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Building a Sybil-Resilient Digital Community
Utilizing Trust-Graph Connectivity

Ouri Poupko , Gal Shahaf, Ehud Shapiro, and Nimrod Talmon

Abstract— Preventing fake or duplicate digital identities (aka
sybils) from joining a digital community may be crucial to its
survival, especially if it utilizes a consensus protocol among its
members or employs democratic governance, where sybils can
undermine consensus, tilt decisions, or even take over. Here,
we explore the use of a trust-graph of identities, with edges
representing trust among identity owners, to allow a community
to grow indefinitely without increasing its sybil penetration.
Since identities are admitted to the digital community based
on their trust by existing digital community members, corrupt
identities, which may trust sybils, also pose a threat to the digital
community. Sybils and their corrupt perpetrators are together
referred to as byzantines, and the overarching aim is to limit their
penetration into a digital community. We propose two alternative
tools to achieve this goal. One is graph conductance, which
works under the assumption that honest people are averse to
corrupt ones and tend to distrust them. The second is vertex
expansion, which relies on the assumption that there are not
too many corrupt identities in the community. Of particular
interest is keeping the fraction of byzantines below one third,
as it would allow the use of Byzantine Agreement (Lamport et al.,
1982) for consensus as well as for sybil-resilient social choice
(Shahaf et al., 2019). This paper considers incrementally growing
a trust graph and shows that, under its key assumptions and
additional requirements, including keeping the conductance or
vertex expansion of the community trust graph sufficiently high,
a community may grow safely, indefinitely.

Index Terms— Network theory (graphs).

I. INTRODUCTION

THE goal of this paper is to identify conditions under
which a digital community of predominantly genuine

(singular and unique) digital identities [4] may grow without
increasing the penetration of sybil (fake or duplicate) digital
identities. Our particular context of interest is digital democ-
racy [5], [6], where a sovereign digital community conducts its
affairs via egalitarian decision processes; another motivation
is the task of growing a permissioned distributed system.
In contrast to other works in this field, where the goal is
to discover sybils in existing social networks, we assume a

Manuscript received February 12, 2020; revised August 20, 2020,
December 14, 2020, and April 18, 2021; accepted May 17, 2021; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor C. W. Tan. Date
of publication June 3, 2021; date of current version October 15, 2021. The
work of Nimrod Talmon was supported by the Israel Science Foundation
under Grant 630/19. A preliminary version of this paper was presented at the
14th International Computer Science Symposium in Russia, July 1–5, 2019,
Novosibirsk, Russia [1]. (Corresponding author: Ouri Poupko.)

Ouri Poupko, Gal Shahaf, and Ehud Shapiro are with the Weizmann Institute
of Science, Rehovot 7610001, Israel (e-mail: ouri.poupko@weizmann.ac.il;
gal.shahaf@weizmann.ac.il; ehud.shapiro@weizmann.ac.il).

Nimrod Talmon is with the Department of Industrial Engineering and
Management, Ben-Gurion University, Beersheba 8410501, Israel (e-mail:
talmonn@bgu.ac.il).

Digital Object Identifier 10.1109/TNET.2021.3084303

dedicated network where the members are actively engaged
in authenticating each other towards a democratic digital
community aiming for one person one vote. For example,
an application for digital democracy may require people to
authenticate each other, while registering for using the appli-
cation, and specify d other people which they know and trust,
and also verified that their profile image in the application is
authentic. The application can than construct a graph out of
these specifications and that will be the trust graph used by
the algorithms in this paper to bound the number of sybils in
the community of registered users. Consider an initial digital
community with low sybil penetration that wishes to admit
new members without admitting too many sybils. As it is not
realistic to expect that no sybils will be admitted, the goal
is to keep the fraction of sybils below a certain threshold.
In a separate paper [3], we show that a digital democracy
can tolerate up to one-third sybil penetration and still function
democratically. Still, the fewer the sybils, the smaller the
supermajority needed to defend against them. Also, keeping
the fraction of sybils and corrupt identities that control them
below one third will enable the community to safely conduct
a shared distributed ledger, using Byzantine agreement [2].

We model a digital community via a trust graph with a
vertex for each identity and with edges representing trust
relations between the owners of the corresponding identi-
ties (formal definitions are given in Section II). The model
considers genuine and sybil identities (cf. [4]), and refers to
the genuine identities that do not trust sybils as honest and
those that do as corrupt. Furthermore, to describe an admis-
sion process that facilitates incremental community growth,
the model presents sequences of trust graphs that may result
from such a process. While we assume some underlying social
graph, our trust graph grows with different properties that
make it more sybil resilient than the initial graph. For example,
the underlying social graph may naturally have a power-low
degree distribution, while the generated trust graph may be
d-regular, by design.

The goal is to identify sufficient conditions on such graphs,
for example, the type of identities in the graph, their relative
fractions, and their trust relations, under which a community
may grow while keeping the fraction of sybils in it low. To
achieve this, we use two similar approaches, which differ in
the assumptions made on the power of the adversary: The first
approach assumes that honest identities tend to trust honest
identities rather than corrupt ones, therefore it is hard for the
corrupt ones (the adversary) to create trust edges with honest
identities. In this case graph conductance bounds the ratio of
sybils in the graph. The second approach assumes that there
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are not too many corrupt identities, therefore the adversary
power is limited by its own size. In this case vertex expansion
bounds the ratio of sybils in the graph.

A. Related Work

This section reviews existing work, particularly work that
helps clarifying the differences in our proposed model. A large
portion of the literature on sybil attacks (see, for example,
[7]–[9] and their citations) is focused on identifying the
sybil agents from the honest ones. Of particular interest
is the approach initiated by Yu et al. [10], which relies
on structural properties of the underlying social network.
Yu et al. show how to separate the honest and sybil regions
by leveraging the assumption that there are, relatively, few
number of edges between them. This framework was studied
further [11]–[16]. As pointed out by Alvisi et al. [17], however,
such attempts to differentiate between sybils and honests on
a global scale is efficient only in instances where the honest
region is sufficiently connected, which is rarely the case in
actual social networks. Consequently, Alvisi et al. suggest a
more modest goal of producing a whitelist of honest vertices
in the graph with respect to a given agent; that is, securely
identifying a local safe region, in contrast to the global
algorithms proposed before.

Boshmaf et al. [18] show an impressive improvement over
SybilRank [16], by studying the social features of a third tier
between honests and sybils, which they identify as victims
– real accounts that have befriended fakes. They use learning
algorithms to pick the effective features, then use these features
to assign different weights to different nodes in the graph,
then apply sybil detection algorithms, like SybilRank, on the
resulting weighted graph. We adopt the same separation into
three categories, though we regard the middle tier as the
offenders (corrupt), regardless if they are hostile, victims,
or their accounts were hijacked. We do not try to improve over
Boshmaf et al., but rather propose a different approach that
relies less on existing properties of social networks and ask
the participants instead to cooperate towards the goal of sybil
resilience. This will probably be a downside for the proposed
algorithm, when looking for sybils in existing social networks,
but we believe it to be a better starting position when building
a trust network towards democratic governance.

Liu et al. [19] study the effect of temporal dynamics. In par-
ticular, they show that by modifying the trust graph over time,
by replacing existing sybils with new sybils, replacing attack
edges between sybils and honests, and even exploiting changes
in the honest region, they can successfully bypass several
existing sybil defense algorithms, as they were designed to
analyze a fixed graph in a single instant of time. Our work fits
very well exactly in this spot, as we look for the conditions
that will allow a community to safely grow over time. As we
rely only on the graph structure in every time step, we believe
our algorithm to be robust against temporal dynamics attacks.

Friebe et al. [20] present Detasyr, which is a ticket-based
algorithm to fend off sybils. The algorithm starts with a
group of ticket sources (nodes in the graph) that generates
cryptographic tickets and flood them in the graph. A node
that wishes to get authorized and join the graph collects

such tickets from its already authorized friends, and if it
collects enough tickets it gets authorized. The set of ticket
sources for the next round are then selected randomly, again by
traversing the graph. This work has interesting similarities to
our work. It also assumes active participation of the individuals
in selecting the friends they trust. It grows the graph (the
authorized community) in rounds. Its sybil defence is based
on graph connectivity, which is assumed to be higher between
genuine nodes, and, like this paper, their goal is to bound the
number of sybils rather then detecting them. While Detasyr
assumes that a sybil node will have a bounded number of
authorized friends, this paper assumes a wider assumption that
applies to the community as a whole, rather than individuals.
We do not rely on leaders such as the ticket sources, and
based on our assumptions, we are able to specify an analytic
bound on the number of sybils, which is missing in the Detasyr
paper.

A problem of a similar flavor is that of corruption detection
in networks, posed by Alon et al. [21] and later refined by
Jin et al. [22]. This setting, inspired by auditing networks,
consists of a graph with each of its vertices being either
truthful or corrupt, where the overall goal is to detect the
corrupt region. In contrast to the sybil detection problem,
the corrupt agents are assumed to be immersed throughout the
network, and the setting assumes a very restrictive assumption,
namely that each agent may accurately determine the true label
of its neighbors and report it to a central authority. The authors
show how good connectivity properties of the graph allows an
approximate recovery of the truthful and corrupt regions.

Note that social networks have some special structure,
for example, having low diameters (a.k.a., the small world
phenomena [23]) or fragmented to highly-connected clusters
with low connectivity between different clusters. Moreover,
as observed by some researchers [12], [17], [24], the attacker’s
inability to maintain sufficiently many attack edges typically
results in certain “bottlenecks”, which can be utilized to
pin-point the sybil regions.

In our line of work we consider a duplicate identity also
as being a sybil. We believe that, within an existing social
network, a genuine being with many acquaintances can and
should be able to conduct multiple identities within the social
network, all being a genuine representation of herself, with her
genuine acquaintances divided between the different identities.
For example, one can have one facebook user with which she
shares information with her family, and another facebook user,
with which she shares information with her friends. Prior work
does not consider duplicate identities as being sybils, as long
as the different duplicates are all valid. When considering
digital identities for digital democratic governance, duplicates
are not allowed, else we compromise the concept of one person
one vote. This paper does not handle duplicate identities
directly, but it assumes that the trust edge information also
identifies these cases. An honest identity will not trust any but
the first identity of another person. This can be achieved either
with a very high level of trust, as shown in a related work [4],
or by using some biometric identification, and requiring the
participants to verify each others proof of uniqueness. For this
reason we lean in this work more on the participation of the
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members of the community, rather than relying on more social
features of the graph, like Boshmaf et al. [18] and others.

B. Informal Model

While the problem addressed is related to sybil detection,
and indeed we incorporate some of the insights of the works
discussed above, here the main goal is different: Safe commu-
nity growth. This work aims to find conditions under which a
community may grow without increasing the fraction of hostile
members within it; but without necessarily identifying explic-
itly who is hostile and who is not. An additional difference
from existing literature is the notions of identity and trust.
Specifically, most existing works consider identities or agents
of only two types, “good” and “bad”, with various names for
the two categories. In this work the notion of identities [4],
is more refined and, we believe, may be closer to reality.

In particular, this work considers genuine and sybil iden-
tities, with the intention that in a real-world scenario these
would be characterized by the nature of their representation:
genuine identities are singular and unique, else are sybil
(duplicate or fake, namely not corresponding to a single real
person). It further distinguishes between two types of genuine
identities, based on their behavior: honest, which do not form
trust relations with sybils, and corrupt, which do. This behav-
ioral distinction is captured formally in the proposed model.
We naturally assume that the owners of corrupt identities are
the creators and operators of the sybils and that, in the worst
case, all sybils and their corrupt perpetrators may cooperate,
hence the model labels them together as byzantines, and aims
to limit their fraction within the community.

We thus begin with a unified formal model of such identities
and their trust graph, consisting of vertices that represent iden-
tities and edges that represent trust relations among the owners
of such identities. The exact definition of these trust relations
are outside the scope of this paper, but in a related work [4]
we consider a spectrum of such trust relations, expressed
as mutual sureties among identity owners, and inspect their
applicability also to the work presented here. Considering the
task of sybil-resilient community growth, the model defines
the community history that aims to capture the incremental
changes a community trust graph undergoes in discrete steps.
In order to properly characterize identities, the model first
employs the basic distinction between genuine and sybil iden-
tities. Then, using the community history, it makes a further
delicate distinction within genuine identities between honest
identities, which never trust sybils, and corrupt identities,
which may trust sybils and, furthermore, may cooperate with
other corrupt or sybil community members to introduce sybils
into the community.

Some assumptions on the power of the sybils and their per-
petrators are needed; otherwise there is no hope in achieving
our goal. We present two possible alternative assumptions: The
first intuitive assumption is that honest identities are averse to
corrupt identities, and hence are not likely to trust them. Trust
edges that connect honest and corrupt identities are referred to
as attack edges. So, loosely speaking, the assumption is that
there are not too many attack edges. We view this assump-
tion as more realistic than the assumption made in related

Fig. 1. Illustration of the general setting: The white vertices (honest identities)
and grey vertices (corrupt identities) form the set of genuine identities, while
grey vertices (corrupt identities) and black vertices (sybil identities) form the
set of byzantines. Bold edges represent attack edges. The circled area contains
the current community that wishes to grow. Notice that the nine identities in
the community contain one sybil and two corrupt identities, thus in particular
the community’s byzantine penetration is β = 1/3 and the sybil penetration
is σ = 1/9. The fraction of internal attack edges to the volume of the honest
part of the community graph, defined below, is γe = 1/8.

works [21], [22], that truthful agents can identify precisely
whether a neighbor is corrupt or not. Figure 1 illustrates the
general setting. The second assumption is that there are not
too many corrupt identities in the community. This assumption
could be realized, for example, by an incentive mechanism that
penalizes for trusting sybils and rewards honest identities.

C. High-Level Approach

After defining the three types of population in the commu-
nity, it is clear that the corrupt identities are the adversary
to the goal of growing a community without sybils. Without
corrupt identities, if the first identity in the community is not
a sybil (therefore it is honest), and given that, by definition,
honest identities have no trust edges with sybils, then sybils
cannot join the community. To gain intuition regarding the
two assumptions on the power of the adversaries, consider
an extreme case, as shown in Figure 2, where the power of
the adversary is minimal. The graph on top represents the
first assumption, that honest identities are averse to corrupt
identities. The graph below represents the second assumption,
that there are not too many corrupt identities. In this extreme
example the graph is not constrained in any way, which shows
that even a weak adversary can add as many sybils as it
wants, without additional measures. Our approach will be to
measure the connectivity of the graph and derive a bound on
the number of byzantines based on this measurement. The
example in Figure 2 shows that some simple measurements of
connectivity are fruitless for the goal of sybil detection. One
such measurement is how dense the graph is, or what is the
lower bound on the number of edges within the community.
Both graphs show a community where the lower bound on the
number of edges is of order n/2, and yet the corrupt identities
are able to introduce as many sybils as they wish. Another
simple measurement is the diameter of the graph, which is
also very low in these two communities - 3 at the top and 2 at
the bottom.

Yet there is a clear bottleneck in these extreme examples
between honest and byzantines. The measures that capture
precisely this type of bottleneck are conductance, when the
bottleneck is in the edges, and vertex expansion when the
bottleneck is in the vertices. The ability to protect the graph
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Fig. 2. Illustration of an extreme example: Both community graphs have
one cluster of honest identities and one cluster of byzantine identities. In each
cluster everyone trusts everyone (the sub graph of the cluster is a clique), yet
there is almost no trust between the clusters. The graph at the top demonstrates
the case where honest identities don’t trust corrupt identities. The graph at the
bottom demonstrates the case where there are almost no corrupt identities.

from byzantine penetration is based on the key assumption
that, while there could be arbitrarily many byzantines wanting
to join the growing community, they will have limited con-
nectivity to the current community. Indeed, this observation
was applied in the context of fending off sybils [10], [11],
[17], [24].

In general, while the connectivity of the whole network is
typically fairly low, a social network usually contains many
clusters that reflect real life communities. The connectivity
of the subgraphs restricted to each of these clusters may be
high. In that sense, following Alvisi et al. [17], we adopt a
local perspective and focus on the connectivity of the com-
munity, regardless of the connectivity of the entire network.
In contrast to Alvisi et al. [17], however, we are interested
in growing the community and not in whitelisting. Unlike the
situation treated by Alvisi et al. [17], which can be viewed as
whitelisting, initiated at a singleton community (that is, from
a single non-sybil vertex), here we consider arbitrarily-large
communities and aim to bound, but not detect or eliminate,
the sybils in them.

Specifically, our framework makes use of a “target conduc-
tance” parameter Φe, or a “target vertex expansion” parameter
Φv, and aims to grow, that is, admit new members, while
retaining a conductance of at least Φe, or Φv respectively,
at the larger community. Assuming that the initial community
harbors a limited attack power and a bounded fraction of
byzantines, this paper shows how to safely grow the com-
munity, indefinitely. The number of members that may join
in each increment is a parameter of the algorithm and is
related to the bound on byzantines the community maintains.
The lower the bound the more members the community can
add in each increment. The bound on byzantines, in turn,
depends on the target conductance or vertex expansion that
the community maintains. The higher the connectivity of the
community, the better the bound on byzantines.

Remark 1: Note that our methods are deterministic. That
is, they guarantee – deterministically – that, if the parameters
have certain values and if the assumptions hold, then the
conclusion – namely, that the growing community retains a
low fraction of sybil penetration – holds.

D. Paper Structure

The paper begins with graph theory terminology and for-
mal definition of graph conductance and vertex expansion in
Section II. For simplicity, the framework describes undirected
and unweighted graphs. Note, however, that it may easily
be modified and applied to directed and weighted graphs
as well. The model is formally described in Section III,
by defining types of identities, communities and community
history. Then, Section IV describes the first method, based
on the assumption of little trust and the use of conductance,
and showing sufficient conditions for safe community growth.
Section V, shows that the framework is compatible with sparse
trust graphs and provides some quantitative estimations of its
guarantees. Section VI and Section VII introduce and analyze
the second method, based on the assumption that there are not
too many corrupt identities. Section VIII presents a simulation
using synthetic data. The simulation shows even better results
than the analytic estimation. Section IX analyzes data from a
real social network, showing why an existing social network
is not a good trust graph for the method in this paper, yet it
also shows how such a social graph can be used efficiently
as the underlying graph from which the desired trust graph
can be generated. Section X concludes with intriguing open
questions for future research.

II. PRELIMINARIES

This section provides some needed definitions regarding
graphs and graph connectivity. Refer to any graph theory
textbook, like Diestel’s Graph Theory [25] for additional
background.

Let G = (V, E) be an undirected graph. The degree of a
vertex x ∈ V is:

deg(x) := |{y ∈ V | (x, y) ∈ E}|
G is d-regular if deg(x) = d holds for each x ∈ V . The

volume of a given subset A ⊆ V is the sum of degrees of its
vertices:

vol(A) :=
∑
x∈A

deg(x)

Additionally, denote the subgraph induced on the set of
vertices A as G|A, the degree of vertex x ∈ A in G|A by
degA(x), and the volume of a set B ⊆ A in G|A by:

volA(B) :=
∑
x∈B

degA(x)

Given two subsets A, B ⊆ V , the size of the cut between
A and B is denoted by:

e(A, B) = |{(x, y) ∈ E | x ∈ A, y ∈ B}|
Definition 1 (Conductance): Let G = (V, E) be a graph.

The conductance of G is defined by:

Φe(G) = min
∅�=A⊂V

e(A, Ac)
min{vol(A), vol(Ac)}

where Ac := V \A is the complement of A.
Remark 2: Generally speaking, graph conductance aims

to measure the connectivity of the graph by quantifying the
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minimal cut normalized by the volume of its smaller subset.
Conductance should be thought of as the weighted and irreg-
ular analogue of edge expansion [26], where both notions are
essentially equivalent for regular graphs. To get a quantitative
grip of this measure, notice that for all graphs, Φe ∈ [0, 1

2 ].
Intuitively, the conductance of a highly connected graph
approaches 1

2 . For example, cliques and complete bipartite
graphs satisfy Φe = 1

2 , while in a poorly connected graph this
measure may be arbitrarily small; for example, a disconnected
graph satisfies Φe = 0.

The next sections provide theoretical guarantees on sybil
safety, given that one can compute conductance. However,
determining the exact conductance of a given graph is known
to be coNP-hard [27]. Luckily, the Cheeger inequality [28]
provides a direct relation between conductance of a graph and
the second eigenvalue of its random walk matrix, which can
be calculated in polynomial time, and approximated in nearly
linear time. Refer to [26], [29] and [30] for comprehensive
surveys regarding efficient algorithms for measuring conduc-
tance.

Definition 2 (Inner Boundary Vertex Expansion): Let G =
(V, E) be a graph. Given two subsets A, B ⊆ V , define the
inner boundary of A w.r.t. B by

∂v(A, B) := #{x ∈ A|∃y ∈ B s.t. (x, y) ∈ E}
The inner boundary vertex expansion is then defined by:

Φv(G) := min
0<|A|≤ |V |

2

∂v(A, Ac)
|A|

Like conductance, vertex expansion also aims to measure
the connectivity of the graph, this time by quantifying the
minimal vertex cut, rather than the minimal edge cut.

To get a quantitative grip of this measure, note that for
all graphs Φv ∈ [0, 1]. Intuitively, the vertex expansion of a
highly connected graph approaches 1. For example, a clique
satisfies Φv = 1, while in a poorly connected graph this
measure may be arbitrarily small and a disconnected graph
satisfies Φv = 0. Also note the relation between conductance
and vertex expansion, given by Φv/d ≤ Φe ≤ Φv for d-regular
graphs.

III. FORMAL MODEL

A. Community Trust Graphs

The relation between people and their identities is rich and
multifaceted. For the purpose of this paper, assume that some
identities are genuine and others are not, in which case they
are called sybils. We represent trust relations among identities
via a trust graph, in which vertices represent identities and
edges represent trust among identities.

Definition 3: A trust graph G = (V, E) is an undirected
graph with vertices that represent identities and edges that
represent trust among them.

The concept of a community trust graph follows, which
depicts the community that grows within such a trust graph.

Definition 4: A community trust graph G = (A, V, E) is
a trust graph with vertices V , edges E, and a community
A ⊆ V .

B. Community Histories and Transitions

The aim of this paper is to find conditions under which a
community may grow safely. A graph of identities represents
the community. Once establishing some conditions on a given
community, we want to verify that these conditions hold under
the operation of adding additional identities to the community
graph. As the newly added identities threaten these conditions
(for example, assume that the community has a bound on the
ratio of corrupt identities, and then the added identities may
be corrupt and the new community will cross this bound),
the model breaks the growth of the community into steps of
incremental growth.

Definition 5 (Community History): A community history
GV over a set of vertices1 V , is a sequence of community
trust graphs GV = G1, G2, . . ., where Gi = (Ai, V, E), such
that ∀i Ai ⊂ Ai+1.

C. Types of Identities

There are two types of identities: genuine and sybil. Next,
community histories distinguish between two types of genuine
identities – honest and corrupt: An identity is corrupt in a
community history if it shares an edge with a sybil, and honest
if it does not. Lumping together sybils and corrupt identities,
they form the group of byzantines.

Below and in the rest of the paper we use disjoint union
A = B � C as a shorthand for A = B ∪ C, B ∩ C = ∅.

Definition 6 (Types of Identities, Attack Edges, Sybil Pene-
tration): Let V be a set of vertices that consist of two disjoint
subsets V = T �S of genuine T and sybil S vertices, and let
GV be a community history over V . Then, a genuine vertex
t ∈ T is corrupt in GV if it trusts a sybil at anytime in
GV , namely, there is some (t, s) ∈ E, with t ∈ T , s ∈ S,
for some G = (A, V, E) ∈ GV . A genuine vertex that is
not corrupt is said to be honest. Thus, GV partitions the
genuine identities T = H � C into honest H and corrupt
C identities. An edge (h, c) ∈ E is an attack edge if h ∈ H
and c ∈ C. The sybil penetration σ(G) of a community trust
graph G = (A, V, E) ∈ GV is

σ(G) =
|A ∩ S|
|A|

In the worst case, sybils and their corrupt perpetrators would
cooperate; thus, to allow for incremental community growth,
it must bound their combined presence in the community,
as defined next:

Definition 7 (Byzantines and Their Penetration): Let GV

be a community history over V = T � S that partitions
T = H � C into honest H and corrupt C identities. Then,
a vertex v ∈ V is byzantine if it is a sybil or corrupt and the
byzantines B = S �C are the union of the sybil and corrupt
vertices. The byzantine penetration β(G) of a community
trust graph G = (A, V, E) ∈ GV is

β(G) =
|A ∩B|
|A|

1As the set of vertices V is fixed in a community history, it does not
explicitly model the birth and death of people; modeling this aspect is the
subject of future work.



2220 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 5, OCTOBER 2021

As A = (A∩H)�(A∩B), it would occasionally be conve-
nient to use the equivalence between byzantine penetration to
the community A and the fraction of byzantines w.r.t. genuine
identities in A. Formally,

|A ∩B|
|A| ≤ β iff

|A ∩B|
|A ∩H | ≤

β

1− β
(1)

IV. CONDUCTANCE-BASED APPROACH

The goal of this section is to find the conditions under
which a community can grow while bounding the penetration
of byzantines and sybils. The reader may read the following
remedy as high level instructions to achieve this goal:

1) Start with an initial community.
2) Choose the desired bound on byzantine penetration.
3) Measure the fraction of edges within the community, out

of all edges stemming out of the community.
4) Estimate a bound on the connectivity between honest

and sybil/byzantine identities.
5) Admit new candidates to the community only if the

connectivity within the target community is sufficiently
large.

The following provides sufficient conditions for
byzantine-resilient community growth, under the assumption
that honest people tend to trust honest people and distrust
corrupt people.

Theorem 1: Let GV be a community history. Set parameters
α ∈ [0, 1], β ≤ 1

2 − 1
|A1| , γe ∈ [0, 1

2 ], δ = 1− 2β. Assume:
1) All communities have a bounded degree, both above and

below:

α · d ≤ degAi(v) ≤ d for all v ∈ Ai i ∈ N

2) Byzantine penetration to the initial community is
bounded:

β(G1) ≤ β

3) The edges between honest and byzantine identities are
relatively scarce:

e(Ai ∩H, Ai ∩B)
volAi(Ai ∩H)

≤ γe

4) Community growth is bounded:

|Ai \Ai−1| ≤ δ|Ai−1|
5) The conductance within Ai is sufficiently high:

Φe(G|Ai) >
γe

α
·
(

1− β

β

)

Then, every community Gi ∈ GV has Byzantine penetration
β(Gi) ≤ β.

Roughly speaking, Theorem 1 suggests that whenever:
(1) Each graph Gi|Ai has a bounded degree, both above and
below; (2) Byzantine penetration to A1 is bounded; (3) Edges
between honest and byzantine identities are scarce; (4) Com-
munity growth in each step is bounded; (5) The conductance
within Gi|Ai is sufficiently high; Then, the community may
grow indefinitely with bounded byzantine penetration.

Theorem 1 follows by induction from the following
Lemma:

Lemma 1: Let G = (A, V, E) and G� = (A�, V, E) be two
community trust graphs, where A ⊂ A�. Set parameters α ∈
[0, 1] and β, γ, δ ∈ [0, 1

2 ]. Assume:

1) Each vertex in A� has a bounded degree, both above
and below:

α · d ≤ degA�(v) ≤ d ∀v ∈ A�

2) Byzantine penetration to the initial community is
bounded:

β(G) +
δ

2
≤ 1

2
3) The edges between honest and byzantine identities are

relatively scarce:

e(A� ∩H, A� ∩B)
volA�(A� ∩H)

≤ γe

4) Community growth is bounded:

|A� \A| ≤ δ|A|
5) The conductance within A� is sufficiently high:

Φe(G|A�) >
γe

α
·
(

1− β

β

)

Then, β(G�) ≤ β.
Proof: First note that even if all the added identities from

A to A� are byzantines, it still follows that

|A� ∩B| ≤ |A ∩B|+ |A� \A| = β(G) · |A|+ |A�| − |A|
Applying assumption (2):

|A� ∩B| ≤ (1− δ)|A|
2

+ |A�| − |A|

=
|A�|
2
− δ|A|

2
+
|A�|
2
− |A|

2
Applying assumption (4):

|A� ∩B| ≤ |A
�|

2
− δ|A|

2
+

δ|A|
2

=
|A�|
2

As V = B �H , it follows that:

|A� ∩B| ≤ |A� ∩H | (2)

Now utilizing assumption (1):

volA�(A� ∩B) :=
∑

a∈A�∩B

|{x ∈ A� | (a, x) ∈ E}|

≥
∑

a∈A�∩B

αd = αd|A� ∩B|. (3)

Similarly, the following holds:

volA�(A� ∩H) ≥ αd|A� ∩H | (4)

Inequalities 2 and 4 imply that:

volA�(A� ∩H) ≥ αd|A� ∩B|
and together with Inequality 3:

min{vol(A� ∩H), vol(A� ∩B)} ≥ αd|A� ∩B| (5)
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Now, Inequality 5 and assumption (5) imply that:

e(A� ∩H, A� ∩B)
αd|A� ∩B| ≥ e(A� ∩H, A� ∩B)

min{vol(A� ∩H), vol(A� ∩B)}
>

γe

α
·
(

1− β

β

)

or equivalently:

e(A� ∩H, A� ∩B)
dγe|A� ∩B| ≥ 1− β

β
(6)

Assumptions (1) and (3) imply:

e(A� ∩H, A� ∩B)
d|A� ∩H | ≤ e(A� ∩H, A� ∩B)

volA�(A� ∩H)
≤ γe

or equivalently:

|A� ∩H | ≥ e(A� ∩H, A� ∩B)
dγe

(7)

Combining Inequalities 6 and 7:

|A�|
|A� ∩B| =

|A� ∩H |+ |A� ∩B|
|A� ∩B|

≥ e(A� ∩H, A� ∩B)
dγe|A� ∩B| + 1

>

(
1− β

β

)
+ 1 =

1
β

where the first equality holds as A = (A ∩ H) � (A ∩ B),
the second inequality stems from Equation 7 and the third
inequality stems from Equation 6. Flipping the nominator and
the denominator then gives β(A�) := |A�∩B|

|A�| < β. �
Remark 3: A potential application of lemma 1 is a

byzantine-resilient union of two communities. Let A, A� ⊆ V
denote two communities that have some overlap (non-empty
intersection) and wish to unite into A2 := A ∪ A�. Then,
if lemma 1 holds for (A1, A2) in case A1 := A and also
in case A1 := A�, this would provide both A and A� the
necessary guarantee that the union would not result in an
increase of the sybil penetration rate for either community.

V. ANALYSIS OF THE CONDUCTANCE-BASED APPROACH

Our results show the conditions under which a community
can grow and maintain sybil safety. It is still not clear however
if such conditions are practical. This section takes a closer
look at graphs, graph conductance and the interplay between
the parameters. We show that under the range of possible
parameters in the model and the required conductance derived
from these parameters there are indeed many such graphs that
meet the requirements. Theoretically, a fully connected graph
easily holds these requirements, but trust graphs are rather
sparse graphs, so specifically the question is whether sparse
graphs can hold these requirements.

A. Sparse Graphs

Recall that the safety of the community growth, more specif-
ically the required level of conductance for the community to
grow safely, relies upon the parameters α, β, and γe. While a
given community may evolve wrt. any choice of parameters,
some choices will inevitably yield degenerate outcomes; one

case is as the model requires Φe(G|A�) > γe

α ·
(

1−β
β

)
, while

the conductance of any graph is upper bounded by 1
2 . Specifi-

cally, whenever γe

(
1−β

β

)
> 1

2 , the community cannot possi-
bly grow, regardless of the choice of α. While complete graphs
and complete bipartite graphs are the classic examples of
graphs which satisfy Φe(G|A�) = 1

2 , the fact that their degree
is of order d = Θ(n) makes them unrealistic in our setting,
where agents may potentially trust only a uniformly-bounded
number of identities. In this context, the main question seems
to be the following: Could a given community safely grow
while retaining a given maximal degree d? Surprisingly, not
only that the answer is affirmative, it also holds for a plethora
of trust graphs. We utilize Friedman’s classical result:

Theorem 2 (Friedman [31], Rephrased): Let G be a ran-
dom d-regular graph on n vertices. Then, for any 0 < �,
λ(G) ≤ 2

√
d−1
d + � holds with probability 1− on(1).

Thus, almost all d-regular graphs on n vertices satisfy λ2 ≤
2√
d

. Applying this term in Cheeger’s inequality yields that such
graphs satisfy

1
2
− 1√

d
≤ Φe (8)

meaning that the choice of d affects the level of conductance
one hopes to achieve.

B. Parameter Interplay

The following subsection considers numerical examples to
better appreciate the analysis above. First, consider the realistic
assumption where each identity is assumed to trust up to
d = 100 identities (notice that this can be enforced by the
system). Equation 8 now suggests that a random graph of
degree d on n vertices (where d may be constant wrt. n)
satisfies Φe > 2

5 . For simplicity, we take this quantity as a

benchmark. It follows that whenever γe

α ·
(

1−β
β

)
< 2

5 , there
exist a plethora of potential community histories for which a
given community may potentially grow to be arbitrarily large.

Some further examples:
1) If γe = 0, then any community history that begins

with a connected byzantine-free community would retain
0-byzantine penetration;

2) The choice β = 0 is not attainable, corresponding to
the intuition that one can never guarantee a completely
byzantine-free community growth.

Figure 3 illustrates the parameter interplay further. Notice
that the key assumption, stating that honest people tend to trust
honest people more than they tend to trust corrupt people,
implies that γe < β (as γe > β implies that honest people
trust corrupt people more than their relative share in the
community).2

C. Parameter Estimation

While α and Φe can be decided by the community (either by
the foremothers of the community or by a global, decentralized

2In a separate line of research (in preparation) we consider processes and
mechanisms that help lowering γe even further.
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Fig. 3. Parameter Interplay. The top plot shows γe as a function of β, for
α = 1, where each line represents a different conductance Φe value. It shows,
for example, that if the community fixes α = 1 and sets Φe = 0.4, then to
achieve β = 0.2 it can tolerate γe = 0.1. The bottom plot shows the effect
of α, for Φe = 0.4. In both plots, the red rectangles show respective β and
γe values ensuring σ = 0.05.

democratic decision making process), β(G) and γe rely on the
dynamics of the community history. To incrementally grow the
community at a given time, one may settle for estimating the
current state of affairs, as follows. Specifically, assuming that
a thorough examination of a given identity could determine
whether it is genuine or sybil, one may apply random checks
to empirically estimate β(G) and γe. This could be carried
out in the following manner:3

1) Examination of an identity x ∈ V determines whether
it is genuine or sybil

2) Examination of the neighbors of a genuine identity x ∈
V (the ball of radius 1 around it) determines whether it
is explicitly (but not latently) corrupt

3) Examination of the ball of radius 2 around an honest
identity x determines whether its neighbors are explicitly
byzantine

VI. VERTEX EXPANSION APPROACH

The next section presents our second assumption, which
focuses on the corrupt identities themselves, rather then the

3A related sampling-based approach to estimate the number of sybils is
briefly discussed by Shahaf et al. [3, Remark 2].

trust between honest identities and corrupt identities. Thus,
we simply assume that there is a bound on how many identities
in a community are corrupt. In a trust graph this results in a
limited number of vertices on the boundary between honest
identities and sybil identities. The following provides sufficient
conditions for byzantine-resilient community growth, under
the assumption that the population of corrupt identities in the
community is bounded. This time we use vertex expansion to
derive a bound on the number of byzantine identities.

Theorem 3: Let GV = G1, G2, . . . be a community history
over V . Let β ≤ 1

2 − 1
2|A1| , γv ∈ [0, 1

2 ], and δ = 1 − 2β.
Assume:

1) Byzantine penetration to the initial community is
bounded:

β(G1) ≤ β

2) The population of corrupt identities is bounded:
|Ai ∩C|
|Ai| ≤ γv

3) Community growth is bounded:

|Ai \Ai−1| ≤ δ|Ai−1|
4) The vertex expansion within Ai is sufficiently high:

Φv(G|Ai) >
γv

β

Then, every community Gi ∈ GV has Byzantine penetration
β(Gi) ≤ β.

Notice that there is one less parameter α in the vertex based
version of the model. While it was required in the edge based
version, to establish a lower bound on the volume of H , and
although it has a strong intuition for our goal (the more honest
identities trust each other, the harder it is for the untrusted to
penetrate their community), the theorem for the vertex based
version will hold without it. This makes this version slightly
simpler, as there is one less parameter that the community
needs to decide upon.

As before, theorem 3 follows by induction from the follow-
ing Lemma:

Lemma 2: Let G = (A, V, E) and G� = (A�, V, E) be
two community trust graphs, where A ⊂ A�. Set parameters
β, γ, δ ∈ [0, 1

2 ]. Assume:

1) Byzantine penetration to the initial community is
bounded:

β(G) +
δ

2
≤ 1

2
2) The population of corrupt identities is bounded in A�:

|A� ∩ C|
|A�| ≤ γv

3) Community growth is bounded:

|A� \A| ≤ δ|A|
4) The vertex expansion within A� is sufficiently high:

Φv(G|A�) >
γv

β

Then, β(G�) ≤ β.
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Fig. 4. Parameter Interplay. The plot shows γv as a function of β, where each
line represents a different vertex expansion Φv value. It shows, for example,
that if the community sets Φv = 0.6, then to achieve β = 1

3
it can tolerate

γv = 0.2. There are only three parameters in the vertex expansion approach,
as it does not require α-solidarity, hence there is just one graph to show in
this section.

Proof: Similarly to the proof of lemma 1, assumptions
(1) and (3) imply that:

|A� ∩B| ≤ |A� ∩H | (9)

Inequality 9 and assumption (4) imply that:

γv

β
≤ Φv(G�|A�) ≤ ∂v(A� ∩B, A� ∩H)

|A� ∩B| ≤ |A
� ∩ C|

|A� ∩B|
where the last inequality stems from definition 6 (there are no
edges between H and S, therefore the boundary between B
and H is a subset of C). Applying assumption (2) it follows
that:

γv

β
≤ γv|A�|
|A� ∩B|

which leads to

|A� ∩B|
|A�| ≤ β

That is, G� has byzantine penetration β(G�) ≤ β. �
Remark 4: Our two results for community growth, one

based on conductance and the other based on vertex expan-
sion, are very similar. The main difference between them lies
in the premises of the two corollaries. The first assumes that
honest people tend to trust honest people more than they tend
to trust corrupt people. The second, which may be more naïve,
directly assumes that there are not too many corrupted people
in a given community to begin with. Again, the conditions
under which we assume either of these bounds to be low is
the subject of a separate line of work.

VII. ANALYSIS OF THE VERTEX EXPANSION APPROACH

Given a d-regular graph it can be shown that the inner
boundary vertex expansion of the graph is at least as high

as the graph conductance. Assume w.l.o.g that |A| ≤ |Ac|,
since ∂v(A, Ac) · d ≥ e(A, Ac) it follows that:

∂v(A, Ac)
|A| =

d · ∂v(A, Ac)
d · |A| ≥ e(A, Ac)

vol(A)

Going back to the numeric example in subsection V-B, now
setting Φv = 2

5 then it follows that whenever γv

β < 2
5 , there

exist a plethora of potential community histories for which
a given community may potentially grow to be arbitrarily
large. As an example, if the community wishes to achieve
β = 0.2 then it can tolerate γv = 0.08. Figure 4 illustrates
the parameter interplay further. The line Φv = 1 shows a
theoretical example where for each subset A ⊂ V , for every
x ∈ A there exist y ∈ Ac such that (x, y) ∈ E. Assuming
there is at least one honest identity in the community, and
remembering that there cannot be an edge between an honest
identity and a sybil identity, it follows that there are no sybils
in any such community in V . The line Φv = 1 expresses this
result as it shows that γv = β, which leads to S = ∅.

Maintaining Φv = 0.5 leads to β = 2γv which means that
the number of sybils in any such community is at most the
number of corrupted identities that are willing to share an
edge with a sybil identity. Unfortunately, the down side of
using vertex expansion over conductance is that, as far as we
know, there is no known way to measure or approximate vertex
expansion better than the relation between vertex expansion
and conductance shown above. We are also unaware of any
method to construct a graph with vertex expansion 0.5 or
higher with a constant degree d.

VIII. SIMULATION

The mathematical analysis described above shows some
bound on the byzantine penetration. In particular, the example
given in the previous section shows that a random d-regular
graph with d = 100, where the community maintains a
bound of no more than 8% corrupt identities, will maintain
with high probability a vertex expansion measure that will
guarantee no more than 20% of byzantines in the community.
In this section we report on simulations we ran to investigate
whether better results are achievable in practice. As we are
not aware of existing randomized d-regular social networks
we turn to simulations on synthetic data. There are several
parameters to play with in the algorithms presented here and a
comprehensive simulation is a topic for further research. Thus,
here we concentrate on a single simulation run that exemplifies
the usage of the above algorithms. As it is easier to simulate
the vertex expansion approach, we start with this direction.

The pseudocode presented in Method 1 describes the
specific simulation we performed. It accepts the following
parameters:

• n - the number of identities in the final community.
• d - the degree of the community graph.
• corruptLimit - the bound on the number of corrupt

identities allowed in the community.
• corruptProb - the probability of a newcomer to be

corrupt.
• sybilProb - the probability of a newcomer to be a sybil.
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Method 1 Community Growth Simulation
1: function VERTEXSIMULATION(n, d, corruptLimit ,

corruptProb, sybilProb , lambda)
2: init A with a d + 1 clique
3: init ident and failed with zeros
4: ident(1 : d + 1)← 1
5: index ← d + 1
6:

7: while index < n do
8: B ← A
9: nc ← draw a newcomer with given probs

10: Avoid corrupt if limit reached
11: loop d

2 times
12: edge ← draw a random edge
13: Avoid edges between honest and sybils
14: Connect newcomer between both vertices
15: v ← eigenvalues of B
16: end loop
17: if max(v(2), abs(v(last)))< lambda then
18: A← B
19: index ← index + 1
20: ident(index )← nc
21: else
22: failed (nc, index )← failed (nc, index ) + 1
23: end if
24: end while
25: return A, ident , failed
26: end function

• lambda - the bound on the second eigenvalue of the
random walk matrix.

The simulation starts with a clique of d + 1 honest nodes
and loops until the size of the community reaches n. At each
iteration a newcomer is trying to join the community. Its
type (honest, corrupt or sybil) is drawn according to the
given parameters, while avoiding corrupt newcomers, if the
bound of corrupt identities in the community was reached. The
simulation then draws d

2 edges from the graph and connects
the newcomer in the middle of these edges (connects the
newcomer with edges to both sides of the existing edge, and
removes it). This growing method guarantees that the graph
remains d-regular at all times. The simulation then calculates
the eigenvalues of the random walk matrix of the resulted
graph. If the second eigenvalue is lower than lambda , then
the graph is updated accordingly (the newcomer joins the
community).

We ran the simulation with the following parameters: n =
1000, d = 10, corruptLimit = 0.2, corruptProb = 0.1,
sybilProb = 0.8 and lambda = 0.6. The results of the
simulation are shown in figure 5. It shows that, although 80%
of newcomers were sybils, most of them were rejected by
the community. Overall, 754 honest identities, 199 corrupt,
and only 47 sybils joined the community. This is significantly
better than the analytical analysis that guarantees 30% of sybils
with the above parameters (Φv > 1 − 0.6 = 0.4, γv = 0.2,
β = 0.5, σ = β − γv = 0.3).

Fig. 5. Community growth simulation. The top plot shows the identities
that were accepted into the community. It shows that, although many sybils
attempted to join, only a bounded number succeeded. The bottom plot shows
the identities that were rejected, as the expansion of the graph was not high
enough.

Fig. 6. Actual bound on sybils as a function of the limit on corrupt identities.

We ran the simulation for several other values of
corruptLimit . The results are shown in figure 6. It shows that
there is a tipping point around corruptLimit = 0.32, at which
point the number of byzantines (corrupt and sybils together)
may exceed one half, after which sybils can infiltrate the graph
freely, turning the honest minority to be the under connected
part of the graph.

IX. REAL DATA

So far we have shown that, if a community can maintain a
d-regular trust graph with a good enough second eigenvalue
of the random walk matrix, then it can maintain a good bound
on the penetration of sybils. We also showed that a random
d-regular graph maintains a good enough second eigenvalue
with high enough probability. In this section we consider
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the efficiency of our method with respect to existing social
networks. Friendship graphs of such networks usually are not
d-regular, and they are not chaotic as random graphs. This
makes it harder to separate between sybils and non-sybils,
as the graph structure of these two communities may look
similar to the structure of any two communities of genuine
identities, with few connections between the two.

In the previous section we presented method 1, which
constructs a simulated random graph, classifies its nodes into
the three types of populations, and grows a community based
on the conditions presented in section VI. The first experiment
in this section uses the same community growth method, but
rather than generating a simulated random graph, it uses a
sample from Facebook [32] as the underlying graph G. This
sample, taken from the work of Leskovec and Mcauley, is a
collection of 10 identities from facebook and their friends,
a total of 4039 connected nodes.

A. A Small Sample From Facebook

The sample contains all genuine identities, which Leskovec
and Mcauley manually analyzed to construct their social
circles. Section V shows analytically that a d-regular graph
of genuine identities with a good second eigenvalue has a
good bound of sybils. This experiment focuses on testing
whether genuine identities can form such a graph, based on
their personal acquaintances. It therefore regards all identities
in the sample as genuine. Figure 7 Shows the results. Since
method 1 uses random decisions on whom to add next to
the community, we ran the first test 1000 times, in which we
checked how big a community the algorithm generates on each
attempt. The graph at the top shows the histogram of the size
of the final community. The largest community the method
managed to grow had 294 members out of 4039 nodes in the
underlying graph.

Next, we relax the algorithm to allow friends to introduce
new friends to each other. When a newcomer does not have
enough edges within the growing community, we create new
edges over the underlying graph G, first by allowing friends
of friends to connect with each other, then allowing also for
identities that are further away from each other to connect.
The purpose of this test is to check whether the assumption
that trust is transitive to some degree can help the algorithm
to generate bigger communities. We first measure how big
can a community grow, then how much transitivity of trust is
required.

The graph at the bottom (Figure 7) shows the results of
a single run. It shows the distribution of distances as the
community grows. Distance 1 shows the ratio of edges in
the community A which are also edges in the underlying
friendship graph G. Distance 2 shows the ratio of edges in A
that are friends of friends in G, and so on. The results show
that the relaxed algorithm managed to grow a community to
a size of 2306 members, out of 4039 nodes in G. The first
134 members in the community were only connected to direct
friends in G. As the community reaches its maximal size,
almost half of the edges in A, are either edges in G (31%) or
friends of friends in G (18%). The conclusion is therefore that,
by itself, social networks are not a good enough trust graphs

Fig. 7. Results of running method 1 on a sample from Facebook. The
graph at the top shows the histogram of the maximal size of the community
within 1000 runs. The largest community has 294 members out of 4039 identi-
ties in the sample. The graph at the bottom shows the distribution of distances
between neighbours in the community (edges in A), when friends introduce
new friends to create more trust edges.

to grow sybil resilient communities, but by allowing friends
to introduce new friends to each other, bigger sybil resilient
communities can be formed.

B. A Bigger Network From DBLP

The sample from Facebook is quite small; thus, to check
whether method 1 is also suitable for larger social networks,
next we examine its performance on a graph from the DBLP
computer science bibliography database. The data is taken
from the work of Yang and Leskovec [33], which evaluates
different structural definitions of network communities based
on a ground truth. They used the DBLP network, taking joint
publication venues as an indication of joint scientific commu-
nities. This network consists of scientific publications in com-
puter science, with scientists as nodes in the graph and edges
connecting scientists that share at least one joint publication.
The data in this database is the main connected component of
this network, as used by Yang and Leskovec, which includes
317,080 nodes (computer scientists) and 1,049,866 edges (joint
academic papers authorship).

Figure 8 shows the results of running method 1 on the DBLP
network. As before, the graph at the top shows the histogram
of running the method as is, for 1000 times. The results here
are worse than before: The largest community found had only
129 members, and most runs ended with less than 20 members
in the community. This is expected, as the Facebook sample
consists of friends of a small group of identities (10), with
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Fig. 8. Results of running method 1 on a the DBLP network. The
graph at the top shows the histogram of the maximal size of the com-
munity within 1000 runs. The largest community has 129 members out
of 317,080 identities in the underlying social graph. The graph at the bottom
shows the distribution of distances between neighbours in the community
(edges in A), when friends introduce new friends to create more trust edges.
It shows that about 30% of the edges in A are friends in the underlying social
graph G (distance 1), about 10% are friends of friends (distance 2), and so
on.

many friends; while the DBLP network is larger and more
dispersed. Therefore most attempts to randomly find highly
connected communities within this network come short.

The second test exposes the processing time limitations of
method 1. It took about two weeks to grow a community of
about 6600 members, at which point we paused the run to
take the data in the bottom graph of figure 8. The program
continued to run for about six weeks without reaching an
end. The growing community crossed 10,000 members, and
it is unclear how far can it grow further, given more time.
The graph shows that the DBLP network requires even more
transitivity of trust than the Facebook sample, though still
about half the edges in the growing community are of distance
3 or less in the underlying graph.

We ran the DBLP database once more, to measure process-
ing time. All tests where done with Matlab R2017b, on an
Intel i7-7700 CPU with 4 cores of 3.6 GHz and 16 GB of
RAM. The measurements show that the main bottleneck is
the computation of the second eigenvalue of the random walk
matrix. The graph at the top (figure 9) shows the overall
running time and the overall eigenvalue computation time.
It shows that the eigenvalue computation time takes about 70%
of the total running time. The graph at the bottom splits this
bottleneck into the cumulative computation time of the second
eigenvalue of a single matrix (right y axis) and the number

Fig. 9. Time measurements. The graph at the top shows the overall running
time of method 1 and the overall eigenvalue computation time. Eigenvalue
computation time is about 70% of the overall running time for a community
of 3500 identities. The graph at the bottom shows the computation time of a
single call to the eigenvalue calculation function (right y axis, averaged over
100 cycles), together with the number of attempts to add a new member to
the community (left y axis).

of attempts (left y axis) to find a suitable new member who
satisfies the condition in line 17 of method 1.

To conclude, this paper shows that the connectivity of
the graph (either conductance or vertex expansion) can
bound the penetration of sybils and that the second eigenvalue
of the random walk matrix can be used to bound the connec-
tivity of the graph. The conclusion of this subsection is that
method 1 is effective for building sybil resilient communities
of up to a few thousands of members. Bigger communities
will require more efficient ways to bound the connectivity.

X. OUTLOOK

We proposed two methods which allow a digital community
to grow in a sybil-safe way. We analyzed them mathematically
and showed that they are not only safe, but also feasible.
Simulations show even better results than the mathematical
analysis. Existing social networks are not a good candidate
for these methods, but we showed a possible direction how
to leverage the trust in existing social networks to construct
efficient trust-graphs. A naïve imlementation of our method
works well for a community of few thousand members.
Bigger communities require more efficient ways to compute
the connectivity of the graph. Future research also includes
mechanisms for penalizing the creation of attack edges while
rewarding sybil hunting, modeling the possibility of honest
identities abandoning the community, and expanding with
more simulations and real data analysis to better understand
the dynamics of safe growth.
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