem [14],
[15]. In this problem, packets arrive to a single link, each
with a non-negative constant weight and a deadline. The goal
is to maximize the total weight of transmitted packets for the
worst input sequence. The approximation algorithms include
the maximum-weight greedy algorithm [14], [15], EDFα [16]

1The interference degree is the maximum number of links that can be
scheduled simultaneously out of a link and its neighboring links.
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which schedules the earliest-deadline packet with weight at
least α ≥ 1 of the maximum-weight packet, or randomized
algorithms such as [17]–[19] where the scheduling decision is
randomized over pending packets in the link’s buffer. Inspired
by such randomization techniques, we design randomized
algorithms for wireless networks under a general interference
model and given the delivery ratio requirements for the links
in the network.

A. Contributions

Non-i.i.d. (Markovian) Traffic Model. Our traffic model
allows traffic (arrival and deadline) processes that evolve as
an irreducible Markov chain over a finite state space. This
model is a significant extension from i.i.d. or frame-based
traffic models in [4]–[8]. A key technique in analyzing the
achievable efficiency ratio in our model is to look at the return
times of the traffic Markov chain and analyze the performance
of scheduling algorithms over long enough cycles consisting
of multiple return times.

Randomized Algorithms with Improved Efficiency. We
propose randomized scheduling algorithms that can signifi-
cantly outperform deterministic greedy algorithms like LDF.
The key idea is to identify a structure for the optimal policy
and randomize over the possible scheduling choices of the
optimal policy, rather than solely relying on the deficit queues.
For collocated networks and complete bipartite graphs our
randomized algorithms achieve an efficiency ratio of at least
0.63 and 2/3, respectively, and in general graphs, achieve an
efficiency ratio of at least 1/2, all independent of the network
size and without the knowledge of the traffic model.

II. MODEL AND DEFINITIONS

Wireless Network Model. We consider a set of K links (or
users) denoted by the set K, where K = |K|. Time is slotted,
and at each time slot t ∈ N0, each link can transmit one packet
successfully, if there are no interfering links transmitting at the
same time. As in [8], it is standard to represent the interference
relationships between links by an interference graph GI =
(K, EI). Each vertex of GI is a link, and an edge (l1, l2) ∈
EI indicates links l1 and l2 interfere with each other. Let
Il(t) = 1 if link l is transmitting a packet at time t, and
Il(t) = 0 otherwise. Hence, at any time any feasible schedule
I(t) = (Il(t), l ∈ K) has to form an independent set of GI
over links that have packets, i.e., no two transmitting links can
share an edge in GI . We say a feasible schedule I is maximal
if no more links can be scheduled without interfering with
some active links in I . Let B(t) be the set of links that have
packets available to transmit at time t. Let M denote the set
of all maximal independent sets of GI . Then, at any time t,

{l ∈ K : Il(t) = 1} ⊆ (B(t) ∩M), for some M ∈M,

where ‘⊆’ holds with ‘=’ if I is a maximal schedule.
Traffic Model. We consider a single-hop traffic with dead-

lines for each link. Let al(t) denote the number of packets
arriving on link l at time t, with al(t) ≤ amax, for some
amax <∞. Each packet upon arrival has a deadline which is

1
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Fig. 1: An example of a Markovian traffic process with three
traffic patterns repeating as A → B → C → A · · · . Each
rectangle indicates a packet for a link indicated by its number.
The left side of the rectangle corresponds to its arrival time,
and its length corresponds to its deadline. For example on
pattern A, we have 2 packets, 1 from link 2, with deadline 2
slots after the arrival, and 1 from link 1, with deadline in the
same slot.

the maximum delay that the packet can tolerate. We define a
vector τl(t) = (τl,d(t); d = 1, · · · , dmax), where τl,d(t) is the
number of packets with deadline d arriving to link l at time t. A
packet arriving with deadline d at time t has to be transmitted
before the end of time slot t + d − 1, otherwise it will be
dropped. The maximum deadline is bounded by a constant
dmax. Hence, the network traffic (arrival, deadline) process is
described by τ(t) = (τl(t); l ∈ K), t ≥ 0. We also use u(t)
to denote any unobservable (hidden) information of the traffic
process, so that the complete traffic process x(t) = (τ(t), u(t))
evolves as an irreducible Markov chain over a finite state
space X = Γ × U , where Γ = {0, · · · , amax}dmax×K and
U := {1, · · · , Umax} for a finite Umax

2.
Note that the arrival and deadline processes do not need

to be i.i.d. across times or users. Since the state space X is
finite, x(t) is a positive recurrent Markov chain [20] and the
time-average of any bounded function of x(t) is well-defined,
in particular, the packet arrival rate al, l ∈ K,

limt→∞
1
t

∑t
s=1 al(s) = al. (1)

See Figure 1 for an example of a Markovian traffic process.
Buffer Dynamics. The buffer of link l at time t contains the

existing packets at link l which have not expired yet and also
the newly arrived packets τl(t). Formally, we define the buffer
of link l by a vector Ψl(t) = (Ψl,d(t); d = 1, · · · , dmax),
where Ψl,d(t) is the number of packets in the buffer with
remaining deadline d at time t. The remaining deadline of each
packet in the buffer decreases by one at every time slot, until
the packet is successfully transmitted or reaches the deadline
0, which in either case the packet is removed from the buffer,
i.e., the buffer at the beginning of slot t+ 1 is

Ψl,d(t+ 1) = Ψl,d+1(t) + τl,d(t+ 1)− Il,d+1(t), (2)

where Il(t) =
∑dmax

d=1 Il,d(t) ≤ 1, and Il,d(t) = 1 if the sched-
uler selects a packet with deadline d to transmit at time t on
link l. By convention, we set Ψl,dmax+1(t) = 0, Ψl,0(t) = 0.
We define the network buffer state as Ψ(t) = (Ψl(t); l ∈ K).

2Essentially, u(t) assigns labels to τ(t) to allow more complicated depen-
dencies in τ(t). If U = ∅, then τ(t) itself evolves as a Markov chain.



Delivery Requirement and Deficit. As in [4]–[8], we assume
that there is a minimum delivery ratio pl (QoS requirement)
for each link l, l ∈ K. This means the scheduling algorithm
must successfully deliver at least pl fraction of the incoming
packets on each link l in long term. Formally,

lim inft→∞
∑t

s=1 Il(s)∑t
s=1 al(s)

≥ pl. (3)

We define a deficit wl(t) which measures the amount of
service owed to link l up to time t to fulfill its minimum
delivery rate. As in [7], [8], the deficit evolves as

wl(t+ 1) =
[
wl(t) + ãl(t)− Il(t)

]+
, (4)

where [·]+ = max{·, 0}, and ãl(t) indicates the amount of
deficit increase due to packet arrivals. For each packet arrival,
we should increase the deficit by pl on average. For example,
we can increase the deficit by exactly pl for each packet arrival
to link l, or use a coin tossing process as in [7], [8], i.e., each
packet arrival at link l increases the deficit by one with the
probability pl, and zero otherwise. We refer to ãl(t) as the
deficit arrival process for link l. Note that it holds that

limt→∞
1
t

∑t
s=1 ãl(s) = alpl := λl, l ∈ K. (5)

We refer to λl as the deficit arrival rate for link l. We would
like to emphasize that the arriving packet is always added to
the link’s buffer, regardless of whether and how much deficit
is added for that packet. Also note that in (4), each time a
packet is scheduled from the link, Il(t) = 1, the deficit is
reduced by one. The dynamics in (4) define a deficit queueing
system, with bounded increments/decrements, whose stability,
e.g.,

lim supt→∞
1
t

∑t
s=1 E[wl(s)] <∞, (6)

implies that (3) holds3. Define the vector of deficits as w(t) =
(wl(t), l ∈ K). The system state at time t is then defined as
S(t) = (Ψ(t), w(t),x(t)).

Objective. Define PC to be the set of all causal policies, i.e.
policies that do not know the information of future arrivals and
deadlines (and the hidden state of the traffic process x(t)) in
order to make scheduling decisions. For a given traffic process
x(t) , with fixed al, defined in (1), we are interested in causal
policies that can stabilize the deficit queues for the largest set
of delivery rate vectors p = (pl, l ∈ K), or equivalently largest
set of λ = (λl := alpl, l ∈ K) possible. For a given traffic
process, we say the rate vector λ = (λl, l ∈ K) is supportable
under some policy µ ∈ PC if all the deficit queues remain
stable. Then one can define the supportable (real-time) rate
region of the policy µ as

Λµ = {λ ≥ 0 : λ is supportable by µ}. (7)

Note that for a given traffic distribution, a vector λ corresponds
to a single vector of delivery rate requirements p exactly. The
supportable rate region under all the causal policies is defined

3Actually only the rate stability is enough to establish (3) [21], however
we consider this stronger notion of stability.

as Λ =
⋃
µ∈PC

Λµ. The overall performance of a policy µ is
evaluated by the efficiency ratio γ?µ which is defined as

γ?µ = sup{γ : γΛ ⊆ Λµ}. (8)

For a casual policy µ, we aim to provide a universal lower
bound on the efficiency ratio that holds for “all” Markovian
traffic processes (without knowing the transition probability
matrix).

III. RANDOMIZED SCHEDULING ALGORITHMS

In this section, we present our randomized scheduling
algorithms. We start with the collocated networks, and then
proceed to general networks.

A. Collocated Networks

In a collocated network, only one of the links can transmit
a packet at any time. Hence the interference graph GI is a
complete graph.

Define el(t) = min{d : Ψl,d(t) > 0} to be the deadline
of the earliest-deadline packet available at link l at time t.
By convention, the minimum of an empty set is considered
infinity. We use a tuple (wl(t), el(t))l to denote the earliest-
deadline packet of link l with deadline el(t) and link deficit
wl(t). We make the following dominance definition.

Definition 1. We say that a link l1 dominates a link l2 at
time t if wl1(t) ≥ wl2(t) and el1(t) ≤ el2(t). If one of the
two inequalities is strict, we call it a strict dominance. A non-
dominated link is a nonempty link that is not dominated strictly
by any other link at that time.

Recall that B(t) is the set of links with nonempty buffers.
At every time slot, we first find the set of non-dominated links
BND(t). One way to do that is as follows:

Algorithm 1 Finding Set of Non-dominated Links

1: H ← B(t), BND(t)← ∅, i← 0
2: while H 6= ∅ do
3: i← i+ 1
4: Find the largest-deficit non-dominated link hi ∈ H .
5: Add hi to BND(t)
6: Remove hi and all the links dominated by it, i.e.

H ← H \ {l ∈ H : el(t) ≥ ehi(t)}.

7: end while

Algorithm 1 returns a set BND(t) = {h1, .., hk}, where hi
is the link selected in the i-th iteration, and the links are
ordered in the order of their deficits, i.e., wh1(t) > wh2(t) >
· · · > whk

(t). See Figure 2 for an illustrative example of the
non-dominated links. Our scheduling algorithm transmits the
earliest-deadline packet of one of the links hi ∈ BND(t) ran-
domly, where the probabilities phi(t) are computed recursively
as in Algorithm 2. We refer to Algorithm 2 as AMIX-ND
which stands for Adaptive Mixing over Non-Dominated links.
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Fig. 2: An example for non-dominated links. Each numbered
rectangle denotes the earliest-deadline packet of a link. A solid
rectangle indicates that the link is non-dominated. Dashed
rectangles (links) that fall in regions Ri will be dominated.

Algorithm 2 AMIX-ND: Randomized Scheduling in Collo-
cated Networks

1: Use Algorithm 1 to find BND(t) = {h1, .., hk}.
2: r ← 1
3: for i = 1 to k − 1 do
4: phi(t) = min

(
1− whi+1

(t)

whi
(t) , r

)
5: r ← r − phi

(t)
6: end for
7: phk

(t) = r
8: Send the earliest-deadline packet from link hi with prob-

ability phi
(t).

Theorem 1. In a collocated wireless network with K links,
AMIX-ND achieves an efficiency ratio of at least

γ?AMIX-ND ≥ 1−
(

1− 1

K

)K
>
e− 1

e
. (9)

Remark 1. Note that AMIX-ND has an efficiency ratio which
is bounded below by 0.63, regardless of the number of links. In
contrast, we can construct Markovian traffic processes where
the efficiency ratio of LDF is less than 1/2+ε [8]. For example,
for the traffic patterns of Figure 1 in the model section, we will
see in simulations in Section VI that, while AMIX-ND can
achieve delivery ratios close to 0.99, LDF cannot do better than
0.5 + ε. Note that our traffic model does allow traffic patterns
as in Figure 1, since we do not need the traffic Markov chain
to be aperiodic.

B. Multipartite Networks and General Networks

Consider the set of all maximal independent sets M of the
interference graph GI . Our randomized algorithm selects a
maximal independent set (MIS) M ∈M probabilistically and
schedules the earliest-deadline packets of the induced maximal
schedule M ∩ B(t). Recall that B(t) is the set of links with
nonempty buffers. We refer to this algorithm as AMIX-MS
which stands for Adaptive Mixing over Maximal Schedules.
Before presenting the algorithm, we make a few definitions.

Definition 2. The weight of a MIS M ∈M at time t is

WM (t) =
∑

l∈M∩B(t)

wl(t). (10)

Let R = |M|. We index and order M ∈M such that Mi has
the i-th largest weight at time t, i.e.,

WM1(t) ≥WM2(t) · · · ≥WMR
(t).

Definition 3. Define the subharmonic average of weights of
the first n MIS, n ≤ R, at time t to be

Cn(t) =
n− 1∑n

i=1(WMi
(t))−1

. (11)

The probabilities used by AMIX-MS to select a MIS Mi,
at time t, are as follows

pn̄Mi
(t) ≡ pn̄i (t) =

1− Cn̄(t)

WMi(t)
1 ≤ i ≤ n̄

0 n̄ < i ≤ R
(12)

where n̄ is the largest n such that {pni (t), 1 ≤ i ≤ n} defines
a valid probability distribution over 1 ≤ i ≤ n. Noting that
pni (t) ≥ pni+1(t) for i < n, and

∑
i≤n p

n
i (t) = 1, n̄ is therefore

given by

n̄ := n̄(t) = max{n : pnn(t) ≥ 0}. (13)

We drop the dependence on t for n̄(t) when there is no
ambiguity. Algorithm 3 gives a description of AMIX-MS
where n̄ is found using a binary search. Then AMIX-MS
selects a MIS Mi with probability pn̄i (t) as in (12).

Algorithm 3 AMIX-MS: Randomized Scheduling in General
Interference Graphs

1: n1 ← 1, n2 ← |M|
2: while n1 6= n2 do
3: n←

⌈
n1+n2

2

⌉
4: if pnn(t) ≥ 0 then
5: n1 ← n
6: else
7: n2 ← n− 1
8: end if
9: end while

10: n̄← n1

11: Select MIS Mi with probability pn̄Mi
(t) as in (12) and

transmit the earliest-deadline packet of each link in Mi.

The following theorem states the main result regarding the
efficiency ratio of AMIX-MS.

Theorem 2. In a wireless network with interference graph
GI and maximal independent sets M, the efficiency ratio of
AMIX-MS is at least

γ?AMIX-MS ≥
|M|

2|M| − 1
>

1

2
.

A special case of this theorem is for networks with a
complete n-partite interference graph, n ≥ 2. In a complete
n-partite graph, with n components, V1, · · · , Vn, links in each
component do not share any edge but there is an edge between
any two links in different components. Hence, each component
Vi, 1 ≤ i ≤ n is a MIS. We state the result as the following
corollary which immediately follows from Theorem 2.



Corollary 2.1. For a wireless network with a complete n-
partite interference graph, under AMIX-MS,

γ?AMIX-MS ≥
n

2n− 1
.

Remark 2. We emphasize on the importance of Theorem 2
using a simple interference graph with ‘star’ topology. This is
a special case of a bipartite graph with only two components,
V1 is the center node, and V2 are the leaf nodes. Notice that the
guarantee of AMIX-MS in this case is at least 2

3 , regardless of
the number of nodes K. This is a significant improvement over
LDF, whose efficiency ratio is at least 1

K under i.i.d. traffic
but not better than 1√

K−1+1
under Markovian traffics [8].

Remark 3. We note that the computational complexity of
AMIX-MS could be high for general graphs as it requires
finding an ordering of maximal schedules. However, it is easily
applicable for n-partite graphs or small graphs. Moreover,
we can further approximate the algorithm by only ordering a
subset of maximal schedules as opposed to finding all of them.
The randomization in AMIX-MS can be also potentially
implemented in a distributed manner by using distributed
CSMA-like schemes such as [22]–[24].

IV. ANALYSIS TECHNIQUE

We provide an overview of the techniques in our proofs.
We first mention a lemma below which should be intuitive.

Lemma 1. Without loss of generality, we consider natural
policies that use a maximal schedule to transmit at each time.
Further, if a link is included in the schedule, its earliest-
deadline packet will be selected for transmission.

Proof. The proof is through exchange arguments.
For the first part, assume that a policy µ at time t0 chooses

a non-maximal schedule, hence a packet x from link l could
have been included in the schedule. Consider an alternative
policy µ′ that does schedule any link that could have been
included at time t0 so that the schedule becomes maximal,
and for the rest of the time, it transmits exactly the same
packets as the initial policy µ, except for the transmission of
any packet x, if µ schedules it at a later point. This results
in
∑t
s=1 I

µ′

l (s) ≥
∑t
s=1 I

µ
l (s),∀t ≥ 1, and at the same time

every schedule transmitted by µ′ for t ≤ t0 is maximal. We
can repeat this argument for times t > t0 to convert µ to
a policy µ̃ that transmits maximal schedules. We then have∑t
s=1 I

µ̃
l (s) ≥

∑t
s=1 I

µ
l (s),∀t ≥ 1 and from (3) we see that

any delivery ratio supported by µ is also supported by µ̃.
For the second part, consider a policy µ that at some time

t0 transmits a packet that is not the earliest-deadline packet
x1 = (w1(t), d1)l in link l. Then there is some other packet
x2 = (w1(t), d2)l in link l with d2 < d1. If we let µ transmit
x2 instead of x1, the buffer state will be improved since we
will have the same set of packets in link l except for one
packet with a longer deadline now. Further, the link’s deficit
will not change.

Frame Construction. A key step in the analysis of our
scheduling algorithms is a careful frame construction. We

emphasize that the frame construction is only for the purpose
of analysis and is not part of our algorithms. The F-framed
construction in [8] only works for i.i.d. arrivals and deadlines.
Here, we need a construction that can handle our Markovian
traffic model. We present this construction below where frames
have random length as opposed to fixed length in [8].

Definition 4 (Frames and Cycles). Starting from an initial
complete traffic state x(0) = x ∈ X , let ti denote the i-
th return time of traffic Markov chain x(t) to x, i = 1, · · · .
By convention, define t0 = 0. The i-th cycle Ci is defined
from the beginning of time slot ti−1 + 1 until the end of
time slot ti, with cycle length Ci = ti − ti−1. Given a fixed
k ∈ N, we define the i-th frame F (k)

i as k consecutive cycles
C(i−1)k+1, · · · , Cik, i.e., from the beginning of slot t(i−1)k + 1
until the end of slot tik. The length of the i-th frame is denoted
by F (k)

i =
∑ik
j=(i−1)k+1 Cj . Define J (F (k)) to be the space

of all possible traffic patterns (τ(t), t ∈ F (k)) during a frame
F (k). Note that these patterns start after x and end with x.

By the strong Markov property and the positive recurrence
of traffic Markov chain, frame lengths F (k)

i are i.i.d with mean
E[F (k)] = kE[C], where E[C] is the mean cycle length which
is a bounded constant [20]. In fact, since state space X is
finite, all the moments of C (and F (k)) are finite. We choose
a fixed k, and, when the context is clear, drop the dependence
on k in the notation.

Define the class of non-causal F-framed policies PNC(F)
to be the policies that, at the beginning of each frame Fi, have
complete information about the traffic pattern in that frame,
but have a restriction that they drop the packets that are still in
the buffer at the end of the frame. Note that the number of such
packets is at most dmaxamaxK, which is negligible compared
to the average number of packets in the frame, alE[F ] =
alkE[C], as k →∞. Define the rate region

ΛNC(F) =
⋃
µ∈PNC(F) Λµ. (14)

Given a policy µ ∈ PNC(F), the time-average service rate
Īl of link l is well defined. In fact, by the renewal reward
theorem (e.g. [25], Theorem 5.10), and boundedness of E[F ],

lim
t→∞

∑t
s=1 Il(s)

t
=

E
[∑

t∈F Il(t)
]

E[F ]
= Īl. (15)

Similarly for the deficit arrival rate λl, defined in (5),

E[
∑
t∈F ãl(t)]

E[F ]
= λl, l ∈ K. (16)

In Definition 4, each frame consists of k cycles. Using similar
arguments as in [8], it is easy to see (and it is intuitive) that

lim inf
k→∞

ΛNC(F (k)) ⊇ int(Λ).

where int(·) is the interior. Hence, if we prove that for a causal
policy ALG, there exists a constant ρ, and a large k0, such that
for all k ≥ k0,

ρ int(ΛNC(F (k))) ⊆ ΛALG, (17)



then it follows that ΛALG ⊇ ρ int(Λ). For our algorithms, we
find a ρ such that (17) holds for any traffic process under our
model. Then it follows that γ?ALG ≥ ρ.

We define the gain of a policy µ at time t as

Gµ(t) =
∑
l∈K w

µ
l (t)Iµl (t), (18)

and the gain over a frame is
∑
t∈FGµ(t). To prove (17), we

rely on comparing the gain (total deficit of packets transmitted)
by ALG and an optimal max-gain non-causal policy over
a frame. The following proposition states the result for any
general interference graph.

Proposition 1. Consider a frame F ≡ F (k), for some fixed
k based on returns of traffic process x(t) to a state x.
Let ‖w(t0)‖ =

∑
l∈Kwl(t0) be the norm of the initial deficit

vector at the start of the frame. Suppose for a causal policy
ALG, given any ε > 0, there is a W ′ such that when
‖w(t0)‖ > W ′,

E
[∑

t∈FGALG(t)|S(t0)
]

E
[∑

t∈FGµ?(t)|S(t0)
] ≥ ρ− ε, (19)

where S(t0) = (Ψ(t0), w(t0),x(t0)), and µ? is the optimal
non-causal policy that maximizes the gain over the frame.
Then for any λ ∈ ρ int(ΛNC(F)), the network state process
{S(t)} is positive recurrent, and further, the deficit queues are
bounded in the sense of (6).

The proof of Proposition 1 is provided in Section V-A.
Gain Analysis. With Proposition 1 in hand, we analyze the

achievable gain of our algorithm over a frame, compared with
that of the optimal non-causal policy µ?. Since characterizing
µ? is hard, we extend a coupling technique from [16]–[18],
[26] (developed for constant-weight single buffer analysis) to
stochastic process (Ψ(t), w(t),x(t)) in a general network.

Consider a state (Ψ(t), w(t),x(t)) under our randomized
algorithms at time t ∈ F , and the state (Ψµ?

(t), wµ
?

(t),x(t))
under the optimal policy µ?. Of course, the traffic process
x(t) is the same for the entire time in the frame for both
algorithms. We change the state of µ? (by modifying its
buffers and deficits) to make it identical to (Ψ(t), w(t),x(t)),
but also give µ? a larger gain G′µ?(t) > Gµ?(t) that can ensure
the change is advantageous for µ? considering the rest of the
frame. Then, taking the expectation E[G′(t)] with respect to
the random decisions of our algorithm, AMIX-ND or AMIX-
MS, and traffic patterns in a frame, we can bound the optimal
gain of µ?. Then we can prove the main results in view of
Proposition 1.

The gain analysis of AMIX-ND in collocated networks and
AMIX-MS in general networks is presented in Sections V-B
and V-C, respectively.

V. PROOFS OF MAIN RESULTS

We first provide the proof of Proposition 1 and then provide
the gain analysis of our algorithms. In what follows, we define

wmax(t) = max
l∈K

wl(t)1(Ψl 6= 0), (20)

to be the maximum deficit of a nonempty link at time t.
Also define [N ] := {1, 2, ..., N}. We use EX [·] to denote
conditional expectation E[·|X]. EY [·] is used to explicitly
indicate that expectation is taken with respect to some random
variable Y . |A| is used to denote the cardinality of set A.

A. Proof of Proposition 1

We look at the state process {S(t)} at times ti when frames
start. We show that this sampled chain is positive recurrent and
further its mean deficit size is stable in the sense of (6). From
this it follows that the original process {S(t)} is also stable
as the mean frame size E[F ] is bounded and the mean deficits
within a frame can change at most by amaxKE[F ].

Since λ ∈ ρ int(ΛNC), we have for some ε > 0, and some
policy µ ∈ PNC(F),

λE[F ](1 + 2ε) � ρE[
∑
t∈F

Iµ(t)], (21)

where � is the component-wise inequality between vectors.
This is simply due to the fact that in each frame, the number of
deficit arrivals

∑
t∈F ã(t) and the number of departures under

the policy µ are i.i.d across the frames, with means E[F ]λ and
E[
∑
t∈FI

µ(t)], respectively, by the renewal reward theorem.
Hence, to ensure stability, (21) must hold. Next, consider the
Lyapunov function

V (t) := V (S(t)) =
1

2

∑
l∈K

w2
l (t).

Let {I(t), t ∈ F} denote the scheduling decisions by ALG
within the frame. Using (4), we get

w2
l (t+ 1)− w2

l (t) ≤ (wl(t) + ãl(t)− Il(t))2 − w2
l (t)

= 2wl(t)(ãl(t)− Il(t)) + (ãl(t)− Il(t))2

≤ 2wl(t)(ãl(t)− Il(t)) + a2
max.

Then we compute the drift over F slots

V (t0 + F )− V (t0) =
1

2

∑
l∈K

(
w2
l (t0 + F )− w2

l (t0)
)

=
1

2

∑
t∈F

∑
l∈K

(
w2
l (t+ 1)− w2

l (t)
)

≤ Ka2
maxF/2 +

∑
t∈F

∑
l∈K

wl(t) (ãl(t)− Il(t)) . (22)

Let Et0 [·] = E[·|S(t0)]. Then, over a frame,

Et0 [V (t0 + F )− V (t0)] ≤

Et0 [
∑
t∈F

∑
l∈K

wl(t)ãl(t)]− Et0 [
∑
t∈F

∑
l∈K

wl(t)Il(t)] + C1, (23)

where C1 = Ka2
maxE[F ]/2. Noting that

wl(t0)− F ≤ wl(t) ≤ wl(t0) + amaxF, (24)

at any t ∈ F , we can bound

Et0 [
∑
t∈F

∑
l∈K

wl(t)ãl(t)] ≤
∑
l∈K

(wl(t0)λlE[F ]) + C2, (25)



where we have used (16) and (24), and C2 = a2
maxE[F 2]K <

∞. Let I?(t) be the scheduling decisions by the policy µ?, and
Iµ(t) be the scheduling decisions by the policy µ ∈ PNC(F)
in (21). Note that µ? is the optimal non-causal policy that
maximizes the gain over the frame and can transmit packets
from a previous frame (included in the initial buffer Ψ(t0)).
This only improves the performance of µ?, compared to
starting with empty buffers, hence,

Et0
[∑
t∈F

∑
l∈K

w?l (t)I?l (t)
]
≥ Et0

[∑
l∈K

∑
t∈F

wµl (t)Iµl (t)
]
. (26)

Using (26) and the proposition assumption, given ε > 0, there
is a W ′ such that, if ‖w(t0)‖ > W ′,

Et0
[∑
t∈F

∑
l∈K

wl(t)Il(t)
]
≥ (ρ− ε)Et0

[∑
t∈F

∑
l∈K

w?l (t)I?l (t)
]

≥ (ρ− ε)Et0
[∑
l∈K

∑
t∈F

wµl (t)Iµl (t)
]

≥ (ρ− ε)Et0
[∑
l∈K

∑
t∈F

(wl(t0)− F )Iµl (t)
]

≥ (ρ− ε)Et0
[∑
l∈K

∑
t∈F

wl(t0)Iµl (t)
]
− C3, (27)

where C3 = KE[F 2] is a constant. Using (27), (25), (23),

Et0
[
(t0 + F )− V (t0)

]
≤C4 +

∑
l∈K

E[F ]wl(t0)λl − (ρ− ε)
∑
l∈K

wl(t0)Et0
[∑
t∈F

Iµl (t)
]

≤C4 +
∑
l∈K

wl(t0)

(
λlE[F ]− (ρ− ε)Et0

[∑
t∈F

Iµl (t)
])

≤C4 − εE[F ]
∑
l∈K

λlwl(t0), (28)

where C4 = C1 + C2 + C3, and in the last in-
equality we have used (21). Hence, given any δ > 0,
Et0 [V (t0 + F )− V (t0)] ≤ −δ if

‖w(t0)‖ ≥ max ((C4 + δ)/(εE[F ]λmin),W ′) ,

where λmin = minl λl. This proves that the network Markov
chain is positive recurrent by the Foster-Lyapunov Theorem
and further the stability in the mean sense (6) follows [27]
(note that the component Ψ(t) lives in a finite state space).

B. Gain Analysis of AMIX-ND in Collocated Networks

Consider a subclass PND of all the policies that schedule
Non-Dominated (ND) links at each slot (recall Definition 1).
We refer to policies in PND as ND-policies. We show that
the optimal ND-policy is close to the optimal non-restricted
policy as stated below.

Lemma 2. Consider any policy µ for scheduling packets in
a frame F . Then there is an ND-policy µ̂ ∈ PND such that,
under the same pattern J ∈ J (F) and initial state S(t0),∑

t∈F
Gµ̂(t) ≥

∑
t∈F
Gµ(t)− amaxF 2

where F is the length of the frame.

Proof. Suppose the first time µ does not schedule a non-
dominated link is t0. Suppose µ sends earliest-deadline packet
(wy(t0), dy) from link y and (wx(t0), dx) be the earliest-
deadline packet at a link x (x 6= y) that strictly dominates
y, i.e. wx(t0) ≥ wy(t0), dx ≤ dy . Consider some alternative
policy µ′ which has the same transmissions as µ up to time
t0 but transmits the packet of x at time t0 instead. Let
w′l(t), l ∈ K denote the link deficits under µ′. Note that
w′l(t) = wl(t), ∀t ≤ t0. We differentiate between 2 cases:
1) µ does not transmit packet x in the remaining time slots.

In this case, let µ′ transmit the same packets as µ in the
remaining slots (after t0). Let Il(t1, t2) =

∑t2
t=t1

Il(t) be
the number of packets transmitted between t1 and t2 at
link l under µ (and subsequently under µ′). And let ∆G :=∑
t∈FGµ′(t)−

∑
t∈FGµ(t). Then we have

∆G (a)
= wx(t0) + Iy(t0 + 1, F )− (wy(t0) + Ix(t0 + 1, F ))

(b)

≥ wx(t0)− wy(t0)− F ≥ −F

To see (a), notice that as a result of transmitting from link
x instead of link y, the deficit of link y under µ′ will be
one more than that under µ at any time t > t0. Similarly,
the deficit of link x under µ′ will be one less than that
under µ at any time t > t0. In (b), we have used the fact
that Il(t) ∈ {0, 1} and wx(t0) ≥ wy(t0).

2) µ transmits packet x at some time slot ta where t0 < ta <
t0 + dx. In this case we let µ′ transmit the same packets
as µ for all t > t0 except for time slot ta in which it
transmits packet y instead, which still has not expired yet
by the domination inequality dy ≥ dx. It is easy to check
that ∑

t∈FGµ′(t)−
∑
t∈FGµ(t) =

wx(t0) + w′y(ta) + Iy(t0 + 1, ta − 1)

−wy(t0)− wx(ta)− Ix(t0 + 1, ta − 1) (29)

The total deficit arrival to a link in the frame cannot be
more than amaxF . Hence,

wx(ta) ≤ wx(t0) + amaxF − Ix(t0, ta − 1)

w′y(ta) ≥ wy(t0)− Iy(t0, ta − 1)

Using these two inequalities in (29) yields∑
t∈FGµ′(t)−

∑
t∈FGµ(t) ≥ −amaxF. (30)

By repeating this process (at most F times), we can transform
µ to µ̂. From this, the final result follows.

Lemma 3. For each slot t ∈ F , the gain obtained by AMIX-
ND, and the amortized gain by any ND-policy µ̂, starting from
some state S(t) satisfy:

ER[G′µ̂(t)|S(t)] ≤ wmax(t) + E0 (31)

ER[GAMIX-ND(t)|S(t)] ≥ wmax(t)ρ (32)



where ρ =
(

1−
(
1− 1

K

)K)
and E0 = amaxdmax + 2F , and

ER[·] is expectation with respect to the random decisions of
AMIX-ND.

Proof. At time t, after the new arrivals have happened, we
have state S(t). AMIX-ND decides probabilistically to trans-
mit a packet (wf , ef ) from a non-dominated link f ∈ BND(t),
and the ND-policy µ̂ transmits a packet (wz, ez) from some
other link z . We distinguish two cases following the same
method as in [18] but for time-varying weights.

1) ef ≤ ez, wf ≤ wz: To maintain the same buffers for both
algorithms, we remove the packet ef from the buffer of
link f under µ̂ and inject the packet with deadline ez to
link z so that µ̂ gets a packet with higher deadline and
higher weight at the time t. Since both packets will expire
in at most dmax slots, the deficit of f can only increase
by at most dmaxamax before packet ef expires. Therefore
giving µ̂ this additional compensation will guarantee that
the modification is advantageous. Further, we decrease the
deficit from link f by one (wf−1 in µ̂) and we increase the
deficit of link z by one (wz +1 in µ̂). Then µ̂ and AMIX-
ND have the same exact state. Making this change in the
deficit will reduce the gain for each packet transmitted
from link f in the future by one. To compensate for this,
we give µ̂ extra gain which is the number of packets
transmitted from link f for the rest of the frame, which
is less than F . Hence, the total compensation is bounded
by F + amaxdmax.

2) ez ≤ ef , wz ≤ wf : In this case, we allow µ̂ to additionally
transmit the packet ef at time t, and inject a copy of packet
ez to the buffer of link z. This makes the buffers identical,
but results in the decrease of deficit of link f by one,
which might not be advantageous for µ̂ for future times. To
guarantee that the change is advantageous for µ̂, we give it
one extra reward for each possible transmission from link
f in the rest of the frame, which is less than F .

Let G′µ̂
(hi)(t) denote the reward (including the compensa-

tion) gained by µ̂ when it transmits a non-dominated packet
hi (recall hi from Algorithm 1). Then

ER[G′µ̂
(hi)(t)|St] =

∑
hj :j<i

phj
(t)
(
whj

(t) + F
)

+ whi(t) + F + amaxdmax

≤whi
(t) +

∑
hj :j<i

phj
(t)whj

(t) + E0 (33)

where E0 = amaxdmax + 2F . Using the assigned probabilities
(line 4 in Algorithm 2), it is easy to verify that (33) attains
its maximum for i = 1, which is equal to wh1

(t) + E0 =
wmax(t) + E0. Hence, (31) indeed holds.

Now regarding AMIX-ND, similar derivation applies as in
[19] to get the final bound. To see that, first let the number of

links with positive probability be B ≤ K. Then

ER[GAMIX-ND(t)|St] =
∑
i∈[B]

whi
(t)phi

(t) =

∑
i∈[B−1]

whi
(t)phi

(t) +
(

1−
∑

i∈[B−1]

phi
(t)
)
whB

(t)
(a)
=

wh1
(t)
(

1−
B−1∏
i=1

(1− phi
(t))

B−1∑
i=1

phi
(t)
) (b)

≥

wh1
(t)
(

1−
(B − 1

B

)B)
,

where (a) follows from the form of probabilities, and (b)
follows by applying the inequality between arithmetic and
geometric means of B terms: (1 − phi(t)), i ∈ [B − 1], and∑B−1
i=1 phi(t).

Lemma 4. Over any frame F , with initial state S(t0) =
(Ψ(t0), w(t0),x(t0)), and any ND-policy µ̂.

lim
‖w(t0)‖→∞

ER,J [
∑
t∈FGAMIX-ND(t)|S(t0)]

EJ [
∑
t∈FGµ̂(t)|S(t0)]

≥ ρ (34)

Proof. Given the initial state S(t0) and frame size F , consider
all the traffic patterns of length F . Taking expectations of the
result of Lemma 3, with respect to random traffic patterns J
of length F , we get

ER,J [ER[G′µ̂(t)|S(t)]|S(t0), F ] ≤ ER,J [wmax(t)|S(t0), F ]+E0

ER,J [ER[GALG(t)|S(t)]|S(t0), F ] ≥ ER,J [wmax(t)|S(t0), F ]ρ

where ALG = AMIX-ND. Now notice that

ER,J [ER[G′µ̂(t)|S(t)]|S(t0), F ] =

ER,J [ER[G′µ̂(t)|S(t),S(t0)]|S(t0), F ] = ER,J [G′µ̂(t)|S(t0), F ]

where the first equality is due to the fact that, given S(t) and
F , the gain of µ̂ at time t depends on current S(t) and future
traffic pattern in the frame, but not on the past. The second
equality is by the tower property of conditional expectation.
Therefore, we get

ER,J [G′µ̂(t)|S(t0), F ] ≤ ER,J [wmax(t)|S(t0), F ] + E0 (35)

Using similar arguments for the expected gain of AMIX-ND,

ER,J [GALG(t)|S(t0), F ] ≥ ER,J [wmax(t)|S(t0), F ]ρ. (36)

Summing the gains over time slots in the frame, we have

EJ
[ F∑
t=t0

Gµ̂(t)|S(t0), F
]
≤ ER,J

[ F∑
t=t0

G′µ̂(t)|S(t0), F
]

≤ ER,J
[ t0+F∑
t=t0

wmax(t)|S(t0), F
]

+ E0F

and taking the expectation with respect to frame size F ,

EJ
[∑
t∈F
Gµ̂(t)|S(t0)

]
≤ ER,J [

∑
t∈F

wmax(t)|S(t0)] + Ē (37)



where Ē = amaxE[F ]dmax + 2E[F 2]. Similarly,

ER,J
[∑
t∈F
GAMIX-ND(t)|S(t0)

]
≥ ρER,J

[∑
t∈F

wmax(t)|S(t0)
]

(38)

Now consider link l1 that has the maximum deficit at time t0.
At any time t ∈ F ,

wl1(t0) + amaxF ≥ wl1(t) ≥ wl1(t0)− F.

Recall that wmax(t) denotes the maximum deficit among the
nonempty links, and al1(t) > 0 implies that the link l1’s buffer
is nonempty at time t. Therefore

wmax(t) ≥ wl1(t)1(al1(t) > 0) ≥ wl1(t)
al1(t)

amax
. (39)

Hence,

ER,J [
∑
t∈F

wmax(t)|S(t0)] ≥ ER,J
[∑
t∈F

wl1(t)
al1(t)

amax

∣∣S(t0)
]

≥ 1

amax
ER,J

[
(wl1(t0)− F )

∑
t∈F

al1(t)
∣∣S(t0)

]
≥ ‖w(t0)‖

K
E[F ]

al1
amax

− E[F 2] (40)

and therefore

lim
‖w(t0)‖→∞

ER,J
[∑
t∈F

wmax(t)|S(t0)
]

=∞.

Using this and (37) and (38), the result follows. From which
it follows that

ER,J [
∑
t∈FGALG(t)|S(t0)]

EJ [
∑
t∈FGµ̂(t)|S(t0)]

≥ ρ− ε

as ‖w(t0)‖ → ∞.

Theorem 3. For any policy µ, and AMIX-ND, given any
ε > 0, there is W ′ such that when ‖w(t0)‖ ≥W ′:

ES(t0)

[∑
t∈F
GAMIX-ND(t)

]
≥ (ρ− ε)ES(t0)

[∑
t∈F
Gµ(t)

]
Proof. Using Lemma 2 for the optimal µ over a frame F , and
the fact that µ is at least as effective as µ̂

Et0 [
∑
t∈F
Gµ(t)] ≥ Et0 [

∑
t∈F
Gµ̂(t)] ≥ Et0 [

∑
t∈F
Gµ(t)]− amaxE[F 2]

Dividing by Et0 [
∑
t∈FGµ(t)] and taking limits as ‖w(t0)‖ →

∞, the squeeze limits theorem yields:

Et0 [
∑
t∈FGµ̂(t)]

Et0 [
∑
t∈FGµ(t)]

→ 1 (41)

since,as we showed in the proof of Lemma 4,
Et0 [

∑
t∈FGµ(t)] → ∞, as ‖w(t0)‖ → ∞. Using (41)

and Lemma 4, the result follows.

C. Gain Analysis of AMIX-MS in General Networks

First we show that binary search in Algorithm 3 suffices for
computing n̄ defined in (13).

Proposition 2. The binary search in Algorithm 3 computes n̄
as defined in (13).

Proof. Assume that for some n, pnn(t) ≥ 0. In this case we
know that n̄ ≥ n since n satisfies (13). Now assume that
pnn(t) < 0. Then we claim that we can conclude n̄ < n, or
equivalently pn

′

n′(t) < 0 for any n′ > n. It suffices to prove that
pnn(t) < 0 implies pn+1

n+1(t) < 0, from which inductively the
claim follows. To arrive at a contradiction, assume pnn(t) < 0,
pn+1
n+1(t) ≥ 0, or equivalently (a): Cn(t) > WMn(t) and (b):
Cn+1(t) ≤WMn+1(t). Then

1
WMn+1

(t) −
1

nWMn+1
(t)

(b′)

≤ 1
Cn+1(t) −

1
nWMn+1

(t) =∑
i∈[n+1] WMi

(t)−1

n − 1
nWMn+1

(t) =
∑

i∈[n] WMi
(t)−1

n =

n−1
n

∑
i∈[n] WMi

(t)−1

n−1

(a′)
< n−1

n
1

WMn (t) ,

where in (a′) we used (a) and in (b′) we used (b). This
shows 1

WMn+1
(t) <

1
WMn (t) or WMn+1

(t) > WMn
(t), which

is a contradiction with the ordering of Mi. Hence pnn(t) < 0
implies pn+1

n+1(t) < 0.

We next state Lemmas 5 and 6 regarding the properties
of the probabilities used by AMIX-MS, which are used
in the gain analysis. Their proofs follow directly from the
probabilities used by AMIX-MS.

Lemma 5. Cn(t) (defined in (11)) is strictly decreasing as a
function of n, for n̄ ≤ n ≤ |M|.

Proof. Take any n, n̄ < n ≤ |M|. By the definition of n̄ it
must be the case that pnn(t) < 0, which implies WMn(t) <
Cn(t). From this, and by using (11),

WMn
(t)−1(n− 1) >

∑
i∈[n]WMi

(t)−1. (42)

We then have∑
i∈[n]

WMi
(t)−1 =

∑
i∈[n−1]

WMi
(t)−1 +WMn

(t)−1

=
∑

i∈[n−1]

WMi
(t)−1 +

n− 1

n− 2
WMn

(t)−1 − WMn(t)−1

n− 2

(a)
>

∑
i∈[n−1]

WMi(t)
−1 +

1

n− 2

∑
i∈[n]

WMi(t)
−1 − WMn(t)−1

n− 2

=
∑

i∈[n−1]

WMi(t)
−1 +

1

n− 2

∑
i∈[n−1]

WMi(t)
−1

=
n− 1

n− 2

∑
i∈[n−1]

WMi(t)
−1,

where in (a) we used (42). Dividing both sides by n− 1, we
get Cn(t)−1 > Cn−1(t)−1.



Lemma 6. If i 6∈ [n̄] and j ∈ [n̄], for the choice of
probabilities pn̄k (t) in (12) selected by AMIX-MS, we have

WMi(t) +
∑
k∈[n̄] p

n̄
k (t)WMk

(t) <

WMj (t) +
∑
k∈[n̄]\{j} p

n̄
k (t)WMk

(t)

Proof. Equivalently after simplifying the inequality, we need
to prove:

WMi(t) < WMj (t)(1− pn̄j (t)) = Cn̄(t).

Since i 6∈ [n̄], we have WMi
(t) < Ci(t), and from the

monotonicity of Cn(t) for n ≥ n̄ (Lemma 5), since i > n̄, we
have Ci(t) < Cn̄(t). Therefore, WMi

(t) < Cn̄(t).

Lemma 7. For each time t ∈ F , the gain obtained by AMIX-
MS, and the amortized gain obtained by the Max-Gain policy
µ, starting from some state S(t), satisfy:

ER[G′µ(t)|S(t)] ≤
∑
i∈[n̄]

WMi
(t)− (n̄− 1)Cn̄(t) + Em (43)

ER[GAMIX-MS(t)|S(t)] =
∑
i∈[n̄]

WMi
(t)− n̄Cn̄(t) (44)

where Em = KFand ER is with respect to decisions of
AMIX-MS.

Proof. Using the probabilities computed by AMIX-MS, the
expected gain of AMIX-MS at time t is

E[GAMIX-MS(t)] =
∑
i∈[n̄]

pn̄i (t)WMi
(t) =

∑
i∈[n̄]

WMi
(t)−n̄Cn̄(t)

Next for the amortized gain of the Max-Gain Policy µ, we
will apply the same technique as in the collocated networks
case, where we modify the buffers and give µ additional
reward. Suppose µ transmits Mi, and AMIX-MS transmits
some Mj . We make the buffers the same by allowing µ to
additionally transmit all the packets that are transmitted by
AMIX-MS but not by µ (i.e., in links Mj \Mi). Since this
will result in a decrease of the deficit by one for each link in
Mj \Mi for µ in the remaining slots, we give µ an additional
reward Em = KF which is an upper bound on the number of
packets transmitted by µ from links Mj \Mi in the remaining
slots. To compute the expected gain, we differentiate between
two cases:

Case 1. i ∈ [n̄]. In this case, we can write

E[G′µ̂
Mi(t)]=WMi

(t) +
∑

j∈[n̄]\{i}

pn̄j (t)
(
WMj\Mi

(t) + Em
)

≤WMi
(t) +

∑
j∈[n̄]\{i}

pn̄j (t)
(
WMj

(t) + Em
)

(45)

= WMi(t)(1− pn̄i (t)) +
∑
j∈[n̄]

pn̄j (t)WMj (t) +
∑

j∈[n̄]\{i}

pn̄j (t)Em

= Cn̄(t) +
∑
i∈[n̄]

WMi
(t)− n̄Cn̄(t) +

∑
j∈[n̄]\{i}

pn̄j (t)Em

(46)

≤ Cn̄(t) +
∑
i∈[n̄]

WMi
(t)− n̄Cn̄(t) + Em. (47)

Case 2. i 6∈ [n̄]. In this case, we have

E[G′µ̂
Mi(t)] ≤ WMi(t) +

∑
k∈[n̄] p

n̄
k (t)(WMk

(t) + Em)
a
< WMj

(t) +
∑
k∈[n̄]\{j} p

n̄
k (t)WMk

(t) + Em
= Cn̄(t) +

∑
i∈[n̄]WMi

(t)− n̄Cn̄(t) + Em,

where in (a) we applied Lemma 6 for i, j. Note that in both
cases, the upper bound is the same and does not depend on
the particular choice of Mi.

Lemma 8. For Cn̄(t) in (11), We have∑
i∈[n̄] WMi

(t)−n̄Cn̄(t)∑
i∈[n̄] WMi

(t)−(n̄−1)Cn̄(t) ≥
|M|

2|M|−1 .

Proof. Suffices to show that∑
i∈[n̄]WMi(t)− n̄Cn̄(t)∑

i∈[n̄]WMi
(t)− (n̄− 1)Cn̄(t)

≥ n̄

2n̄− 1
(48)

Since by definition |M| ≥ n̄. For the non-trivial case, we
have n̄−1 > 0, and therefore inequality (48) can equivalently
be written as (n̄ − 1)

∑
i∈[n̄]WMi(t) ≥ n̄2(t)Cn̄(t). This

inequality holds since it follows by applying the inequality
between arithmetic and harmonic means:

1

n̄

∑
i∈[n̄]

WMi(t) ≥
n̄∑

i∈[n̄]WMi(t)
−1
,

and the fact that n̄− 1 ≥ 1.

Theorem 4. Under AMIX-MS, given any ε > 0 there is W’
such that for all ‖w0‖ =

∑
l∈KwL(t0) ≥W ′,

ER,Jt0

[∑
t∈F
GAMIX-MS(t)

]
≥ (ρ− ε)EJt0

[∑
t∈F
Gµ(t)

]
,

where µ is any non-causal policy, and ρ = |M|
2|M|−1 .

Proof. By using Lemma 7, summing and taking expectation
similar to the proof of Lemma 4, it follows that

E
[∑

t∈FGAMIX-MS(t)|S(t0)
]

= E
[∑

t∈Fx(t)|S(t0)
]

E
[∑

t∈FGµ̂(t)|S(t0)
]
≤ Ēm + E

[∑
t∈Fy(t)|S(t0)

]
where Ēm = KE[F 2], and x(t) = y(t)− Cn̄(t), where

y(t) :=
∑
i∈[n̄]WMi

(t)− (n̄(t)− 1)Cn̄(t).

Now notice that

y(t) = Cn̄(t) +
∑
i∈[n̄]

WMi
(t)− n̄Cn̄(t)

= WM1
(t)(1− pn̄1 (t)) +

∑
i∈[n̄]

pn̄i (t)WMi
(t)

= WM1
(t) +

∑
i∈[n̄]\{1}

pn̄i (t)WMi
(t)

≥ WM1(t) ≥ wmax(t) (49)
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Fig. 3: Traffic patterns used in simulations

Now notice

lim
‖w0‖→∞

E[
∑
t∈Fx(t)|S(t0)]

E[
∑
t∈Fy(t)|S(t0)] + Ēm

(a)
= lim
‖w0‖→∞

E[
∑
t∈Fx(t)|S(t0)]

E[
∑
t∈Fy(t)|S(t0)]

(b)

≥ |M|
2|M| − 1

,

where in (a) we used the fact that Ēm < ∞, and that the
remaining expression in the denominator goes to infinity using
the inequality derived in (49) alongside the argument in (40).
In (b) we used Lemma 8.

VI. SIMULATION RESULTS

If the packet arrival rate becomes very large, any policy
inevitably will be restricted to a small delivery ratio p. But
then due to high availability of packets in the buffers, the
policy can always schedule packets, thus leading to a small
deficit queue under such small p, even for simple and naive
policies. Hence, the problem is interesting and challenging
when the packet arrival rate is not too high so that the optimal
policy can fundamentally achieve a high p. Similarly, if the
packet deadlines become very large, the problem is reduced
to the regular non real-time scheduling and deadline-oblivious
algorithms like LDF should perform reasonably well. Hence,
we focus on the interesting scenario when packet arrival rates
or deadlines are not excessively large.

In our simulations, we consider two cases for the deficit
admission (see the model section): one is based on coin
tossing where each arrival on a link l is counted as deficit
with probability pl, and the other is deterministic, where each
arrival increases the deficit by exactly pl.

We compare the performance of our randomized algorithms,
AMIX-ND and AMIX-MS with LDF. Recall that LDF
chooses the longest-deficit link, then removes the interfering
links with this link, and repeat the procedure. We further
consider two versions of LDF: One is LDF that does a random
tie breaking when presented with a deficit tie (LDF-RD), and
the other version tries to schedule the non-dominated link and
its earliest-deadline packet (LDF-ED) in such tie situations. In
the plots, we compare the average deficit (over all links) as
we vary the value of the delivery ratio.

Collocated Networks. We first consider two interfering links
with deterministic deficit admission. The traffic is periodic and
consists of alternating Pattern A and Pattern B of Figure 1,
with the delivery ratios satisfying p2 = p1 + 0.001. Figure 4a
shows the result. As we can see, AMIX-ND is able to achieve
roughly p1 = 0.996, whereas both versions of LDF become
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(a) Deterministic deficit admission
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Fig. 4: Comparison between AMIX-ND and LDF policies in
a two-link network.
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(a) A collocated network with 3
users.
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(b) A collocated network with 5
users.

Fig. 5: Comparison between AMIX-ND and LDF policies in
collocated networks under coin-tossing deficit admission.

unstable for p1 = 0.5+ε. In Figure 4b, again for two users, we
used a traffic that consists of Pattern C followed by Pattern B,
repeatedly. This time we keep p1 = p2. AMIX-ND achieved
near p1 = 1.0, whereas the better version of LDF achieved
roughly 0.75, resulting in a gap of around 0.25.

Figure 5a and Figure 5b show the results for collocated
networks with various number of users, when traffic F and
traffic A from Figure 3 are used, respectively. In Traffic F,
when p1 = p2 = p3 = p, the optimal policy can support at
most p = 7/8 = 0.875. In this case AMIX-ND achieves at
least p = 0.87, whereas LDF-ED achieves roughly p = 0.73.
Traffic A is similar in nature, but with more users and AMIX-
ND is able to transmit all the packets; the result is shown in
Figure 5b.

General Networks. We first consider the interference graph
G1 in Figure 7 involving 5 links, and interference edges El =
{(l1, l2), (l2, l3), (l2, l4), (l4, l5)}. For links l2 and l5, we have
a periodic traffic with period t = 5, where in slot 1 there
are 2 packets arriving with deadline 2 and 3 and in slot 4
a packet arrives with deadline 1, and for links l1, l3, l5, we
have 1 packet arriving with deadline 1 at slot 1, and 1 packet
arriving with deadline 2 at slot 4. The result for this graph is
shown in Figure 6.

Next, we consider a complete bipartite graph G2 with two
components, V1 = {l′1, l′2, l′3, l′4} and V2 = {l′5, l′6, l′7, l′8}. The
traffic used for links l′1, l

′
2 is the same as that of link l1 in

Graph G1 above. For links l′3, l
′
4 we used i.i.d. Bernulli with 1

arrival having deadline 1 with probability 0.25. For links l′5, l
′
6
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(b) Deterministic deficit admission

Fig. 6: Comparison between AMIX-MS and LDF policies in
a lightly connected interference graph with 5 links.
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Fig. 7: Interference graph G1 used for simulations in Figure 6.

we used the traffic used for link l2 in Graph G1. For links l′7, l
′
8

we used i.i.d. traffic with 7 arrivals with probability 0.05, and
0 arrivals otherwise, and deadline 10. The results are depicted
in Figures 8a and 8b.

As we see, simulation results indicate that there are many
scenarios that result in significant gap between our algorithms
and LDF variants. This gap is especially pronounced when
deterministic deficit admission is used, which is preferable as
it provides a short-term guarantee on the deficit of a user.

VII. CONCLUSION

In this paper, we studied real-time traffic scheduling in
wireless networks under an interference-graph model. Our
results indicated the power of randomization over the prior de-
terministic greedy algorithms for scheduling real-time packets.
In particular, our proposed randomized algorithms significantly
outperform the well-known LDF policy in terms of efficiency
ratio. As a future work, we will investigate efficient and
distributed implementation of AMIX-MS for general graphs.
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“Online competitive algorithms for maximizing weighted throughput of
unit jobs,” Journal of Discrete Algorithms, vol. 4, no. 2, pp. 255–276,
2006.

[17] M. Bienkowski, M. Chrobak, and Ł. Jeż, “Randomized competitive
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[26] Ł. Jeż, F. Li, J. Sethuraman, and C. Stein, “Online scheduling of packets
with agreeable deadlines,” ACM Transactions on Algorithms (TALG),
vol. 9, no. 1, p. 5, 2012.

[27] S. P. Meyn and R. L. Tweedie, “Stability of markovian processes
i: Criteria for discrete-time chains,” Advances in Applied Probability,
vol. 24, no. 3, pp. 542–574, 1992.


	I Introduction
	I-A Contributions

	II Model and Definitions
	III Randomized Scheduling Algorithms
	III-A Collocated Networks
	III-B Multipartite Networks and General Networks

	IV Analysis Technique
	V Proofs of Main Results
	V-A Proof of Proposition ??
	V-B Gain Analysis of AMIX-ND in Collocated Networks
	V-C Gain Analysis of AMIX-MS in General Networks

	VI Simulation Results
	VII Conclusion
	References

